1
|
Reiter RJ, Sharma RN, Manucha W, Rosales-Corral S, Almieda Chuffa LGD, Loh D, Luchetti F, Balduini W, Govitrapong P. Dysfunctional mitochondria in age-related neurodegeneration: Utility of melatonin as an antioxidant treatment. Ageing Res Rev 2024; 101:102480. [PMID: 39236857 DOI: 10.1016/j.arr.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Mitochondria functionally degrade as neurons age. Degenerative changes cause inefficient oxidative phosphorylation (OXPHOS) and elevated electron leakage from the electron transport chain (ETC) promoting increased intramitochondrial generation of damaging reactive oxygen and reactive nitrogen species (ROS and RNS). The associated progressive accumulation of molecular damage causes an increasingly rapid decline in mitochondrial physiology contributing to aging. Melatonin, a multifunctional free radical scavenger and indirect antioxidant, is synthesized in the mitochondrial matrix of neurons. Melatonin reduces electron leakage from the ETC and elevates ATP production; it also detoxifies ROS/RNS and via the SIRT3/FOXO pathway it upregulates activities of superoxide dismutase 2 and glutathione peroxidase. Melatonin also influences glucose processing by neurons. In neurogenerative diseases, neurons often adopt Warburg-type metabolism which excludes pyruvate from the mitochondria causing reduced intramitochondrial acetyl coenzyme A production. Acetyl coenzyme A supports the citric acid cycle and OXPHOS. Additionally, acetyl coenzyme A is a required co-substrate for arylalkylamine-N-acetyl transferase, which rate limits melatonin synthesis; therefore, melatonin production is diminished in cells that experience Warburg-type metabolism making mitochondria more vulnerable to oxidative stress. Moreover, endogenously produced melatonin diminishes during aging, further increasing oxidative damage to mitochondrial components. More normal mitochondrial physiology is preserved in aging neurons with melatonin supplementation.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA.
| | - Ramaswamy N Sharma
- Applied Biomedical Sciences, University of the Incarnate Word, School of Osteopathic Medicine, San Antonio, TX, USA.
| | - Walter Manucha
- Instituto de Medicina y Biologia Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Mendoza 5500, Argentina.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico.
| | - Luiz Gustavo de Almieda Chuffa
- Departamento de Biologia Estrutural e Funcional, Setor de Anatomia - Instituto de Biociências, IBB/UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil.
| | - Doris Loh
- Independent Researcher, Marble Falls, TX, USA.
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Laksi, Bangkok, Thailand.
| |
Collapse
|
2
|
Gu P, Wu Y, Lu W. New Perspectives on the Role and Therapeutic Potential of Melatonin in Cardiovascular Diseases. Am J Cardiovasc Drugs 2024; 24:171-195. [PMID: 38436867 DOI: 10.1007/s40256-024-00631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and disability worldwide. It is essential to develop novel interventions to prevent/delay CVDs by targeting their fundamental cellular and molecular processes. Melatonin is a small indole molecule acting both as a hormone of the pineal gland and as a local regulator molecule in various tissues. It has multiple features that may contribute to its cardiovascular protection. Moreover, melatonin enters all cells and subcellular compartments and crosses morphophysiological barriers. Additionally, this indoleamine also serves as a safe exogenous therapeutic agent. Increasing evidence has demonstrated the beneficial effects of melatonin in preventing and improving cardiovascular risk factors. Exogenous administration of melatonin, as a result of its antioxidant and anti-inflammatory properties, has been reported to decrease blood pressure, protect against atherosclerosis, attenuate molecular and cellular damage resulting from cardiac ischemia/reperfusion, and improve the prognosis of myocardial infarction and heart failure. This review aims to summarize the beneficial effects of melatonin against these conditions, the possible protective mechanisms of melatonin, and its potential clinical applicability in CVDs.
Collapse
Affiliation(s)
- Pengchen Gu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China
| | - Yuxin Wu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China
| | - Weiwei Lu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China.
| |
Collapse
|
3
|
Taha AM, Mahmoud AM, Ghonaim MM, Kamran A, AlSamhori JF, AlBarakat MM, Shrestha AB, Jaiswal V, Reiter RJ. Melatonin as a potential treatment for septic cardiomyopathy. Biomed Pharmacother 2023; 166:115305. [PMID: 37619482 DOI: 10.1016/j.biopha.2023.115305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Septic cardiomyopathy (SCM) is a common complication of sepsis contributing to high mortality rates. Its pathophysiology involves complex factors, including inflammatory cytokines, mitochondrial dysfunction, oxidative stress, and immune dysregulation. Despite extensive research, no effective pharmacological agent has been established for sepsis-induced cardiomyopathy. Melatonin, a hormone with diverse functions in the body, has emerged as a potential agent for SCM through its anti-oxidant, anti-inflammatory, anti-apoptotic, and cardioprotective roles. Through various molecular levels of its mechanism of action, it counterattacks the adverse event of sepsis. Experimental studies have mentioned that melatonin protects against many cardiovascular diseases and exerts preventive effects on SCM. Moreover, melatonin has been investigated in combination with other drugs such as antibiotics, resveratrol, and anti-oxidants showing synergistic effects in reducing inflammation, anti-oxidant, and improving cardiac function. While preclinical studies have demonstrated positive results, clinical trials are required to establish the optimal dosage, route of administration, and treatment duration for melatonin in SCM. Its safety profile, low toxicity, and natural occurrence in the human body provide a favorable basis for its clinical use. This review aims to provide an overview of the current evidence of the use of melatonin in sepsis-induced cardiomyopathy (SICM). Melatonin appears to be promising as a possible treatment for sepsis-induced cardiomyopathy and demands further investigation.
Collapse
Affiliation(s)
- Amira Mohamed Taha
- Faculty of Medicine, Fayoum University, Fayoum, Egypt; Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, USA
| | | | | | - Ateeba Kamran
- Bachelor of Medicine, Bachelor of Surgery, Karachi Medical and Dental College, Karachi, Pakistan
| | | | - Majd M AlBarakat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Abhigan Babu Shrestha
- Department of Internal Medicine, M Abdur Rahim Medical College, Dinajpur, Bangladesh.
| | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
4
|
Reiter RJ, Sharma R, Tan DX, Huang G, de Almeida Chuffa LG, Anderson G. Melatonin modulates tumor metabolism and mitigates metastasis. Expert Rev Endocrinol Metab 2023; 18:321-336. [PMID: 37466337 DOI: 10.1080/17446651.2023.2237103] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION Melatonin, originally isolated from the mammalian pineal gland, was subsequently identified in many animal cell types and in plants. While melatonin was discovered to inhibit cancer more than 5 decades ago, its anti-cancer potential has not been fully exploited despite its lack of serious toxicity over a very wide dose range, high safety margin, and its efficacy. AREAS COVERED This review elucidates the potential mechanisms by which melatonin interferes with tumor growth and metastasis, including its ability to alter tumor cell metabolism, inhibit epithelial-mesenchymal transition, reverse cancer chemoresistance, function synergistically with conventional cancer-inhibiting drugs while limiting many of their side effects. In contrast to its function as a potent antioxidant in normal cells, it may induce oxidative stress in cancer cells, contributing to its oncostatic actions. EXPERT OPINION Considering the large amount of experimental data supporting melatonin's multiple and varied inhibitory effects on numerous cancer types, coupled with the virtual lack of toxicity of this molecule, it has not been thoroughly tested as an anti-cancer agent in clinical trials. There seems to be significant resistance to such investigations, possibly because melatonin is inexpensive and non-patentable, and as a result there would be limited financial gain for its use.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, San Antonio, TX, USA
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, Long School of Medicine, San Antonio, TX, USA
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, Long School of Medicine, San Antonio, TX, USA
| | - Gang Huang
- Department of Cell Systems and Anatomy, Long School of Medicine, San Antonio, TX, USA
| | | | | |
Collapse
|
5
|
Reiter RJ, Sharma R, Romero A, Manucha W, Tan DX, Zuccari DAPDC, Chuffa LGDA. Aging-Related Ovarian Failure and Infertility: Melatonin to the Rescue. Antioxidants (Basel) 2023; 12:antiox12030695. [PMID: 36978942 PMCID: PMC10045124 DOI: 10.3390/antiox12030695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Aging has a major detrimental effect on the optimal function of the ovary with changes in this organ preceding the age-related deterioration in other tissues, with the middle-aged shutdown leading to infertility. Reduced fertility and consequent inability to conceive by women in present-day societies who choose to have children later in life leads to increased frustration. Melatonin is known to have anti-aging properties related to its antioxidant and anti-inflammatory actions. Its higher follicular fluid levels relative to blood concentrations and its likely synthesis in the oocyte, granulosa, and luteal cells suggest that it is optimally positioned to interfere with age-associated deterioration of the ovary. Additionally, the end of the female reproductive span coincides with a significant reduction in endogenous melatonin levels. Thus, the aims are to review the literature indicating melatonin production in mitochondria of oocytes, granulosa cells, and luteal cells, identify the multiple processes underlying changes in the ovary, especially late in the cessation of the reproductive life span, summarize the physiological and molecular actions of melatonin in the maintenance of normal ovaries and in the aging ovaries, and integrate the acquired information into an explanation for considering melatonin in the treatment of age-related infertility. Use of supplemental melatonin may help preserve fertility later in life and alleviate frustration in women delaying childbearing age, reduce the necessity of in vitro fertilization–embryo transfer (IVF-ET) procedures, and help solve the progressively increasing problem of non-aging-related infertility in women throughout their reproductive life span. While additional research is needed to fully understand the effects of melatonin supplementation on potentially enhancing fertility, studies published to date suggest it may be a promising option for those struggling with infertility.
Collapse
Affiliation(s)
- Russel J. Reiter
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
- Correspondence: (R.J.R.); (A.R.); Tel.: +1-210-567-3859 (R.J.R.); +34-91-3943970 (A.R.)
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (R.J.R.); (A.R.); Tel.: +1-210-567-3859 (R.J.R.); +34-91-3943970 (A.R.)
| | - Walter Manucha
- Instituto de Medicina y Biologia Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Mendoza 5500, Argentina
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
6
|
Ramos E, Gil-Martín E, De Los Ríos C, Egea J, López-Muñoz F, Pita R, Juberías A, Torrado JJ, Serrano DR, Reiter RJ, Romero A. Melatonin as Modulator for Sulfur and Nitrogen Mustard-Induced Inflammation, Oxidative Stress and DNA Damage: Molecular Therapeutics. Antioxidants (Basel) 2023; 12:antiox12020397. [PMID: 36829956 PMCID: PMC9952307 DOI: 10.3390/antiox12020397] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Sulfur and nitrogen mustards, bis(2-chloroethyl)sulfide and tertiary bis(2-chloroethyl) amines, respectively, are vesicant warfare agents with alkylating activity. Moreover, oxidative/nitrosative stress, inflammatory response induction, metalloproteinases activation, DNA damage or calcium disruption are some of the toxicological mechanisms of sulfur and nitrogen mustard-induced injury that affects the cell integrity and function. In this review, we not only propose melatonin as a therapeutic option in order to counteract and modulate several pathways involved in physiopathological mechanisms activated after exposure to mustards, but also for the first time, we predict whether metabolites of melatonin, cyclic-3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, and N1-acetyl-5-methoxykynuramine could be capable of exerting a scavenger action and neutralize the toxic damage induced by these blister agents. NLRP3 inflammasome is activated in response to a wide variety of infectious stimuli or cellular stressors, however, although the precise mechanisms leading to activation are not known, mustards are postulated as activators. In this regard, melatonin, through its anti-inflammatory action and NLRP3 inflammasome modulation could exert a protective effect in the pathophysiology and management of sulfur and nitrogen mustard-induced injury. The ability of melatonin to attenuate sulfur and nitrogen mustard-induced toxicity and its high safety profile make melatonin a suitable molecule to be a part of medical countermeasures against blister agents poisoning in the near future.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | - Cristóbal De Los Ríos
- Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute, 28041 Madrid, Spain
| | - René Pita
- Chemical Defense Department, Chemical, Biological, Radiological, and Nuclear Defense School, Hoyo de Manzanares, 28240 Madrid, Spain
| | - Antonio Juberías
- Dirección de Sanidad Ejército del Aire, Cuartel General Ejército del Aire, 28008 Madrid, Spain
| | - Juan J. Torrado
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Dolores R. Serrano
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913943970
| |
Collapse
|
7
|
Guzman-Lopez EG, Reina M, Perez-Gonzalez A, Francisco-Marquez M, Hernandez-Ayala LF, Castañeda-Arriaga R, Galano A. CADMA-Chem: A Computational Protocol Based on Chemical Properties Aimed to Design Multifunctional Antioxidants. Int J Mol Sci 2022; 23:13246. [PMID: 36362034 PMCID: PMC9658414 DOI: 10.3390/ijms232113246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 10/12/2023] Open
Abstract
A computational protocol aimed to design new antioxidants with versatile behavior is presented. It is called Computer-Assisted Design of Multifunctional Antioxidants and is based on chemical properties (CADMA-Chem). The desired multi-functionality consists of in different methods of antioxidant protection combined with neuroprotection, although the protocol can also be used to pursue other health benefits. The dM38 melatonin derivative is used as a study case to illustrate the protocol in detail. This was found to be a highly promising candidate for the treatment of neurodegeneration, in particular Parkinson's and Alzheimer's diseases. This also has the desired properties of an oral-drug, which is significantly better than Trolox for scavenging free radicals, and has chelates redox metals, prevents the ●OH production, via Fenton-like reactions, repairs oxidative damage in biomolecules (lipids, proteins, and DNA), and acts as a polygenic neuroprotector by inhibiting catechol-O-methyl transferase (COMT), acetylcholinesterase (AChE) and monoamine oxidase B (MAOB). To the best of our best knowledge, CADMA-Chem is currently the only protocol that simultaneously involves the analyses of drug-like behavior, toxicity, manufacturability, versatile antioxidant protection, and receptor-ligand binding affinities. It is expected to provide a starting point that helps to accelerate the discovery of oral drugs with the potential to prevent, or slow down, multifactorial human health disorders.
