1
|
Salagre D, Navarro-Alarcón M, Villalón-Mir M, Alcázar-Navarrete B, Gómez-Moreno G, Tamimi F, Agil A. Chronic melatonin treatment improves obesity by inducing uncoupling of skeletal muscle SERCA-SLN mediated by CaMKII/AMPK/PGC1α pathway and mitochondrial biogenesis in female and male Zücker diabetic fatty rats. Biomed Pharmacother 2024; 172:116314. [PMID: 38387135 DOI: 10.1016/j.biopha.2024.116314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
Melatonin acute treatment limits obesity of young Zücker diabetic fatty (ZDF) rats by non-shivering thermogenesis (NST). We recently showed melatonin chronically increases the oxidative status of vastus lateralis (VL) in both obese and lean adult male animals. The identification of VL skeletal muscle-based NST by uncoupling of sarcoendoplasmic reticulum Ca2+-ATPase (SERCA)- sarcolipin (SLN) prompted us to investigate whether melatonin is a SERCA-SLN calcium futile cycle uncoupling and mitochondrial biogenesis enhancer. Obese ZDF rats and lean littermates (ZL) of both sexes were subdivided into two subgroups: control (C) and 12 weeks orally melatonin treated (M) (10 mg/kg/day). Compared to the control groups, melatonin decreased the body weight gain and visceral fat in ZDF rats of both sexes. Melatonin treatment in both sex obese rats restored the VL muscle skin temperature and sensitized the thermogenic effect of acute cold exposure. Moreover, melatonin not only raised SLN protein levels in the VL of obese and lean rats of both sexes; also, the SERCA activity. Melatonin treatment increased the SERCA2 expression in obese and lean rats (both sexes), with no effects on SERCA1 expression. Melatonin increased the expression of thermogenic genes and proteins (PGC1-α, PPARγ, and NRF1). Furthermore, melatonin treatment enhanced the expression ratio of P-CaMKII/CaMKII and P-AMPK/AMPK. In addition, it rose mitochondrial biogenesis. These results provided the initial evidence that chronic oral melatonin treatment triggers the CaMKII/AMPK/PGC1α axis by upregulating SERCA2-SLN-mediated NST in ZDF diabetic rats of both sexes. This may further contribute to the body weight control and metabolic benefits of melatonin.
Collapse
Affiliation(s)
- D Salagre
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, Granada 18016, Spain
| | - M Navarro-Alarcón
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, Granada 18071, Spain
| | - M Villalón-Mir
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, Granada 18071, Spain
| | - B Alcázar-Navarrete
- CIBERES, Carlos III Health Institute, Madrid, and Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada 18014, Spain
| | - G Gómez-Moreno
- Department of Medically Compromised Patients in Dentistry, School of Dentistry, University of Granada, Granada 18011, Spain
| | - F Tamimi
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| | - A Agil
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, Granada 18016, Spain.
| |
Collapse
|
2
|
Aci R, Keskin A. Antioxidant Capacity of Melatonin against Oxidative Stress Caused by Exercise-Induced Weight Loss in Rats. INDONESIAN JOURNAL OF MEDICAL LABORATORY SCIENCE AND TECHNOLOGY 2023; 5:112-122. [DOI: 10.33086/ijmlst.v5i2.4159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Antioxidant supplements such as melatonin are used to prevent oxidative stress during exercise. This study aimed to investigate the antioxidant capacity of melatonin supplementation against oxidative stress induced by the weight loss observed during exercise. Forty Wistar Albino male rats were subjected to 10 days of jogging exercises. Two groups were formed based on weight loss. Two subgroups were created in each group. Melatonin (5 mg/kg) was administered to each subgroup in each group. The other subgroups were designated as control subgroups. Blood samples were collected after 10 d. Superoxide dismutase (SOD), total antioxidant status (TAS), glutathione peroxidase, melatonin, and malondialdehyde levels were analyzed in blood samples. SOD, glutathione peroxidase, TAS, and melatonin levels in the melatonin subgroup were higher than those in the control subgroup in the non-weight loss group. In contrast, the malondialdehyde levels were lower. Melatonin levels in the melatonin subgroup were higher than those in the control subgroup in the weight loss group. Conversely, the SOD and TAS levels were lower. In addition, there was a positive correlation between weight loss and malondialdehyde levels and a negative correlation with SOD, TAS, and melatonin levels. Melatonin (5 mg/kg) supplementation showed antioxidant capacity in exercise without weight loss, but was insufficient in exercise with weight loss.
Collapse
|
3
|
Farjallah MA, Graja A, Ghattassi K, Ben Mahmoud L, Elleuch H, Ayadi F, Driss T, Jammoussi K, Sahnoun Z, Souissi N, Hammouda O. Melatonin Ingestion Prevents Liver Damage and Improves Biomarkers of Renal Function Following a Maximal Exercise. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:869-879. [PMID: 35575746 DOI: 10.1080/02701367.2022.2068792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Background: While the promotion of the beneficial effects of melatonin (MEL) ingestion on the modulation of oxidative stress is widespread, less attention is given to the biological influence that it could exert on the results of hematology and clinical chemistry parameters. This study was undertaken to assess the effects of acute MEL ingestion on these parameters during a maximal running exercise. Methods: In double blind randomized design, 12 professional soccer players [age: 17.54 ± 0.78 yrs, body mass: 70.31 ± 3.86 kg, body height: 1.8 ± 0.08 m; maximal aerobic speed (MAS): 16.85 ± 0.63 km/h; mean ± standard deviation], all males, performed a diurnal (17:00 h ± 30 h) running exercise test (RET) at 100% of their MAS following either MEL or placebo ingestion. Blood samples were obtained at rest and following the RET. Results: Compared to placebo, MEL intake decreased post-exercise biomarkers of liver damage (aspartate aminotransferase, p<0.001; alanine aminotransferase, p<0.001; gamma-glutamyltransferase; p<0.05) and improved post-exercise renal function markers (i.e., creatinine, p<0.001). However, lipid profile, glucose, lactate and leukocyte were not affected by MEL ingestion. Regarding the time to exhaustion, no difference was found between MEL (362.46 ± 42.06 s) and PLA (374.54 ± 57.97 s) conditions. Conclusion: The results of this investigation clearly attest that MEL ingestion before a maximal running exercise might protect athletes from liver damage and perturbation in renal function biomarkers. However, this study comprises an acute MEL supplementation and no assessment on chronic effects or circadian rhythm the day before was done.
Collapse
|
4
|
Kuzmenko NV, Tsyrlin VA, Pliss MG. Meta-Analysis of Experimental Studies of Diet-Dependent Effects of Melatonin Monotherapy on Circulatory Levels of Triglycerides, Cholesterol, Glucose and Insulin in Rats. J EVOL BIOCHEM PHYS+ 2023. [DOI: 10.1134/s0022093023010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
Farjallah MA, Ghattassi K, Kamoun A, Graja A, Ben Mahmoud L, Driss T, Jamoussi K, Sahnoun Z, Souissi N, Zmijewski P, Hammouda O. Melatonin supplementation alleviates cellular damage and physical performance decline induced by an intensive training period in professional soccer players. PLoS One 2022; 17:e0273719. [PMID: 36054089 PMCID: PMC9439208 DOI: 10.1371/journal.pone.0273719] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
Melatonin has been proved to have positive effects on cellular damage and metabolic regulation. The aim of the study was to determine the effect of melatonin supplementation during an intensive training period on physical performance decline, oxidative stress and cellular damage state. The investigation was conducted on 20 soccer players who participated in an exhaustive six-day training schedule associated with daily 5 mg oral melatonin or placebo ingestion. Resting blood samples and physical performance were measured before and after the training period. The mixed 2-way ANOVA (group x training camp) showed that compared to placebo, melatonin intake prevented an increase in advanced oxidation protein products (p>0.05) and increased the antioxidant enzyme activity (i.e., superoxide dismutase; p<0.001). In addition, melatonin prevented an increase of biomarkers of renal function (e.g., creatinine; p>0.05) and biomarkers of muscle (e.g., creatine kinase; p>0.05) and liver (e.g., gamma-glutamyltransferase; p>0.05) damage. Furthermore, melatonin alleviated the deterioration in physical performance (countermovement jump, five-jump test and 20-m sprint; p>0.05). In conclusion, the obtained data showed increased oxidative stress and renal, muscle and liver damage in professional soccer players during an exhaustive training schedule. Melatonin intake during the training period exerts beneficial effects on physical performance and protects tissues against the deleterious effects of reactive oxygen species and cellular damage.
