1
|
Bychkov I, Kudryakova N, Pojidaeva ES, Doroshenko A, Shitikova V, Kusnetsov V. ABA and Melatonin: Players on the Same Field? Int J Mol Sci 2024; 25:12266. [PMID: 39596332 PMCID: PMC11594332 DOI: 10.3390/ijms252212266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
In plants, abscisic acid (ABA) and melatonin (MT) are conventionally treated as molecules mitigating stress responses. To understand the mechanisms of ABA-MT interplay, we examined the effects of ABA and MT treatment in ABA and MT loss-of-function mutants of Arabidopsis thaliana exposed to high light (HL) stress. ABA constantly suppressed ASMT encoding N-acetylserotonin methyltransferase in the context of differential responses of other MT biosynthesis genes in both the wild type (WT) and mutants. However, this response was absent in the mutant with the disrupted ABI4. Given that the ASMT promoter region contains several potential ABI4-binding elements, these data suggest that ASMT can be a potential target gene for ABI4. A role for ABI4 in the interactions between ABA and MT is supported by the finding that ABI4 is constitutively derepressed in the MT signaling mutants cand2 and gpa1, which exhibited elevated steady state levels of ABI4 transcripts and were not regulated by either stress or melatonin. In addition, the abi4 mutant showed increased modulations in the expression of the MT catabolic genes M2H and M3H in response to ABA treatment, inferring that this transcription factor is a negative regulator of ABA-dependent changes in MT content. Furthermore, all tested mutants with impaired ABA synthesis or signaling displayed elevated steady state MT levels compared to WT, while MT treatment contributed to the downregulation of key ABA synthesis and signaling genes. Collectively, our results suggest that ABA and melatonin act antagonistically, modulating the expression of ABA and MT signaling and metabolism genes. To understand the mechanisms of ABA-MT interactions, we studied the effects of ABA and MT treatment in ABA and MT loss-of-function mutants of Arabidopsis thaliana exposed to severe light stress (SLS).
Collapse
Affiliation(s)
| | - Natalia Kudryakova
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia; (I.B.); (E.S.P.); (A.D.); (V.S.); (V.K.)
| | | | | | | | | |
Collapse
|
2
|
Eirich J, Boyer JB, Armbruster L, Ivanauskaite A, De La Torre C, Meinnel T, Wirtz M, Mulo P, Finkemeier I, Giglione C. Light Changes Promote Distinct Responses of Plastid Protein Acetylation Marks. Mol Cell Proteomics 2024; 23:100845. [PMID: 39321874 PMCID: PMC11546460 DOI: 10.1016/j.mcpro.2024.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
Protein acetylation is a key co- and post-translational modification. However, how different types of acetylation respond to environmental stress is still unknown. To address this, we investigated the role of a member of the newly discovered family of plastid acetyltransferases (GNAT2), which features both lysine- and N-terminal acetyltransferase activities. Our study aimed to provide a holistic multi-omics acetylation-dependent view of plant acclimation to short-term light changes. We found that both the yield and coverage of the N-terminal acetylome remained unchanged in WT and gnat2-KO backgrounds after 2 h of exposure to high light or darkness. Similarly, no differences in transcriptome or adenylate energy charge were observed between the genotypes under the tested light conditions. In contrast, the lysine acetylome proved to be sensitive to the changes in light conditions, especially in the gnat2 background. This suggests unique strategies of plant acclimation for quick responses to environmental changes involving lysine, but not N-terminal, GNAT2-mediated acetylation activity.
Collapse
Affiliation(s)
- Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Laura Armbruster
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Aiste Ivanauskaite
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Paula Mulo
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany.
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Abdoli M, Amerian MR, Heidari M, Ebrahimi A. Synergistic effects of melatonin and 24-epibrassinolide on chickpea water deficit tolerance. BMC PLANT BIOLOGY 2024; 24:671. [PMID: 39004702 PMCID: PMC11247889 DOI: 10.1186/s12870-024-05380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Water deficiency stress reduces yield in grain legumes, primarily due to a decrease in the pods number. Melatonin (ML) and 24-epibrassinolide (EBL) are recognized for their hormone-like properties that improve plant tolerance to abiotic stresses. This study aimed to assess the impact of different concentrations of ML (0, 100, and 200 µM) and EBL (0, 3, and 6 µM) on the growth, biochemical, and physiological characteristics of chickpea plants under water-stressed conditions. RESULTS The study's findings indicated that under water-stressed conditions, a decrease in seed (30%) and pod numbers (31%), 100-seed weight (17%), total chlorophyll content (46%), stomatal conductance (33%), as well as an increase in H2O2 (62%), malondialdehyde content (40%), and electrolyte leakage index (40%), resulted in a 40% reduction in chickpea plants grain yield. Our findings confirmed that under water-stressed conditions, seed oil, seed oil yield, and seed protein yield dropped by 20%, 55%, and 36%, respectively. The concurrent exogenous application of ML and EBL significantly reduces oxidative stress, plasma membrane damage, and reactive oxygen species (ROS) content. This treatment also leads to increased yield and its components, higher pigment content, enhanced oil and protein yield, and improved enzymatic and non-enzymatic antioxidant activities such as catalase, superoxide dismutase, polyphenol oxidase, ascorbate peroxidase, guaiacol peroxidase, flavonoid, and carotenoid. Furthermore, it promotes the accumulation of osmoprotectants such as proline, total soluble protein, and sugars. CONCLUSIONS Our study found that ML and EBL act synergistically to regulate plant growth, photosynthesis, osmoprotectants accumulation, antioxidant defense systems, and maintain ROS homeostasis, thereby mitigating the adverse effects of water deficit conditions. ML and EBL are key regulatory network components in stressful conditions, with significant potential for future research and practical applications. The regulation metabolic pathways of ML and EBL in water-stressed remains unknown. As a result, future research should aim to elucidate the molecular mechanisms by employing genome editing, RNA sequencing, microarray, transcriptomic, proteomic, and metabolomic analyses to identify the mechanisms involved in plant responses to exogenous ML and EBL under water deficit conditions. Furthermore, the economical applications of synthetic ML and EBL could be an interesting strategy for improving plant tolerance.
Collapse
Affiliation(s)
- Matin Abdoli
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Mohamad Reza Amerian
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| | - Mostafa Heidari
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| |
Collapse
|
4
|
Wei Y, Kong Y, Li H, Yao A, Han J, Zhang W, Li X, Li W, Han D. Genome-Wide Characterization and Expression Profiling of the AP2/ERF Gene Family in Fragaria vesca L. Int J Mol Sci 2024; 25:7614. [PMID: 39062854 PMCID: PMC11277216 DOI: 10.3390/ijms25147614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The wild strawberry (Fragaria vesca L.; F. vesca) represents a resilient and extensively studied model organism. While the AP2/ERF gene family plays a pivotal role in plant development, its exploration within F. vesca remains limited. In this study, we characterized the AP2/ERF gene family in wild strawberries using the recently released genomic data (F. vesca V6.0). We conducted an analysis of the gene family expansion pattern, we examined gene expression in stem segments and leaves under cold conditions, and we explored its functional attributes. Our investigation revealed that the FvAP2/ERF family comprises 86 genes distributed among four subfamilies: AP2 (17), RAV (6), ERF (62), and Soloist (1). Tandem and segmental duplications significantly contributed to the growth of this gene family. Furthermore, predictive analysis identified several cis-acting elements in the promoter region associated with meristematic tissue expression, hormone regulation, and resistance modulation. Transcriptomic analysis under cold stress unveiled diverse responses among multiple FvAP2/ERFs in stem segments and leaves. Real-time fluorescence quantitative reverse transcription PCR (RT-qPCR) results confirmed elevated expression levels of select genes following the cold treatment. Additionally, overexpression of FvERF23 in Arabidopsis enhanced cold tolerance, resulting in significantly increased fresh weight and root length compared to the wild-type control. These findings lay the foundation for further exploration into the functional roles of FvAP2/ERF genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenhui Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Y.K.); (H.L.); (A.Y.); (J.H.); (W.Z.); (X.L.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Y.K.); (H.L.); (A.Y.); (J.H.); (W.Z.); (X.L.)
| |
Collapse
|
5
|
Yildiztugay E, Arikan Abdulveli B, Ozfidan-Konakci C, Turkan I. Melatonin mediated tolerance to benzalkonium chloride phytotoxicity through improved growth, photochemical reactions, and antioxidant system in wild-type and snat2 mutant Arabidopsis lines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108779. [PMID: 38823090 DOI: 10.1016/j.plaphy.2024.108779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Melatonin (Mel) is a phytohormone that plays a crucial role in various plant processes, including stress response. Despite numerous studies on the role of Mel in stress resistance, its significance in plants exposed to benzalkonium chloride (BAC) pollution remains unexplored. BAC, a common antiseptic, poses a threat to terrestrial plants due to its widespread use and inefficient removal, leading to elevated concentrations in the environment. This study investigated the impact of BAC (0.5 mg L-1) pollution on wild-type Col-0 and snat2 knockout mutant Arabidopsis lines, revealing reduced growth, altered water relations, and gas exchange parameters. On the other hand, exogenous Mel (100 μM) treatments mitigated BAC-induced phytotoxicity and increased the growth rate by 1.8-fold in Col-0 and 2-fold in snat2 plants. snat2 mutant seedlings had a suppressed carbon assimilation rate (A) under normal conditions, but BAC contamination led to further A repression by 71% and 48% in Col-0 and snat2 leaves, respectively. However, Mel treatment on stressed plants was successful in improving Fv/Fm and increased the total photosynthesis efficiency by regulating photochemical reactions. Excessive H2O2 accumulation in the guard cells of plants exposed to BAC pollution was detected by confocal microscopy. Mel treatments triggered almost all antioxidant enzyme activities (except POX) in both Arabidopsis lines under stress. This enhanced antioxidant activity, facilitated by foliar Mel application, contributed to the alleviation of oxidative damage, regulation of photosynthesis reactions, and promotion of plant growth in Arabidopsis. In addition to corroborating results observed in many agricultural plants regarding the development of tolerance to environmental stresses, this study provides novel insights into the action mechanisms of Mel under the emerging pollutant benzalkonium chloride.
