1
|
Huang X, Jiang F, Chen X, Xian Y. Plant-Derived Polysaccharides Benefit Weaned Piglets by Regulating Intestinal Microbiota: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28225-28245. [PMID: 39663725 DOI: 10.1021/acs.jafc.4c08816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The intestine harbors a community of bacteria that is intestinal microbiota, which is a complex and highly diverse community. This review discusses the gut microbiota in piglets, including the role of intestinal homeostasis in maintaining piglet health and the various factors that influence gut microbiota. Nutritional interventions, particularly the supplementation of plant-derived polysaccharides, including dietary fiber, for weaned piglets have been shown to enhance the abundance and colonization of beneficial intestinal microbes, reduce the incidence of gastrointestinal infections, and decrease the frequency of diarrhea, thereby improving gut health and growth performance. In this context, various polysaccharides, such as those derived from Medicago sativa L. (alfalfa), Glycyrrhiza uralensis Fisch. (licorice), and Lycium barbarum L. (wolfberry), Panax ginseng C.A. Mey. (ginseng), and Astragalus membranaceus (Fisch.) Bunge (astragalus) has demonstrated significant success. Additionally, dietary fibers such as inulin, pectin, beta-glucans, gums, cellulose, resistant starch, and starch derivatives have shown potential in regulating the gastrointestinal microbiota. Research has also explored the correlation between the structural characteristics of dietary polysaccharides and their biological activities. This review will pave the way for the development and utilization of plant-derived polysaccharides as effective non-antibiotic alternatives to restore gut microbial balance in weaning piglets.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, 300 Road Yuhua, District Nanxi, Yibin, Sichuan 644100, People's Republic of China
- Department of Traditional Chinese veterinary Medicine Assessment, Engineering Center of Agricultural Biosafety Assessment and Biotechnology, Yibin Vocational and Technical College, Yibin, Sichuan 644100, People's Republic of China
| | - Faming Jiang
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, 300 Road Yuhua, District Nanxi, Yibin, Sichuan 644100, People's Republic of China
- Engineering Center of Agricultural Biosafety Assessment and Biotechnology, School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, Sichuan 644100, People's Republic of China
| | - Xingying Chen
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, 300 Road Yuhua, District Nanxi, Yibin, Sichuan 644100, People's Republic of China
- Department of Traditional Chinese veterinary Medicine Assessment, Engineering Center of Agricultural Biosafety Assessment and Biotechnology, Yibin Vocational and Technical College, Yibin, Sichuan 644100, People's Republic of China
| | - Yuanhua Xian
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, 300 Road Yuhua, District Nanxi, Yibin, Sichuan 644100, People's Republic of China
| |
Collapse
|
2
|
Wang X, Zhao P, Zhang C, Li C, Ma Y, Huang S. Effects of supplemental Glycyrrhiza polysaccharide on growth performance and intestinal health in weaned piglets. Anim Biotechnol 2024; 35:2362640. [PMID: 38860902 DOI: 10.1080/10495398.2024.2362640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In this study, we investigated the effects of supplemental Glycyrrhiza polysaccharide (GCP) on growth performance and intestinal health of weaned piglets. Ninety piglets weaned at 28 days of age were randomly allocated to three groups with five replicates per treatment. Piglets were fed the following diets for 28 days: (1) CON (control group), basal diet; (2) G500, CON + 500 mg/kg GCP; (3) G1000, CON + 1000 mg/kg GCP. The results showed that supplementation with 1000 mg/kg GCP increased the average daily gain (ADG) and decreased the feed-to-gain ratio (F/G) (P < 0.05). Serum diamine oxidase (DAO) and D-lactic acid (DL-A) levels were lower in the G1000 group (P < 0.05). Dietary GCP 1000 mg/kg improved mucosal trypsin activity in the duodenum, jejunum and ileum and increased lipase and amylase activity in the jejunum (P < 0.05). Moreover, in the G1000 group, ZO-1, claudin 1 and occludin levels were increased in the jejunum mucosa, whereas interleukin-1β (IL-1β) and IL-6 levels were decreased (P < 0.05). The 16S rRNA gene analysis indicated that dietary 1000 mg/kg GCP altered the jejunal microbial community, with increased relative abundances of beneficial bacteria. In conclusion, dietary GCP 1000 mg/kg can improve growth performance, digestive enzyme activity, intestinal immunity, barrier function and microbial community in weaned piglets.
Collapse
Affiliation(s)
- Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | - Pengli Zhao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | - Chenxu Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, PR China
| | - Shucheng Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| |
Collapse
|
3
|
Rong X, Shu Q. Modulating butyric acid-producing bacterial community abundance and structure in the intestine of immunocompromised mice with neutral polysaccharides extracted from Codonopsis pilosula. Int J Biol Macromol 2024; 278:134959. [PMID: 39179083 DOI: 10.1016/j.ijbiomac.2024.134959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Codonopsis pilosula, an important medicinal and edible plant in traditional Chinese medicine, is used widely as a tonifying herb for various immunodeficiency diseases. A neutral polysaccharide (CPPs-D1N1) was purified from C. pilosula, composed of fructose and glucose in a molar ratio of 97.28:2.72, with an average molecular weight of 5.985 kDa. Structural analysis revealed a backbone composed of →1)-β-D-Fruf-(2 → units with some β-D-Fruf-(2 → linkages. In a murine immunosuppression model induced by cyclophosphamide injection, oral treatment with C. pilosula polysaccharide was administered, investigating changes in gut microbiota during therapy. The polysaccharide modulated serum immunoglobulins (Ig-G, Ig-M), cytokines (IL-2, IL-6, TNFα), and spleen and thymus indices in immunodeficient mice. Additionally, functional gene primer sequencing enrichment methods revealed alterations in abundance, diversity, and structure of butyrate-producing bacterial populations in the gut, with primary differential genera identified as Butyribacter, Rumanococcus, Dysosmobacter, and Ruseburia. This study provides in vivo evidence supporting the beneficial effects of C. pilosula polysaccharide oral therapy in improving gut microbiota, particularly butyrate-producing bacteria, during treatment of immunosuppressive diseases.
Collapse
Affiliation(s)
- XinQian Rong
- College of traditional Chinese medicine, Jiangxi University of Chinese Medicine, No.1688 Meiling Road, Nanchang 330004, PR China
| | - QingLong Shu
- College of traditional Chinese medicine, Jiangxi University of Chinese Medicine, No.1688 Meiling Road, Nanchang 330004, PR China.
| |
Collapse
|
4
|
Qiao Y, Guo Y, Wang X, Zhang W, Guo W, Wang Z, Liu C. Multi-omics analysis reveals the enhancing effects of Glycyrrhiza polysaccharides on the respiratory health of broilers. Int J Biol Macromol 2024; 280:135953. [PMID: 39322162 DOI: 10.1016/j.ijbiomac.2024.135953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
This study investigated the impact of Glycyrrhiza polysaccharides (GPS) on the respiratory health of broilers. Specifically, 240 one-day-old male Arbor Acres (AA) broilers were randomly assigned to two groups: basal diet (CON) and GPS (supplemented with 150 mg/kg of Glycyrrhiza polysaccharides). When compared with the CON group, the GPS group significantly increased the broiler average daily gain, serum immunoglobulin A, immunoglobulin M, immunoglobulin G, antioxidant capacity, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and tracheal messenger RNA (mRNA) expression levels of SOD1, SOD2, and GSH-Px. The GPS group also had a reduced feed conversion ratio, reduced lung IL-1β and IL-6 levels, and upregulated tracheal mRNA expression of Occludin, Claudin1, and Mucin-2. Additionally, the GPS group had alterations in lung microbial diversity and composition. Transcriptomic and metabolomic analyses revealed the activation of the T cell receptor (TCR) signaling pathway and linoleic acid metabolic pathway in the GPS group. Correlation analysis demonstrated significant associations between differential bacteria, genes, serum metabolites, and phenotypic indicators. In conclusion, Glycyrrhiza polysaccharide supplementation positively influenced the respiratory health of broilers by modulating the lung microbiota, activating the TCR signaling pathway, and affecting the linoleic acid metabolism pathway.
Collapse
Affiliation(s)
- Yingying Qiao
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinlei Wang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Wei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Weibing Guo
- Inner Mongolia Evergrand Pharmaceutical Co. LTD, Chifeng 025250, China
| | - Zhixiang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Changzhong Liu
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
5
|
Pezzali JG, Shoveller AK. Herbal paw-sibilities: potential use and challenges of Astragalus membranaceus and Panax species (ginseng) in diets intended for cats and dogs. Anim Front 2024; 14:17-27. [PMID: 38910952 PMCID: PMC11188985 DOI: 10.1093/af/vfae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Affiliation(s)
- Júlia Guazzelli Pezzali
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Anna K Shoveller
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
6
|
Deng J, Zhang F, Fan H, Zheng Y, Zhao C, Ren M, Jin E, Gu Y. Effects of Plant Polysaccharides Combined with Boric Acid on Digestive Function, Immune Function, Harmful Gas and Heavy Metal Contents in Faeces of Fatteners. Animals (Basel) 2024; 14:1515. [PMID: 38891562 PMCID: PMC11171036 DOI: 10.3390/ani14111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
The experiment aimed to investigate the effects of plant polysaccharides combined with boric acid on digestive function, immune function and harmful gas and heavy metal contents in the faeces of fatteners. For this study, 90 healthy crossbred fatteners were selected and randomly divided into five groups: the control group was fed with a basal diet (Con); experimental group I was fed with basal diet + 40 mg/kg boric acid (BA); experimental group II was fed with basal diet + 40 mg/kg boric acid + 400 mg/kg Astragalus polysaccharides (BA+APS); experimental group III was fed with basal diet + 40 mg/kg boric acid + 200 mg/kg Ganoderma lucidum polysaccharides (BA+GLP); and experimental group IV was fed with basal diet + 40 mg/kg boric acid + 500 mg/kg Echinacea polysaccharides (BA+EPS). Compared with Con, the average daily gain (ADG), the trypsin activities in the duodenum and jejunum, the IL-2 levels in the spleen, the T-AOC activities and GSH-Px contents in the lymph node of fattening were increased in the BA group (p < 0.05), but malondialdehyde content in the lymph and spleen, and the contents of NH3, H2S, Hg, Cu, Fe and Zn in the feces and urine were decreased (p < 0.05). Compared with the BA, the ADG, gain-to-feed ratio (G/F), the trypsin and maltase activities in the duodenum and jejunum were increased in the BA+APS (p < 0.05), and the T-SOD activities in the spleen and T-AOC activities in the lymph node were also increased (p < 0.05), but the H2S level was decreased in the feces and urine (p < 0.05). Compared with the BA, the ADG, G/F and the trypsin and maltase activities in the duodenum were increased in the BA+GLP and BA+EPS (p < 0.05), the activities of maltase and lipase in the duodenum of fatteners in the BA+GLP and the activities of trypsin, maltase and lipase in the BA+EPS were increased (p < 0.05). Gathering everything together, our findings reveal that the combined addition of boric acid and plant polysaccharides in the diet of fatteners synergistically improved their growth performance and immune status. That may be achieved by regulating the activity of intestinal digestive enzymes, improving the antioxidant function and then promoting the digestion and absorption of nutrients. Furthermore, the above results reduce the emission of harmful gases and heavy metals in feces and urine.