Collapse
Affiliation(s)
- Mohamed Amine Farjallah
- Faculty of Medicine, Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, University of Sfax, Sfax, Tunisia
- “Physical Activity, Sport and Health” Research Unit, UR18JS01, National Sport Observatory, Tunis, Tunisia
- * E-mail:
| | - Kais Ghattassi
- Research Unit, Education, Motricity, Sport and Health, UR15JS01, High Institute of Sport and Physical Education, University of Sfax, Tunisia
| | - Anis Kamoun
- Research Laboratory of Evaluation and Management of Musculoskeletal System Pathologies, LR20ES09 University of Sfax, Sfax Tunisia
| | - Ahmed Graja
- Faculty of Medicine, Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, University of Sfax, Sfax, Tunisia
| | - Lobna Ben Mahmoud
- Faculty of Medicine, Department of Pharmacology, University of Sfax, Sfax, Tunisia
| | - Tarak Driss
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2-APSA), UPL, Paris Nanterre University, UFR STAPS, Nanterre, France
| | - Kamel Jamoussi
- Biochemistry Laboratory, CHU Hedi Chaker, University of Sfax, Sfax, Tunisia
| | - Zouheir Sahnoun
- Faculty of Medicine, Department of Pharmacology, University of Sfax, Sfax, Tunisia
| | - Nizar Souissi
- “Physical Activity, Sport and Health” Research Unit, UR18JS01, National Sport Observatory, Tunis, Tunisia
| | - Piotr Zmijewski
- Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Omar Hammouda
- Faculty of Medicine, Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, University of Sfax, Sfax, Tunisia
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2-APSA), UPL, Paris Nanterre University, UFR STAPS, Nanterre, France
| |
Collapse
|
6
|
Faria VS, Manchado-Gobatto FB, Scariot PPM, Zagatto AM, Beck WR. Melatonin Potentiates Exercise-Induced Increases in Skeletal Muscle PGC-1 α and Optimizes Glycogen Replenishment. Front Physiol 2022; 13:803126. [PMID: 35557975 PMCID: PMC9087193 DOI: 10.3389/fphys.2022.803126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Compelling evidence has demonstrated the effect of melatonin on exhaustive exercise tolerance and its modulatory role in muscle energy substrates at the end of exercise. In line with this, PGC-1α and NRF-1 also seem to act on physical exercise tolerance and metabolic recovery after exercise. However, the literature still lacks reports on these proteins after exercise until exhaustion for animals treated with melatonin. Thus, the aim of the current study was to determine the effects of acute melatonin administration on muscle PGC-1α and NRF-1, and its modulatory role in glycogen and triglyceride contents in rats subjected to exhaustive swimming exercise at an intensity corresponding to the anaerobic lactacidemic threshold (iLAn). In a randomized controlled trial design, thirty-nine Wistar rats were allocated into four groups: control (CG = 10), rats treated with melatonin (MG = 9), rats submitted to exercise (EXG = 10), and rats treated with melatonin and submitted to exercise (MEXG = 10). Forty-eight hours after the graded exercise test, the animals received melatonin (10 mg/kg) or vehicles 30 min prior to time to exhaustion test in the iLAn (tlim). Three hours after tlim the animals were euthanized, followed by muscle collection for specific analyses: soleus muscles for immunofluorescence, gluteus maximus, red and white gastrocnemius for the assessment of glycogen and triglyceride contents, and liver for the measurement of glycogen content. Student t-test for independent samples, two-way ANOVA, and Newman keuls post hoc test were used. MEXG swam 120.3% more than animals treated with vehicle (EXG; p < 0.01). PGC-1α and NRF-1 were higher in MEXG with respect to the CG (p < 0.05); however, only PGC-1α was higher for MEXG when compared to EXG. Melatonin reduced the triglyceride content in gluteus maximus, red and white gastrocnemius (F = 6.66, F = 4.51, and F = 6.02, p < 0.05). The glycogen content in red gastrocnemius was higher in MEXG than in CG (p = 0.01), but not in EXG (p > 0.05). In conclusion, melatonin was found to enhance exercise tolerance, potentiate exercise-mediated increases in PGC-1α, decrease muscle triglyceride content and increase muscle glycogen 3 h after exhaustive exercise, rapidly providing a better cellular metabolic environment for future efforts.
Collapse
Affiliation(s)
- Vinícius Silva Faria
- Laboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos—UFSCar, São Carlos, Brazil
| | | | - Pedro Paulo Menezes Scariot
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | - Alessandro Moura Zagatto
- Laboratory of Physiology and Sports Performance, Department of Physical Education, School of Science—Bauru Campus, São Paulo State University—UNESP, Bauru, Brazil
| | - Wladimir Rafael Beck
- Laboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos—UFSCar, São Carlos, Brazil
| |
Collapse
|
7
|
Effects of melatonin ingestion on physical performance and biochemical responses following exhaustive running exercise in soccer players. Biol Sport 2022; 39:473-479. [PMID: 35309526 PMCID: PMC8919877 DOI: 10.5114/biolsport.2022.106385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Accepted: 05/15/2021] [Indexed: 12/30/2022] Open
Abstract
Antioxidant supplementation has become a common practice among athletes to boost sport achievement. Likewise, melatonin (MEL) has been ingested as an ergogenic aid to improve physical performance. To date, no study has checked whether the multiple beneficial effects of MEL have an outcome during a maximum running exercise until exhaustion. Therefore, the present study aimed to evaluate the effect of MEL ingestion on physical performance and biochemical responses (i.e., oxidative stress) during exhaustive exercise. In a double blind randomized study, thirteen professional soccer players [age: 17.5 ± 0.8 years, body mass: 70.3 ± 3.9 kg, body height: 1.80 ± 0.08 m; maximal aerobic speed (MAS): 16.85 ± 0.63 km/h; mean ± standard deviation], members of a first league squad, performed a running exercise until exhaustion at 100% of MAS, after either MEL or placebo ingestion. Physical performance was assessed, and blood samples were obtained at rest and following the exercise. Compared to placebo, MEL intake prevented the increase in oxidative stress markers (i.e., malondialdehyde), alleviated the alteration of antioxidant status (i.e., glutathione peroxidase, uric acid and total bilirubin) and decreased post-exercise biomarkers of muscle damage (i.e., creatine kinase and lactate dehydrogenase) (p < 0.05). However, physical performance was not affected by MEL ingestion (p > 0.05). In conclusion, acute MEL intake before a maximal running exercise protected athletes from oxidative stress and cellular damage but without an effect on physical performance.
Collapse
|
8
|
Faria VS, Pejon TMM, Gobatto CA, de Araujo GG, Cornachione AS, Beck WR. Acute melatonin administration improves exercise tolerance and the metabolic recovery after exhaustive effort. Sci Rep 2021; 11:19228. [PMID: 34584111 PMCID: PMC8478932 DOI: 10.1038/s41598-021-97364-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
The present study investigated the effects of acute melatonin administration on the biomarkers of energy substrates, GLUT4, and FAT/CD36 of skeletal muscle and its performance in rats subjected to exhaustive swimming exercise at an intensity corresponding to the maximal aerobic capacity (tlim). The incremental test was performed to individually determine the exercise intensity prescription and 48 h after, the animals received melatonin (10 mg·kg-1) or vehicles 30 min prior to tlim. Afterwards, the animals were euthanized 1 or 3 h after the exhaustion for blood and muscles storage. The experiment 1 found that melatonin increased the content of glycogen and GLUT4 in skeletal muscles of the animals that were euthanized 1 (p < 0.05; 22.33% and 41.87%) and 3 h (p < 0.05; 37.62% and 57.87%) after the last procedures. In experiment 2, melatonin enhanced the tlim (p = 0.01; 49.42%), the glycogen content (p < 0.05; 40.03%), GLUT4 and FAT/CD36 in exercised skeletal muscles (F = 26.83 and F = 25.28, p < 0.01). In summary, melatonin increased energy substrate availability prior to exercise, improved the exercise tolerance, and accelerated the recovery of muscle energy substrates after the tlim, possibly through GLUT4 and FAT/CD36.