Collapse
Affiliation(s)
- Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Busra Arikan Abdulveli
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| | - Ismail Turkan
- Department of Soil Science and Plant Nutrition, Faculty of Agricultural Sciences and Technologies, Yasar University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
6
|
Ameen M, Zafar A, Mahmood A, Zia MA, Kamran K, Javaid MM, Yasin M, Khan BA. Melatonin as a master regulatory hormone for genetic responses to biotic and abiotic stresses in model plant Arabidopsis thaliana: a comprehensive review. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23248. [PMID: 38310885 DOI: 10.1071/fp23248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Melatonin is a naturally occurring biologically active amine produced by plants, animals and microbes. This review explores the biosynthesis of melatonin in plants, with a particular focus on its diverse roles in Arabidopsis thaliana , a model species. Melatonin affects abiotic and biotic stress resistance in A. thaliana . Exogenous and endogenous melatonin is addressed in association with various conditions, including cold stress, high light stress, intense heat and infection with Botrytis cinerea or Pseudomonas , as well as in seed germination and lateral root formation. Furthermore, melatonin confers stress resistance in Arabidopsis by initiating the antioxidant system, remedying photosynthesis suppression, regulating transcription factors involved with stress resistance (CBF, DREB, ZAT, CAMTA, WRKY33, MYC2, TGA) and other stress-related hormones (abscisic acid, auxin, ethylene, jasmonic acid and salicylic acid). This article additionally addresses other precursors, metabolic components, expression of genes (COR , CBF , SNAT , ASMT , PIN , PR1 , PDF1.2 and HSFA ) and proteins (JAZ, NPR1) associated with melatonin and reducing both biological and environmental stressors. Furthermore, the future perspective of melatonin rich agri-crops is explored to enhance plant tolerance to abiotic and biotic stresses, maximise crop productivity and enhance nutritional worth, which may help improve food security.
Collapse
Affiliation(s)
- Muaz Ameen
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Asma Zafar
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Anjum Zia
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Kashif Kamran
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Mansoor Javaid
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Yasin
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Bilal Ahmad Khan
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| |
Collapse
|
7
|
Xu J, Wei Z, Lu X, Liu Y, Yu W, Li C. Involvement of Nitric Oxide and Melatonin Enhances Cadmium Resistance of Tomato Seedlings through Regulation of the Ascorbate-Glutathione Cycle and ROS Metabolism. Int J Mol Sci 2023; 24:ijms24119526. [PMID: 37298477 DOI: 10.3390/ijms24119526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Melatonin (MT) and nitric oxide (NO) act as signaling molecules that can enhance cadmium (Cd) stress resistance in plants. However, little information is available about the relationship between MT and NO during seedling growth under Cd stress. We hypothesize that NO may be involved in how MT responds to Cd stress during seedling growth. The aim of this study is to evaluate the relationship and mechanism of response. The results indicate that different concentrations of Cd inhibit the growth of tomato seedlings. Exogenous MT or NO promotes seedling growth under Cd stress, with a maximal biological response at 100 μM MT or NO. The promotive effects of MT-induced seedling growth under Cd stress are suppressed by NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO), suggesting that NO may be involved in MT-induced seedling growth under Cd stress. MT or NO decreases the content of hydrogen peroxide (H2O2), malonaldehyde (MDA), dehydroascorbic acid (DHA), and oxidized glutathione (GSSG); improves the content of ascorbic acid (AsA) and glutathione (GSH) and the ratios of AsA/DHA and GSH/GSSG; and enhances the activities of glutathione reductase (GR), monodehydroascorbic acid reductase (MDHAR), dehydroascorbic acid reductase (DHAR), ascorbic acid oxidase (AAO), and ascorbate peroxidase (APX) to alleviate oxidative damage. Moreover, the expression of genes associated with the ascorbate-glutathione (AsA-GSH) cycle and reactive oxygen species (ROS) are up-regulated by MT or NO under Cd conditions, including AAO, AAOH, APX1, APX6, DHAR1, DHAR2, MDHAR, and GR. However, NO scavenger cPTIO reverses the positive effects regulated by MT. The results indicate that MT-mediated NO enhances Cd tolerance by regulating AsA-GSH cycle and ROS metabolism.
Collapse
Affiliation(s)
- Junrong Xu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhien Wei
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xuefang Lu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yunzhi Liu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Changxia Li
- College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
8
|
Ivanauskaite A, Rantala M, Laihonen L, Konert MM, Schwenner N, Mühlenbeck JS, Finkemeier I, Mulo P. Loss of Chloroplast GNAT Acetyltransferases Results in Distinct Metabolic Phenotypes in Arabidopsis. PLANT & CELL PHYSIOLOGY 2023; 64:549-563. [PMID: 37026998 DOI: 10.1093/pcp/pcad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/16/2023] [Indexed: 05/17/2023]
Abstract
Acetylation is one of the most common chemical modifications found on a variety of molecules ranging from metabolites to proteins. Although numerous chloroplast proteins have been shown to be acetylated, the role of acetylation in the regulation of chloroplast functions has remained mainly enigmatic. The chloroplast acetylation machinery in Arabidopsis thaliana consists of eight General control non-repressible 5 (GCN5)-related N-acetyltransferase (GNAT)-family enzymes that catalyze both N-terminal and lysine acetylation of proteins. Additionally, two plastid GNATs have also been reported to be involved in the biosynthesis of melatonin. Here, we have characterized six plastid GNATs (GNAT1, GNAT2, GNAT4, GNAT6, GNAT7 and GNAT10) using a reverse genetics approach with an emphasis on the metabolomes and photosynthesis of the knock-out plants. Our results reveal the impact of GNAT enzymes on the accumulation of chloroplast-related compounds, such as oxylipins and ascorbate, and the GNAT enzymes also affect the accumulation of amino acids and their derivatives. Specifically, the amount of acetylated arginine and proline was significantly decreased in the gnat2 and gnat7 mutants, respectively, as compared to the wild-type Col-0 plants. Additionally, our results show that the loss of the GNAT enzymes results in increased accumulation of Rubisco and Rubisco activase (RCA) at the thylakoids. Nevertheless, the reallocation of Rubisco and RCA did not have consequent effects on carbon assimilation under the studied conditions. Taken together, our results show that chloroplast GNATs affect diverse aspects of plant metabolism and pave way for future research into the role of protein acetylation.
Collapse
Affiliation(s)
- Aiste Ivanauskaite
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Marjaana Rantala
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Laura Laihonen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Minna M Konert
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Naike Schwenner
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Jens S Mühlenbeck
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Paula Mulo
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
9
|
Khan A, Jie Z, Xiangjun K, Ullah N, Short AW, Diao Y, Zhou R, Xiong YC. Pre treatment of melatonin rescues cotton seedlings from cadmium toxicity by regulating key physio-biochemical and molecular pathways. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130530. [PMID: 36463746 DOI: 10.1016/j.jhazmat.2022.130530] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 05/26/2023]
Abstract
Melatonin, a plant/animal origin hormone, regulates plant response to abiotic stresses by protecting them from oxidative damage. This study identified physiochemical and molecular mechanism of melatonin-induced cadmium (Cd) stress tolerance and detoxification in cotton seedlings. Cotton seedlings, with or without melatonin (15 µM) pretreatment, were subjected to Cd (100 µM) stress in a hydroponic medium for eight days. We found that higher cellular Cd accumulation in leaf tissues significantly inhibited the growth and physiology of cotton seedlings. In contrast, melatonin-treated seedlings maintained leaf photosynthetic capacity, producing relatively higher fresh (17.4%) and dry (19.3%) weights than non-melatonin-treated plants under Cd-contaminated environments. The improved growth and leaf functioning were strongly linked with the melatonin-induced repression of Cd transporter genes (LOC107894197, LOC107955631, LOC107899273) in roots. Thus, melatonin induced downregulation of the Cd transporter genes further inhibited Cd ion transport towards leaf tissues. This suggests that the differentially expressed transporter genes (DEG) are key drivers of the melatonin-mediated regulation of Cd transportation and sequestration in cotton. Melatonin also protected cotton seedlings from Cd-induced oxidative injury by reducing tissues malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels and increasing the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) enzymes. Transcriptomic analysis revealed that melatonin activated mitogen-activated protein kinase (MAPK) signaling pathways to simulate stomatal adjustment and photosynthesis in Cd-stressed leaves. Further, melatonin protects intercellular organs, particularly ribosomes, from Cd-induced oxidative damage by promoting ribosomal biosynthesis and improving translational efficiency. The findings elucidated the molecular basis of melatonin-mediated Cd stress tolerance in plants and provided a key for the effective strategy of Cd accumulation in cotton.
Collapse
Affiliation(s)
- Aziz Khan
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; School of Life Science and Technology, Henan Institute of Science and Technology, Hualan St. 90, Xinxiang 453003, China
| | - Zheng Jie
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 450000, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya 572024, China
| | - Kong Xiangjun
- School of Life Science and Technology, Henan Institute of Science and Technology, Hualan St. 90, Xinxiang 453003, China
| | - Najeeb Ullah
- Faculty of Science, University Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Aidan W Short
- Institute of Ecology and Evolution, 5289 University of Oregon, Eugene, OR 97403, USA
| | - Yong Diao
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd, Wuhan, China
| | - Ruiyang Zhou
- School of Life Science and Technology, Henan Institute of Science and Technology, Hualan St. 90, Xinxiang 453003, China.
| | - You-Cai Xiong
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
10
|
Li Y, Zhu W, Xiang Q, Kim J, Dufresne C, Liu Y, Li T, Chen S. Creation of a Plant Metabolite Spectral Library for Untargeted and Targeted Metabolomics. Int J Mol Sci 2023; 24:ijms24032249. [PMID: 36768571 PMCID: PMC9916794 DOI: 10.3390/ijms24032249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Large-scale high throughput metabolomic technologies are indispensable components of systems biology in terms of discovering and defining the metabolite parts of the system. However, the lack of a plant metabolite spectral library limits the metabolite identification of plant metabolomic studies. Here, we have created a plant metabolite spectral library using 544 authentic standards, which increased the efficiency of identification for untargeted metabolomic studies. The process of creating the spectral library was described, and the mzVault library was deposited in the public repository for free download. Furthermore, based on the spectral library, we describe a process of creating a pseudo-targeted method, which was applied to a proof-of-concept study of Arabidopsis leaf extracts. As authentic standards become available, more metabolite spectra can be easily incorporated into the spectral library to improve the mzVault package.