Collapse
Affiliation(s)
- Juan Deng
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Haoran Fan
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
| | - Yuxuan Zheng
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
| | - Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| |
Collapse
|
7
|
Jing B, Wei M, Chen H, Xie W, An S, Li J, Wang S, Zhou X. Pharmacodynamic Evaluation and Mechanism of Ginseng Polysaccharide against Nephrotoxicity Induced by Hexavalent Chromium. Nutrients 2024; 16:1416. [PMID: 38794654 PMCID: PMC11124142 DOI: 10.3390/nu16101416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Hexavalent chromium is a common pollutant in the environment. Long-term exposure to hexavalent chromium can cause damage to multiple organs. The kidney is one of the main organs that metabolizes heavy metal toxicity, and the accumulation of Cr (VI) in the body can lead to serious damage to kidney function. Studies have shown that ginseng polysaccharides have the function of preventing cisplatin-induced endoplasmic reticulum stress, inflammatory response, and apoptosis in renal cells, but their efficacy and mechanisms against hexavalent chromium-induced nephrotoxicity need to be explored. The aim of this study was to explore the efficacy and mechanism of ginseng polysaccharide against hexavalent chromium-induced nephrotoxicity. The results of pharmacodynamic experiments showed that ginseng polysaccharide could significantly reduce the kidney index, urea nitrogen (BUN), and serum creatinine (Cre) values of K2Cr2O7-treated mice. The results of mechanistic experiments showed that ginseng polysaccharides could alleviate oxidative stress, apoptosis, and biofilm damage in renal tissues caused by Cr (VI). Lipidomic correlation analysis showed that ginseng polysaccharides could protect the organism by regulating the expression of differential lipids. This study opens new avenues for the development of alternative strategies for the prevention of kidney injury caused by hexavalent chromium.
Collapse
Affiliation(s)
- Baitong Jing
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (B.J.); (M.W.); (H.C.); (W.X.); (S.A.); (J.L.); (S.W.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Mengyao Wei
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (B.J.); (M.W.); (H.C.); (W.X.); (S.A.); (J.L.); (S.W.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (B.J.); (M.W.); (H.C.); (W.X.); (S.A.); (J.L.); (S.W.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Wen Xie
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (B.J.); (M.W.); (H.C.); (W.X.); (S.A.); (J.L.); (S.W.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Silan An
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (B.J.); (M.W.); (H.C.); (W.X.); (S.A.); (J.L.); (S.W.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Jiawen Li
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (B.J.); (M.W.); (H.C.); (W.X.); (S.A.); (J.L.); (S.W.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Shenglin Wang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (B.J.); (M.W.); (H.C.); (W.X.); (S.A.); (J.L.); (S.W.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (B.J.); (M.W.); (H.C.); (W.X.); (S.A.); (J.L.); (S.W.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| |
Collapse
|
8
|
Liang H, Tao S, Wang Y, Zhao J, Yan C, Wu Y, Liu N, Qin Y. Astragalus polysaccharide: implication for intestinal barrier, anti-inflammation, and animal production. Front Nutr 2024; 11:1364739. [PMID: 38757131 PMCID: PMC11096541 DOI: 10.3389/fnut.2024.1364739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Intestine is responsible for nutrients absorption and plays a key role in defending against various dietary allergens, antigens, toxins, and pathogens. Accumulating evidence reported a critical role of intestine in maintaining animal and human health. Since the use of antibiotics as growth promoters in animal feed has been restricted in many countries, alternatives to antibiotics have been globally investigated, and polysaccharides are considered as environmentally friendly and promising alternatives to improve intestinal health, which has become a research hotspot due to its antibiotic substitution effect. Astragalus polysaccharide (APS), a biological macromolecule, is extracted from astragalus and has been reported to exhibit complex biological activities involved in intestinal barrier integrity maintenance, intestinal microbiota regulation, short-chain fatty acids (SCFAs) production, and immune response regulation, which are critical for intestine health. The biological activity of APS is related to its chemical structure. In this review, we outlined the source and structure of APS, highlighted recent findings on the regulation of APS on physical barrier, biochemical barrier, immunological barrier, and immune response as well as the latest progress of APS as an antibiotic substitute in animal production. We hope this review could provide scientific basis and new insights for the application of APS in nutrition, clinical medicine and health by understanding particular effects of APS on intestine health, anti-inflammation, and animal production.
Collapse
Affiliation(s)
- Hui Liang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Siming Tao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yanya Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jing Zhao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Chang Yan
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Zhao L, Zhang T, Zhang K. Pharmacological effects of ginseng and ginsenosides on intestinal inflammation and the immune system. Front Immunol 2024; 15:1353614. [PMID: 38698858 PMCID: PMC11064651 DOI: 10.3389/fimmu.2024.1353614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Intestinal inflammatory imbalance and immune dysfunction may lead to a spectrum of intestinal diseases, such as inflammatory bowel disease (IBD) and gastrointestinal tumors. As the king of herbs, ginseng has exerted a wide range of pharmacological effects in various diseases. Especially, it has been shown that ginseng and ginsenosides have strong immunomodulatory and anti-inflammatory abilities in intestinal system. In this review, we summarized how ginseng and various extracts influence intestinal inflammation and immune function, including regulating the immune balance, modulating the expression of inflammatory mediators and cytokines, promoting intestinal mucosal wound healing, preventing colitis-associated colorectal cancer, recovering gut microbiota and metabolism imbalance, alleviating antibiotic-induced diarrhea, and relieving the symptoms of irritable bowel syndrome. In addition, the specific experimental methods and key control mechanisms are also briefly described.
Collapse
Affiliation(s)
| | | | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Li T, Qin W, Wu B, Jin X, Zhang R, Zhang J, Du L. Effects of glycyrrhiza polysaccharides on growth performance, meat quality, serum parameters and growth/meat quality-related gene expression in broilers. Front Vet Sci 2024; 11:1357491. [PMID: 38435364 PMCID: PMC10904541 DOI: 10.3389/fvets.2024.1357491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
With growing restrictions on the use of antibiotics in animal feed, plant extracts are increasingly favored as natural feed additive sources. Glycyrrhiza polysaccharide (GP), known for its multifaceted biological benefits including growth promotion, immune enhancement, and antioxidative properties, has been the focus of recent studies. Yet, the effects and mechanisms of GP on broiler growth and meat quality remain to be fully elucidated. This study aimed to investigate the effects of GP on growth, serum biochemistry, meat quality, and gene expression in broilers. The broilers were divided into five groups, each consisting of five replicates with six birds. These groups were supplemented with 0, 500, 1,000, 1,500, and 2,000 mg/kg of GP in their basal diets, respectively, for a period of 42 days. The results indicated that from day 22 to day 42, and throughout the entire experimental period from day 1 to day 42, the groups receiving 1,000 and 1,500 mg/kg of GP showed a significant reduction in the feed-to-gain ratio (F:G) compared to the control group. On day 42, an increase in serum growth hormone (GH) levels was shown in groups supplemented with 1,000 mg/kg GP or higher, along with a significant linear increase in insulin-like growth factor-1 (IGF-1) concentration. Additionally, significant upregulation of GH and IGF-1 mRNA expression levels was noted in the 1,000 and 1,500 mg/kg GP groups. Furthermore, GP significantly elevated serum concentrations of alkaline phosphatase (AKP) and globulin (GLB) while reducing blood urea nitrogen (BUN) levels. In terms of meat quality, the 1,500 and 2,000 mg/kg GP groups significantly increased fiber density in pectoral muscles and reduced thiobarbituric acid (TBA) content. GP also significantly decreased cooking loss rate in both pectoral and leg muscles and the drip loss rate in leg muscles. It increased levels of linoleic acid and oleic acid, while decreasing concentrations of stearic acid, myristic acid, and docosahexaenoic acid. Finally, the study demonstrated that the 1,500 mg/kg GP group significantly enhanced the expression of myogenin (MyoG) and myogenic differentiation (MyoD) mRNA in leg muscles. Overall, the study determined that the optimal dosage of GP in broiler feed is 1,500 mg/kg.
Collapse
Affiliation(s)
- Tiyu Li
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Weize Qin
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Baiyila Wu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Xiao Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rui Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Jingyi Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Liyin Du
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
11
|
Li Y, Chen Y, Li C, Wu G, He Y, Tan L, Zhu K. Polysaccharide from Artocarpus heterophyllus Lam. (Jackfruit) Pulp Ameliorates Dextran Sodium Sulfate-Induced Enteritis in Rats. Int J Mol Sci 2024; 25:1661. [PMID: 38338941 PMCID: PMC10855370 DOI: 10.3390/ijms25031661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
A polysaccharide from Artocarpus heterophyllus Lam. (jackfruit) pulp (JFP-Ps) is known for its excellent bioactivities. However, its impact on small intestinal barrier function is still largely unexplored. The study aimed to examine the protection effect of JFP-Ps against dextran sodium sulfate-induced enteritis and its underlying mechanism. This research revealed that JFP-Ps mitigated small intestinal tissue damage by reducing the expression of pro-inflammatory cytokines and promoting the expression of the anti-inflammatory cytokine interleukin-10 in the small intestine. JFP-Ps diminished oxidative stress by bolstering the activity of antioxidant enzymes and reducing the concentration of malondialdehyde in the small intestine. In addition, JFP-Ps may restore the mechanical barrier and inhibit intestinal structure damage by augmenting the expression of short-chain fatty acids (SCFAs) receptors (GPR41/43) and up-regulating the expression of tight junction proteins (occludin). In conclusion, JFP-Ps may positively influence intestinal health by relieving oxidative stress in the small intestine, improving mechanical barrier function, activating the SCFA-GPR41/GPR43 axis, and inhibiting TLR4/MAPK pathway activation. The results augment our comprehension of the bioactivities of JFP-Ps, corroborating its great potential as a functional food.