Collapse
Affiliation(s)
- Vinícius Silva Faria
- grid.411247.50000 0001 2163 588XLaboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP 13565-905 Brazil
| | - Taciane Maria Melges Pejon
- grid.411247.50000 0001 2163 588XLaboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP 13565-905 Brazil
| | - Claudio Alexandre Gobatto
- grid.411087.b0000 0001 0723 2494Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP 13484-350 Brazil
| | - Gustavo Gomes de Araujo
- grid.411247.50000 0001 2163 588XLaboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP 13565-905 Brazil
| | - Anabelle Silva Cornachione
- grid.411247.50000 0001 2163 588XMuscle Physiology and Biophysics Laboratory, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP 13565-905 Brazil
| | - Wladimir Rafael Beck
- grid.411247.50000 0001 2163 588XLaboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP 13565-905 Brazil
| |
Collapse
|
9
|
Gomes PRL, Vilas-Boas EA, Leite EDA, Munhoz AC, Lucena CF, Amaral FGD, Carpinelli AR, Cipolla-Neto J. Melatonin regulates maternal pancreatic remodeling and B-cell function during pregnancy and lactation. J Pineal Res 2021; 71:e12717. [PMID: 33460489 DOI: 10.1111/jpi.12717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/16/2020] [Accepted: 01/07/2021] [Indexed: 01/23/2023]
Abstract
The endocrine pancreas of pregnant rats shows evident plasticity, which allows the morphological structures to return to the nonpregnant state right after delivery. Furthermore, it is well-known the role of melatonin in the maintenance of the endocrine pancreas and its tropism. Studies indicate increasing nocturnal serum concentrations of maternal melatonin during pregnancy in both humans and rodents. The present study investigated the role of melatonin on energy metabolism and in pancreatic function and remodeling during pregnancy and early lactation in rats. The results confirm that the absence of melatonin during pregnancy impairs glucose metabolism. In addition, there is a dysregulation in insulin secretion at various stages of the development of pregnancy and an apparent failure in the glucose-stimulated insulin secretion during the lactation period, evidencing the role of melatonin on the regulation of insulin secretion. This mechanism seems not to be dependent on the antioxidant effect of melatonin and probably dependent on MT2 receptors. We also observed changes in the mechanisms of death and cell proliferation at the end of pregnancy and beginning of lactation, crucial periods for pancreatic remodeling. The present observations strongly suggest that both functionality and remodeling of the endocrine pancreas are impaired in the absence of melatonin and its adequate replacement, mimicking the physiological increase seen during pregnancy, is able to reverse some of the damage observed. Thus, we conclude that pineal melatonin is important to metabolic adaptation to pregnancy and both the functionality of the beta cells and the remodeling of the pancreas during pregnancy and early lactation, ensuring the return to nonpregnancy conditions.
Collapse
Affiliation(s)
| | - Eloisa Aparecida Vilas-Boas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Eduardo de Almeida Leite
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Ana Cláudia Munhoz
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Camila Ferraz Lucena
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Ishihara R, Barros MPD, Silva CMD, Borges LDS, Hatanaka E, Lambertucci RH. Melatonin improves the antioxidant capacity in cardiac tissue of Wistar rats after exhaustive exercise. Free Radic Res 2021; 55:776-791. [PMID: 34100318 DOI: 10.1080/10715762.2021.1939024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We investigated the effects of melatonin on the onset and resolution of the oxidative stress in the cardiac muscle in melatonin-treated and nontreated rats subjected to an exhaustive exercise session. Forty male rats were divided into: melatonin-treated (20 mg/kg supplemented for 10 d) and control. On the 10th day, each group was subdivided according to euthanasia moments: control or melatonin-treated not exercised (C0h and M0h); immediately after the exercise (CIA and MIA); and 2 h after exercise (C2h and M2h). The heart of animals was removed and the levels of oxidative stress index (OSI) and the formation of thiobarbituric acid reactive substances (TBARS), protein carbonyl, and the activities of aconitase, catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were evaluated. Total antioxidant status (TAS), total oxidant status (TOS), and the protein expression of CAT, GPx, and SOD was also measured. Our data revealed significant differences on: (i) OSI (p=.029), CAT activity (p=.016), CAT content (p<.001), GPx content (p=.014), reduced glutathione levels (p<.001), and aconitase activity (p<.001) for interaction of melatonin; (ii) GPx activity (p=.005), reduced glutathione (p=.004), protein carbonyl (p=.035), and TBARS levels (p=.028) between groups, and (iii) TBARS levels (p=.016) for significance between moments. Although the exhaustive exercise protocol imposed mild oxidative stress on the cardiac tissue of rats, melatonin induced antioxidant responses that rebalanced the redox status of the cardiac tissue, especially after exhaustive exercise.
Collapse
Affiliation(s)
- Rafael Ishihara
- Department of Biosciences, Federal University of Sao Paulo, Santos, Brazil
| | - Marcelo Paes de Barros
- Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, Brazil
| | | | - Leandro da Silva Borges
- Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, Brazil
| | - Elaine Hatanaka
- Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, Brazil
| | | |
Collapse
|
11
|
Tavares BS, Tsosura TVS, Mattera MSLC, Santelli JO, Belardi BE, Chiba FY, Cintra LTA, Silva CC, Matsushita DH. Effects of melatonin on insulin signaling and inflammatory pathways of rats with apical periodontitis. Int Endod J 2021; 54:926-940. [PMID: 33411973 DOI: 10.1111/iej.13474] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
AIM To verify the effects of melatonin supplementation on insulin sensitivity, plasma concentrations of inflammatory cytokines, insulin signalling and inflammatory pathways in the soleus (SM) and extensor digitorum longus (EDL) muscles of rats with apical periodontitis (AP). METHODOLOGY Seventy-two Wistar rats were distributed into 4 groups: (a) control (C), (b) control supplemented with melatonin (M), (c) AP (AP), and (d) AP supplemented with melatonin (AP + M). AP was induced by pulp exposure of the maxillary and mandibular right first and second molars to the oral environment. After AP induction, oral supplementation with 5 mg kg-1 melatonin (diluted in drinking water) for 60 days was initiated. At the end of the treatment, the following were analysed: (1) plasma concentrations of insulin and inflammatory cytokines (TNF-α, IL-6, IL-1β and IL-10) using ELISA kits; (2) glycaemia using enzymatic assay; (3) insulin resistance using homoeostasis model assessment of insulin resistance (HOMA-IR) index; and (4) phosphorylation status of pp185 tyrosine, Akt serine, IKKα/β, and JNK in SM and EDL using Western blot. Analysis of variance of two or three factors was performed, followed by the Bonferroni test. P values < 0.05 were considered statistically significant. RESULTS AP promoted insulin resistance, significantly increased (P < 0.05) plasma concentrations of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), significantly decreased (P < 0.05) the concentration of anti-inflammatory cytokine IL-10, impaired insulin signalling in SM, and increased IKKα/β phosphorylation status in SM and EDL. Melatonin supplementation in rats with AP improved insulin sensitivity, significantly decreased (P < 0.05) TNF-α and IL-1β, significantly increased (P < 0.05) IL-10 plasma concentrations, and changed the insulin signalling in soleus muscle and IKKα/β phosphorylation status in SM and EDL muscles. CONCLUSIONS Melatonin is a potent adjuvant treatment for improving apical periodontitis-associated changes in insulin sensitivity, insulin signalling and inflammatory pathways. In addition, the negative impact of AP on general health was also demonstrated.