Collapse
Affiliation(s)
- Eduardo Gabriel Guzman-Lopez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Miguel Reina
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Adriana Perez-Gonzalez
- CONACYT-Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | | | - Luis Felipe Hernandez-Ayala
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Romina Castañeda-Arriaga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| |
Collapse
|
8
|
Melatonin Receptors: A Key Mediator in Animal Reproduction. Vet Sci 2022; 9:vetsci9070309. [PMID: 35878326 PMCID: PMC9320721 DOI: 10.3390/vetsci9070309] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 01/26/2023] Open
Abstract
Melatonin, a hormone produced by the mammalian pineal gland, influences various physiological activities, many of which are related to animal reproduction, including neuroendocrine function, rhythm regulation, seasonal behavior, gonadogenesis, gamete development and maturation, sexual maturation, and thermoregulation. Melatonin exerts beneficial actions mainly via binding with G-protein-coupled receptors (GPCR), termed MT1 and MT2. Melatonin receptors are crucial for mediating animal reproduction. This paper reviews the characteristics of melatonin receptors including MT1 and MT2, as well as their roles in mediating signal transduction and biological effects, with a focus on their function in animal reproduction. In addition, we briefly summarize the developments in pharmacological research regarding melatonin receptors as drug targets. It is expected that this review will provide a reference for further exploration and unveiling of melatonin receptor function in reproductive regulation.
Collapse
|
9
|
Ngo TC, Dao DQ, Mai TVT, Nguyen TLA, Huynh LK. On The Radical Scavenging and DNA Repairing Activities by Natural Oxygenated Diterpenoids: Theoretical Insights. J Chem Inf Model 2022; 62:2365-2377. [PMID: 35522908 DOI: 10.1021/acs.jcim.1c01428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diterpenoids are abundant and important compounds in Euphorbia species owing to their structural diversity; therefore, in this study, we investigate the modern-concept antioxidant activities, including free-radical scavenging and oxidative DNA damage repairing, of highly oxygenated diterpenoids originating from the aerial part of Euphorbia helioscopia. Four compounds with structural types of ent-abietane, containing a fused furan ring in their structures, including euphelionolide A (1), euphelionolide D (2), euphelionolide I (3), and euphelionolide L (4) are selected. First, the radical-scavenging activity of these compounds was evaluated with two typical radicals HOO• and HO• in water and pentyl ethanoate (PEA, to mimic lipid environment) via three main mechanisms, namely, hydrogen atom transfer (HAT), radical adduct formation (RAF), and single electron transfer. It is found that the studied compounds are able to scavenge free radicals at multiple reactive sites favorably via HAT and RAF mechanisms, in which the former dominates in the case with HOO• while both mechanisms are competitive in the reaction with HO•. Second, chemical repairing of DNA damage is modeled with the H-atom and single electron being transferred from the studied molecules to damaged 2'-deoxyguanosine (2dG) (i.e., 2dG• radicals and 2dG•+ radical cation). Among the four compounds, euphelionolide A is shown as the most effective radical scavenger and also the highest potential species for chemical repairing of radical-damaged DNA in both water and PEA.
Collapse
Affiliation(s)
- Thi Chinh Ngo
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Tam V-T Mai
- Molecular Science and Nano-Materials Lab, Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam.,University of Science, Vietnam National University─HCMC, 227 Nguyen Van Cu, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Lam K Huynh
- International University, Vietnam National University─HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
10
|
Melatonin in ventricular and subarachnoid cerebrospinal fluid: Its function in the neural glymphatic network and biological significance for neurocognitive health. Biochem Biophys Res Commun 2022; 605:70-81. [DOI: 10.1016/j.bbrc.2022.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
|
11
|
Melatonin: highlighting its use as a potential treatment for SARS-CoV-2 infection. Cell Mol Life Sci 2022; 79:143. [PMID: 35187603 PMCID: PMC8858600 DOI: 10.1007/s00018-021-04102-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Numerous pharmaceutical drugs have been repurposed for use as treatments for COVID-19 disease. These drugs have not consistently demonstrated high efficacy in preventing or treating this serious condition and all have side effects to differing degrees. We encourage the continued consideration of the use of the antioxidant and anti-inflammatory agent, melatonin, as a countermeasure to a SARS-CoV-2 infection. More than 140 scientific publications have identified melatonin as a likely useful agent to treat this disease. Moreover, the publications cited provide the rationale for the use of melatonin as a prophylactic agent against this condition. Melatonin has pan-antiviral effects and it diminishes the severity of viral infections and reduces the death of animals infected with numerous different viruses, including three different coronaviruses. Network analyses, which compared drugs used to treat SARS-CoV-2 in humans, also predicted that melatonin would be the most effective agent for preventing/treating COVID-19. Finally, when seriously infected COVID-19 patients were treated with melatonin, either alone or in combination with other medications, these treatments reduced the severity of infection, lowered the death rate, and shortened the duration of hospitalization. Melatonin’s ability to arrest SARS-CoV-2 infections may reduce health care exhaustion by limiting the need for hospitalization. Importantly, melatonin has a high safety profile over a wide range of doses and lacks significant toxicity. Some molecular processes by which melatonin resists a SARS-CoV-2 infection are summarized. The authors believe that all available, potentially beneficial drugs, including melatonin, that lack toxicity should be used in pandemics such as that caused by SARS-CoV-2.
Collapse
|
12
|
Bi J, Sun P, Feng E, Shen J, Chen C, Tan H, Li Z, Lin Y. Melatonin Synergizes With Methylprednisolone to Ameliorate Acute Spinal Cord Injury. Front Pharmacol 2022; 12:723913. [PMID: 35095480 PMCID: PMC8792471 DOI: 10.3389/fphar.2021.723913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022] Open
Abstract
Methylprednisolone (MP) is the drug of choice for treating spinal cord injury (SCI), but the aggressive dosage regimen used often results in adverse side effects. Therefore, MP should be combined with other drugs to lower the required dose. Melatonin is effective in alleviating nerve damage and inhibiting axonal degeneration. The combination of melatonin and half-dose methylprednisolone (HMP) for spinal cord injury treatment has never been reported. In this study, we established a rat model of T9 spinal cord injury by the Allen's method and assessed the synergistic therapeutic effects of melatonin and HMP by factorial design. Our results demonstrated that melatonin could synergize with HMP to ameliorate acute SCI through PI3K-AKT1 pathway. Combining melatonin with HMP significantly reduced the standard-dose of methylprednisolone and limited its adverse reactions, representing a promising option for treating acute SCI.