Collapse
Affiliation(s)
- Yunlong Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Yuzi Chen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Gang Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Yanfu He
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
| |
Collapse
|
12
|
Xia C, Duan C, Chen C, Yang X, Zhang Y, Liu Y, Ma Y. Effects of Electrolyte Multivitamins and Neomycin on Immunity and Intestinal Barrier Function in Transported Lambs. Animals (Basel) 2024; 14:177. [PMID: 38254346 PMCID: PMC10812564 DOI: 10.3390/ani14020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Animals experience stress when they are transported. In this experiment, sixty 4-month-old lambs were randomly divided into three groups: CG (basal diet), EG (basal diet + 375 mg/d/lamb electrolytic multivitamin) and NG (basal diet + 200 mg/d/lamb neomycin). The transportation day was recorded as the 0th day. Blood, liver, spleen, jejunum and colon were collected on the 0th, 7th and 14th day. The results were as follows: In EG and NG groups, the lamb weights (p < 0.01), IgA and IgG (p < 0.05) increased significantly. The concentrations of ACTH, E, COR, IL-1β, IL-6 and IFN-γ decreased significantly (p < 0.01). The content of colonic propionate increased significantly (p < 0.05). The villus height and V/C increased, and crypt depth decreased significantly (p < 0.01). The mRNA expressions of Occludin and MUC1, and the protein expression of Occludin in the jejunal mucosa, the mRNA expressions of ZO-1 and Occludin, and the protein expression in the colonic mucosa increased significantly (p < 0.01). The mRNA expression of TRAF6 and the protein expression of TLR4 in the jejunum decreased significantly (p < 0.05), as well as the mRNA expressions of TLR4, MyD88 and NF-kB, and the protein expression of NF-kB p65 and the mRNA expressions of TRAF6, TLR4 and NF-kB in the colon (p < 0.01). In conclusion, an electrolytic multivitamin could potentially improve the immunity and intestinal barrier function, and when it was added with 375 mg/d in the basal diet for each lamb from 2 d before transportation to 7 d after transportation, it had a better effect than neomycin.
Collapse
Affiliation(s)
- Cui Xia
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (C.X.); (C.D.); (Y.Z.)
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Chunhui Duan
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (C.X.); (C.D.); (Y.Z.)
| | - Conghui Chen
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (C.X.); (C.D.); (Y.Z.)
| | - Xinyu Yang
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Yingjie Zhang
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (C.X.); (C.D.); (Y.Z.)
| | - Yueqin Liu
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding 071001, China; (C.X.); (C.D.); (Y.Z.)
| | - Yuzhong Ma
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| |
Collapse
|
13
|
Xiao C, Li K, Teng C, Wei Z, Li J, Zhang S, Liu L, Lv H, Zhong R. Dietary Qi-Weng-Huangbo powder enhances growth performance, diarrhoea and immune function of weaned piglets by modulating gut health and microbial profiles. Front Immunol 2023; 14:1342852. [PMID: 38187371 PMCID: PMC10770244 DOI: 10.3389/fimmu.2023.1342852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction The evolution of nutritional strategies to improve the gut health and microbiota profiles of early-weaned piglets is essential to reduce diarrhoea caused by weaning stress. Therefore, the aim of this study was to determine the effects of dietary supplementation of Qi-Weng-Huangbo powder, a traditional herbal medicine consisting of a mixture of Pulsatilla chinensis, Chinese Schneid and Astragalus extracts (PCE), on the growth performance, diarrhoea rate, immune function and intestinal health of weaned piglets. Methods 162 piglets were randomly assigned to the CON group (no PCE added), the PCEL group (300 mg/kg PCE) and the PCEH group (500 mg/kg PCE) at the end of the third week post farrowing. There were 9 replicates of each group with 6 pigs per replicate. The experiment lasted for 28 days and sampling was performed on the final day. Results The results showed that the PCE diet increased the average daily gain (ADG) and final body weight (BW) compared to the CON group. Both supplemented doses of PCE reduced the faecal scores of piglets, and the diarrhoea rate in the PCEL group was significantly lower than that in the CON group. The application of PCE diets promoted the development of the spleen in piglets and up-regulated serum immunoglobulin concentrations to enhance immune function, which was also reflected in the down-regulated gene expression of the colonic TLR/MyD88/NF-κB pathway. Supplementation with PCE improved intestinal morphology, and all doses of PCE significantly increased villus height (VH) in the ileum, whereas colonic crypt depth (CD) was significantly lower in the PCEH group than in the CON group. The PCEH diet significantly increased the levels of valeric and isovaleric acid in the colon content. Dietary PCEH also improved the colonic microbial community profile, reflected by a significant increase in Shannon's index compared with CON group. The abundance of Veillonellaceae and Rhodospirillales was significantly increased in the PCEH group at the family level. Discussion In conclusion, dietary PCE reduced diarrhoea rates, improved growth performance and enhanced immune function in weaned piglets. These improvements were potentially supported by altered ileum and colonic morphology, elevated colonic VFA levels, and modulation of colonic microbial profiles.
Collapse
Affiliation(s)
- Chuanpi Xiao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Kai Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunran Teng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zeou Wei
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Jiaheng Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Shunfeng Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiyuan Lv
- Peking Centre Technology Co., LTD, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Wenying S, Jing H, Ying L, Hui D. The role of TLR4/MyD88/NF-κB in the protective effect of ulinastatin on the intestinal mucosal barrier in mice with sepsis. BMC Anesthesiol 2023; 23:414. [PMID: 38102579 PMCID: PMC10722746 DOI: 10.1186/s12871-023-02374-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVE To investigate the effect of the TLR4/MyD88/NF-κB (Toll-like receptor 4/myeloid differentiation factor/nuclear factor kappa B) signalling pathway on the protective effect of ulinastatin on the intestinal mucosal barrier in mice with sepsis. METHODS A mouse model of sepsis was established by classical caecal ligation and perforation. Forty-four SPF C57BL/6 mice were randomly divided into the following four groups with 11 mice in each group: the control group (Con group), ulinastatin group (Uti group), Uti + LPS (lipopolysaccharide, LPS) group (Uti + LPS group) and LPS group. Mice in the Con group and Uti group received saline or ulinastatin injected 2 h after modelling; Mice in the Uti + LPS group received LPS injected 0 h after modelling, other procedures were the same as in the Uti group; Mice in the LPS group received LPS only. At 48 h after surgery, the levels of TNF-α (tumour necrosis factor-α, TNF-α), IL-6 (interleukin-6, IL-6) and IL-1β (interleukin-1β, IL-1β) in vein, and the expression of TLR4, MyD88 and NF-κB mRNA in small intestinal mucosa tissues using ELISA and RT‒PCR. RESULTS The pathological specimens showed increased inflammatory injury in the Con and LPS groups, while these injuries and changes improved in the Uti group. The scores of intestinal mucosal injury at 48 h of Uti injection were significantly lower than those of the Con group (P < 0.001), while the scores of intestinal mucosal injury of Uti + LPS were significantly higher than those of the Uti group (P = 0.044). The expression of TNF-α, IL-6 and IL-1β in the Uti decreased significantly at 48 h after surgery than that in the Con group (P = 0.001, P = 0.014, P = 0.004), while the expression of TNF-α, IL-6 and IL-1β in the Uti + LPS group increased significantly after surgery than that in the Uti group (P = 0.026, P = 0.040, P = 0.039). The expression of TLR4, MyD88 and NF-κB mRNA in the Uti group decreased significantly compared with that in the Con group (P = 0.001, P = 0.021, P = 0.007), while the expression of TLR4, MyD88 and NF-κB mRNA in the Uti + LPS group was higher than that in the Uti group (P = 0.023, P = 0.040, P = 0.045). CONCLUSION These findings indicate that the protective effect of ulinastatin on the intestinal mucosal barrier against sepsis may be mediated through the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Song Wenying
- Department of Anesthesiology, Shaanxi Provincial Hospital, The Third Affiliated Hospital of Xi'an JiaoTong University, Xi'an, 710068, Shaanxi Province, People's Republic of China
| | - Huang Jing
- Xi'an Medical University, Xi'an 710068, Shaanxi Province, People's Republic of China
| | - Li Ying
- Xi'an Medical University, Xi'an 710068, Shaanxi Province, People's Republic of China
| | - Ding Hui
- Department of Anesthesiology, Shaanxi Provincial Hospital, The Third Affiliated Hospital of Xi'an JiaoTong University, Xi'an, 710068, Shaanxi Province, People's Republic of China.
| |
Collapse
|
15
|
Zhang C, Li C, Zhao P, Shao Q, Ma Y, Bai D, Liao C, He L, Huang S, Wang X. Effects of dietary Glycyrrhiza polysaccharide supplementation on growth performance, intestinal antioxidants, immunity and microbiota in weaned piglets. Anim Biotechnol 2023; 34:2273-2284. [PMID: 35714985 DOI: 10.1080/10495398.2022.2086878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The aim of this study was to evaluate the effects of dietary Glycyrrhiza polysaccharide (GCP) supplementation on growth performance, intestinal antioxidants, immunity and microbiota in weaned piglets. One hundred and twenty 28-day-old weaned piglets were randomly assigned into five groups (four replicates per group) and fed a basal diet with GCP at 0, 500, 1000, 2000 and 4000 mg/kg for four weeks, respectively. Results showed that 1000 mg/kg GCP improved piglets' ADG and ADFI and reduced FCR (p < .05). Thus, the 0 and 1000 mg/kg GCP dose were selected for subsequent experiments. We found that 1000 mg/GCP increased SOD and T-AOC and decreased MDA in the jejunal mucosa (p < .05). Dietary 1000 mg/kg GCP also resulted in high levels of sIgA, IL-10 and TGF-β, whereas IL-2 dropped dramatically (p < .05). The relative expression levels of ZO-1, CLDN, OCLDN, TLR-4, IL-10, TGF-β, Nrf-2, SOD1 and CAT increased in the jejunal mucosa, whereas INF-γ decreased (p < .05). 1000 mg/kg GCP treatment altered the diversity and community composition of cecal microbiota in pigs, with increasing relative abundance of Bacteroidota and Lactobacillus at phylum and genus levels (p < .05), respectively. The results suggested that dietary 1000 mg/kg GCP could improve growth performance and intestinal health of weaned piglets.