Collapse
Affiliation(s)
- B S Tavares
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - T V S Tsosura
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - M S L C Mattera
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - J O Santelli
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - B E Belardi
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - F Y Chiba
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - L T A Cintra
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - C C Silva
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - D H Matsushita
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| |
Collapse
|
12
|
Mendes C, Gomes G, Belpiede LT, do Carmo Buonfiglio D, Motta-Teixeira LC, Amaral FG, Cipolla-Neto J. The effects of melatonin daily supplementation to aged rats on the ability to withstand cold, thermoregulation and body weight. Life Sci 2020; 265:118769. [PMID: 33309717 DOI: 10.1016/j.lfs.2020.118769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 02/01/2023]
Abstract
AIMS Investigate the role of melatonin on the regulation of body temperature in aged animals that have impaired melatonin production. MATERIAL AND METHODS Aged Male Wistar rats were randomly assigned to the following groups: 1) control (vehicle added to the water bottles during the dark phase) and 2) melatonin-treated (10 mg/kg melatonin added to the water bottles during the dark phase). Before and after 16 weeks of vehicle or melatonin treatment, control group and melatonin-treated animals were acutely exposed to 18 °C for 2 h for an acute cold challenge and thermal images were obtained using an infrared camera. After 16 weeks, animals were euthanized and brown and beige adipocytes were collected for analysis of genes involved in the thermogenesis process by real-time PCR, and the uncoupling protein expression was evaluated by immunoblotting. Browning intensity of beige adipocytes were quantified by staining with hematoxylin-eosin. KEY FINDINGS Chronic melatonin supplementation induced a minor increase in body mass and increased the animal's thermogenic potential in the cold acute challenge. Brown and beige adipocytes acted in a coordinated and complementary way to ensure adequate heat production. SIGNIFICANCE Melatonin plays an important role in the thermoregulatory mechanisms, ensuring greater capacity to withstand cold and, also, participating in the regulation of energy balance.
Collapse
Affiliation(s)
- Caroline Mendes
- Neurobiology Lab, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Guilherme Gomes
- Department of Physics and Interdisciplinary Science (FCI), São Carlos Institute of Physics (IFSC), University of São Paulo, São Paulo, Brazil
| | - Luciana Tocci Belpiede
- Neurobiology Lab, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Lívia Clemente Motta-Teixeira
- Neurobiology Lab, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda Gaspar Amaral
- Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - José Cipolla-Neto
- Neurobiology Lab, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
13
|
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020; 35:101471. [PMID: 32127289 PMCID: PMC7284926 DOI: 10.1016/j.redox.2020.101471] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antioxidant supplements are commonly consumed by endurance athletes to minimize exercise-induced oxidative stress, with the intention of enhancing recovery and improving performance. There are numerous commercially available nutritional supplements that are targeted to athletes and health enthusiasts that allegedly possess antioxidant properties. However, most of these compounds are poorly investigated with respect to their in vivo redox activity and efficacy in humans. Therefore, this review will firstly provide a background to endurance exercise-related redox signalling and the subsequent adaptations in skeletal muscle and vascular function. The review will then discuss commonly available compounds with purported antioxidant effects for use by athletes. N-acetyl cysteine may be of benefit over the days prior to an endurance event; while chronic intake of combined 1000 mg vitamin C + vitamin E is not recommended during periods of heavy training associated with adaptations in skeletal muscle. Melatonin, vitamin E and α-lipoic acid appear effective at decreasing markers of exercise-induced oxidative stress. However, evidence on their effects on endurance performance are either lacking or not supportive. Catechins, anthocyanins, coenzyme Q10 and vitamin C may improve vascular function, however, evidence is either limited to specific sub-populations and/or does not translate to improved performance. Finally, additional research should clarify the potential benefits of curcumin in improving muscle recovery post intensive exercise; and the potential hampering effects of astaxanthin, selenium and vitamin A on skeletal muscle adaptations to endurance training. Overall, we highlight the lack of supportive evidence for most antioxidant compounds to recommend to athletes.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
14
|
The regulatory role of melatonin in skeletal muscle. J Muscle Res Cell Motil 2020; 41:191-198. [PMID: 32157560 DOI: 10.1007/s10974-020-09578-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/22/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022]
Abstract
Melatonin (N-acetyl-5-methoxy-tryptamine) is an effective antioxidant and free radical scavenger, that has important biological effects in multiple cell types and species. Melatonin research in muscle has recently gained attention, mainly focused on its role in cells or tissue repair and regeneration after injury, due to its powerful biological functions, including its antioxidant, anti-inflammation, anti-tumor and anti-cancer, circadian rhythm, and anti-apoptotic effects. However, the effect of melatonin in regulating muscle development has not been systematically summarized. In this review, we outline the latest research on the involvement of melatonin in the regulation of muscle development and regeneration in order to better understand its underlying molecular mechanisms and potential applications.
Collapse
|
15
|
Xu Z, You W, Liu J, Wang Y, Shan T. Elucidating the Regulatory Role of Melatonin in Brown, White, and Beige Adipocytes. Adv Nutr 2020; 11:447-460. [PMID: 31355852 PMCID: PMC7442421 DOI: 10.1093/advances/nmz070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/28/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
The high prevalence of obesity and its associated metabolic diseases has heightened the importance of understanding control of adipose tissue development and energy metabolism. In mammals, 3 types of adipocytes with different characteristics and origins have been identified: white, brown, and beige. Beige and brown adipocytes contain numerous mitochondria and have the capability to burn energy and counteract obesity, while white adipocytes store energy and are closely associated with metabolic disorders and obesity. Thus, regulation of the development and function of different adipocytes is important for controlling energy balance and combating obesity and related metabolic disorders. Melatonin is a neurohormone, which plays multiple roles in regulating inflammation, blood pressure, insulin actions, and energy metabolism. This article summarizes and discusses the role of melatonin in white, beige, and brown adipocytes, especially in affecting adipogenesis, inducing beige formation or white adipose tissue browning, enhancing brown adipose tissue mass and activities, improving anti-inflammatory and antioxidative effects, regulating adipokine secretion, and preventing body weight gain. Based on the current findings, melatonin is a potential therapeutic agent to control energy metabolism, adipogenesis, fat deposition, adiposity, and related metabolic diseases.
Collapse
Affiliation(s)
- Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Jiaqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China,Address correspondence to TS (E-mail: )
| |
Collapse
|
16
|
Stacchiotti A, Favero G, Rodella LF. Impact of Melatonin on Skeletal Muscle and Exercise. Cells 2020; 9:cells9020288. [PMID: 31991655 PMCID: PMC7072499 DOI: 10.3390/cells9020288] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle disorders are dramatically increasing with human aging with enormous sanitary costs and impact on the quality of life. Preventive and therapeutic tools to limit onset and progression of muscle frailty include nutrition and physical training. Melatonin, the indole produced at nighttime in pineal and extra-pineal sites in mammalians, has recognized anti-aging, anti-inflammatory, and anti-oxidant properties. Mitochondria are the favorite target of melatonin, which maintains them efficiently, scavenging free radicals and reducing oxidative damage. Here, we discuss the most recent evidence of dietary melatonin efficacy in age-related skeletal muscle disorders in cellular, preclinical, and clinical studies. Furthermore, we analyze the emerging impact of melatonin on physical activity. Finally, we consider the newest evidence of the gut-muscle axis and the influence of exercise and probably melatonin on the microbiota. In our opinion, this review reinforces the relevance of melatonin as a safe nutraceutical that limits skeletal muscle frailty and prolongs physical performance.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3717478; Fax: +39-030-3717486
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
17
|
Halpern B, Mancini MC, Mendes C, Machado CML, Prando S, Sapienza MT, Buchpiguel CA, do Amaral FG, Cipolla-Neto J. Melatonin deficiency decreases brown adipose tissue acute thermogenic capacity of in rats measured by 18F-FDG PET. Diabetol Metab Syndr 2020; 12:82. [PMID: 32973928 PMCID: PMC7504678 DOI: 10.1186/s13098-020-00589-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/10/2020] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE Melatonin has been shown to increase brown adipose tissue (BAT) mass, which can lead to important metabolic effects, such as bodyweight reduction and glycemic improvement. However, BAT mass can only be measured invasively and. The gold standard for non-invasive measurement of BAT activity is positron emission tomography with 2-deoxy-2-[fluorine-18] fluoro-d-glucose (18F-FDG PET). There is no study, to our knowledge, that has evaluated if melatonin influences BAT activity, measured by this imaging technique in animals. METHODS Three experimental groups of Wistar rats (control, pinealectomy, and pinealectomy replaced with melatonin) had an 18F-FDG PET performed at room temperature and after acute cold exposure. The ratio of increased BAT activity after cold exposure/room temperature was called "acute thermogenic capacity" (ATC) We also measured UCP-1 mRNA expression to correlate with the 18F-FDG PET results. RESULTS Pinealectomy led to reduced acute thermogenic capacity, compared with the other groups, as well as reduced UCP1 mRNA expression. CONCLUSION Melatonin deficiency impairs BAT response when exposed to acute cold exposure. These results can lead to future studies of the influence of melatonin on BAT, in animals and humans, without needing an invasive evaluation of BAT.