Collapse
Affiliation(s)
- Yangyang Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Wei Zhu
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Qingyuan Xiang
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32610, USA
| | - Craig Dufresne
- Thermo Scientific Training Institute, West Palm Beach, FL 32407, USA
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
- Correspondence:
| |
Collapse
|
11
|
Cytokinin Modulates Responses to Phytomelatonin in Arabidopsis thaliana under High Light Stress. Int J Mol Sci 2023; 24:ijms24010738. [PMID: 36614184 PMCID: PMC9821067 DOI: 10.3390/ijms24010738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Fine-tuned interactions between melatonin (MT) and hormones affected by environmental inputs are crucial for plant growth. Under high light (HL) conditions, melatonin reduced photodamage in Arabidopsis thaliana and contributed to the restoration of the expression of the cytokinin (CK) synthesis genes IPT3, IPT5 and LOG7 and genes for CK signal transduction AHK2,3 and ARR 1, 4, 5 and 12 which were downregulated by stress. However, CK signaling mutants displayed no significant changes in the expression of CK genes following HL + MT treatment, implying that a fully functional cytokinin signaling pathway is a prerequisite for MT-CK interactions. In turn, cytokinin treatment increased the expression of the key melatonin synthesis gene ASMT under both moderate and HL in wild-type plants. This upregulation was further accentuated in the ipt3,5,7 mutant which is highly sensitive to CK. In this mutant, in addition to ASMT, the melatonin synthesis genes SNAT and COMT, as well as the putative signaling genes CAND2 and GPA1, displayed elevated transcript levels. The results of the study suggest that melatonin acts synergistically with CK to cope with HL stress through melatonin-associated activation or repression of the respective hormonal genes.
Collapse
|
12
|
Liu G, Hu Q, Zhang X, Jiang J, Zhang Y, Zhang Z. Melatonin biosynthesis and signal transduction in plants in response to environmental conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5818-5827. [PMID: 35522986 DOI: 10.1093/jxb/erac196] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Melatonin, the most widely distributed hormone in nature, plays important roles in plants. Many physiological processes in plants are linked to melatonin, including seed germination, anisotropic cell growth, and senescence. Compared with animals, different plants possess diverse melatonin biosynthetic pathways and regulatory networks. Whereas melatonin biosynthesis in animals is known to be regulated by ambient signals, little is known about how melatonin biosynthesis in plants responds to environmental signals. Plants are affected by numerous environmental factors, such as light, temperature, moisture, carbon dioxide, soil conditions, and nutrient availability at all stages of development and in different tissues. Melatonin content exhibits dynamic changes that affect plant growth and development. Melatonin plays various species-specific roles in plant responses to different environmental conditions. However, much remains to be learned, as not all environmental factors have been studied, and little is known about the mechanisms by which these factors influence melatonin biosynthesis. In this review, we provide a detailed, systematic description of melatonin biosynthesis and signaling and of the roles of melatonin in plant responses to different environmental factors, providing a reference for in-depth research on this important issue.
Collapse
Affiliation(s)
- Gaofeng Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center (NASC), Chengdu, China
| | - Qian Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zixin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Lee HY, Hwang OJ, Back K. Phytomelatonin as a signaling molecule for protein quality control via chaperone, autophagy, and ubiquitin-proteasome systems in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5863-5873. [PMID: 35246975 DOI: 10.1093/jxb/erac002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Physiological effects mediated by melatonin are attributable to its potent antioxidant activity as well as its role as a signaling molecule in inducing a vast array of melatonin-mediated genes. Here, we propose melatonin as a signaling molecule essential for protein quality control (PQC) in plants. PQC occurs by the coordinated activities of three systems: the chaperone network, autophagy, and the ubiquitin-proteasome system. With regard to the melatonin-mediated chaperone pathway, melatonin increases thermotolerance by induction of heat shock proteins and confers endoplasmic reticulum stress tolerance by increasing endoplasmic reticulum chaperone proteins. In chloroplasts, melatonin-induced chaperones, including Clps and CpHSP70s, play key roles in the PQC of chloroplast-localized proteins, such as Lhcb1, Lhcb4, and RBCL, during growth. Melatonin regulates PQC by autophagy processes, in which melatonin induces many autophagy (ATG) genes and autophagosome formation under stress conditions. Finally, melatonin-mediated plant stress tolerance is associated with up-regulation of stress-induced transcription factors, which are regulated by the ubiquitin-proteasome system. In this review, we propose that melatonin plays a pivotal role in PQC and consequently functions as a pleiotropic molecule under non-stress and adverse conditions in plants.
Collapse
Affiliation(s)
- Hyoung Yool Lee
- Department of Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Ok Jin Hwang
- Department of Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Kyoungwhan Back
- Department of Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
14
|
Zeng H, Bai Y, Wei Y, Reiter RJ, Shi H. Phytomelatonin as a central molecule in plant disease resistance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5874-5885. [PMID: 35298631 DOI: 10.1093/jxb/erac111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Melatonin is an essential phytohormone in the regulation of many plant processes, including during plant development and in response to stress. Pathogen infections cause serious damage to plants and reduce agricultural production. Recent studies indicate that melatonin plays important roles in alleviating bacterial, fungal, and viral diseases in plants and post-harvest fruits. Herein, we summarize information related to the effects of melatonin on plant disease resistance. Melatonin, reactive oxygen species, and reactive nitrogen species form a complex loop in plant-pathogen interaction to regulate plant disease resistance. Moreover, crosstalk of melatonin with other phytohormones including salicylic acid, jasmonic acid, auxin, and abscisic acid further activates plant defense genes. Melatonin plays an important role not only in plant immunity but also in alleviating pathogenicity. We also summarize the known processes by which melatonin mediates pathogenicity via negatively regulating the expression levels of genes related to cell viability as well as virulence-related genes. The multiple mechanisms underlying melatonin influences on both plant immunity and pathogenicity support the recognition of the essential nature of melatonin in plant-pathogen interactions, highlighting phytomelatonin as a critical molecule in plant immune responses.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| |
Collapse
|
15
|
Therapeutic Effect of Melatonin in Premature Ovarian Insufficiency: Hippo Pathway Is Involved. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3425877. [PMID: 36017238 PMCID: PMC9398856 DOI: 10.1155/2022/3425877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022]
Abstract
Objective Premature ovarian insufficiency (POI) is a female reproductive disorder of unknown etiology with no definite pathogenesis. Melatonin (MT) is an endogenous hormone synthesized mainly by pineal cells and has strong endogenous effects in regulating ovarian function. To systematically explore the pharmacological mechanism of MT on POI therapy, a literature review approach was conducted at the signaling pathways level. Methods Relevant literatures were searched and downloaded from databases, including PubMed and China National Knowledge Infrastructure, using the keywords “premature ovarian insufficiency,” “Hippo signaling pathways,” and “melatonin.” The search criteria were from 2010 to 2022. Text mining was also performed. Results MT is involved in the regulation of Hippo signaling pathway in a variety of modes and has been correlated with ovarian function. Conclusions The purpose of this review is to summarize the research progress of Hippo signaling pathways and significance of MT in POI, the potential crosstalk between MT and Hippo signaling pathways, and the prospective therapy.
Collapse
|
16
|
Wang L, Zhou F, Liu X, Zhang H, Yan T, Sun Y, Shi K, Zheng X, Zhu Y, Shan D, Bai Y, Guo Y, Kong J. ELONGATED HYPOCOTYL 5-mediated suppression of melatonin biosynthesis is alleviated by darkness and promotes cotyledon opening. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4941-4953. [PMID: 35580847 DOI: 10.1093/jxb/erac176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) biosynthesis in plants is induced by darkness and high-intensity light; however, the underlying transcriptional mechanisms and upstream signalling pathways are unknown. We identified a dark-induced and highly expressed melatonin synthetase in Arabidopsis thaliana, AtSNAT6, encoding serotonin N-acetyltransferase. We assessed melatonin content and AtSNAT6 expression in mutants lacking key regulators of light/dark signalling. AtCOP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) and AtHY5 (ELONGATED HYPOCOTYL 5), which control light/dark transition and photomorphogenesis, promoted and suppressed melatonin biosynthesis, respectively. Using EMSA and ChIP-qPCR analysis, we showed that AtHY5 inhibits AtSNAT6 expression directly. An analysis of melatonin content in snat6 hy5 double mutant and AtHY5+AtSNAT6-overexpressing plants confirmed the regulatory function of AtHY5 and AtSNAT6 in melatonin biosynthesis. Exogenous melatonin further inhibited cotyledon opening in hy5 mutant and AtSNAT6-overexpressing seedlings, but partially reversed the promotion of cotyledon opening in AtHY5-overexpressing seedlings and snat6. Additionally, CRISPR/Cas9-mediated mutation of AtSNAT6 increased cotyledon opening in hy5 mutant, and overexpression of AtSNAT6 decreased cotyledon opening in AtHY5-overexpressing seedlings via changing melatonin biosynthesis, confirming that AtHY5 decreased melatonin-mediated inhibition of cotyledon opening. Our data provide new insights into the regulation of melatonin biosynthesis and its function in cotyledon opening.