Collapse
Affiliation(s)
- Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, P. R. China
| | - Chenxu Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, P. R. China
| | - Pengli Zhao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, P. R. China
| | - Qi Shao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, P. R. China
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, P. R. China
| | - Dongying Bai
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, P. R. China
| | - Chengshui Liao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, P. R. China
| | - Lei He
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, P. R. China
| | - Shucheng Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, P. R. China
| |
Collapse
|
16
|
Yu YH, Zhao XH. Longan Polysaccharides with Covalent Selenylation Combat the Fumonisin B1-Induced Cell Toxicity and Barrier Disruption in Intestinal Epithelial (IEC-6) Cells. Nutrients 2023; 15:4679. [PMID: 37960333 PMCID: PMC10650868 DOI: 10.3390/nu15214679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, the soluble, but non-digestible, longan (Dimocarpus longan Lour.) polysaccharides (LP) were extracted from dried longan fruits and then chemically selenylated to produce two selenylated products, namely SeLP1 and SeLP2, with different selenylation extents. The aim was to investigate their protective effects on rat intestinal epithelial (IEC-6) cells exposed to the food toxin fumonisin B1 (FB1). LP only contained total Se content of less than 0.01 g/kg, while SeLP1 and SeLP2 were measured with respective total Se content of up to 1.46 and 4.79 g/kg. The cell viability results showed that these two selenylated products were more efficient than LP in the IEC-6 cells in alleviating FB1-induced cell toxicity, suppressing lactate dehydrogenase (LDH) release, and decreasing the generation of intracellular reactive oxygen species (ROS). These two selenylated products were also more effective than LP in combating FB1-induced barrier disruption via increasing the transepithelial electric resistance (TEER), reducing the paracellular permeability, decreasing the mitochondrial membrane potential (MMP) loss, and maintaining cell barrier integrity by upregulating the tight-junction-related genes and proteins. FB1 caused cell oxidative stress and barrier dysfunction by activating the MAPK and mitochondrial apoptosis signaling pathways, while SeLP1 and SeLP2 could regulate the tMAPK- and apoptosis-related proteins to suppress the FB1-mediated activation of the two pathways. Overall, SeLP2 was observed to be more active than SeLP1 in the IEC-6 cells. In conclusion, the chemical selenylation of LP caused an activity enhancement to ameliorate the FB1-induced cell cytotoxicity and intestinal barrier disruption. Meanwhile, the increased selenylation of LP would endow the selenylated product SeLP2 with more activity.
Collapse
Affiliation(s)
- Ya-Hui Yu
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, Maoming 525000, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
17
|
Liu B, Ma R, Yang Q, Yang Y, Fang Y, Sun Z, Song D. Effects of Traditional Chinese Herbal Feed Additive on Production Performance, Egg Quality, Antioxidant Capacity, Immunity and Intestinal Health of Laying Hens. Animals (Basel) 2023; 13:2510. [PMID: 37570319 PMCID: PMC10417022 DOI: 10.3390/ani13152510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Chinese herbs have been used as feed additives in animal production. This study investigated the effects of a Chinese herbal feed-additive (TCM, which contained Elsholtzia ciliate, Atractylodes macrocephala, Punica granatum pericarpium, and Cyperus rotundus) on the production performance, egg quality, antioxidant capacity, immunity, and intestinal health of Roman laying hens. A total of 720 28-week-old hens were randomly allotted to three groups with six replicates of forty hens each. The groups were fed a basal diet (CON group), a basal diet with 50 mg/kg zinc bacitracin (ABX group), or a basal diet with 400 mg/kg TCM (TCM group) for 56 days. The results showed that the TCM group increased egg production, egg mass, albumen height, and Haugh unit compared with the CON group (p < 0.05). There were no significant differences in egg weight, feed intake, feed conversion rate, and eggshell strength among all three groups (p > 0.05). Compared with the CON group, the TCM group enhanced the activities of glutathione peroxidase, total antioxidant capacity, and superoxide dismutase in serum and liver, and reduced malondialdehyde content (p < 0.05). The TCM also increased the levels of interleukin-2, interferon-γ, immunoglobulin A, immunoglobulin M, and immunoglobulin G, and decreased the levels of interleukin-6 and interleukin-8 compared with the CON group (p < 0.05). Furthermore, the TCM group increased jejunal goblet cell density and decreased ileal crypt depth and lymphocyte density compared with the CON group (p < 0.05). The results of 16S rRNA demonstrated that the TCM can change the diversity and composition of intestinal microbiota. At the phylum level, the abundance of Bacteroides increased while that of Firmicutes decreased in the TCM group (p > 0.05). At the genus level, the abundance of Lactobacillus, Rikenellaceae_RC9_gut_group, and Phascolarctobacterium increased while that of Bacteroides and unclassified_o__Bacteroidales decreased in the TCM group (p > 0.05). The effects of ABX were weaker than those of the TCM. In conclusion, the TCM has positive effects on production performance and the intestinal health of hens.
Collapse
Affiliation(s)
- Baiheng Liu
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
| | - Ruyue Ma
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
| | - Qinlin Yang
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, China
| | - You Yang
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
| | - Yuanjing Fang
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
| | - Zhihong Sun
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
| | - Daijun Song
- Key Laboratory for Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (B.L.); (R.M.); (Q.Y.); (Y.Y.); (Y.F.)
| |
Collapse
|
18
|
Zhong Y, Li L, Chen W, Xing D, Wu X. Effects of Ilicis Chinensis folium extract supplementation on growth performance, serum parameters, intestinal morphology, and antioxidant capacity of broiler chickens. BMC Vet Res 2023; 19:94. [PMID: 37496032 PMCID: PMC10373348 DOI: 10.1186/s12917-023-03667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Ilicis chinensis folium extract (ICFE) is a powder extracted and processed with Ilex chinensis Sims (ICS) which has numerous bioactivities and is conventionally used in traditional Chinese medicine. Nonetheless, there has been no definitive study evaluating ICFE's application as a feed supplement for broilers. This research sought to determine the chemical composition and evaluate how dietary ICFE supplementation affects the growth performance, serum metrics, intestinal structure, and antioxidant capacity of broilers. METHODS A total of 360 one-day-old broiler chicks were assigned to four treatments (with 9 replicates of 10 chicks, each) of dietary supplementation with ICFE at 0, 250, 500, and 1,000 mg /kg for 42 days. RESULTS Ten polyphenolic compounds and two triterpenoid glycosides were detected by HPLC. In the grower stage and overall, broilers supplemented with 500 and 1,000 mg/kg ICFE exhibited a higher ADFI (P < 0.05) than the controls. Additionally, compared to the controls, broilers receiving low, medium, or high dosages of ICFE exhibited higher average daily gains (P < 0.05) throughout the starter stage and overall. Organ indices showed no significant variation, suggesting that ICFE was non-toxic. ICFE supplementation increased the height of villi in the duodenum and jejunum, reduced crypt depth, and increased the villus/crypt ratio in the duodenum (P < 0.05). Serum concentrations of IL-4 and IgA were increased in ICFE-supplemented broilers. The serum malondialdehyde concentration was reduced, whereas superoxide dismutase activity and total antioxidant capacity increased through supplementation with ICFE. CONCLUSION ICFE supplementation can improve intestinal morphology, antioxidant capacity, and growth performance of broilers. Hence, ICFE is a promising and safe alternative to antibiotics in broilers, and 500 mg/kg appears to be the optimal dose.
Collapse
Affiliation(s)
- Yingjie Zhong
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Liang Li
- Foss Analytical Co.Ltd, Beijing, China
| | - Wujun Chen
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dongming Xing
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaolin Wu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
19
|
Saleh AA, Soliman MM, Yousef MF, Eweedah NM, El-Sawy HB, Shukry M, Wadaan MAM, Kim IH, Cho S, Eltahan HM. Effects of herbal supplements on milk production quality and specific blood parameters in heat-stressed early lactating cows. Front Vet Sci 2023; 10:1180539. [PMID: 37332736 PMCID: PMC10274320 DOI: 10.3389/fvets.2023.1180539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
The present study explored the influence of supplemental herbal mixtures on cow milk production, quality, and blood parameters in dairy cows under high ambient temperatures. Thirty Holstein cows were randomly assigned into three experimental groups of 10 each. The first control group was supplied with the commercial basal diet, whereas two treatment groups were provided with the commercial basal diet supplemented with 50 and 100 g/head/day of the herbal mixture, respectively. The results showed that the mixture of herbal supplementation did not influence weekly milk production. Milk total fat, triglyceride, and total protein values were not affected (p < 0.05) in cows fed on basal diets supplemented with herbal mixture; however, milk cholesterol was decreased significantly by 100 mg/head/day of the herbal mixture. On the other hand, lactose has increased significantly by adding 100 mg/head/day of herbal mixture. Furthermore, the total cholesterol level in serum was decreased by adding 100 mg/head/day of the herbal mixture, while plasma prolactin, cortisol, GOT, and GPT were unaffected. Regarding fatty acids (C18, C18:1 (c9), 18:1 (c11), 18:2 (c9, c12), 18:2 (t9, t12), and CLA (c9, t11)), there was no significant variation between the groups. Meanwhile, both C19:00 and 18:3 (c6, c9, and c12) were noticeably higher (p < 0.05) in the group that received 100gm, followed by 50 mg, compared to the control. In conclusion, the supplement with a herbal mixture positively affected milk quality by decreasing total cholesterol and increasing lactose, milk fatty acid profile by increasing unsaturated fatty acids content, and plasma cholesterol levels.