Collapse
Affiliation(s)
- Bruno Halpern
- Department of Endocrinology and Metabolism, Hospital das Clinicas da Faculdade de Medicina de São Paulo, São Paulo, Brazil
| | - Marcio C. Mancini
- Department of Endocrinology and Metabolism, Hospital das Clinicas da Faculdade de Medicina de São Paulo, São Paulo, Brazil
| | - Caroline Mendes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Maria Longo Machado
- Nuclear Medicine Institute, Hospital das Clinicas da Faculdade de Medicina de São Paulo, São Paulo, Brazil
| | - Silvana Prando
- Nuclear Medicine Institute, Hospital das Clinicas da Faculdade de Medicina de São Paulo, São Paulo, Brazil
| | - Marcelo Tatit Sapienza
- Nuclear Medicine Institute, Hospital das Clinicas da Faculdade de Medicina de São Paulo, São Paulo, Brazil
| | - Carlos Alberto Buchpiguel
- Nuclear Medicine Institute, Hospital das Clinicas da Faculdade de Medicina de São Paulo, São Paulo, Brazil
| | | | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Zhao F, Ma C, Zhao G, Wang G, Li X, Yang K. Rumen-Protected 5-Hydroxytryptophan Improves Sheep Melatonin Synthesis in the Pineal Gland and Intestinal Tract. Med Sci Monit 2019; 25:3605-3616. [PMID: 31091223 PMCID: PMC6534969 DOI: 10.12659/msm.915909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Based on the extensive biological effects of melatonin (MLT), it is beneficial to increase the MLT content in the bodies of animals at a specific physiological stage. This study was conducted to investigate the effect of a diet supplemented with rumen-protected (RP) 5-hydroxytryptophan (5-HTP) on the pineal gland and intestinal tract MLT synthesis of sheep. MATERIAL AND METHODS Eighteen Kazakh sheep were assigned randomly to 3 diet groups: control group (CT, corn-soybean meal basal diet), CT+111 group (111 mg/kg BW RP 5-HTP), and CT+222 group (222 mg/kg BW RP 5-HTP). The gene expressions of aromatic amino acid decarboxylase (AADC), arylalkylamine N-acetyltransferase (AA-NAT), hydroxyindole-O-methyltransferase (HIOMT), monoamine oxidase A (MAOA), and the intermediates of MLT synthesis were observed from the pineal gland and intestinal tract by the reverse transcription (RT)-PCR method. The 5-HTP, 5-HT, N-acetylserotonin (NAS), MLT, and 5-hydroxyindole acetic acid (5-HIAA) contents in the pineal gland and intestinal tract were analyzed by ultra-high-performance liquid chromatography-tandem mass spectrometry. RESULTS The study showed that the pineal gland HIOMT expression (P<0.05), MLT (P<0.05) and 5-HIAA (P<0.05) levels in the 222 mg/kg group significantly increased compared to those in the CT and CT+111 mg/kg groups. In addition, the AADC (P<0.01) and AA-NAT (P<0.05) gene expression levels in the duodenum and jejunum were increased by the supplementation of RP 5-HTP. CONCLUSIONS Rumen-protected 5-hydroxytryptophan promoted melatonin synthesis in the pineal gland and intestinal tract during the natural light period.
Collapse
Affiliation(s)
- Fang Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Chen Ma
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Guodong Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Gen Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Xiaobin Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Kailun Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|
19
|
de Souza CAP, Gallo CC, de Camargo LS, de Carvalho PVV, Olesçuck IF, Macedo F, da Cunha FM, Cipolla-Neto J, do Amaral FG. Melatonin multiple effects on brown adipose tissue molecular machinery. J Pineal Res 2019; 66:e12549. [PMID: 30597601 DOI: 10.1111/jpi.12549] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022]
Abstract
Brown adipose tissue (BAT) influences energy balance through nonshivering thermogenesis, and its metabolism daily and seasonal variations are regulated by melatonin through partially known mechanisms. We evaluated the role of melatonin in BAT molecular machinery of male Control, pinealectomized (PINX), and melatonin-treated pinealectomized (PINX/Mel) adult rats. BAT was collected either every 3 hours over 24 hours or after cold or high-fat diet (HFD) acute exposure. HFD PINX animals presented decreased Dio2 expression, while HFD PINX/Mel animals showed increased Dio2, Ucp1, and Cidea expression. Cold-exposed PINX rats showed decreased Dio2 and Lhs expression, and melatonin treatment augmented Adrβ3, Dio2, Ucp1, and Cidea expression. Daily profiles analyses showed altered Dio2, Lhs, Ucp1, Pgc1α, and Cidea gene and UCP1 protein expression in PINX animals, leading to altered rhythmicity under sub-thermoneutral conditions, which was partially restored by melatonin treatment. The same was observed for mitochondrial complexes I, II, and IV protein expression and enzyme activity. Melatonin absence seems to impair BAT responses to metabolic challenges, and melatonin replacement reverses this effect, with additional increase in the expression of crucial genes, suggesting that melatonin plays an important role in several key points of the thermogenic activation pathway, influencing both the rhythmic profile of the tissue and its ability to respond to metabolic challenges, which is crucial for the organism homeostasis.
Collapse
Affiliation(s)
- Caroline A P de Souza
- Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | - Camila Congentino Gallo
- Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Ingrid Fernandes Olesçuck
- Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | - Felipe Macedo
- Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | | | - José Cipolla-Neto
- Laboratory of Neurobiology, Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Fernanda G do Amaral
- Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
de Aquino Lemos V, dos Santos RVT, Antunes HKM, Behn C, Viscor G, Lira FS, Bittar IGL, Caris AV, Tufik S, De Mello MT. Melatonin and sleep responses to normobaric hypoxia and aerobic physical exercise: A randomized controlled trial. Physiol Behav 2018; 196:95-103. [DOI: 10.1016/j.physbeh.2018.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022]
|
21
|
Evans MC, Anderson GM. Integration of Circadian and Metabolic Control of Reproductive Function. Endocrinology 2018; 159:3661-3673. [PMID: 30304391 DOI: 10.1210/en.2018-00691] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
Optimal fertility in humans and animals relies on the availability of sufficient metabolic fuels, information about which is communicated to the brain via levels of the hormones leptin and insulin. The circadian clock system is also critical; this input is especially evident in the precise timing of the female-specific surge of GnRH and LH secretion that triggers ovulation the next day. Chronodisruption and metabolic imbalance can both impair reproductive activity, and these two disruptions exacerbate each other, such that they often occur simultaneously. Kisspeptin neurons located in the anteroventral periventricular nucleus of the hypothalamus are able to integrate both circadian and metabolic afferent inputs and use this information to modulate the timing and magnitude of the preovulatory GnRH/LH surge. In an environment in which exposure to high caloric diets and chronodisruptors such as artificial night lighting, shift work, and transmeridian travel have become the norm, the implications of these factors for couples struggling to conceive deserve closer attention and more public education.