Collapse
Affiliation(s)
- Lin Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Fangfang Zhou
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xuan Liu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Haixia Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Tianci Yan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yanzhao Sun
- College of Horticulture, China Agricultural University, Beijing, China
| | - Kun Shi
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaodong Zheng
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yunpeng Zhu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Dongqian Shan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yixue Bai
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yan Guo
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Hwang OJ, Back K. Functional Characterization of Arylalkylamine N-Acetyltransferase, a Pivotal Gene in Antioxidant Melatonin Biosynthesis from Chlamydomonas reinhardtii. Antioxidants (Basel) 2022; 11:antiox11081531. [PMID: 36009250 PMCID: PMC9405056 DOI: 10.3390/antiox11081531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022] Open
Abstract
Arylalkylamine N-acetyltransferase (AANAT) is a pivotal enzyme in melatonin biosynthesis that catalyzes the conversion of serotonin to N-acetylserotonin. Homologs of animal AANAT genes are present in animals, but not in plants. An AANAT homolog was found in Chlamydomonas reinhardtii, but not other green algae. The characteristics of C. reinhardtii AANAT (CrAANAT) are unclear. Here, full-length CrAANAT was chemically synthesized and expressed in Escherichia coli. Recombinant CrAANAT exhibited AANAT activity with a Km of 247 μM and Vmax of 325 pmol/min/mg protein with serotonin as the substrate. CrAANAT was localized to the cytoplasm in tobacco leaf cells. Transgenic rice plants overexpressing CrAANAT (CrAANAT-OE) exhibited increased melatonin production. CrAANAT-OE plants showed a longer seed length and larger second leaf angle than wild-type plants, indicative of the involvement of brassinosteroids (BRs). As expected, BR biosynthesis- and signaling-related genes such as D2, DWARF4, DWARF11, and BZR1 were upregulated in CrAANAT-OE plants. Therefore, an increased endogenous melatonin level by ectopic overexpression of CrAANAT seems to be closely associated with BR biosynthesis, thereby influencing seed size.
Collapse
|
18
|
Sun H, Wang XQ, Zeng ZL, Yang YJ, Huang W. Exogenous melatonin strongly affects dynamic photosynthesis and enhances water-water cycle in tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:917784. [PMID: 35991431 PMCID: PMC9381976 DOI: 10.3389/fpls.2022.917784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 06/09/2023]
Abstract
Melatonin (MT), an important phytohormone synthesized naturally, was recently used to improve plant resistance against abiotic and biotic stresses. However, the effects of exogenous melatonin on photosynthetic performances have not yet been well clarified. We found that spraying of exogenous melatonin (100 μM) to leaves slightly affected the steady state values of CO2 assimilation rate (A N ), stomatal conductance (g s ) and mesophyll conductance (g m ) under high light in tobacco leaves. However, this exogenous melatonin strongly delayed the induction kinetics of g s and g m , leading to the slower induction speed of A N . During photosynthetic induction, A N is mainly limited by biochemistry in the absence of exogenous melatonin, but by CO2 diffusion conductance in the presence of exogenous melatonin. Therefore, exogenous melatonin can aggravate photosynthetic carbon loss during photosynthetic induction and should be used with care for crop plants grown under natural fluctuating light. Within the first 10 min after transition from low to high light, photosynthetic electron transport rates (ETR) for A N and photorespiration were suppressed in the presence of exogenous melatonin. Meanwhile, an important alternative electron sink, namely water-water cycle, was enhanced to dissipate excess light energy. These results indicate that exogenous melatonin upregulates water-water cycle to facilitate photoprotection. Taking together, this study is the first to demonstrate that exogenous melatonin inhibits dynamic photosynthesis and improves photoprotection in higher plants.
Collapse
Affiliation(s)
- Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qian Wang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Northwest University, Xi’an, China
| | - Zhi-Lan Zeng
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
19
|
Lee HY, Back K. The Antioxidant Cyclic 3-Hydroxymelatonin Promotes the Growth and Flowering of Arabidopsis thaliana. Antioxidants (Basel) 2022; 11:antiox11061157. [PMID: 35740053 PMCID: PMC9219689 DOI: 10.3390/antiox11061157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/10/2022] Open
Abstract
In plants, melatonin is metabolized into several compounds, including the potent antioxidant cyclic 3-hydroxymelatonin (3-OHM). Melatonin 3-hydroxylase (M3H), a member of the 2-oxo-glutarate-dependent enzyme family, is responsible for 3-OHM biosynthesis. Although rice M3H has been cloned, its roles are unclear, and no homologs in other plant species have been characterized. Here, we cloned and characterized Arabidopsis thaliana M3H (AtM3H). The purified recombinant AtM3H exhibited Km and Vmax values of 100 μM and 20.7 nmol/min/mg protein, respectively. M3H was localized to the cytoplasm, and its expression peaked at night. Based on a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, 3-OHM exhibited 15-fold higher antioxidant activity than melatonin. An Arabidopsis M3H knockout mutant (m3h) produced less 3-OHM than the wildtype (WT), thus reducing antioxidant activity and biomass and delaying flowering. These defects were caused by reduced expression of FLOWERING LOCUS T (FT) and gibberellin-related genes, which are responsible for flowering and growth. Exogenous 3-OHM, but not exogenous melatonin, induced FT expression. The peak of M3H expression at night matched the FT expression pattern. The WT and m3h exhibited similar responses to salt stress and pathogens. Collectively, our findings indicate that 3-OHM promotes growth and flowering in Arabidopsis.
Collapse
|
20
|
Wang Z, Wang Y, Wang Y, Li H, Wen Z, Hou X. HPR1 Is Required for High Light Intensity Induced Photorespiration in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23084444. [PMID: 35457261 PMCID: PMC9030206 DOI: 10.3390/ijms23084444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022] Open
Abstract
High light intensity as one of the stresses could lead to generation of large amounts of reactive oxygen species (ROS) in plants, resulting in severe plant growth retardation. The photorespiration metabolism plays an important role in producing and removing a variety of ROS, maintaining the dynamic balance of the redox reaction, and preventing photoinhibition. Arabidopsis hydroxypyruvate reductase 1 (HPR1) is a primary metabolic enzyme in the photorespiration cycle. However, the role of HPR1 in plants response to high light is not clear. Here, we found that the expression of HPR1 could be induced by high light intensity. The growth and photosynthetic capacity of hpr1 mutants are seriously affected under high light intensity. The absence of HPR1 suppresses the rates of photorepair of Photosystem II (PSII), aggravates the production of ROS, and accelerates photorespiration rates. Moreover, the activity of ROS scavenging enzymes in the hpr1 mutants is significantly higher. These results indicate that HPR1 is involved in plant response to high light intensity and is essential for maintaining the dynamic balance of ROS and photorespiration.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Hou
- Correspondence: ; Tel.: +86-27-6875-6087
| |
Collapse
|
21
|
Functional Characterization of Serotonin N-Acetyltransferase in Archaeon Thermoplasma volcanium. Antioxidants (Basel) 2022; 11:antiox11030596. [PMID: 35326246 PMCID: PMC8945778 DOI: 10.3390/antiox11030596] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Serotonin N-acetyltransferase is the penultimate enzyme in the melatonin biosynthetic pathway that catalyzes serotonin into N-acetylserotonin. Many SNAT genes have been cloned and characterized from organisms ranging from bacteria to plants and mammals. However, to date, no SNAT gene has been identified from Archaea. In this study, three archaeal SNAT candidate genes were synthesized and expressed in Escherichia coli, and SNAT enzyme activity was measured using their purified recombinant proteins. Two SNAT candidate genes, from Methanoregulaceae (Archaea) and Pyrococcus furiosus, showed no SNAT enzyme activity, whereas a SNAT candidate gene from Thermoplasma volcanium previously named TvArd1 exhibited SNAT enzyme activity. The substrate affinity and the maximum reaction rate of TvSNAT toward serotonin were 621 μM and 416 pmol/min/mg protein, respectively. The highest amine substrate was tyramine, followed by tryptamine, serotonin, and 5-methoxytryptamine, which were similar to those of plant SNAT enzymes. Homologs of TvSNAT were found in many Archaea families. Ectopic overexpression of TvSNAT in rice resulted in increased melatonin content, antioxidant activity, and seed size in conjunction with the enhanced expression of seed size-related gene. This study is the first to report the discovery of SNAT gene in Archaea. Future research avenues include the cloning of TvSNAT orthologs in different phyla, and identification of their regulation and functions related to melatonin biosynthesis in living organisms.
Collapse
|
22
|
Huang Y, Zheng Z, Bi X, Guo K, Liu S, Huo X, Tian D, Liu H, Wang L, Zhang Y. Integrated morphological, physiological and omics analyses reveal the arylalkylamine N-acetyltransferase (AANAT) gene contributing to growth, flowering and defence in switchgrass (Panicum virgatum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111165. [PMID: 35151442 DOI: 10.1016/j.plantsci.2021.111165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Arylalkylamine N-acetyltransferase (AANAT) catalyses the acetylation of serotonin, a rate-limiting process in melatonin biosynthesis. To obtain better insight into the underlying mechanism of AANAT's actions in switchgrass growth, flowering and defence, we performed integrated morphological, physiological and omics analyses between overexpressed oAANAT transgenic lines in wild-type and transgenic control (expressing only the empty vector) plants. We showed that oAANAT played pivotal roles in modulating plant growth through its regulation of cell elongation, and regulating flowering through photoperiod and GA pathways. In relation to photosynthesis, oAANAT promoted photosynthetic efficiency primarily through regulating leaf anatomical structures, stomatal development and chlorophyll metabolism. Moreover, oAANAT overexpression can trigger a number of defence responses or strategies, including antioxidant enzymatic properties, non-enzymatic capacity, significantly activated phenylpropanoid biosynthesis, and adaptive morphological characteristics. This study unveils the possible molecular mechanisms underlying oAANAT dependent melatonin functions in switchgrass, providing an important starting point for further analyses.