Collapse
Affiliation(s)
- Ahmed Ali Saleh
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Mahmoud Mohamed Soliman
- Departments of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Mohammed Farid Yousef
- Departments of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Nabil Mohammed Eweedah
- Departments of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Hanan Basiouni El-Sawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohammad A. M. Wadaan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - In Ho Kim
- Animal Resource and Science Department, Dankook University, Cheonan, Republic of Korea
| | - Sungbo Cho
- Animal Resource and Science Department, Dankook University, Cheonan, Republic of Korea
| | - Hossam M. Eltahan
- Animal Resource and Science Department, Dankook University, Cheonan, Republic of Korea
- Animal Production Research Institute, Agriculture Research Center, Ministry of Agriculture, Dokki, Egypt
| |
Collapse
|
20
|
Ren H, Li K, Min Y, Qiu B, Huang X, Luo J, Qi L, Kang M, Xia P, Qiao H, Chen J, Cui Y, Gan L, Wang P, Wang J. Rehmannia glutinosa Polysaccharides: Optimization of the Decolorization Process and Antioxidant and Anti-Inflammatory Effects in LPS-Stimulated Porcine Intestinal Epithelial Cells. Antioxidants (Basel) 2023; 12:antiox12040914. [PMID: 37107289 PMCID: PMC10136223 DOI: 10.3390/antiox12040914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Polysaccharide decolorization has a major effect on polysaccharide function. In the present study, the decolorization of Rehmannia glutinosa polysaccharides (RGP) is optimized using two methods-the AB-8 macroporous resin (RGP-1) method and the H2O2 (RGP-2) method. The optimal decolorization parameters for the AB-8 macroporous resin method were as follows: temperature, 50 °C; macroporous resin addition, 8.4%; decolorization duration, 64 min; and pH, 5. Under these conditions, the overall score was 65.29 ± 3.4%. The optimal decolorization conditions for the H2O2 method were as follows: temperature, 51 °C; H2O2 addition, 9.5%; decolorization duration, 2 h; and pH, 8.6. Under these conditions, the overall score was 79.29 ± 4.8%. Two pure polysaccharides (RGP-1-A and RGP-2-A) were isolated from RGP-1 and RGP-2. Subsequently, their antioxidant and anti-inflammatory effects and mechanisms were evaluated. RGP treatment activated the Nrf2/Keap1 pathway and significantly increased the activity of antioxidant enzymes (p < 0.05). It also inhibited the expression of pro-inflammatory factors and suppressed the TLR4/NF-κB pathway (p < 0.05). RGP-1-A had a significantly better protective effect than RGP-2-A, likely owing to the sulfate and uronic groups it contains. Together, the findings indicate that RGP can act as a natural agent for the prevention of oxidation and inflammation-related diseases.
Collapse
Affiliation(s)
- Heng Ren
- School of Bioengineering, Henan University of Technology, Lianhua Street, Hi-Tech Zone, Zhengzhou 450000, China
| | - Kejie Li
- School of Bioengineering, Henan University of Technology, Lianhua Street, Hi-Tech Zone, Zhengzhou 450000, China
| | - Yan Min
- School of Bioengineering, Henan University of Technology, Lianhua Street, Hi-Tech Zone, Zhengzhou 450000, China
| | - Binhang Qiu
- School of Bioengineering, Henan University of Technology, Lianhua Street, Hi-Tech Zone, Zhengzhou 450000, China
| | - Xiaolu Huang
- School of Bioengineering, Henan University of Technology, Lianhua Street, Hi-Tech Zone, Zhengzhou 450000, China
| | - Jingxin Luo
- School of Bioengineering, Henan University of Technology, Lianhua Street, Hi-Tech Zone, Zhengzhou 450000, China
| | - Liwen Qi
- School of Bioengineering, Henan University of Technology, Lianhua Street, Hi-Tech Zone, Zhengzhou 450000, China
| | - Maoli Kang
- School of Bioengineering, Henan University of Technology, Lianhua Street, Hi-Tech Zone, Zhengzhou 450000, China
| | - Peng Xia
- School of Bioengineering, Henan University of Technology, Lianhua Street, Hi-Tech Zone, Zhengzhou 450000, China
| | - Hanzhen Qiao
- School of Bioengineering, Henan University of Technology, Lianhua Street, Hi-Tech Zone, Zhengzhou 450000, China
| | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yaoming Cui
- School of Bioengineering, Henan University of Technology, Lianhua Street, Hi-Tech Zone, Zhengzhou 450000, China
| | - Liping Gan
- School of Bioengineering, Henan University of Technology, Lianhua Street, Hi-Tech Zone, Zhengzhou 450000, China
| | - Peng Wang
- School of Bioengineering, Henan University of Technology, Lianhua Street, Hi-Tech Zone, Zhengzhou 450000, China
| | - Jinrong Wang
- School of Bioengineering, Henan University of Technology, Lianhua Street, Hi-Tech Zone, Zhengzhou 450000, China
| |
Collapse
|
21
|
Ying Y, Ma C, Zhang Y, Li X, Wu H. Purification and Characterization of a Low Molecular Weight Neutral Non-Starch Polysaccharide from <i>Panax ginsen</i>g by Enzymatic Hydrolysis. POL J FOOD NUTR SCI 2023. [DOI: 10.31883/pjfns/160179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
22
|
Tao R, Lu K, Zong G, Xia Y, Han H, Zhao Y, Wei Z, Lu Y. Ginseng polysaccharides: Potential antitumor agents. J Ginseng Res 2023; 47:9-22. [PMID: 36644386 PMCID: PMC9834022 DOI: 10.1016/j.jgr.2022.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
As a famous herbal medicine in China and Asia, ginseng (Panax ginseng C. A. Meyer) is also known as the "King of All Herbs" and has long been used in medicine and healthcare. In addition to the obvious biological activities of ginsenosides, ginseng polysaccharides (GPs) exhibit excellent antitumor, antioxidant stress, and immunomodulatory effects. In particular, GPs can exert an antitumor effect and is a potential immunomodulator. However, due to the complexity and diversity in the structures and components of GPs, their specific physicochemical properties, and underlying mechanisms remain unclear. In this article, we have summarized the factors influencing the antitumor activity of GPs and their mechanism of action, including the stimulation of the immune system, regulation of the gut microbiota, and direct action on tumor cells.
Collapse
Affiliation(s)
- Ruizhi Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Keqin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gangfan Zong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yawen Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongkuan Han
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
- Corresponding author. Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
- Corresponding author. Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
23
|
Luo J, Zhang L, Fu M, Hong Y, Du X, Cheng G, Xia J, Dong H. Astragalus polysaccharide (APS) supplement in beagle dogs after castration: Effects on the haematology and serum chemistry profiles, immune response, and oxidative stress status. Vet Med Sci 2022; 9:98-110. [PMID: 36583959 PMCID: PMC9857013 DOI: 10.1002/vms3.1054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Castration is one of the most common surgical procedures performed in dogs. However, based on increasing evidence, male animals experience significant pain after castration. Astragalus polysaccharide (APS), one of the main bioactive components in A. membranaceus bunge, has been widely used as part of Fu-Zheng therapy to enhance natural defense mechanisms. INTRODUCTION This study was carried out to determine the effects of supplementing different doses of Astragalus polysaccharide (APS; control, 0 mg/kg; APSL, 400 mg/kg; and APSH, 800 mg/kg) for 8 weeks on the haematology and serum chemistry profiles, immune response, and oxidative stress status in weanling beagle dogs. METHODS After adapting to the experimental environment for 1 week, 18 male beagle dogs (Sichuan Institute of Musk Deer Breeding, China; average initial weight, 3.80 ± 0.43 g; age, 3-month-old) were randomly allotted to diets supplemented with three doses of APS (Control, 0 mg/kg; low, 400 mg/kg; and high, 800 mg/kg), referred to as control, APSL, and APSH, respectively; six dogs were assigned to each treatment. The dogs were fed the respective diets twice daily at 08:30 and 16:30 h in sufficient quantity to supply the metabolizable energy requirements for 8 weeks. On day 43 (19 weeks old), the dogs were castrated. On days 42 (prior to castration, 19 weeks old), 50 (day 7 after castration, 20 weeks old), and 57 (day 14 after castration, 21 weeks old) to measure the haematology, blood chemistry, immune response, and oxidative stress status parameters. RESULTS Based on our findings, the APSH diet decreased weight gain and increased the feed to gain ratio in dogs (P < 0.05). At 14 days after castration, the wound was almost closed, slightly swollen, dry, and clean in the groups supplemented with APS. In addition, optimal APS supplementation was found to decrease erythrocyte count (RBC), haematocrit (HCT), alkaline phosphatase (ALP), alanine aminotransferase (ALT), C-reactive protein (CRP), interleukin 1β (IL-1β), and tumor necrosis factor-α (TNF-α) levels, and cortisol and protein carbonyl (PC) concentrations (P < 0.05). Moreover, the mean corpuscular haemoglobin (MCH) and platelet (PLT) levels, interleukin 10 (IL-10) and glutathione (GSH) content, and Cu/Zn superoxide dismutase (SOD1), catalase (CAT), and glutathione peroxidase (Se-GPx) activities were increased in the APS supplemented groups (P < 0.05) CONCLUSION: This study demonstrated that supplementing weanling beagle dogs with optimum APS could positively affect wound healing by improving their haematological profile (decreased RBC and HCT content, increased MCH and PLT levels), serum biochemical parameters (decreased ALP and ALT content), immune status (decreased CRP, IL-1β, and TNF-α levels; increased IL-10 content), and antioxidant defense (decreased cortisol and PC content; increased GSH content, and SOD1, CAT, and Se-GPx activities). However, the detailed mechanism whereby APS regulates these changes requires further investigation. In addition, the results of this study suggest that 400 mg/kg diet is the optimum APS dose for beagle dogs.