Collapse
Affiliation(s)
- Maggie C Evans
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| |
Collapse
|
22
|
Majidinia M, Reiter RJ, Shakouri SK, Yousefi B. The role of melatonin, a multitasking molecule, in retarding the processes of ageing. Ageing Res Rev 2018; 47:198-213. [PMID: 30092361 DOI: 10.1016/j.arr.2018.07.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
Biological ageing is generally accompanied by a gradual loss of cellular functions and physiological integrity of organ systems, the consequential enhancement of vulnerability, senescence and finally death. Mechanisms which underlie ageing are primarily attributed to an array of diverse but related factors including free radical-induced damage, dysfunction of mitochondria, disruption of circadian rhythms, inflammaging, genomic instability, telomere attrition, loss of proteostasis, deregulated sensing of nutrients, epigenetic alterations, altered intercellular communication, and decreased capacity for tissue repair. Melatonin, a prime regulator of human chronobiological and endocrine physiology, is highly reputed as an antioxidant, immunomodulatory, antiproliferative, oncostatic, and endocrine-modulatory molecule. Interestingly, several recent reports support melatonin as an anti-ageing agent whose multifaceted functions may lessen the consequences of ageing. This review depicts four categories of melatonin's protective effects on ageing-induced molecular and structural alterations. We also summarize recent findings related to the function of melatonin during ageing in various tissues and organs.
Collapse
|
23
|
Farjallah MA, Hammouda O, Ben Mahmoud L, Graja A, Ghattassi K, Boudaya M, Jammoussi K, Sahnoun Z, Souissi N. Melatonin supplementation ameliorates oxidative stress, antioxidant status and physical performances recovery during a soccer training camp. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1533749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Omar Hammouda
- Research Center on Sport and Movement (Centre de Recherches sur le Sport et le Mouvement, CeRSM), UPL, Univ Paris Nanterre, UFR STAPS, Nanterre, France
- Faculty of medicine of Sfax, Research Unit, Molecular Bases of Human Pathology, Sfax, Tunisia
| | - Lobna Ben Mahmoud
- Faculty of Medicine, pharmacology department., Sfax University, Sfax, Tunisia
| | - Ahmed Graja
- High Institute of Sport and Physical Education, Manouba University, Tunis, Tunisia
| | - Kais Ghattassi
- High Institute of Sport and Physical Education, Manouba University, Tunis, Tunisia
| | - Mariem Boudaya
- Biochemistry Laboratory, CHU Hedi Chaker, University of Sfax, Sfax, Tunisia
| | - Kamel Jammoussi
- Biochemistry Laboratory, CHU Hedi Chaker, University of Sfax, Sfax, Tunisia
| | - Zouheir Sahnoun
- Faculty of Medicine, pharmacology department., Sfax University, Sfax, Tunisia
| | - Nizar Souissi
- High Institute of Sport and Physical Education, Manouba University, Tunis, Tunisia
| |
Collapse
|
24
|
Gonçalves AL, Martini Ferreira A, Ribeiro RT, Zukerman E, Cipolla-Neto J, Peres MFP. Randomised clinical trial comparing melatonin 3 mg, amitriptyline 25 mg and placebo for migraine prevention. J Neurol Neurosurg Psychiatry 2016; 87:1127-32. [PMID: 27165014 PMCID: PMC5036209 DOI: 10.1136/jnnp-2016-313458] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/21/2016] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Melatonin has been studied in headache disorders. Amitriptyline is efficacious for migraine prevention, but its unfavourable side effect profile limits its use. METHODS A randomised, double-blind, placebo-controlled study was carried out. Men and women, aged 18-65 years, with migraine with or without aura, experiencing 2-8 attacks per month, were enrolled. After a 4-week baseline phase, 196 participants were randomised to placebo, amitriptyline 25 mg or melatonin 3 mg, and 178 took a study medication and were followed for 3 months (12 weeks). The primary outcome was the number of migraine headache days per month at baseline versus last month. Secondary end points were responder rate, migraine intensity, duration and analgesic use. Tolerability was also compared between groups. RESULTS Mean headache frequency reduction was 2.7 migraine headache days in the melatonin group, 2.2 for amitriptyline and 1.1 for placebo. Melatonin significantly reduced headache frequency compared with placebo (p=0.009), but not to amitriptyline (p=0.19). Melatonin was superior to amitriptyline in the percentage of patients with a greater than 50% reduction in migraine frequency. Melatonin was better tolerated than amitriptyline. Weight loss was found in the melatonin group, a slight weight gain in placebo and significantly for amitriptyline users. CONCLUSIONS Melatonin 3 mg is better than placebo for migraine prevention, more tolerable than amitriptyline and as effective as amitriptyline 25 mg.
Collapse
Affiliation(s)
- Andre Leite Gonçalves
- Albert Einstein Hospital, São Paulo, Brazil Department of Neurology, UNIFESP, São Paulo, Brazil
| | | | - Reinaldo Teixeira Ribeiro
- Department of Neurology, UNIFESP, São Paulo, Brazil Neurology Department, FMABC, Santo Andre, Brazil
| | | | - José Cipolla-Neto
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
25
|
Carissimi A, Martins AC, Dresch F, da Silva LC, Zeni CP, Hidalgo MP. School start time influences melatonin and cortisol levels in children and adolescents – a community-based study. Chronobiol Int 2016; 33:1400-1409. [DOI: 10.1080/07420528.2016.1222537] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alicia Carissimi
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brasil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, Brasil
| | - Alessandra Castro Martins
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brasil
| | - Fabiane Dresch
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brasil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, Brasil
| | - Lilian Corrêa da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, UFRGS, Porto Alegre, Brasil
| | - Cristian Patrick Zeni
- Child and Adolescent Mood Disorders Program, University of Texas Health Science Center at Houston, TX, USA
| | - Maria Paz Hidalgo
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brasil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, Brasil
- Departamento de Psiquiatria e Medicina Legal da Faculdade de Medicina, UFRGS, Porto Alegre, Brasil
| |
Collapse
|
26
|
Agabiti-Rosei C, Favero G, De Ciuceis C, Rossini C, Porteri E, Rodella LF, Franceschetti L, Maria Sarkar A, Agabiti-Rosei E, Rizzoni D, Rezzani R. Effect of long-term treatment with melatonin on vascular markers of oxidative stress/inflammation and on the anticontractile activity of perivascular fat in aging mice. Hypertens Res 2016; 40:41-50. [PMID: 27534739 DOI: 10.1038/hr.2016.103] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 12/19/2022]
Abstract
Some reports have suggested that inflammation in perivascular adipose tissue (PVAT) may be implicated in vascular dysfunction by causing the disappearance of an anticontractile effect. The aim of this study was to investigate the effects of chronic melatonin treatment on the functional responses of the small mesenteric arteries and on the expression of markers of inflammation/oxidative stress in the aortas of senescence-accelerated prone mice (SAMP8), a model of age-related vascular dysfunction. We investigated seven SAMP8 and seven control senescence-accelerated resistant mice (SAMR1) treated for 10 months with melatonin, as well as equal numbers of age-matched untreated SAMP8 and SAMR1. The mesenteric small resistance arteries were dissected and mounted on a wire myograph, and the concentration-response to norepinephrine was evaluated in vessels with intact PVAT and after the removal of the PVAT. The expression of markers of oxidative stress, inflammation and aging in the aortas was evaluated by immunostaining. In addition, the adiponectin content and the expression of adiponectin receptor 1 were evaluated in the visceral adipose tissue. In untreated SAMP8 mice, we observed an overexpression of oxidative stress and inflammatory markers in the vasculature compared with the controls. No anticontractile effect of the PVAT was observed in untreated SAMP8 mice. Long-term treatment of SAMP8 mice with melatonin increased the expression of some markers of vasoprotection, decreased oxidative stress and inflammation and restored the anticontractile effect of the PVAT. Decreased expression of adiponectin and adiponectin receptor 1 was also observed in visceral fat of untreated SAMP8, whereas a significant increase was observed after melatonin treatment.