Collapse
Affiliation(s)
- Jiaqi Bi
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Emergency Department, SongBei Hospital of the Fourth Hospital Affiliated with Harbin Medical University, Harbin, China
- Postdoctoral Workstation, Harbin Children's Hospital, Harbin, China
| | - Peiyu Sun
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Orthopedics, Bejing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Erwei Feng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chong Chen
- Department of Spine Surgery, Orthopedics Center of Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Haining Tan
- Department of Orthopedic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zheng Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youxi Lin
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Pohanka M. New uses of Melatonin as a Drug, a Review. Curr Med Chem 2022; 29:3622-3637. [PMID: 34986763 DOI: 10.2174/0929867329666220105115755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/25/2021] [Accepted: 11/21/2021] [Indexed: 11/22/2022]
Abstract
Melatonin is a simple compound with a proper chemical name N-acetyl-5-methoxy tryptamine and known as a hormone controlling circadian rhythm. Humans produce melatonin at night which is the reason for sleeping in the night and awakening over the day. Melatonin interacts with melatonin receptors MT1 and MT2 but it was also revealed that melatonin is a strong antioxidant and it also has a role in regulation of cell cycle. Currently, melatonin is used as a drug for some types of sleep disorder but the recent research points to the fact that melatonin can also serve for the other purposes including prophylaxis or therapy of lifestyle diseases, cancer, neurodegenerative disorders and exposure to chemicals. This review summarizes basic facts and direction of the current research on melatonin. The actual literature was scrutinized for the purpose of this review.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, Hradec Kralove CZ-50001, Czech Republic
| |
Collapse
|
14
|
Potentiating the Benefits of Melatonin through Chemical Functionalization: Possible Impact on Multifactorial Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms222111584. [PMID: 34769013 PMCID: PMC8583879 DOI: 10.3390/ijms222111584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Although melatonin is an astonishing molecule, it is possible that chemistry will help in the discovery of new compounds derived from it that may exceed our expectations regarding antioxidant protection and perhaps even neuroprotection. This review briefly summarizes the significant amount of data gathered to date regarding the multiple health benefits of melatonin and related compounds. This review also highlights some of the most recent directions in the discovery of multifunctional pharmaceuticals intended to act as one-molecule multiple-target drugs with potential use in multifactorial diseases, including neurodegenerative disorders. Herein, we discuss the beneficial activities of melatonin derivatives reported to date, in addition to computational strategies to rationally design new derivatives by functionalization of the melatonin molecular framework. It is hoped that this review will promote more investigations on the subject from both experimental and theoretical perspectives.
Collapse
|
15
|
Mir SM, Aliarab A, Goodarzi G, Shirzad M, Jafari SM, Qujeq D, Samavarchi Tehrani S, Asadi J. Melatonin: A smart molecule in the DNA repair system. Cell Biochem Funct 2021; 40:4-16. [PMID: 34672014 DOI: 10.1002/cbf.3672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Accepted: 10/02/2021] [Indexed: 12/14/2022]
Abstract
DNA repair is an important pathway for the protection of DNA molecules from destruction. DNA damage can be produced by oxidative reactive nitrogen or oxygen species, irritation, alkylating agents, depurination and depyrimidination; in this regard, DNA repair pathways can neutralize the negative effects of these factors. Melatonin is a hormone secreted from the pineal gland with an antioxidant effect by binding to oxidative factors. In addition, the effect of melatonin on DNA repair pathways has been proven by the literature. DNA repair is carried out by several mechanisms, of which homologous recombination repair (HRR) and non-homologous end-joining (NHEJ) are of great importance. Because of the importance of DNA repair in DNA integrity and the anticancer effect of this pathway, we presented the effect of melatonin on DNA repair factors regarding previous studies conducted in this area.
Collapse
Affiliation(s)
- Seyed Mostafa Mir
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Azadeh Aliarab
- Department of Clinical Biochemistry, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Shirzad
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
16
|
Cao W, Gao J, Zhang Y, Li A, Yu P, Cao N, Liang J, Tang X. Autophagy up-regulated by MEK/ERK promotes the repair of DNA damage caused by aflatoxin B1. Toxicol Mech Methods 2021; 32:87-96. [PMID: 34396909 DOI: 10.1080/15376516.2021.1968985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Aflatoxin B1 (AFB1), a kind of mycotoxin, exerts its cytotoxicity by increasing the oxidative damage of target organs, especially the liver. In vivo and in vitro experiments were carried out to elucidate the toxic mechanism of AFB1. The results of MTT, cloning-formation, flow cytometry, immunocytochemistry, Reverse transcription PCR (RT-PCR) and western blot showed that AFB1 activated NOX2 gp91 phox, inhibited proliferation and migration, and blocked cell cycle at G0/G1 period of HHL-5 cells. Autophagy promoted the repair of NOX2-dependent DNA damage. NOX2/gp91 phox mainly activates MEK/ERK pathway and then up-regulates autophagy. In vivo experiments have shown that AFB1 (0.75 mg/kg daily orally, 4 weeks) had no significant changes in the size and shape of the liver in mice. However, these treatments lead to structural abnormalities of hepatocytes and DNA damage. In summary, AFB1 caused intracellular oxidative stress and DNA damage, NOX2/gp91-phox activates the MEK/ERK pathway, and upregulated autophagy to promote the repair of DNA damage. We concluded that by increasing the level of autophagy, the ability of anti-AFB1 toxicity of liver can be increased.
Collapse
Affiliation(s)
- Weiya Cao
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Jiafeng Gao
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Yinci Zhang
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Amin Li
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Pan Yu
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Niandie Cao
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Jiaojiao Liang
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Xiaolong Tang
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| |
Collapse
|
17
|
Melatonin as a Potential Adjuvant Treatment for COVID-19 beyond Sleep Disorders. Int J Mol Sci 2021; 22:ijms22168623. [PMID: 34445329 PMCID: PMC8395320 DOI: 10.3390/ijms22168623] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melatonin is registered to treat circadian rhythm sleep–wake disorders and insomnia in patients aged 55 years and over. The essential role of the circadian sleep rhythm in the deterioration of sleep quality during COVID-19 confinement and the lack of an adverse effect of melatonin on respiratory drive indicate that melatonin has the potential to be a recommended treatment for sleep disturbances related to COVID-19. This review article describes the effects of melatonin additional to its sleep-related effects, which make this drug an attractive therapeutic option for treating patients with COVID-19. The preclinical data suggest that melatonin may inhibit COVID-19 progression. It may lower the risk of the entrance of the SARS-CoV-2 virus into cells, reduce uncontrolled hyper-inflammation and the activation of immune cells, limit the damage of tissues and multiorgan failure due to the action of free radicals, and reduce ventilator-induced lung injury and the risk of disability resulting from fibrotic changes within the lungs. Melatonin may also increase the efficacy of COVID-19 vaccination. The high safety profile of melatonin and its potential anti-SARS-CoV-2 effects make this molecule a preferable drug for treating sleep disturbances in COVID-19 patients. However, randomized clinical trials are needed to verify the clinical usefulness of melatonin in the treatment of COVID-19.