Collapse
Affiliation(s)
- Jian‐Bo Luo
- Institute of Laboratory Animal SciencesAcademy of Medical Sciences & Sichuan Provincial People's HospitalSichuanChina
| | - Lei Zhang
- Animal Laboratory Center of Sichuan Academy of Traditional Chinese Medicine SciencesChengduPeople's Republic of China
| | - Min Fu
- Sichuan Animal Sciences AcademyChengduChina
| | - Yang Hong
- Animal Laboratory Center of Sichuan Academy of Traditional Chinese Medicine SciencesChengduPeople's Republic of China
| | - Xin‐Yin Du
- Animal Laboratory Center of Sichuan Academy of Traditional Chinese Medicine SciencesChengduPeople's Republic of China
| | - Guo‐Qiang Cheng
- Animal Laboratory Center of Sichuan Academy of Traditional Chinese Medicine SciencesChengduPeople's Republic of China
| | - Jie‐Ying Xia
- Animal Laboratory Center of Sichuan Academy of Traditional Chinese Medicine SciencesChengduPeople's Republic of China
| | - Han Dong
- Animal Laboratory Center of Sichuan Academy of Traditional Chinese Medicine SciencesChengduPeople's Republic of China
| |
Collapse
|
24
|
Li Q, Hung I, Bai K, Wang T. Maternal nucleotide supplementation improves the intestinal morphology and immune function in lipopolysaccharide-challenged newborn piglets. Front Vet Sci 2022; 9:1043842. [PMID: 36387380 PMCID: PMC9643262 DOI: 10.3389/fvets.2022.1043842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to evaluate the effects of maternal nucleotide (NT) supplementation on intestinal morphology and immune function in lipopolysaccharide-challenged newborn piglets. At 85 d gestation, 12 sows were selected and assigned to two groups: the CON group (basal diet, n = 6) and the NT group (basal diet with 1 g/kg NT mixture, n = 6). After parturition, newborn piglets were collected without suckling. Piglets from the CON group were intraperitoneally injected with sterile saline or lipopolysaccharide (LPS, 10 mg/kg body weight), and divided into the C-CON (n = 6) and C-LPS groups (n = 6). Piglets from the NT group received the same treatment and were divided into the N-CON (n = 6) and N-LPS groups (n = 6). The blood and small intestinal samples of piglets were collected 1 h after injection. The results showed that: (1) maternal NT supplementation increased the concentrations of serum complement C3 and C4 (P < 0.05), and suppressed the increase in serum hypersensitive C-reactive protein in LPS-challenged newborn piglets (P < 0.05); (2) maternal NT supplementation increased the villus height and the ratio of villus height to crypt depth in the duodenum of newborn piglets (P < 0.05) and inhibited the LPS-induced decrease in the villus height in the jejunum and ileum (P < 0.05). (3) The LPS-induced increased levels of interleukin-6 in the jejunum and tumor necrosis factor-α in the ileum of newborn piglets were suppressed by maternal NT supplementation (P < 0.05). (4) In the jejunum of newborn piglets, maternal NT supplementation inhibited the LPS-induced increase in toll-like receptor 4 (TLR4) mRNA and protein expression (P < 0.05) and the decrease of nuclear factor-κB inhibitor α (IκBα) protein expression (P < 0.05). In the ileum, piglets had a lower nuclear factor-κB (NFκB) mRNA expression in the NT groups than the CON groups (P < 0.05), and maternal NT supplementation suppressed the decrease of IκBα mRNA in LPS-treated piglets (P < 0.05). In conclusion, maternal NT supplementation could promote the intestinal development and immune function of newborn piglets, and may improve LPS-induced intestinal inflammatory responses via the TLR4/IκBα/NFκB pathway.
Collapse
Affiliation(s)
- Qiming Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ifen Hung
- Anyou Biotechnology Group Co., Ltd., Suzhou, China
| | - Kaiwen Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Tian Wang
| |
Collapse
|
25
|
Effects of Compound Chinese Herbal Medicine Additive on Growth Performance and Gut Microbiota Diversity of Zi Goose. Animals (Basel) 2022; 12:ani12212942. [PMID: 36359068 PMCID: PMC9655946 DOI: 10.3390/ani12212942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
This study investigated the effects of CCHMA on growth performance, slaughter performance, serum biochemical indicators, intestinal morphology and microbiota of Zi goose. Initially, it was determined the optimal addition concentration of CCHMA to be 3 g/kg by the first feeding experiment. Then, 78 Zi geese were divided into control and CCHMA supplemented groups. The results showed that the body weight (BW) and average daily gain (ADG) of the CCHMA supplemented group was significantly increased (p < 0.05), and the feed/gain (F/G) of the CCHMA supplemented group was significantly decreased (p < 0.05) compared with the control group. The dressed yield percentage in the CCHMA supplemented group significantly increased by 0.78% (p < 0.05). Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were significantly lower in the CCHMA fed birds than in the control group (p < 0.05). Further, 16S rDNA gene sequencing conducted for cecal flora composition found that 3 g/kg CCHMA significantly increased the abundance of beneficial bacteria (CHKCI001, Colidextribacter and Subdoligranulum) (p < 0.05; p < 0.01) and suppressing harmful bacteria (Bacteroidetes and Methanobrevibacter) (p < 0.05) in the cecum of Zi goose. In conclusion, adding 3 g/kg of CCHMA in the diet can improve the growth performance, slaughter performance of Zi goose, and optimize the cecum microflora.
Collapse
|
26
|
Shi M, Chang Y, Cao M, Zhang J, Zhang L, Xie H, Miao Z. Effects of dietary yam polysaccharide on growth performance and
intestinal microflora in growing Huoyan geese. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/151561/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Xu Y, Ding X, Wang Y, Li D, Xie L, Liang S, Zhang Y, Li W, Fu A, Zhan X. Bacterial Metabolite Reuterin Attenuated LPS-Induced Oxidative Stress and Inflammation Response in HD11 Macrophages. Antioxidants (Basel) 2022; 11:1662. [PMID: 36139735 PMCID: PMC9495524 DOI: 10.3390/antiox11091662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Reuterin is well-known for its broad-spectrum antimicrobial ability, while the other potential bioactivity is not yet clear. The present study aims to investigate the immunomodulatory activity of reuterin on chicken macrophage HD11 cells for the first time and evaluate whether reuterin is able to regulate the lipopolysaccharide-stimulated inflammatory response. The results showed that the safe medication range of reuterin was less than 250 μM. Reuterin treatment for 6 h decreased the transcriptional of CD86, IL-1β and iNOS and increased the expression of CD206 in a dose-dependent way, but reuterin treatment for 12 h contrary increased the expression of IL-1β, IL-6 and IL-10. However, it was noticed that reuterin treatment for 12 h significantly decreased the production of reactive oxygen species (ROS) and suppressed the phagocytosis activity of HD11 macrophages against bacteria. Further, the results showed that preincubation or coincubation with reuterin significantly attenuated the promotive effects of lipopolysaccharide (LPS) on transcription of proinflammatory cytokines (including IL-1β, IL-6 and TNF-α) and obviously inhibited nitric oxide (NO) production as well as the protein expression of inducible nitric oxide synthase (iNOS). Meanwhile, Mechanism studies implied that reuterin might exert an anti-inflammatory effect on LPS-stimulated cells by downregulating the expression of TLR4/MyD88/TRAF6 and blocking the activation of NF-κB as well as MAPKs signaling pathways. Additionally, it was found that both pretreatment and cotreatment with reuterin remarkably inhibited the oxidative stress induced by LPS stimulation by activating the Nrf2/HO-1 signaling pathway and enhancing the activities of antioxidative enzymes. These findings suggested the immunoregulatory function of reuterin and indicated this bacterial metabolite was able to inhibit the inflammation and oxidative stress of HD11 macrophages once exposed to LPS stimulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Aikun Fu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Xiuan Zhan
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| |
Collapse
|
28
|
The Untapped Potential of Ginsenosides and American Ginseng Berry in Promoting Mental Health via the Gut-Brain Axis. Nutrients 2022; 14:nu14122523. [PMID: 35745252 PMCID: PMC9227060 DOI: 10.3390/nu14122523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the popularity of the ginseng (Panax) root in health research and on the market, the ginseng berry’s potential remains relatively unexplored. Implementing ginseng berry cultivations and designing berry-derived products could improve the accessibility to mental health-promoting nutraceuticals. Indeed, the berry could have a higher concentration of neuroprotective and antidepressant compounds than the root, which has already been the subject of research demonstrating its efficacy in the context of neuroprotection and mental health. In this review, data on the berry’s application in supporting mental health via the gut–brain axis is compiled and discussed.
Collapse
|
29
|
Tang Z, Huang G. Extraction, structure, and activity of polysaccharide from Radix astragali. Biomed Pharmacother 2022; 150:113015. [PMID: 35468585 DOI: 10.1016/j.biopha.2022.113015] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Radix astragali polysaccharide (RAP) is a water-soluble heteropolysaccharide. It is an immune promoter and regulator, and has antivirus, antitumor, anti-aging, anti-radiation, anti-stress, anti-oxidation and other activitys. The extraction, separation, purification, structure, activity and modification of RAP were summarized. Some extraction methods of RAP had been introduced, and the separation and purification methods of RAP were reviewed, and the structure and activity of RAP were highly discussed. Current derivatization of RAP was outlined. Through the above discussion that the yield of crude polysaccharides from Radix astragali by enzyme-assisted extraction was significantly higher than that by other extraction methods, but each extraction method had different extraction effects under certain conditions, and the activity efficiency of RAP was also different. Therefore, it is particularly important to optimize the extraction method with known better yield for the study of RAP. In addition, the purification and separation of RAP are the key factors affecting the yield and activity of RAP. At the same time, there are still few studies on the derivatiration of Radix astragali polysaccharide, but the researches in this area are very important. RAP also has many important pharmacological effects on human body, but its practical application needs further study. Finally, studies on the structure-activity relationship of RAP still need to be carried out by many scholars. This review would provide some help for further researches on various important applications of RAP.
Collapse
Affiliation(s)
- Zhenjie Tang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
30
|
Polysaccharides from Medicine and Food Homology Materials: A Review on Their Extraction, Purification, Structure, and Biological Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103215. [PMID: 35630690 PMCID: PMC9147777 DOI: 10.3390/molecules27103215] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 01/16/2023]
Abstract
Medicine and food homology (MFH) materials are rich in polysaccharides, proteins, fats, vitamins, and other components. Hence, they have good medical and nutritional values. Polysaccharides are identified as one of the pivotal bioactive constituents of MFH materials. Accumulating evidence has revealed that MFH polysaccharides (MFHPs) have a variety of biological activities, such as antioxidant, immunomodulatory, anti-tumor, hepatoprotective, anti-aging, anti-inflammatory, and radioprotective activities. Consequently, the research progress and future prospects of MFHPs must be systematically reviewed to promote their better understanding. This paper reviewed the extraction and purification methods, structure, biological activities, and potential molecular mechanisms of MFHPs. This review may provide some valuable insights for further research regarding MFHPs.