Collapse
Affiliation(s)
- Claudia Agabiti-Rosei
- Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia, Brescia, Italy
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Carolina De Ciuceis
- Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia, Brescia, Italy
| | - Claudia Rossini
- Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia, Brescia, Italy
| | - Enzo Porteri
- Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia, Brescia, Italy
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Lorenzo Franceschetti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Anna Maria Sarkar
- Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia, Brescia, Italy
| | - Enrico Agabiti-Rosei
- Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia, Brescia, Italy
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia, Brescia, Italy.,Istituto Clinico Città di Brescia, Division of Medicine, Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
27
|
Multiple Integrated Complementary Healing Approaches: Energetics & Light for bone. Med Hypotheses 2016; 86:18-29. [DOI: 10.1016/j.mehy.2015.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/30/2015] [Indexed: 02/08/2023]
|
28
|
Kato H, Tanaka G, Masuda S, Ogasawara J, Sakurai T, Kizaki T, Ohno H, Izawa T. Melatonin promotes adipogenesis and mitochondrial biogenesis in 3T3-L1 preadipocytes. J Pineal Res 2015; 59:267-75. [PMID: 26123001 DOI: 10.1111/jpi.12259] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/26/2015] [Indexed: 01/16/2023]
Abstract
Melatonin is synthesized in the pineal gland, but elicits a wide range of physiological responses in peripheral target tissues. Recent advances suggest that melatonin controls adiposity, resulting in changes in body weight. The aim of this study was to investigate the effect of melatonin on adipogenesis and mitochondrial biogenesis in 3T3-L1 mouse embryo fibroblasts. Melatonin significantly increased the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), a master regulator of adipogenesis, and promoted differentiation into adipocytes. Melatonin-treated cells also formed smaller lipid droplets and abundantly expressed several molecules associated with lipolysis, including adipose triglyceride lipase, perilipin, and comparative gene identification-58. Moreover, the hormone promoted biogenesis of mitochondria, as indicated by fluorescent staining, elevated the citrate synthase activity, and upregulated the expression of PPAR-γ coactivator 1 α, nuclear respiratory factor-1, and transcription factor A. The expression of uncoupling protein 1 was also observable both at mRNA and at protein level in melatonin-treated cells. Finally, adiponectin secretion and the expression of adiponectin receptors were enhanced. These results suggest that melatonin promotes adipogenesis, lipolysis, mitochondrial biogenesis, and adiponectin secretion. Thus, melatonin has potential as an anti-obesity agent that may reverse obesity-related disorders.
Collapse
Affiliation(s)
- Hisashi Kato
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Goki Tanaka
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Shinya Masuda
- Division of Diabetic Research, Clinical Research Institute, National Hospital Organization, Kyoto Medical Center, Fushimi, Kyoto, Japan
| | - Junetsu Ogasawara
- Department of Molecular Predictive Medicine and Sports Science, Kyorin University, Mitaka, Tokyo, Japan
| | - Takuya Sakurai
- Department of Molecular Predictive Medicine and Sports Science, Kyorin University, Mitaka, Tokyo, Japan
| | - Takako Kizaki
- Department of Molecular Predictive Medicine and Sports Science, Kyorin University, Mitaka, Tokyo, Japan
| | - Hideki Ohno
- Department of Molecular Predictive Medicine and Sports Science, Kyorin University, Mitaka, Tokyo, Japan
| | - Tetsuya Izawa
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe, Kyoto, Japan
- Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
29
|
de Farias TDSM, de Oliveira AC, Andreotti S, do Amaral FG, Chimin P, de Proença ARA, Leal FLT, Sertié RAL, Campana AB, Lopes AB, de Souza AH, Cipolla-Neto J, Lima FB. Pinealectomy interferes with the circadian clock genes expression in white adipose tissue. J Pineal Res 2015; 58:251-61. [PMID: 25626464 DOI: 10.1111/jpi.12211] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/23/2015] [Indexed: 01/13/2023]
Abstract
Melatonin, the main hormone produced by the pineal gland, is secreted in a circadian manner (24-hr period), and its oscillation influences several circadian biological rhythms, such as the regulation of clock genes expression (chronobiotic effect) and the modulation of several endocrine functions in peripheral tissues. Assuming that the circadian synchronization of clock genes can play a role in the regulation of energy metabolism and it is influenced by melatonin, our study was designed to assess possible alterations as a consequence of melatonin absence on the circadian expression of clock genes in the epididymal adipose tissue of male Wistar rats and the possible metabolic repercussions to this tissue. Our data show that pinealectomy indeed has impacts on molecular events: it abolishes the daily pattern of the expression of Clock, Per2, and Cry1 clock genes and Pparγ expression, significantly increases the amplitude of daily expression of Rev-erbα, and affects the pattern of and impairs adipokine production, leading to a decrease in leptin levels. However, regarding some metabolic aspects of adipocyte functions, such as its ability to synthesize triacylglycerols from glucose along 24 hr, was not compromised by pinealectomy, although the daily profile of the lipogenic enzymes expression (ATP-citrate lyase, malic enzyme, fatty acid synthase, and glucose-6-phosphate dehydrogenase) was abolished in pinealectomized animals.
Collapse
|
30
|
Borges LDS, Dermargos A, da Silva Junior EP, Weimann E, Lambertucci RH, Hatanaka E. Melatonin decreases muscular oxidative stress and inflammation induced by strenuous exercise and stimulates growth factor synthesis. J Pineal Res 2015; 58:166-72. [PMID: 25546615 DOI: 10.1111/jpi.12202] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/19/2014] [Indexed: 12/14/2022]
Abstract
Strenuous exercise is detrimental to athletes because of the overproduction of reactive oxygen species. Melatonin, a classic antioxidant, has been shown to exhibit beneficial effects regarding intense exercise and tissue repair. In this study, we evaluated the onset and resolution of inflammation in melatonin-treated and nontreated rats subjected to a strenuous exercise session. We also analyzed the formation of thiobarbituric acid reactive substances (TBARS) and the activities of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD). Control and treated rats were subjected to exhaustive exercise after a period of 10 days of melatonin treatment (20 mg/dL). Plasma and muscle levels of tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), interleukin 6 (IL-6), cytokine-induced neutrophil chemoattractant-2-alpha/beta (CINC-2α/β), l-selectin, macrophage inflammatory protein-3-alpha (MIP-3α), and vascular endothelial growth factor (VEGF) were measured prior to, immediately after, and 2 hr after exercise. Our data revealed decreases in the muscle concentrations of IL-1β (35%), TNF-α (13%), IL-6 (48%), and TBARS (40%) in the melatonin-treated group compared with the control group. We also observed decreases in the plasma concentrations of IL-1β (17%) in the melatonin-treated group. VEGF-α concentrations and SOD activity increased by 179% and 22%, respectively, in the melatonin-treated group compared with the control group. We concluded that muscle inflammation and oxidative stress resulting from exhaustive exercise were less severe in the muscles of melatonin-treated animals than in the muscles of control animals. Thus, melatonin treatment may reverse exercise-induced skeletal muscle inflammation and stimulate growth factor synthesis.