Collapse
|
18
|
Tong SR, Lee TH, Cheong SK, Lim YM. Geographical Factor Influences the Metabolite Distribution of House Edible Bird's Nests in Malaysia. Front Nutr 2021; 8:658634. [PMID: 34262923 PMCID: PMC8273228 DOI: 10.3389/fnut.2021.658634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Edible Bird's Nest (EBN) is famously consumed as a food tonic for its high nutritional values with numerous recuperative and therapeutic properties. EBN is majority exploited from swiftlet houses but the differences in terms of metabolite distribution between the production site of house EBN is not yet fully understood. Therefore, this study was designed to identify the metabolite distribution and to determine the relationship pattern for the metabolite distribution of house EBNs from different locations in Malaysia. Methods: The differences of metabolite distribution in house EBN were studied by collecting the samples from 13 states in Malaysia. An extraction method of eHMG was acquired to extract the metabolites of EBN and was subjected to non-targeted metabolite profiling via liquid chromatography-mass spectrometry (LC-MS). Unsupervised multivariate analysis and Venn diagram were used to explore the relationship pattern among the house EBNs in Malaysia. The geographical distribution surrounded the swiftlet house was investigated to understand its influences on the metabolite distribution. Results: The hierarchical clustering analysis (HCA) combined with correlation coefficient revealed the differences between the house EBNs in Malaysia with four main clusters formation. The metabolites distribution among these clusters was unique with their varied combination of geographical distribution. Cluster 1 grouped EBNs from Selangor, Melaka, Negeri Sembilan, Terengganu which geographically distributed with major oil palm field in township; Cluster 2 included Perak and Sarawak with high distribution of oil palm in higher altitude; Cluster 3 included Perlis, Kelantan, Kedah, Penang from lowland of paddy field in village mostly and Cluster 4 grouped Sabah, Pahang, Johor which are majorly distributed with undeveloped hills. The metabolites which drove each cluster formation have happened in a group instead of individual key metabolite. The major metabolites that characterised Cluster 1 were fatty acids, while the rest of the clusters were peptides and secondary metabolites. Conclusion: The metabolite profiling conducted in this study was able to discriminate the Malaysian house EBNs based on metabolites distribution. The factor that most inferences the differences of house EBNs were the geographical distribution, in which geographical distribution affects the distribution of insect and the diet of swiftlet.
Collapse
Affiliation(s)
- Shi-Ruo Tong
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Ting-Hun Lee
- Bioprocess and Polymer Engineering, Faculty of Engineering, School of Chemical & Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Soon-Keng Cheong
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Yang-Mooi Lim
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia.,Department of Pre-clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| |
Collapse
|
19
|
Maternal Melatonin Deficiency Leads to Endocrine Pathologies in Children in Early Ontogenesis. Int J Mol Sci 2021; 22:ijms22042058. [PMID: 33669686 PMCID: PMC7922827 DOI: 10.3390/ijms22042058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
The review summarizes the results of experimental and clinical studies aimed at elucidating the causes and pathophysiological mechanisms of the development of endocrine pathology in children. The modern data on the role of epigenetic influences in the early ontogenesis of unfavorable factors that violate the patterns of the formation of regulatory mechanisms during periods of critical development of fetal organs and systems and contribute to the delayed development of pathological conditions are considered. The mechanisms of the participation of melatonin in the regulation of metabolic processes and the key role of maternal melatonin in the formation of the circadian system of regulation in the fetus and in the protection of the genetic program of its morphofunctional development during pregnancy complications are presented. Melatonin, by controlling DNA methylation and histone modification, prevents changes in gene expression that are directly related to the programming of endocrine pathology in offspring. Deficiency and absence of the circadian rhythm of maternal melatonin underlies violations of the genetic program for the development of hormonal and metabolic regulatory mechanisms of the functional systems of the child, which determines the programming and implementation of endocrine pathology in early ontogenesis, contributing to its development in later life. The significance of this factor in the pathophysiological mechanisms of endocrine disorders determines a new approach to risk assessment and timely prevention of offspring diseases even at the stage of family planning.
Collapse
|
20
|
|
21
|
Milanović Ž, Tošović J, Marković S, Marković Z. Comparison of the scavenging capacities of phloroglucinol and 2,4,6-trihydroxypyridine towards HO˙ radical: a computational study. RSC Adv 2020; 10:43262-43272. [PMID: 35519718 PMCID: PMC9058218 DOI: 10.1039/d0ra08377a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/21/2020] [Indexed: 01/06/2023] Open
Abstract
In this work the scavenging capacities of biologically active phloroglucinol (1,3,5-trihydroxybenzene, THB-OH) and structurally similar 2,4,6-trihydroxypyridine (THP-OH) towards HO˙ were examined. This task was realized by means of density functional theory, through investigation of all favorable antioxidative pathways in two solvents of different polarity: benzene and water. It was found that in benzene both compounds conform to the hydrogen atom transfer (HAT) and radical adduct formation (RAF) mechanisms. In water, the mechanisms of antioxidative action of the investigated compounds are far more complex, especially those of THB-OH. This compound and HO˙ undergo all four investigated mechanisms: HAT, RAF, sequential proton loss electron transfer (SPLET), and single electron transfer-proton transfer (SET-PT). HAT, RAF and SPLET are operative mechanisms in the case of THP-OH. Independently of solvent polarity, both investigated compounds are more reactive towards HO˙ in comparison to Trolox. Our final remark is as follows: the electron-withdrawing effect of the nitrogen is stronger than the electron-donating effect of the OH groups in the molecule of THP-OH. As a consequence, THB-OH is more powerful antioxidant than THP-OH, thus implying that the presence of nitrogen decreases the scavenging capacity of the respective compound.