Collapse
|
31
|
Hu Q, Liao W, Zhang Z, Shi S, Hou S, Ji N, Zhang X, Zhang Q, Liao Y, Li L, Zhu Z, Chen Y, Chen J, Yu F, Yang Q, Xiao H, Fu C, Du H, Wang Q, Cao H, Xiao H, Li R. The hepatoprotective effects of plant-based foods based on the "gut-liver axis": a prospective review. Crit Rev Food Sci Nutr 2022; 63:9136-9162. [PMID: 35466839 DOI: 10.1080/10408398.2022.2064423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The importance of the "gut-liver axis" in the pathogenesis of liver diseases has been revealed recently; which promotes the process of developing preventive and therapeutic strategies. However, considering that there are still many challenges in the medical treatment of liver diseases, potential preventive dietary intervention may be a good alternative choice. Plant-based foods have received much attention due to their reported health-promoting effects in targeting multiple pathways involved in the pathogenesis of liver diseases as well as the relative safety for general use. Based on the PubMed and Web of Science databases, this review emphatically summarizes the plant-based foods and their chemical constituents with reported effects to impact the LPS/TLR4 signaling pathway of gut-liver axis of various liver diseases, reflecting their health benefits in preventing/alleviating liver diseases. Moreover, some plant-based foods with potential gut-liver effects are specifically analyzed from the reported studies and conclusions. This review intends to provide readers an overview of the current progress in the field of this research topic. We expect to see more hepatoprotective measures for alleviating the current prevalence of liver diseases.
Collapse
Affiliation(s)
- Qiongdan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Shuguang Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ningping Ji
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Xinjie Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qian Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yangyang Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Linghui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Zongping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yi Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jiao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Fangkun Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qingsong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Hongtao Xiao
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
32
|
Niu X, Ding Y, Chen S, Gooneratne R, Ju X. Effect of Immune Stress on Growth Performance and Immune Functions of Livestock: Mechanisms and Prevention. Animals (Basel) 2022; 12:ani12070909. [PMID: 35405897 PMCID: PMC8996973 DOI: 10.3390/ani12070909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Immune stress is an important stressor in domestic animals that leads to decreased feed intake, slow growth, and reduced disease resistance of pigs and poultry. Especially in high-density animal feeding conditions, the risk factor of immune stress is extremely high, as they are easily harmed by pathogens, and frequent vaccinations are required to enhance the immunity function of the animals. This review mainly describes the causes, mechanisms of immune stress and its prevention and treatment measures. This provides a theoretical basis for further research and development of safe and efficient prevention and control measures for immune stress in animals. Abstract Immune stress markedly affects the immune function and growth performance of livestock, including poultry, resulting in financial loss to farmers. It can lead to decreased feed intake, reduced growth, and intestinal disorders. Studies have shown that pathogen-induced immune stress is mostly related to TLR4-related inflammatory signal pathway activation, excessive inflammatory cytokine release, oxidative stress, hormonal disorders, cell apoptosis, and intestinal microbial disorders. This paper reviews the occurrence of immune stress in livestock, its impact on immune function and growth performance, and strategies for immune stress prevention.
Collapse
Affiliation(s)
- Xueting Niu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China
| | - Yuexia Ding
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
| | - Shengwei Chen
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| | - Xianghong Ju
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China; (X.N.); (Y.D.); (S.C.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518018, China
- Correspondence:
| |
Collapse
|
33
|
Polysaccharides derived from Astragalus membranaceus and Glycyrrhiza uralensis improve growth performance of broilers by enhancing intestinal health and modulating gut microbiota. Poult Sci 2022; 101:101905. [PMID: 35576745 PMCID: PMC9117935 DOI: 10.1016/j.psj.2022.101905] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to investigate the effects of dietary supplementation of polysaccharides derived from Astragalus membranaceus and Glycyrrhiza uralensis on growth performance, intestinal health, and gut microbiota composition in broilers. A total of 480 one-day-old male Arbor Acres broilers were randomly divided into 4 treatments with 6 replicates comprising 20 broilers each. Treatments included: basal diet without antibiotics (CON); basal diet supplemented with 500 mg/kg terramycin calcium (ANT); basal diet supplemented with 300 mg/kg Astragalus membranaceus polysaccharides (APS); and basal diet supplemented with 150 mg/kg Glycyrrhiza uralensis polysaccharides (GPS). The results showed that ANT, AP,S and GPS supplementation significantly increased average daily gain (ADG) and decreased feed conversion ratio (FCR) of broilers from 1 to 42 d of age. At 42 d, serum immunoglobulin A (IgA), immunoglobulin M (IgM) and immunoglobulin G (IgG) levels of the APS and GPS group were notably higher than those of the CON group, while serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) as well as diamine oxidase (DAO) activity in the APS and GPS group were obviously decreased. Moreover, diets supplemented with APS and GPS could significantly increase villus height (VH) and the ratio of villus height to crypt depth (VH/CD) and remarkably upregulated occludin, claudin-1 and mucin-2 (MUC2) mRNA expression in duodenum, jejunum, and ileum of broilers. In addition, 16S rRNA gene sequencing revealed that APS and GPS supplementation altered cecal microbial diversity and composition in broilers. Higher Shannon index was observed in the APS and GPS group compared with the CON group, while GPS supplementation could also increase Chao1 index and Observed species. The result of Principal coordinate analysis (PCoA) showed that microbial community in the CON, ANT, APS, and GPS group clustered separately. Notably, both APS and GPS supplementation significantly decreased the abundance of Bacteroidetes, Bacteroides, Faecalibacterium, Desulfovibrio, and Butyricicoccus, while increased the abundance of Firmicutes, Prevotella, Parabacteroides, Ruminococcus, and Alistipes. The correlation analysis showed that the changes in cecal microbial composition induced by dietary APS and GPS supplementation were closely associated with the alteration of the phenotype of broilers including ADG, FCR, TNF-α, IL-1β, IL-6, IgA, IgG, DAO, Occludin, Claudin-1, ZO-1, and MUC2. In conclusion, polysaccharides derived from Astragalus membranaceus and Glycyrrhiza uralensis could improve growth performance of broilers by enhancing intestinal health and modulating gut microbiota.
Collapse
|
34
|
Du Y, Wan H, Huang P, Yang J, He Y. A critical review of Astragalus polysaccharides: From therapeutic mechanisms to pharmaceutics. Pharmacotherapy 2022; 147:112654. [DOI: 10.1016/j.biopha.2022.112654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 12/12/2022]
|
35
|
Liu J, Zhang P, Wang B, Lu Y, Li L, Li Y, Liu S. Evaluation of the effects of Astragalus polysaccharides as immunostimulants on the immune response of crucian carp and against SVCV in vitro and in vivo. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109249. [PMID: 34822998 DOI: 10.1016/j.cbpc.2021.109249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022]
Abstract
This experiment was conducted to evaluate the immunomodulatory effect and antiviral activity of Astragalus polysaccharides (APS) in crucian carp and epithelioma papulosum cyprinid (EPC) cells. Two diets containing 0 and 2 g/kg, APS were fed crucian carp for 56 days. The results showed that supplementation with APS significantly upregulated the immune-related indices including the levels of IgM, the activities of LZM, AKP and ACP, and the contents of C3 and C4. At the same time, compared with the CK group, adding APS to the feed significantly upregulated the expression of IL-8, IL-10, IL-1β, IFN-α, IFN-γ, MyD88, TGF-β and TNF-α in the spleen, kidney, liver and intestine of crucian carp. In addition, when the crucian carp were injected with SVCV, the survival rates of fish in the APS group and the control group were 48.87% and 13.76%, respectively. These results indicated that dietary APS could improve the resistance of crucian carp against SVCV infection. APS also significantly decreased viral titer and inhibited apoptosis induced by SVCV in EPC cells. These results indicated that APS could stimulate the immune response of crucian carp and improve the abilities of crucian carp and EPC cells to resist SVCV infection.
Collapse
Affiliation(s)
- Jia Liu
- College of Animal Science and Technology, College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Peijun Zhang
- Health Monitoring and Inspection Center of Jilin Province, Changchun 130062, China
| | - Bo Wang
- Health Monitoring and Inspection Center of Jilin Province, Changchun 130062, China
| | - Yuting Lu
- College of Animal Science and Technology, College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Liang Li
- College of Animal Science and Technology, College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Yuehong Li
- College of Animal Science and Technology, College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
36
|
Huo J, Wu Z, Sun W, Wang Z, Wu J, Huang M, Wang B, Sun B. Protective Effects of Natural Polysaccharides on Intestinal Barrier Injury: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:711-735. [PMID: 35078319 DOI: 10.1021/acs.jafc.1c05966] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their minimal side effects and effective protection from oxidative stress, inflammation, and malignant growth, natural polysaccharides (NPs) are a potential adjuvant therapy for several diseases caused by intestinal barrier injury (IBI). More studies are accumulating on the protective effects of NPs with respect to IBI, but the underlying mechanisms remain unclear. Thus, this review aims to represent current studies that investigate the protective effects of NPs on IBI by directly maintaining intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression) and indirectly regulating intestinal immunity and microbiota. Furthermore, the mechanisms underlying IBI development are briefly introduced, and the structure-activity relationships of polysaccharides with intestinal barrier protection effects are discussed. Potential developments and challenges associated with NPs exhibiting protective effects against IBI have also been highlighted to guide the application of NPs in the treatment of intestinal diseases caused by IBI.
Collapse
Affiliation(s)
- Jiaying Huo
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Ziyan Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Bowen Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| |
Collapse
|
37
|
Chang BY, Koo BS, Kim SY. Pharmacological Activities for Morus alba L., Focusing on the Immunostimulatory Property from the Fruit Aqueous Extract. Foods 2021; 10:foods10081966. [PMID: 34441742 PMCID: PMC8393821 DOI: 10.3390/foods10081966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022] Open
Abstract
Depending on the extraction method, numerous compounds that have specific pharmacological effects can be obtained from M. alba L. There is a growing scientific interest in health problems related to aging. Efforts to develop safe immune-enhancing pharmaceuticals are increasing. This review aims to summarize and critically discuss the immunity enhancement effects and pharmaceutical efficacy of M. alba L. extracts. The scientific database search was conducted using Google Scholar, Web of Science, and PubMed until May 2021. Additional articles were identified and obtained from references in the retrieved articles. Ethanol or methanol extraction of various parts of M. alba L. identified a large amount of phenols and flavonoids, which are effective for immunosuppression, antioxidants, and cardiovascular diseases, and are antibacterial, and anticancer. Water extraction of M. alba L. enhanced the innate immune response based on immune cell activation. A polysaccharide and an alkaloid related to increased macrophage activity were isolated from M. alba L. fruit extracts. M. alba L. fruit water extracts primarily induced the production of pro-inflammatory substances, in model organisms, via TLR4 in immune cells. Water extracts have been shown to be effective in pathogen defense and tumor suppression by enhancing macrophage activity. Based on our literature review on the bioactivity of M. alba L. fruit extracts, particularly in relation to their immunity enhancement activity, we anticipate that M. alba-derived pharmaceuticals will have excellent potential in future medical research.