Collapse
Affiliation(s)
- Yanhua Huang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong, China.
| | - Zehui Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong, China.
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| | - Kai Guo
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong, China.
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Xuexue Huo
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong, China.
| | - Danyang Tian
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| | - Huayue Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| | - Lei Wang
- Forestry College, Inner Mongolia Agricultural University, Hohhot, China.
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
23
|
Zhang Y, Rui C, Fan Y, Xu N, Zhang H, Wang J, Sun L, Dai M, Ni K, Chen X, Lu X, Wang D, Wang J, Wang S, Guo L, Zhao L, Feng X, Chen C, Ye W. Identification of SNAT Family Genes Suggests GhSNAT3D Functional Reponse to Melatonin Synthesis Under Salinity Stress in Cotton. Front Mol Biosci 2022; 9:843814. [PMID: 35223998 PMCID: PMC8867073 DOI: 10.3389/fmolb.2022.843814] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
Serotonin N-acetyltransferase (SNAT) is a key enzyme in the biosynthesis of melatonin, and plays an important role in the regulation of melatonin synthesis. The study of SNAT is of great significance to understand the function of melatonin. In this study, we analyzed the structural characteristics, phylogenetic relationship, gene structure, expression pattern, evolutionary relationship and stress response of the members of the SNAT gene family in upland cotton through bioinformatics. A putative Serotonin n-acetyltransferase gene GhSNAT3D was identified, and preliminarily function of GhSNAT3D was verified by virus-induced gene silencing. We identified a total of 52 SNAT genes in the whole genome of G. hirsutum, and part of the GhSNATs were regulated by exogenous melatonin. The content of melatonin, antioxidant enzyme activity and Ca2+ content of GhSNAT3D gene silenced plants decreased, and the salt tolerance of GhSNAT3D gene silenced plants was reduced. Exogenous melatonin supplementation restored the salt tolerance of GhSNAT3D gene silenced plants. GhSNAT3D may interact with GhSNAT25D and ASMT to regulate melatonin synthesis. This study provided an important basis for further study on the regulation of melatonin in cotton against abiotic stress.
Collapse
|
24
|
Zeng W, Mostafa S, Lu Z, Jin B. Melatonin-Mediated Abiotic Stress Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:847175. [PMID: 35615125 PMCID: PMC9125191 DOI: 10.3389/fpls.2022.847175] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/19/2022] [Indexed: 05/07/2023]
Abstract
Melatonin is a multi-functional molecule that is ubiquitous in all living organisms. Melatonin performs essential roles in plant stress tolerance; its application can reduce the harmful effects of abiotic stresses. Plant melatonin biosynthesis, which usually occurs within chloroplasts, and its related metabolic pathways have been extensively characterized. Melatonin regulates plant stress responses by directly inhibiting the accumulation of reactive oxygen and nitrogen species, and by indirectly affecting stress response pathways. In this review, we summarize recent research concerning melatonin biosynthesis, metabolism, and antioxidation; we focus on melatonin-mediated tolerance to abiotic stresses including drought, waterlogging, salt, heat, cold, heavy metal toxicity, light and others. We also examine exogenous melatonin treatment in plants under abiotic stress. Finally, we discuss future perspectives in melatonin research and its applications in plants.
Collapse
Affiliation(s)
- Wen Zeng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Salma Mostafa
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Department of Floriculture, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Zhaogeng Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Zhaogeng Lu,
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Biao Jin,
| |
Collapse
|
25
|
Lee HY, Back K. 2-Hydroxymelatonin, Rather Than Melatonin, Is Responsible for RBOH-Dependent Reactive Oxygen Species Production Leading to Premature Senescence in Plants. Antioxidants (Basel) 2021; 10:antiox10111728. [PMID: 34829600 PMCID: PMC8614918 DOI: 10.3390/antiox10111728] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Unlike animals, plants amply convert melatonin into 2-hydroxymelatonin (2-OHM) and cyclic 3-hydroxymelatonin (3-OHM) through the action of melatonin 2-hydroxylase (M2H) and melatonin 3-hydroxylase (M3H), respectively. Thus, the effects of exogenous melatonin treatment in plants may be caused by melatonin, 2-OHM, or 3-OHM, or some combination of these compounds. Indeed, studies of melatonin's effects on reactive oxygen species (ROS) production have reported conflicting results. In this study, we demonstrated that 2-OHM treatment induced ROS production, whereas melatonin did not. ROS production from 2-OHM treatment occurred in old arabidopsis leaves in darkness, consistent with an ethylene-mediated senescence mechanism. Transgenic tobacco plants containing overexpressed rice M2H exhibited dwarfism and leaf necrosis of the upper leaves and early senescence of the lower leaves. We also demonstrated that 2-OHM-mediated ROS production is respiratory burst NADPH oxidase (RBOH)-dependent and that 2-OHM-induced senescence genes require ethylene and the abscisic acid (ABA) signaling pathway in arabidopsis. In contrast to melatonin, 2-OHM treatment induced senescence symptoms such as leaf chlorosis and increased ion leakage in arabidopsis. Senescence induction is known to begin with decreased levels of proteins involved in chloroplast maintenance, including Lhcb1 and ClpR1. Together, these results show that 2-OHM acts as a senescence-inducing factor by inducing ROS production in plants.
Collapse
|
26
|
Wu Y, Fan X, Zhang Y, Jiang J, Sun L, Rahman FU, Liu C. VvSNAT1 overexpression enhances melatonin production and salt tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:485-494. [PMID: 34166975 DOI: 10.1016/j.plaphy.2021.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/14/2021] [Indexed: 05/23/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) plays important roles in the regulation of development and the response to biotic and abiotic stresses in plants. Serotonin-N-acetyltransferase (SNAT) functions as a key catalytic enzyme involved in melatonin biosynthesis. In this study, the candidate gene VvSNAT1 (SNAT isogene) was isolated from grape (Vitis vinifera L. cv. Merlot). Tissue-specific expression and external treatment revealed that VvSNAT1 is a salt-inducible gene that is highly expressed in leaves. Subcellular localisation results revealed that VvSNAT1 was located in the chloroplasts, which is similar to other plant SNAT proteins. Ectopic overexpression of VvSNAT1 in Arabidopsis resulted in increased melatonin production and salt tolerance. Transgenic Arabidopsis overexpressing VvSNAT1 exhibited enhanced growth and physiological performance, including a lower degree of leaf wilting, higher germination rate, higher fresh weight, and longer root length under salt stress. Moreover, overexpression of VvSNAT1 in Arabidopsis protected cells from oxidative damage by reducing the accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2). These results indicate that VvSNAT1 positively responds to salt stress. Our results provide a novel perspective for VvSNAT1 to improve salt tolerance, mediated by melatonin accumulation, plant growth promotion and oxidative damage reduction.
Collapse
Affiliation(s)
- Yandi Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China
| | - Xiucai Fan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China
| | - Lei Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China
| | - Faiz Ur Rahman
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China.
| |
Collapse
|
27
|
Guo YM, Sun TC, Wang HP, Chen X. Research progress of melatonin (MT) in improving ovarian function: a review of the current status. Aging (Albany NY) 2021; 13:17930-17947. [PMID: 34228638 PMCID: PMC8312436 DOI: 10.18632/aging.203231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
Melatonin (MT) is an endogenous hormone mainly synthesized by pineal cells, which has strong endogenous effects of eliminating free radicals and resisting oxidative damages. Melatonin (MT) can not only regulate the body’s seasonal and circadian rhythms; but also delay ovarian senescence, regulate ovarian biological rhythm, promote follicles formation, and improve oocyte quality and fertilization rate. This review aimd to provide evidence concerning the synthesis and distribution, ovarian function, and role of MT in development of follicles and oocytes. Moreover, the role of MT as antioxidative, participating in biological rhythm regulation, was also reviewed. Furthermore, the effects of MT on various ovarian related diseases were analyzed, particularly for the ovarian aging and polycystic ovary syndrome (PCOS).
Collapse
Affiliation(s)
- Yi Ming Guo
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.,National Engineering Research Center of Reproductive Health, National Research Institute for Family Planning, Beijing 100081, China
| | - Tie Cheng Sun
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, China
| | - Hui Ping Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.,National Engineering Research Center of Reproductive Health, National Research Institute for Family Planning, Beijing 100081, China
| | - Xi Chen
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
28
|
Shen J, Chen D, Zhang X, Song L, Dong J, Xu Q, Hu M, Cheng Y, Shen F, Wang W. Mitigation of salt stress response in upland cotton (Gossypium hirsutum) by exogenous melatonin. JOURNAL OF PLANT RESEARCH 2021; 134:857-871. [PMID: 33763804 DOI: 10.1007/s10265-021-01284-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/16/2021] [Indexed: 05/23/2023]
Abstract
As a pleiotropic signal molecule, melatonin is ubiquitous throughout the animal and plant kingdoms and plays important roles in the regulation of plant growth, development, and responses to environmental stresses. In this study, we quantified the endogenous melatonin levels in upland cotton (Gossypium hirsutum L.), using high-performance liquid chromatography-tandem mass spectrometry. The melatonin concentrations in root, stem, and leaf were 150.60, 37.92, and 40.58 ng g fresh weight- 1, respectively. The effects of exogenous melatonin (1 µM) on plant growth, photosynthesis, antioxidant enzyme activity, and ion homeostasis in upland cotton seedlings exposed to 100 mM NaCl treatment were determined. Pretreatment (prior to exposure to salt stress) of seedlings with exogenous melatonin significantly alleviated plant growth inhibition by salt stress and maintained an improved photosynthetic capacity. The application of melatonin also significantly reduced the salt-induced oxidative damage, possibly through the accumulation of osmotic regulatory substances and the activation of antioxidant enzymes. We also showed that exogenous melatonin regulated the expression of stress-responsive and ion-channel genes under salinity, which could contribute to improved salt tolerance in cotton. Taken together, our study provides evidence that cotton contains endogenous melatonin, and it may have unraveled crucial evidence of the role of melatonin in cotton against salt stress.