Collapse
Affiliation(s)
- Žiko Milanović
- Department of Chemistry, Faculty of Science, University of Kragujevac 12 Radoja Domanovića 34000 Kragujevac Serbia
| | - Jelena Tošović
- Department of Chemistry, Faculty of Science, University of Kragujevac 12 Radoja Domanovića 34000 Kragujevac Serbia
| | - Svetlana Marković
- Department of Chemistry, Faculty of Science, University of Kragujevac 12 Radoja Domanovića 34000 Kragujevac Serbia
| | - Zoran Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac Jovana Civijića bb 34000 Kragujevac Serbia
| |
Collapse
|
22
|
Solís-Chagoyán H, Domínguez-Alonso A, Valdés-Tovar M, Argueta J, Sánchez-Florentino ZA, Calixto E, Benítez-King G. Melatonin Rescues the Dendrite Collapse Induced by the Pro-Oxidant Toxin Okadaic Acid in Organotypic Cultures of Rat Hilar Hippocampus. Molecules 2020; 25:molecules25235508. [PMID: 33255515 PMCID: PMC7727803 DOI: 10.3390/molecules25235508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
The pro-oxidant compound okadaic acid (OKA) mimics alterations found in Alzheimer's disease (AD) as oxidative stress and tau hyperphosphorylation, leading to neurodegeneration and cognitive decline. Although loss of dendrite complexity occurs in AD, the study of this post-synaptic domain in chemical-induced models remains unexplored. Moreover, there is a growing expectation for therapeutic adjuvants to counteract these brain dysfunctions. Melatonin, a free-radical scavenger, inhibits tau hyperphosphorylation, modulates phosphatases, and strengthens dendritic arbors. Thus, we determined if OKA alters the dendritic arbors of hilar hippocampal neurons and whether melatonin prevents, counteracts, or reverses these damages. Rat organotypic cultures were incubated with vehicle, OKA, melatonin, and combined treatments with melatonin either before, simultaneously, or after OKA. DNA breaks were assessed by TUNEL assay and nuclei were counterstained with DAPI. Additionally, MAP2 was immunostained to assess the dendritic arbor properties by the Sholl method. In hippocampal hilus, OKA increased DNA fragmentation and reduced the number of MAP2(+) cells, whereas melatonin protected against oxidation and apoptosis. Additionally, OKA decreased the dendritic arbor complexity and melatonin not only counteracted, but also prevented and reversed the dendritic arbor retraction, highlighting its role in post-synaptic domain integrity preservation against neurodegenerative events in hippocampal neurons.
Collapse
Affiliation(s)
- Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (H.S.-C.); (A.D.-A.); (M.V.-T.); (J.A.); (Z.A.S.-F.)
| | - Aline Domínguez-Alonso
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (H.S.-C.); (A.D.-A.); (M.V.-T.); (J.A.); (Z.A.S.-F.)
| | - Marcela Valdés-Tovar
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (H.S.-C.); (A.D.-A.); (M.V.-T.); (J.A.); (Z.A.S.-F.)
- Departamento de Farmacogenética (current affiliation), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Jesús Argueta
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (H.S.-C.); (A.D.-A.); (M.V.-T.); (J.A.); (Z.A.S.-F.)
| | - Zuly A. Sánchez-Florentino
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (H.S.-C.); (A.D.-A.); (M.V.-T.); (J.A.); (Z.A.S.-F.)
| | - Eduardo Calixto
- Departamento de Neurobiología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (H.S.-C.); (A.D.-A.); (M.V.-T.); (J.A.); (Z.A.S.-F.)
- Correspondence: ; Tel.: +52-55-4160-5097
| |
Collapse
|
23
|
Rezzani R, Franco C, Hardeland R, Rodella LF. Thymus-Pineal Gland Axis: Revisiting Its Role in Human Life and Ageing. Int J Mol Sci 2020; 21:E8806. [PMID: 33233845 PMCID: PMC7699871 DOI: 10.3390/ijms21228806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023] Open
Abstract
For years the thymus gland (TG) and the pineal gland (PG) have been subject of increasingly in-depth studies, but only recently a link that can associate the activities of the two organs has been identified. Considering, on the one hand, the well-known immune activity of thymus and, on the other, the increasingly emerging immunological roles of circadian oscillators and the rhythmically secreted main pineal product, melatonin, many studies aimed to analyse the possible existence of an interaction between these two systems. Moreover, data confirmed that the immune system is functionally associated with the nervous and endocrine systems determining an integrated dynamic network. In addition, recent researches showed a similar, characteristic involution process both in TG and PG. Since the second half of the 20th century, evidence led to the definition of an effectively interacting thymus-pineal axis (TG-PG axis), but much has to be done. In this sense, the aim of this review is to summarize what is actually known about this topic, focusing on the impact of the TG-PG axis on human life and ageing. We would like to give more emphasis to the implications of this dynamical interaction in a possible therapeutic strategy for human health. Moreover, we focused on all the products of TG and PG in order to collect what is known about the role of peptides other than melatonin. The results available today are often unclear and not linear. These peptides have not been well studied and defined over the years. In this review we hope to awake the interest of the scientific community in them and in their future pharmacological applications.
Collapse
Affiliation(s)
- Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.R.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
| | - Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.R.)
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Lower Saxony, D-37073 Göttingen, Germany;
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.R.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
24
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
25
|
Utilizing Melatonin to Alleviate Side Effects of Chemotherapy: A Potentially Good Partner for Treating Cancer with Ageing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6841581. [PMID: 32566095 PMCID: PMC7260648 DOI: 10.1155/2020/6841581] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Persistent senescence seems to exert detrimental effects fostering ageing and age-related disorders, such as cancer. Chemotherapy is one of the most valuable treatments for cancer, but its clinical application is limited due to adverse side effects. Melatonin is a potent antioxidant and antiageing molecule, is nontoxic, and enhances the efficacy and reduces the side effects of chemotherapy. In this review, we first summarize the mitochondrial protective role of melatonin in the context of chemotherapeutic drug-induced toxicity. Thereafter, we tabulate the protective actions of melatonin against ageing and the harmful roles induced by chemotherapy and chemotherapeutic agents, including anthracyclines, alkylating agents, platinum, antimetabolites, mitotic inhibitors, and molecular-targeted agents. Finally, we discuss several novel directions for future research in this area. The information compiled in this review will provide a comprehensive reference for the protective activities of melatonin in the context of chemotherapy drug-induced toxicity and will contribute to the design of future studies and increase the potential of melatonin as a therapeutic agent.
Collapse
|
26
|
Fu Z, Jiao Y, Wang J, Zhang Y, Shen M, Reiter RJ, Xi Q, Chen Y. Cardioprotective Role of Melatonin in Acute Myocardial Infarction. Front Physiol 2020; 11:366. [PMID: 32411013 PMCID: PMC7201093 DOI: 10.3389/fphys.2020.00366] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Melatonin is a pleiotropic, indole secreted, and synthesized by the human pineal gland. Melatonin has biological effects including anti-apoptosis, protecting mitochondria, anti-oxidation, anti-inflammation, and stimulating target cells to secrete cytokines. Its protective effect on cardiomyocytes in acute myocardial infarction (AMI) has caused widespread interest in the actions of this molecule. The effects of melatonin against oxidative stress, promoting autophagic repair of cells, regulating immune and inflammatory responses, enhancing mitochondrial function, and relieving endoplasmic reticulum stress, play crucial roles in protecting cardiomyocytes from infarction. Mitochondrial apoptosis and dysfunction are common occurrence in cardiomyocyte injury after myocardial infarction. This review focuses on the targets of melatonin in protecting cardiomyocytes in AMI, the main molecular signaling pathways that melatonin influences in its endogenous protective role in myocardial infarction, and the developmental prospect of melatonin in myocardial infarction treatment.