Collapse
Affiliation(s)
- Leandro da Silva Borges
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, Sao Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
31
|
Stacchiotti A, Favero G, Giugno L, Lavazza A, Reiter RJ, Rodella LF, Rezzani R. Mitochondrial and metabolic dysfunction in renal convoluted tubules of obese mice: protective role of melatonin. PLoS One 2014; 9:e111141. [PMID: 25347680 PMCID: PMC4210266 DOI: 10.1371/journal.pone.0111141] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/28/2014] [Indexed: 01/11/2023] Open
Abstract
Obesity is a common and complex health problem, which impacts crucial organs; it is also considered an independent risk factor for chronic kidney disease. Few studies have analyzed the consequence of obesity in the renal proximal convoluted tubules, which are the major tubules involved in reabsorptive processes. For optimal performance of the kidney, energy is primarily provided by mitochondria. Melatonin, an indoleamine and antioxidant, has been identified in mitochondria, and there is considerable evidence regarding its essential role in the prevention of oxidative mitochondrial damage. In this study we evaluated the mechanism(s) of mitochondrial alterations in an animal model of obesity (ob/ob mice) and describe the beneficial effects of melatonin treatment on mitochondrial morphology and dynamics as influenced by mitofusin-2 and the intrinsic apoptotic cascade. Melatonin dissolved in 1% ethanol was added to the drinking water from postnatal week 5–13; the calculated dose of melatonin intake was 100 mg/kg body weight/day. Compared to control mice, obesity-related morphological alterations were apparent in the proximal tubules which contained round mitochondria with irregular, short cristae and cells with elevated apoptotic index. Melatonin supplementation in obese mice changed mitochondria shape and cristae organization of proximal tubules, enhanced mitofusin-2 expression, which in turn modulated the progression of the mitochondria-driven intrinsic apoptotic pathway. These changes possibly aid in reducing renal failure. The melatonin-mediated changes indicate its potential protective use against renal morphological damage and dysfunction associated with obesity and metabolic disease.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Lorena Giugno
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, OIE Reference Laboratory for RHD, Brescia, Italy
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- * E-mail:
| |
Collapse
|
32
|
Amaral FG, Castrucci AM, Cipolla-Neto J, Poletini MO, Mendez N, Richter HG, Sellix MT. Environmental control of biological rhythms: effects on development, fertility and metabolism. J Neuroendocrinol 2014; 26:603-12. [PMID: 24617798 DOI: 10.1111/jne.12144] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/19/2014] [Accepted: 03/06/2014] [Indexed: 12/21/2022]
Abstract
Internal temporal organisation properly synchronised to the environment is crucial for health maintenance. This organisation is provided at the cellular level by the molecular clock, a macromolecular transcription-based oscillator formed by the clock and the clock-controlled genes that is present in both central and peripheral tissues. In mammals, melanopsin in light-sensitive retinal ganglion cells plays a considerable role in the synchronisation of the circadian timing system to the daily light/dark cycle. Melatonin, a hormone synthesised in the pineal gland exclusively at night and an output of the central clock, has a fundamental role in regulating/timing several physiological functions, including glucose homeostasis, insulin secretion and energy metabolism. As such, metabolism is severely impaired after a reduction in melatonin production. Furthermore, light pollution during the night and shift work schedules can abrogate melatonin synthesis and impair homeostasis. Chronodisruption during pregnancy has deleterious effects on the health of progeny, including metabolic, cardiovascular and cognitive dysfunction. Developmental programming by steroids or steroid-mimetic compounds also produces internal circadian disorganisation that may be a significant factor in the aetiology of fertility disorders such as polycystic ovary syndrome. Thus, both early and late in life, pernicious alterations of the endogenous temporal order by environmental factors can disrupt the homeostatic function of the circadian timing system, leading to pathophysiology and/or disease.
Collapse
Affiliation(s)
- F G Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
33
|
Amaral FG, Turati AO, Barone M, Scialfa JH, do Carmo Buonfiglio D, Peres R, Peliciari-Garcia RA, Afeche SC, Lima L, Scavone C, Bordin S, Reiter RJ, Menna-Barreto L, Cipolla-Neto J. Melatonin synthesis impairment as a new deleterious outcome of diabetes-derived hyperglycemia. J Pineal Res 2014; 57:67-79. [PMID: 24819547 DOI: 10.1111/jpi.12144] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/09/2014] [Indexed: 01/13/2023]
Abstract
Melatonin is a neurohormone that works as a nighttime signal for circadian integrity and health maintenance. It is crucial for energy metabolism regulation, and the diabetes effects on its synthesis are unresolved. Using diverse techniques that included pineal microdialysis and ultrahigh-performance liquid chromatography, the present data show a clear acute and sustained melatonin synthesis reduction in diabetic rats as a result of pineal metabolism impairment that is unrelated to cell death. Hyperglycemia is the main cause of several diabetic complications, and its consequences in terms of melatonin production were assessed. Here, we show that local high glucose (HG) concentration is acutely detrimental to pineal melatonin synthesis in rats both in vivo and in vitro. The clinically depressive action of high blood glucose concentration in melatonin levels was also observed in type 1 diabetes patients who presented a negative correlation between hyperglycemia and 6-sulfatoxymelatonin excretion. Additionally, high-mean-glycemia type 1 diabetes patients presented lower 6-sulfatoxymelatonin levels when compared to control subjects. Although further studies are needed to fully clarify the mechanisms, the present results provide evidence that high circulating glucose levels interfere with pineal melatonin production. Given the essential role played by melatonin as a powerful antioxidant and in the control of energy homeostasis, sleep and biological rhythms and knowing that optimal glycemic control is usually an issue for patients with diabetes, melatonin supplementation may be considered as an additional tool to the current treatment.
Collapse
Affiliation(s)
- Fernanda G Amaral
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cipolla-Neto J, Amaral FG, Afeche SC, Tan DX, Reiter RJ. Melatonin, energy metabolism, and obesity: a review. J Pineal Res 2014; 56:371-81. [PMID: 24654916 DOI: 10.1111/jpi.12137] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 03/17/2014] [Indexed: 12/15/2022]
Abstract
Melatonin is an old and ubiquitous molecule in nature showing multiple mechanisms of action and functions in practically every living organism. In mammals, pineal melatonin functions as a hormone and a chronobiotic, playing a major role in the regulation of the circadian temporal internal order. The anti-obesogen and the weight-reducing effects of melatonin depend on several mechanisms and actions. Experimental evidence demonstrates that melatonin is necessary for the proper synthesis, secretion, and action of insulin. Melatonin acts by regulating GLUT4 expression and/or triggering, via its G-protein-coupled membrane receptors, the phosphorylation of the insulin receptor and its intracellular substrates mobilizing the insulin-signaling pathway. Melatonin is a powerful chronobiotic being responsible, in part, by the daily distribution of metabolic processes so that the activity/feeding phase of the day is associated with high insulin sensitivity, and the rest/fasting is synchronized to the insulin-resistant metabolic phase of the day. Furthermore, melatonin is responsible for the establishment of an adequate energy balance mainly by regulating energy flow to and from the stores and directly regulating the energy expenditure through the activation of brown adipose tissue and participating in the browning process of white adipose tissue. The reduction in melatonin production, as during aging, shift-work or illuminated environments during the night, induces insulin resistance, glucose intolerance, sleep disturbance, and metabolic circadian disorganization characterizing a state of chronodisruption leading to obesity. The available evidence supports the suggestion that melatonin replacement therapy might contribute to restore a more healthy state of the organism.
Collapse
Affiliation(s)
- J Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
35
|
Hardeland R. Melatonin and the theories of aging: a critical appraisal of melatonin's role in antiaging mechanisms. J Pineal Res 2013; 55:325-56. [PMID: 24112071 DOI: 10.1111/jpi.12090] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 02/06/2023]
Abstract
The classic theories of aging such as the free radical theory, including its mitochondria-related versions, have largely focused on a few specific processes of senescence. Meanwhile, numerous interconnections have become apparent between age-dependent changes previously thought to proceed more or less independently. Increased damage by free radicals is not only linked to impairments of mitochondrial function, but also to inflammaging as it occurs during immune remodeling and by release of proinflammatory cytokines from mitotically arrested, DNA-damaged cells that exhibit the senescence-associated secretory phenotype (SASP). Among other effects, SASP can cause mutations in stem cells that reduce the capacity for tissue regeneration or, in worst case, lead to cancer stem cells. Oxidative stress has also been shown to promote telomere attrition. Moreover, damage by free radicals is connected to impaired circadian rhythmicity. Another nexus exists between cellular oscillators and metabolic sensing, in particular to the aging-suppressor SIRT1, which acts as an accessory clock protein. Melatonin, being a highly pleiotropic regulator molecule, interacts directly or indirectly with all the processes mentioned. These influences are critically reviewed, with emphasis on data from aged organisms and senescence-accelerated animals. The sometimes-controversial findings obtained either in a nongerontological context or in comparisons of tumor with nontumor cells are discussed in light of evidence obtained in senescent organisms. Although, in mammals, lifetime extension by melatonin has been rarely documented in a fully conclusive way, a support of healthy aging has been observed in rodents and is highly likely in humans.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|