Collapse
Affiliation(s)
- Jian Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Dongdong Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Lirong Song
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jie Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Qingjiang Xu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Mengjiao Hu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yingying Cheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
29
|
Pardo-Hernández M, López-Delacalle M, Martí-Guillen JM, Martínez-Lorente SE, Rivero RM. ROS and NO Phytomelatonin-Induced Signaling Mechanisms under Metal Toxicity in Plants: A Review. Antioxidants (Basel) 2021; 10. [PMID: 34068211 DOI: 10.20944/preprints202104.0637.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 05/20/2023] Open
Abstract
Metal toxicity in soils, along with water runoff, are increasing environmental problems that affect agriculture directly and, in turn, human health. In light of finding a suitable and urgent solution, research on plant treatments with specific compounds that can help mitigate these effects has increased, and thus the exogenous application of melatonin (MET) and its role in alleviating the negative effects of metal toxicity in plants, have become more important in the last few years. MET is an important plant-related response molecule involved in growth, development, and reproduction, and in the induction of different stress-related key factors in plants. It has been shown that MET plays a protective role against the toxic effects induced by different metals (Pb, Cd, Cu, Zn, B, Al, V, Ni, La, As, and Cr) by regulating both the enzymatic and non-enzymatic antioxidant plant defense systems. In addition, MET interacts with many other signaling molecules, such as reactive oxygen species (ROS) and nitric oxide (NO) and participates in a wide variety of physiological reactions. Furthermore, MET treatment enhances osmoregulation and photosynthetic efficiency, and increases the concentration of other important antioxidants such as phenolic compounds, flavonoids, polyamines (PAs), and carotenoid compounds. Some recent studies have shown that MET appeared to be involved in the regulation of metal transport in plants, and lastly, various studies have confirmed that MET significantly upregulated stress tolerance-related genes. Despite all the knowledge acquired over the years, there is still more to know about how MET is involved in the metal toxicity tolerance of plants.
Collapse
Affiliation(s)
- Miriam Pardo-Hernández
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - María López-Delacalle
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - José Manuel Martí-Guillen
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - Sara E Martínez-Lorente
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - Rosa M Rivero
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
30
|
Pardo-Hernández M, López-Delacalle M, Martí-Guillen JM, Martínez-Lorente SE, Rivero RM. ROS and NO Phytomelatonin-Induced Signaling Mechanisms under Metal Toxicity in Plants: A Review. Antioxidants (Basel) 2021; 10:antiox10050775. [PMID: 34068211 PMCID: PMC8153167 DOI: 10.3390/antiox10050775] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
Metal toxicity in soils, along with water runoff, are increasing environmental problems that affect agriculture directly and, in turn, human health. In light of finding a suitable and urgent solution, research on plant treatments with specific compounds that can help mitigate these effects has increased, and thus the exogenous application of melatonin (MET) and its role in alleviating the negative effects of metal toxicity in plants, have become more important in the last few years. MET is an important plant-related response molecule involved in growth, development, and reproduction, and in the induction of different stress-related key factors in plants. It has been shown that MET plays a protective role against the toxic effects induced by different metals (Pb, Cd, Cu, Zn, B, Al, V, Ni, La, As, and Cr) by regulating both the enzymatic and non-enzymatic antioxidant plant defense systems. In addition, MET interacts with many other signaling molecules, such as reactive oxygen species (ROS) and nitric oxide (NO) and participates in a wide variety of physiological reactions. Furthermore, MET treatment enhances osmoregulation and photosynthetic efficiency, and increases the concentration of other important antioxidants such as phenolic compounds, flavonoids, polyamines (PAs), and carotenoid compounds. Some recent studies have shown that MET appeared to be involved in the regulation of metal transport in plants, and lastly, various studies have confirmed that MET significantly upregulated stress tolerance-related genes. Despite all the knowledge acquired over the years, there is still more to know about how MET is involved in the metal toxicity tolerance of plants.
Collapse
|
31
|
Liao Z, Zhang X, Zhang S, Lin Z, Zhang X, Ming R. Structural variations in papaya genomes. BMC Genomics 2021; 22:335. [PMID: 33971825 PMCID: PMC8108470 DOI: 10.1186/s12864-021-07665-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Structural variations (SVs) are a type of mutations that have not been widely detected in plant genomes and studies in animals have shown their role in the process of domestication. An in-depth study of SVs will help us to further understand the impact of SVs on the phenotype and environmental adaptability during papaya domestication and provide genomic resources for the development of molecular markers. RESULTS We detected a total of 8083 SVs, including 5260 deletions, 552 tandem duplications and 2271 insertions with deletion being the predominant, indicating the universality of deletion in the evolution of papaya genome. The distribution of these SVs is non-random in each chromosome. A total of 1794 genes overlaps with SV, of which 1350 genes are expressed in at least one tissue. The weighted correlation network analysis (WGCNA) of these expressed genes reveals co-expression relationship between SVs-genes and different tissues, and functional enrichment analysis shows their role in biological growth and environmental responses. We also identified some domesticated SVs genes related to environmental adaptability, sexual reproduction, and important agronomic traits during the domestication of papaya. Analysis of artificially selected copy number variant genes (CNV-genes) also revealed genes associated with plant growth and environmental stress. CONCLUSIONS SVs played an indispensable role in the process of papaya domestication, especially in the reproduction traits of hermaphrodite plants. The detection of genome-wide SVs and CNV-genes between cultivated gynodioecious populations and wild dioecious populations provides a reference for further understanding of the evolution process from male to hermaphrodite in papaya.
Collapse
Affiliation(s)
- Zhenyang Liao
- College of Life Science, Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xunxiao Zhang
- College of Life Science, Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Shengcheng Zhang
- College of Life Science, Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zhicong Lin
- College of Life Science, Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xingtan Zhang
- College of Life Science, Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
32
|
CAND2/PMTR1 Is Required for Melatonin-Conferred Osmotic Stress Tolerance in Arabidopsis. Int J Mol Sci 2021; 22:ijms22084014. [PMID: 33924609 PMCID: PMC8069227 DOI: 10.3390/ijms22084014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/14/2022] Open
Abstract
Osmotic stress severely inhibits plant growth and development, causing huge loss of crop quality and quantity worldwide. Melatonin is an important signaling molecule that generally confers plant increased tolerance to various environmental stresses, however, whether and how melatonin participates in plant osmotic stress response remain elusive. Here, we report that melatonin enhances plant osmotic stress tolerance through increasing ROS-scavenging ability, and melatonin receptor CAND2 plays a key role in melatonin-mediated plant response to osmotic stress. Upon osmotic stress treatment, the expression of melatonin biosynthetic genes including SNAT1, COMT1, and ASMT1 and the accumulation of melatonin are increased in the wild-type plants. The snat1 mutant is defective in osmotic stress-induced melatonin accumulation and thus sensitive to osmotic stress, while exogenous melatonin enhances the tolerance of the wild-type plant and rescues the sensitivity of the snat1 mutant to osmotic stress by upregulating the expression and activity of catalase and superoxide dismutase to repress H2O2 accumulation. Further study showed that the melatonin receptor mutant cand2 exhibits reduced osmotic stress tolerance with increased ROS accumulation, but exogenous melatonin cannot revert its osmotic stress phenotype. Together, our study reveals that CADN2 functions necessarily in melatonin-conferred osmotic stress tolerance by activating ROS-scavenging ability in Arabidopsis.
Collapse
|
33
|
Lee HY, Back K. Melatonin Regulates Chloroplast Protein Quality Control via a Mitogen-Activated Protein Kinase Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10040511. [PMID: 33806011 PMCID: PMC8064490 DOI: 10.3390/antiox10040511] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Serotonin N-acetyltransferase 1 (SNAT1), the penultimate enzyme for melatonin biosynthesis has shown N-acetyltransferase activity toward multiple substrates, including histones, serotonin, and plastid proteins. Under two different light conditions such as 50 or 100 μmol m−2 s−1, a SNAT1-knockout (snat1) mutant of Arabidopsis thaliana ecotype Columbia (Col-0) exhibited small size phenotypes relative over wild-type (WT) Arabidopsis Col-0. Of note, the small phenotype is stronger when growing at the 50 μmol m−2 s−1, exhibiting a dwarfism phenotype and delayed flowering. The snat1 Arabidopsis Col-0 accumulated less starch than the WT Col-0. Moreover, snat1 exhibited lower Lhcb1, Lhcb4, and RBCL protein levels, compared with the WT Col-0, but no changes in the corresponding transcripts, suggesting the involvement of melatonin in chloroplast protein quality control (CPQC). Accordingly, caseinolytic protease (Clp) and chloroplast heat shock proteins (CpHSPs), two key proteins involved in CPQC, as well as ROS defense were suppressed in snat1. In contrast, exogenous melatonin treatment induced expression of Clp, CpHSP, APX1, and GST, but not other growth-related genes such as DWF4, KS, and IAA1. Finally, the induction of ClpR1, APX1, and GST1 in response to melatonin was inhibited in the mitogen-activated protein kinase (MAPK) knockdown Arabidopsis (mpk3/6), suggesting that melatonin-mediated CPQC was mediated, in part, by the MAPK signaling cascade. These results suggest that melatonin is involved in CPQC, which plays a pivotal role in starch synthesis in plants.