Collapse
Affiliation(s)
- Zhenhong Fu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Jiao
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jihang Wang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mingzhi Shen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, United States
- San Antonio Cellular Therapeutics Institute, Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, United States
| | - Qing Xi
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
27
|
Hu C, Lu K, Liu W. Exendin-4 attenuates inflammation-mediated endothelial cell apoptosis in varicose veins through inhibiting the MAPK-JNK signaling pathway. J Recept Signal Transduct Res 2020; 40:464-470. [PMID: 32338116 DOI: 10.1080/10799893.2020.1756326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Context: Inflammation response has been found to be associated with endothelial cell death in the progression of varicose veins. Exendin-4 is able to reduce inflammation and thus attenuate cell apoptosis.Aim: The aim of our study is to explore the influence of Exendin-4 on LPS-treated endothelial cells.Methods: Cells were treated with LPS. Exendin-4 was added into the medium of cells. Western blots, qPCR, and ELISA were used to analyze the role of Exendin-4 in LPS-mediated cell death.Results: We found that LPS treatment caused significantly cell death. Whereas this trend could be attenuated by Exendin-4. After treatment with Exendin-4, inflammation factors upregulation and oxidative stress activation were significantly repressed, an effect that was followed by a drop in the levels of glucose production and lactic acid generation. At the molecular levels, Exendin-4 treatment inhibited the activity of MAPK-JNK signaling pathway in the presence of LPS treatment.Conclusions: LPS causes cell apoptosis through inducing inflammation response, oxidative stress and energy stress. Exendin-4 treatment enhances cell survival, reduces inflammation, and improves energy stress through inhibiting the MAPK-JNK signaling pathway.
Collapse
Affiliation(s)
- Changfu Hu
- Shenzhen University General Hospital, Shenzhen, China
| | - Kai Lu
- Daqing Oilfield General Hospital, Daqing, China
| | - Weili Liu
- Daqing Oilfield General Hospital, Daqing, China
| |
Collapse
|
28
|
Rong K, Zheng H, Yang R, Liu X, Li L, Chen N, Zhao G, Gong C, Deng Y. Melatonin and its metabolite N(1)-acetyl-N(1)-formyl-5-methoxykynuramine improve learning and memory impairment related to Alzheimer's disease in rats. J Biochem Mol Toxicol 2019; 34:e22430. [PMID: 31833155 DOI: 10.1002/jbt.22430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/05/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the effect of melatonin (MT) and its metabolite N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) on Alzheimer-like learning and memory impairment in rats intracerebroventricularly injected with streptozotocin (STZ). The results showed that the escape latency of the STZ group was longer than that of the control (CON), MT, and AFMK groups. Increased levels of hyperphosphorylated tau, neurofilament proteins, and malondialdehyde and decreased superoxide dismutase levels were observed in the brains of the rats from the STZ group compared with the brains of the rats from the CON, MT, AFMK high and low group. These results suggest that exogenous MT and AFMK can improve memory impairment and downregulate AD-like hyperphosphorylation induced by STZ, most likely through their antioxidation function. Meanwhile, we found that an equal dose of AFMK had a stronger effect than that of MT. Our results indicate that MT and its metabolite AFMK represent novel treatment strategies for Alzheimer's disease.
Collapse
Affiliation(s)
- Kai Rong
- Nephrology Department, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hong Zheng
- Nursing School, Tianjin Medical University, Tianjin, China
| | - Ruibo Yang
- Nursing School, Tianjin Medical University, Tianjin, China
| | - Xiaoli Liu
- Pathology Department, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Liya Li
- Nursing School, Tianjin Medical University, Tianjin, China
| | - Ning Chen
- Pathophysiology Department, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Gang Zhao
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, China
| | - Chengxin Gong
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Yanqiu Deng
- Pathophysiology Department, Basic Medical College, Tianjin Medical University, Tianjin, China
| |
Collapse
|
29
|
Zhou D, Jiang Y. Sirtuin 3 attenuates neuroinflammation-induced apoptosis in BV-2 microglia. Aging (Albany NY) 2019; 11:9075-9089. [PMID: 31631063 PMCID: PMC6834423 DOI: 10.18632/aging.102375] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/12/2019] [Indexed: 12/14/2022]
Abstract
In this study, we explored the upstream regulatory mechanisms underlying inflammation-induced mitochondrial dysfunction in microglial BV-2 cells. Our results demonstrate that Sirtuin 3 (Sirt3) expression was downregulated in response to LPS-induced neuroinflammation. In addition, overexpression of Sirt3 attenuated LPS-induced BV-2 cell death. Functional studies illustrated that Sirt3 overexpression promoted normal mitochondrial function and inhibited mitochondria-dependent apoptosis in LPS-treated BV-2 cells. At the molecular level, suppressor of ras val-2 (SRV2) promoted LPS-mediated mitochondrial damage by inducing mitochondrial fission. Sirt3 overexpression, which suppressed the transcription of SRV2 and thus suppressed mitochondrial fission, played an anti-apoptotic role in LPS-treated BV-2 cells. Furthermore, Sirt3 inhibited SRV2 expression via the Mst1-JNK pathway, and re-activation of this pathway abolished the protective effects of Sirt3 on mitochondrial damage and apoptosis. Taken together, our results indicate that Sirt3-induced, Mst1-JNK-SRV2 signaling pathway-dependent inhibition of mitochondrial fission protected against neuroinflammation-mediated cell damage in BV-2 microglia. Sirt3 might therefore be an effective treatment for neuroinflammation.
Collapse
Affiliation(s)
- Dingzhou Zhou
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
30
|
Huang D, Jiang Y. MKP1 reduces neuroinflammation via inhibiting endoplasmic reticulum stress and mitochondrial dysfunction. J Cell Physiol 2019; 235:4316-4325. [PMID: 31612495 DOI: 10.1002/jcp.29308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
MAP kinase phosphatase 1 (MKP1) has been identified as an antiapoptotic protein via sustaining mitochondrial function. However, the role of MKP1 in neuroinflammation has not been fully understood. The aim of this study is to figure out the influence of MKP1 in lipopolysaccharide (LPS)-treated microglia BV-2 cells and investigate whether MKP1 reduces BV-2 cell death via modulating endoplasmic reticulum (ER) stress and mitochondrial dysfunction. The results of this study demonstrated that MKP1 was rapidly downregulated after exposure to LPS. However, the transfection of MKP1 adenovirus could reverse cell viability and attenuate LPS-mediated BV-2 cell apoptosis. Mechanistically, MKP1 overexpression alleviated ER stress and corrected LPS-induced calcium overloading. Besides, MKP1 adenovirus transfection also reversed mitochondrial bioenergetics, maintained mitochondrial membrane potential, and blocked mitochondria-initiated apoptosis signals. Furthermore, we found that MKP1 overexpression is associated with inactivation of mitogen-activated protein kinase-c-Jun N-terminal kinase (MAPK-JNK) pathway. Interestingly, the activation of MAPK-JNK pathway could abolish the protective effects of MKP1 on BV-2 cells survival and mitochondrial function in the presence of LPS. Altogether, our results identified MKP1 as a primary defender of neuroinflammation via modulating ER stress and mitochondrial function in a manner dependent on MAPK-JNK pathway. These findings may open a new window for the treatment of neuroinflammation in the clinical setting.