Collapse
|
34
|
Su J, Yang X, Shao Y, Chen Z, Shen W. Molecular hydrogen-induced salinity tolerance requires melatonin signalling in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2021; 44:476-490. [PMID: 33103784 DOI: 10.1111/pce.13926] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 05/21/2023]
Abstract
Melatonin (MT) plays positive roles in salinity stress tolerance. However, the upstream signalling components that regulate MT are poorly understood. Here, we report that endogenous MT acts downstream of molecular hydrogen (H2 ) in the salinity response in Arabidopsis. The addition of hydrogen-rich water and expression of the hydrogenase1 gene (CrHYD1) from Chlamydomonas reinhardtii increased endogenous H2 and MT levels and enhanced salinity tolerance. These results were not observed in the absence of serotonin N-acetyltransferase gene (SNAT). H2 increased the levels of SNAT transcripts in the wild-type and CrHYD1 lines, which had lower Na+ /K+ ratios and higher levels of ion transport-related gene transcripts. These changes were not observed in atsnat/CrHYD1-4 hybrids. The increased MT-dependent Na+ extrusion observed in the CrHYD1 plants resulted, at least in part, from enhanced Na+ /H+ antiport across the plasma membrane. The endogenous H2 -induced MT-dependent regulation of ion and redox homeostasis was impaired in the atsnat/CrHYD1-4 hybrids. Taken together, these results demonstrate that MT-induced salinity tolerance is induced by a H2 signalling cascade that regulates ion and redox homeostasis in response to salinity.
Collapse
Affiliation(s)
- Jiuchang Su
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xinghao Yang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yudong Shao
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ziping Chen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Yao JW, Ma Z, Ma YQ, Zhu Y, Lei MQ, Hao CY, Chen LY, Xu ZQ, Huang X. Role of melatonin in UV-B signaling pathway and UV-B stress resistance in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2021; 44:114-129. [PMID: 32860452 DOI: 10.1111/pce.13879] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 05/18/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) plays important roles in plant defences against a variety of biotic and abiotic stresses, including UV-B stress. Molecular mechanisms underlying functions of melatonin in plant UV-B responses are poorly understood. Here, we show that melatonin effect on molecular signalling pathways, physiological changes and UV-B stress resistance in Arabidopsis. Both exogenous and endogenous melatonin affected expression of UV-B signal transduction pathway genes. Experiments using UV-B signalling component mutants cop1-4 and hy5-215 revealed that melatonin not only acts as an antioxidant to promote UV-B stress resistance, but also regulates expression of several key components of UV-B signalling pathway, including ubiquitin-degrading enzyme (COP1), transcription factors (HY5, HYH) and RUP1/2. Our findings indicate that melatonin delays and subsequently enhances expression of COP1, HY5, HYH and RUP1/2, which act as central effectors in UV-B signalling pathway, thus regulating their effects on antioxidant systems to protect the plant from UV-B stress.
Collapse
Affiliation(s)
- Jing-Wen Yao
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Zheng Ma
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yan-Qin Ma
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Ying Zhu
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Meng-Qi Lei
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Cheng-Ying Hao
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Li-Yu Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zi-Qin Xu
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Xuan Huang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
36
|
Yang SJ, Huang B, Zhao YQ, Hu D, Chen T, Ding CB, Chen YE, Yuan S, Yuan M. Melatonin Enhanced the Tolerance of Arabidopsis thaliana to High Light Through Improving Anti-oxidative System and Photosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:752584. [PMID: 34691129 PMCID: PMC8529209 DOI: 10.3389/fpls.2021.752584] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/13/2021] [Indexed: 05/03/2023]
Abstract
Land plants live in a crisis-filled environment and the fluctuation of sunlight intensity often causes damage to photosynthetic apparatus. Phyto-melatonin is an effective bioactive molecule that helps plants to resist various biotic and abiotic stresses. In order to explore the role of melatonin under high light stress, we investigated the effects of melatonin on anti-oxidative system and photosynthesis of Arabidopsis thaliana under high light. Results showed that exogenous melatonin increased photosynthetic rate and protected photosynthetic proteins under high light. This was mainly owing to the fact that exogenous melatonin effectively decreased the accumulation of reactive oxygen species and protected integrity of membrane and photosynthetic pigments, and reduced cell death. Taken together, our study promoted more comprehensive understanding in the protective effects of exogenous melatonin under high light.
Collapse
Affiliation(s)
- Si-Jia Yang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Bo Huang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Yu-Qing Zhao
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Di Hu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Tao Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Chun-Bang Ding
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya’an, China
- *Correspondence: Ming Yuan,
| |
Collapse
|
37
|
Back K. Melatonin metabolism, signaling and possible roles in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:376-391. [PMID: 32645752 DOI: 10.1111/tpj.14915] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 05/20/2023]
Abstract
Melatonin is a multifunctional biomolecule found in both animals and plants. In this review, the biosynthesis, levels, signaling, and possible roles of melatonin and its metabolites in plants is summarized. Tryptamine 5-hydroxylase (T5H), which catalyzes the conversion of tryptamine into serotonin, has been proposed as a target to create a melatonin knockout mutant presenting a lesion-mimic phenotype in rice. With a reduced anabolic capacity for melatonin biosynthesis and an increased catabolic capacity for melatonin metabolism, all plants generally maintain low melatonin levels. Some plants, including Arabidopsis and Nicotiana tabacum (tobacco), do not possess tryptophan decarboxylase (TDC), the first committed step enzyme required for melatonin biosynthesis. Major melatonin metabolites include cyclic 3-hydroxymelatonin (3-OHM) and 2-hydroxymelatonin (2-OHM). Other melatonin metabolites such as N1 -acetyl-N2 -formyl-5-methoxykynuramine (AFMK), N-acetyl-5-methoxykynuramine (AMK) and 5-methoxytryptamine (5-MT) are also produced when melatonin is applied to Oryza sativa (rice). The signaling pathways of melatonin and its metabolites act via the mitogen-activated protein kinase (MAPK) cascade, possibly with Cand2 acting as a melatonin receptor, although the integrity of Cand2 remains controversial. Melatonin mediates many important functions in growth stimulation and stress tolerance through its potent antioxidant activity and function in activating the MAPK cascade. The concentration distribution of melatonin metabolites appears to be species specific because corresponding enzymes such as M2H, M3H, catalases, indoleamine 2,3-dioxygenase (IDO) and N-acetylserotonin deacetylase (ASDAC) are differentially expressed among plant species and even among different tissues within species. Differential levels of melatonin and its metabolites can lead to differential physiological effects among plants when melatonin is either applied exogenously or overproduced through ectopic overexpression.
Collapse
Affiliation(s)
- Kyoungwhan Back
- Department of Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
38
|
ROS and NO Regulation by Melatonin Under Abiotic Stress in Plants. Antioxidants (Basel) 2020; 9:antiox9111078. [PMID: 33153156 PMCID: PMC7693017 DOI: 10.3390/antiox9111078] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/02/2023] Open
Abstract
Abiotic stress in plants is an increasingly common problem in agriculture, and thus, studies on plant treatments with specific compounds that may help to mitigate these effects have increased in recent years. Melatonin (MET) application and its role in mitigating the negative effects of abiotic stress in plants have become important in the last few years. MET, a derivative of tryptophan, is an important plant-related response molecule involved in the growth, development, and reproduction of plants, and the induction of different stress factors. In addition, MET plays a protective role against different abiotic stresses such as salinity, high/low temperature, high light, waterlogging, nutrient deficiency and stress combination by regulating both the enzymatic and non-enzymatic antioxidant defense systems. Moreover, MET interacts with many signaling molecules, such as reactive oxygen species (ROS) and nitric oxide (NO), and participates in a wide variety of physiological reactions. It is well known that NO produces S-nitrosylation and NO2-Tyr of important antioxidant-related proteins, with this being an important mechanism for maintaining the antioxidant capacity of the AsA/GSH cycle under nitro-oxidative conditions, as extensively reviewed here under different abiotic stress conditions. Lastly, in this review, we show the coordinated actions between NO and MET as a long-range signaling molecule, regulating many responses in plants, including plant growth and abiotic stress tolerance. Despite all the knowledge acquired over the years, there is still more to know about how MET and NO act on the tolerance of plants to abiotic stresses.
Collapse
|
39
|
Cen H, Wang T, Liu H, Wang H, Tian D, Li X, Cui X, Guan C, Zang H, Li M, Zhang Y. Overexpression of MsASMT1 Promotes Plant Growth and Decreases Flavonoids Biosynthesis in Transgenic Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2020; 11:489. [PMID: 32411162 PMCID: PMC7199503 DOI: 10.3389/fpls.2020.00489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/01/2020] [Indexed: 05/27/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a pleiotropic signaling molecule that plays important roles in plant growth, development and stress responses. Alfalfa (Medicago sativa L.) is an important and widely cultivated leguminous forage crop with high biomass yield and rich nutritional value. The effects of exogenous melatonin content regulation on alfalfa stress tolerance have been investigated in recent years. Here, we isolated and introduced the MsASMT1 (N-acetylserotonin methyltransferase) gene into alfalfa, which significantly improved the endogenous melatonin content. Compared with wild-type (WT) plants, MsASMT1 overexpression (OE-MsASMT1) plants exhibited a series of phenotypic changes, including vigorous growth, increased plant height, enlarged leaves and robust stems with increased cell sizes, cell numbers and vascular bundles, as well as more branches. We also found that the flavonoid content and lignin composition of syringyl to guaiacyl ratio (S/G) were decreased and the cellulose content was increased in OE-MsASMT1 transgenic alfalfa. Further transcriptomic and metabolomic exploration revealed that a large group of genes in phenylalanine pathway related to flavonoids and lignin biosynthesis were significantly altered, accompanied by significantly reduced concentrations of the glycosides of quercetin, kaempferol, formononetin and biochanin in OE-MsASMT1 transgenic alfalfa. Our study first uncovers the effects of endogenous melatonin on alfalfa growth and metabolism. This report provides insights into the regulation effects of melatonin on plant growth and phenylalanine metabolism, especially flavonoids and lignin biosynthesis.
Collapse
|
40
|
Effects of Light Quality and Phytochrome Form on Melatonin Biosynthesis in Rice. Biomolecules 2020; 10:biom10040523. [PMID: 32235549 PMCID: PMC7226006 DOI: 10.3390/biom10040523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 12/26/2022] Open
Abstract
Light is an important factor influencing melatonin synthesis in response to cadmium treatment in rice. However, the effects of light quality on, and the involvement of phytochrome light receptors in, melatonin production have not been explored. In this study, we used light-emitting diodes (LEDs) to investigate the effect of light wavelength on melatonin synthesis, and the role of phytochromes in light-dependent melatonin induction in rice. Upon cadmium treatment, peak melatonin production was observed under combined red and blue (R + B) light, followed by red (R) and blue light (B). However, both far-red (FR) LED light and dark treatment (D) failed to induce melatonin production. Similarly, rice seedlings grown under the R + B treatment showed the highest melatonin synthesis, followed by those grown under B and R. These findings were consistent with the results of our cadmium treatment experiment. To further confirm the effects of light quality on melatonin synthesis, we employed rice photoreceptor mutants lacking functional phytochrome genes. Melatonin induction was most inhibited in the phytochrome A mutant (phyA) followed by the phyB mutant under R + B treatment, whereas phyB produced the least amount of melatonin under R treatment. These results indicate that PhyB is an R light receptor. Expression analyses of genes involved in melatonin biosynthesis clearly demonstrated that tryptophan decarboxylase (TDC) played a key role in phytochrome-mediated melatonin induction when rice seedlings were challenged with cadmium.
Collapse
|
41
|
Melatonin: Awakening the Defense Mechanisms during Plant Oxidative Stress. PLANTS 2020; 9:plants9040407. [PMID: 32218185 PMCID: PMC7238205 DOI: 10.3390/plants9040407] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/08/2020] [Accepted: 03/17/2020] [Indexed: 12/20/2022]
Abstract
Melatonin is a multifunctional signaling molecule that is ubiquitously distributed in different parts of a plant and responsible for stimulating several physio-chemical responses to adverse environmental conditions. In this review, we show that, although plants are able to biosynthesize melatonin, the exogenous application of melatonin to various crops can improve plant growth and development in response to various abiotic and biotic stresses (e.g., drought, unfavorable temperatures, high salinity, heavy metal contamination, acid rain, and combined stresses) by regulating antioxidant machinery of plants. Current knowledge suggests that exogenously applied melatonin can enhance the stress tolerance of plants by regulating both the enzymatic and non-enzymatic antioxidant defense systems. Enzymic antioxidants upregulated by exogenous melatonin include superoxide dismutase, catalase, glutathione peroxidase, and enzymes involved in the ascorbate–glutathione cycle (ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase), whereas levels of non-enzymatic antioxidants such as ascorbate, reduced glutathione, carotenoids, tocopherols, and phenolics are also higher under stress conditions. The enhanced antioxidant system consequently exhibits lower lipid peroxidation and greater plasma membrane integrity when under stress. However, these responses vary greatly from crop to crop and depend on the intensity and type of stress, and most studies to date have been conducted under controlled conditions. This means that a wider range of crop field trials and detailed transcriptomic analysis are required to reveal the gene regulatory networks involved in the between melatonin, antioxidants, and abiotic stress.
Collapse
|
42
|
Bychkov I, Kudryakova N, Andreeva A, Pojidaeva E, Kusnetsov V. Melatonin modifies the expression of the genes for nuclear- and plastid-encoded chloroplast proteins in detached Arabidopsis leaves exposed to photooxidative stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:404-412. [PMID: 31629225 DOI: 10.1016/j.plaphy.2019.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Melatonin, a potent regulator during plant development and stress responses, affects diverse plastid-related processes. However, its role in the regulation of plastid gene expression is largely unknown. In this study, exogenous melatonin was shown to reduce the negative influence of excess light by increasing the efficiency of the photosystems and rearranging the expression of chloroplast- and nuclear-encoded genes in detached Arabidopsis leaves. The positive effects of melatonin predominantly occurred at lower concentrations, while high doses had an inhibitory effect. The impact of melatonin was not straightforward. It mainly influenced the expression of the genes encoding the chloroplast transcription machinery and housekeeping genes involved in maintaining transcriptional activity and the functional state of chloroplasts. Despite the fact that melatonin treatment improved photosynthetic parameters, the levels of photosynthesis gene transcripts and photosynthetic proteins remained practically unaltered suggesting that melatonin impact on photosynthetic apparatus which would allow the balancing of chloroplast functions with stress responses is highly complicated.
Collapse
Affiliation(s)
- Ivan Bychkov
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| | - Natalia Kudryakova
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| | - Aleksandra Andreeva
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| | - Elena Pojidaeva
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| | - Victor Kusnetsov
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| |
Collapse
|
43
|
Melatonin Deficiency Confers Tolerance to Multiple Abiotic Stresses in Rice via Decreased Brassinosteroid Levels. Int J Mol Sci 2019; 20:ijms20205173. [PMID: 31635310 PMCID: PMC6834310 DOI: 10.3390/ijms20205173] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/08/2023] Open
Abstract
Melatonin has long been recognized as a positive signaling molecule and potent antioxidant in plants, which alleviates damage caused by adverse conditions such as salt, cold, and heat stress. In this study, we found a paradoxical role for melatonin in abiotic stress responses. Suppression of the serotonin N-acetyltransferase 2 (snat2) gene encoding the penultimate enzyme in melatonin biosynthesis led to simultaneous decreases in both melatonin and brassinosteroid (BR) levels, causing a semi-dwarf with erect leaf phenotype, typical of BR deficiency. Here, we further characterized snat2 rice in terms of grain morphology and abiotic stress tolerance, to determine whether snat2 rice exhibited characteristics similar to those of BR-deficient rice. As expected, the snat2 rice exhibited tolerance to multiple stress conditions including cadmium, salt, cold, and heat, as evidenced by decreased malondialdehyde (MDA) levels and increased chlorophyll levels, in contrast with SNAT2 overexpression lines, which were less tolerant to stress than wild type plants. In addition, the length and width of grain from snat2 plants were reduced relative to the wild type, which is reminiscent of BR deficiency in rice. Other melatonin-deficient mutant rice lines with suppressed BR synthesis (i.e., comt and t5h) also showed tolerance to salt and heat stress, whereas melatonin-deficient rice seedlings without decreased BR levels (i.e., tdc) failed to exhibit increased stress tolerance, suggesting that stress tolerance was increased not by melatonin deficiency alone, but by a melatonin deficiency-mediated decrease in BR.
Collapse
|
44
|
Suppression of Melatonin 2-Hydroxylase Increases Melatonin Production Leading to the Enhanced Abiotic Stress Tolerance against Cadmium, Senescence, Salt, and Tunicamycin in Rice Plants. Biomolecules 2019; 9:biom9100589. [PMID: 31597397 PMCID: PMC6843340 DOI: 10.3390/biom9100589] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Abstract
Melatonin 2-hydroxylase (M2H) catalyzes the conversion of melatonin into 2hydroxymelatonin (2OHM), which is present in plants at a higher concentration than melatonin. Although M2H has been cloned, the in vivo function of its product is unknown. Here, we generated stable T2 homozygous transgenic rice plants in which expression of endogenous M2H was suppressed (RNAi lines). However, we failed to generate M2H overexpression transgenic rice due to failure of somatic embryogenesis. The M2H transcript level showed a diurnal rhythm with a peak at night concomitantly with the peak concentration of 2OHM. RNAi rice showed a reduced M2H mRNA level and 2OHM and melatonin concentrations. The unexpected decrease in the melatonin concentration was caused by redirection of melatonin into cyclic 3hydroxymelatonin via a detour catabolic pathway. Thus, the decrease in the melatonin concentration in M2H RNAi rice led to slowed seedling growth and delayed germination. By contrast, the transient increase in the melatonin concentration was of greater magnitude in the M2H RNAi than the wild-type rice upon cadmium treatment due to possible suppression of melatonin degradation. Due to its higher concentration of melatonin, the M2H RNAi rice displayed tolerance to senescence, salt, and tunicamycin stresses. Therefore, the increase in the melatonin concentration caused by suppression of melatonin degradation or by overexpression of melatonin biosynthetic genes enhances stress tolerance in rice.
Collapse
|
45
|
Lee K, Back K. Melatonin-deficient rice plants show a common semidwarf phenotype either dependent or independent of brassinosteroid biosynthesis. J Pineal Res 2019; 66:e12537. [PMID: 30403303 DOI: 10.1111/jpi.12537] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/11/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
Melatonin-deficient rice with a semidwarf erect-leaf phenotype was created by suppressing serotonin N-acetyltransferase 2 (SNAT2). We generated an RNAi transgenic rice that suppressed tryptophan decarboxylase (TDC), which encodes the first TDC enzyme committed step for melatonin biosynthesis in plants catalyzing the conversion of tryptophan into tryptamine, to determine whether other transgenic rice with downregulated melatonin biosynthetic genes exhibited the same erect-leaf phenotype as the snat2 RNAi rice. The TDC RNAi rice produced significantly less melatonin than the wild type and exhibited a semidwarf phenotype, but no erect-leaf phenotype was observed. In contrast, tryptamine 5-hydroxylase (T5H) knockout Sekiguchi rice and caffeic acid O-methyltransferase (COMT) RNAi rice seedlings were semidwarf phenotypes with erect leaves, as was the snat2 RNAi rice due to a melatonin deficiency. All RNAi rice plants showing erect-leaf phenotypes had lower expression levels of the DWARF4 gene, which is a key enzyme for brassinosteroid (BR) biosynthesis, leading to lower BR levels than their respective wild types. Suppressing melatonin synthesis did not alter the contents of indole 3-acetic acid (IAA), suggesting the irrelevance of melatonin deficiency to IAA biosynthesis. These data indicate that a semidwarf seedling is a common rice phenotype by the lack of melatonin synthesis with or without BR suppression in a melatonin biosynthetic gene-specific manner.
Collapse
Affiliation(s)
- Kyungjin Lee
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| |
Collapse
|