Collapse
Affiliation(s)
- Dezhi Huang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
31
|
Xu J, Gao H, Zhang L, Rong S, Yang W, Ma C, Chen M, Huang Q, Deng Q, Huang F. Melatonin alleviates cognition impairment by antagonizing brain insulin resistance in aged rats fed a high-fat diet. J Pineal Res 2019; 67:e12584. [PMID: 31050371 DOI: 10.1111/jpi.12584] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
Brain insulin resistance, induced by neuroinflammation and oxidative stress, contributes to neurodegeneration, that is, processes that are associated with Aβ accumulation and TAU hyperphosphorylation. Here, we tested the effect of chronic administration of melatonin (MLT) on brain insulin resistance and cognition deficits caused by a high-fat diet (HFD) in aged rats. Results showed that MLT supplementation attenuated peripheral insulin resistance and lowered hippocampal oxidative stress levels. Activated microglia and astrocytes and hippocampal levels of TNF-α in HFD-fed rats were reduced by MLT treatment. Melatonin also prevented HFD-induced increases in beta-amyloid (Aβ) accumulation and TAU phosphorylation in the hippocampus. In addition, impairments of brain insulin signaling elicited by long-term HFD were restored by MLT treatment, as confirmed by ex vivo insulin stimulation. Importantly, MLT reversed HFD-induced cognitive decline as measured by a water maze test, normalized hippocampal LTP and restored CREB activity and BDNF levels as well as cholinergic neuronal activity in the hippocampus. Collectively, these findings indicate that MLT may exhibit substantial protective effects on cognition, via restoration of brain insulin signaling.
Collapse
Affiliation(s)
- Jiqu Xu
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hui Gao
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Congcong Ma
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Meng Chen
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qingde Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qianchun Deng
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Fenghong Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
32
|
Melatonin Improves the Fertilization Capacity of Sex-Sorted Bull Sperm by Inhibiting Apoptosis and Increasing Fertilization Capacitation via MT1. Int J Mol Sci 2019; 20:ijms20163921. [PMID: 31409031 PMCID: PMC6720564 DOI: 10.3390/ijms20163921] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022] Open
Abstract
Little information is available regarding the effect of melatonin on the quality and fertilization capability of sex-sorted bull sperm, and even less about the associated mechanism. Sex-sorted sperm from three individual bulls were washed twice in wash medium and incubated in a fertilization medium for 1.5 h, and each was supplemented with melatonin (0, 10−3 M, 10−5 M, 10−7 M, and 10−9 M). The reactive oxygen species (ROS) and endogenous antioxidant activity (glutathione peroxidase (GPx); superoxide dismutase (SOD); catalase (CAT)), apoptosis (phosphatidylserine [PS] externalization; mitochondrial membrane potential (Δψm)), acrosomal integrity events (malondialdehyde (MDA) level; acrosomal integrity), capacitation (calcium ion [Ca2+]i level; cyclic adenosine monophosphate (cAMP); capacitation level), and fertilization ability of the sperm were assessed. Melatonin receptor 1 (MT1) and 2 (MT2) expression were examined to investigate the involvement of melatonin receptors on sex-sorted bull sperm capacitation. Our results show that treatment with 10−5 M melatonin significantly decreased the ROS level and increased the GPx, SOD, and CAT activities of sex-sorted bull sperm, which inhibited PS externalization and MDA levels, and improved Δψm, acrosomal integrity, and fertilization ability. Further experiments showed that melatonin regulates sperm capacitation via MT1. These findings contribute to improving the fertilization capacity of sex-sorted bull sperm and exploring the associated mechanism.
Collapse
|
33
|
Gao J, Li Y, Li W, Wang H. TrxR2 overexpression alleviates inflammation-mediated neuronal death via reducing the oxidative stress and activating the Akt-Parkin pathway. Toxicol Res (Camb) 2019; 8:641-653. [PMID: 31588341 DOI: 10.1039/c9tx00076c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Neuronal death caused by inflammatory cytokine-mediated neuroinflammation is being extensively explored. Thioredoxin reductase (TrxR) 2 is a novel mediator of inflammation response. In the current study, we focus on the mechanisms of TrxR2 overexpression in inflammation-mediated neuronal death. LPS was used to induce neuroinflammation in N2a cells in vitro. Adenovirus-loaded TrxR2 was transfected into N2a cells to up-regulate TrxR2 expression. Then, cell viability was determined via MTT assay and TUNEL assay. Apoptosis was measured via western blotting and ELISA. Oxidative stress was detected via ELISA and flow cytometry. A pathway inhibitor was used to verify the role of the Akt-Parkin pathway in the LPS-mediated N2a cell death in the presence of TrxR2 overexpression. With the help of immunofluorescence assay and western blotting, we found that TrxR2 expression was significantly reduced in response to LPS treatment, and this effect was associated with N2a cell death via apoptosis. At the molecular level, TrxR2 overexpression elevated the activity of the Akt-Parkin pathway, as evidenced by the increased expression of p-Akt and Parkin. Interestingly, inhibition of the Akt-Parkin pathway abolished the regulatory effect of TrxR2 on LPS-treated N2a cells, as evidenced by the decreased cell viability and increased apoptotic ratio. Besides, TrxR2 overexpression also reduced oxidative stress, inflammation factor transcription and mitochondrial apoptosis. However, inhibition of Akt-Parkin axis abrogated the protective effects of TrxR2 on redox balance, mitochondrial performance and cell survival. LPS-mediated neuronal death was linked to a drop in TrxR2 overexpression and the inactivation of the Akt-Parkin pathway. Overexpression of TrxR2 sustained mitochondrial function, inhibited oxidative stress, repressed inflammation response, and blocked mitochondrial apoptosis, finally sending a pro-survival signal for the N2a cells in the setting of LPS-mediated inflammation environment.
Collapse
Affiliation(s)
- Jinbao Gao
- Department of Neurosurgery , the Seventh Medical Center , the PLA Army General Hospital , No. 5 Nanmencang , Dongcheng District , Beijing , 100700 , China .
| | - Yunjun Li
- Department of Neurosurgery , the Seventh Medical Center , the PLA Army General Hospital , No. 5 Nanmencang , Dongcheng District , Beijing , 100700 , China .
| | - Wende Li
- Department of Neurosurgery , the Seventh Medical Center , the PLA Army General Hospital , No. 5 Nanmencang , Dongcheng District , Beijing , 100700 , China .
| | - Haijiang Wang
- Department of Neurosurgery , the Seventh Medical Center , the PLA Army General Hospital , No. 5 Nanmencang , Dongcheng District , Beijing , 100700 , China .
| |
Collapse
|