Collapse
Affiliation(s)
- Bo-Yoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Jeonbuk, Iksan 54538, Korea;
| | - Bong-Seong Koo
- ForBioKorea Co., Ltd., Geumcheon-gu, Seoul 08592, Korea;
| | - Sung-Yeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Jeonbuk, Iksan 54538, Korea;
- Correspondence: ; Tel.: +82-63-850-6806
| |
Collapse
|
38
|
Qi H, Zhang Z, Liu J, Chen Z, Huang Q, Li J, Chen J, Wang M, Zhao D, Wang Z, Li X. Comparisons of Isolation Methods, Structural Features, and Bioactivities of the Polysaccharides from Three Common Panax Species: A Review of Recent Progress. Molecules 2021; 26:4997. [PMID: 34443587 PMCID: PMC8400370 DOI: 10.3390/molecules26164997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/27/2022] Open
Abstract
Panax spp. (Araliaceae family) are widely used medicinal plants and they mainly include Panax ginseng C.A. Meyer, Panax quinquefolium L. (American ginseng), and Panax notoginseng (notoginseng). Polysaccharides are the main active ingredients in these plants and have demonstrated diverse pharmacological functions, but comparisons of isolation methods, structural features, and bioactivities of these polysaccharides have not yet been reported. This review summarizes recent advances associated with 112 polysaccharides from ginseng, 25 polysaccharides from American ginseng, and 36 polysaccharides from notoginseng and it compares the differences in extraction, purification, structural features, and bioactivities. Most studies focus on ginseng polysaccharides and comparisons are typically made with the polysaccharides from American ginseng and notoginseng. For the extraction, purification, and structural analysis, the processes are similar for the polysaccharides from the three Panax species. Previous studies determined that 55 polysaccharides from ginseng, 18 polysaccharides from American ginseng, and 9 polysaccharides from notoginseng exhibited anti-tumor activity, immunoregulatory effects, anti-oxidant activity, and other pharmacological functions, which are mediated by multiple signaling pathways, including mitogen-activated protein kinase, nuclear factor kappa B, or redox balance pathways. This review can provide new insights into the similarities and differences among the polysaccharides from the three Panax species, which can facilitate and guide further studies to explore the medicinal properties of the Araliaceae family used in traditional Chinese medicine.
Collapse
Affiliation(s)
- Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Mingxing Wang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| |
Collapse
|
39
|
Chen H, Guo B, Yang M, Luo J, Hu Y, Qu M, Song X. Response of Growth Performance, Blood Biochemistry Indices, and Rumen Bacterial Diversity in Lambs to Diets Containing Supplemental Probiotics and Chinese Medicine Polysaccharides. Front Vet Sci 2021; 8:681389. [PMID: 34250066 PMCID: PMC8264418 DOI: 10.3389/fvets.2021.681389] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
This study aims to investigate the effects of probiotics and Chinese medicine polysaccharides (CMPs) on growth performance, blood indices, rumen fermentation, and bacteria composition in lambs. Forty female lambs were randomly divided into four groups as follows: control, probiotics, CMP, and compound (probiotics + CMP) groups. The results showed that probiotics treatment increased the concentrations of blood glucose (GLU) and immunoglobulin G (IgG) and enhanced rumen microbial protein contents but declined the value of pH in rumen fluid compared with the control (P < 0.05). Furthermore, supplementation with CMP enhanced the average daily gain (ADG) and the contents of IgA, IgG, and IgM in the serum but decreased the F:G ratio compared with the control (P < 0.05). Besides, both CMP and compound (probiotics + CMP) treatments decreased the ratio of acetic acid and propionic acid compared with the control (P < 0.05). High-throughput sequencing data showed that at the genus level, the relative abundance of Veillonellaceae_UCG-001 in the probiotics group was increased, the relative abundance of Succiniclasticum and norank_f__Muribaculaceae in the CMP group were enhanced, and the relative abundance of Ruminococcaceae_UCG-002 in the compound group was raised compared with the control (P < 0.05). In summary, supplementation with probiotics can promote rumen protein fermentation but decrease the diversity of bacteria in rumen fluid; however, CMP treatment increased the relative abundance of Fibrobacteria, changed rumen microbial fermentation mode, increased the immune function, and ultimately improved the growth performance.
Collapse
Affiliation(s)
- Huan Chen
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Beibei Guo
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Mingrui Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yiqing Hu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Xiaozhen Song
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
40
|
Standardized Extract (HemoHIM) Protects against Scopolamine-Induced Amnesia in a Murine Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8884243. [PMID: 33815562 PMCID: PMC7990529 DOI: 10.1155/2021/8884243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/25/2022]
Abstract
HemoHIM is a medicinal herbal preparation of Angelica gigas Nakai (Apiaceae), Cnidium officinale Makino (Umbelliferae), and Paeonia lactiflora Pallas (Paeoniaceae) designed for immune regulation. In the present study, the memory-enhancing effects of a standardized extract (HemoHIM) on scopolamine-induced memory impairment in a murine model was investigated. To induce amnesia, scopolamine (1 mg/kg) was intraperitoneally (i.p.) injected into mice 30 min before the start of behavioral tests. The Y-maze, novel object recognition test (NORT), and passive avoidance task (PAT) were used to evoke memory functions. HemoHIM significantly improved scopolamine-induced memory impairment in ICR mice, which was evidenced by an improvement of spontaneous alternation in the Y-maze, recognition index in NORT, and latency time in PAT. To elucidate the possible mechanism, the cholinergic activity and mRNA levels of choline acetyltransferase (ChAT), muscarinic acetylcholine receptor (mAchR), brain-derived neurotrophic factor (BDNF), and cAMP response element-binding protein (CREB) were measured using reverse transcription (RT-PCR) and western blot analyses, respectively. HemoHIM treatment attenuated the scopolamine-induced hyperactivation of acetylcholinesterase (AchE) activity. In addition, ChAT, mAchR, and CREB mRNA levels were increased in the hippocampus compared with the scopolamine group. Furthermore, HemoHIM treatment resulted in elevated BDNF protein expression. These results indicate that HemoHIM may exert antiamnesic activity by increasing Ach and inhibiting AchE in the hippocampus. In addition, HemoHIM has therapeutic potential by upregulating ChAT, mAchR, and BDNF, which is apparently mediated by activation of the CREB and ERK signaling pathways.
Collapse
|
41
|
Effects of Soybean Isoflavone and Astragalus Polysaccharide Mixture on Colostrum Components, Serum Antioxidant, Immune and Hormone Levels of Lactating Sows. Animals (Basel) 2021; 11:ani11010132. [PMID: 33435531 PMCID: PMC7826888 DOI: 10.3390/ani11010132] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
The objectives of this study were to investigate the effects of soybean isoflavone (SI) and astragalus polysaccharide (APS) mixture on the colostrum components, serum antioxidant, immune and hormone levels of lactating sows. A total of 72 healthy Yorkshire × Landrace lactating sows, were randomly divided into four treatments with six replicates and three lactating sows for each replicate. The control group was fed the basal diet, while the experimental groups were fed the basal diet with 100, 200 and 300 mg/kg SI and APS mixture in the form of powder, respectively. Compared with the control group, (a) the total lactation yield of the 200 mg/kg group was significantly higher (p < 0.05) at 21 days, (b) there was no significant difference in colostrum composition, (c) TG, CHO and MDA content in each treatment group were significantly decreased (p < 0.05), (d) IgA, GH, IGF-1, TNF-α and SOD contents in the 200 mg/kg group were significantly increased (p < 0.05). The SI and APS mixture could improve the average daily feed intake, lactation yield, serum antioxidant activities, immune function, and hormone levels of lactating sows, and the optimum dosage in this study was 200 mg/kg.
Collapse
|
42
|
Liao L, Li J, Li J, Huang Y, Wu Y. Effects of Astragalus polysaccharides on intestinal morphology and intestinal immune cells of Muscovy ducklings infected with Muscovy duck reovirus. Poult Sci 2021; 100:64-72. [PMID: 33357708 PMCID: PMC7772699 DOI: 10.1016/j.psj.2020.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/05/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Muscovy duck reovirus (MDRV) infection induces serious immunosuppression and intestinal injury in Muscovy ducklings with a high morbidity and mortality, and Astragalus polysaccharide (APS) pretreatment could efficiently protect ducklings from MDRV infection, although the underlying immunoregulatory mechanisms remain unclear. Thus, the objective of this study was to investigate effects of APS on the intestinal mucosal immunity in MDRV-infected Muscovy ducklings. A total of 190 1-day-old healthy Muscovy ducklings were randomly assigned to 3 groups (n = 50): normal control group, APS pretreatment for MDRV-infected group, and cohabitation infection group, then pretreated with 0.6 g/L APS or only drinking water followed by MDRV cohabitation infection with the remaining 40 artificially infected ducklings, respectively. At the 2, 3, 4, 6, 9 and 15 d after cohabitation infection, the intestinal samples were prepared to measure intestinal parameters including villus length, villus length/crypt depth (V/C) ratio, and wall thickness, together with counts of intraepithelial lymphocyte (IEL) and goblet cell (GC) by hematoxylin-eosin staining. Meanwhile, ileal secretory IgA (sIgA) and duodenal cytokine levels of IL-4, IL-6, IL-15, tumor necrosis factor-alpha, and interferon gamma were detected by the ELISA and radioimmunoassay, respectively. The results showed that APS significantly improved intestinal injuries of villi length, V/C ratio, and wall thickness of the small intestine infected with MDRV, effectively inhibited the reduction of IEL and GC caused by MDRV infection, subsequently increased sIgA and all the cytokine secretions at most time points, suggesting that APS pretreatment can effectively stimulate mucosal immune function by improving intestinal morphology and repair MDRV caused injures of small intestinal mucosal immune barrier in infected ducklings. Our findings lay the foundation for further application of APS in prevention and treatment of MDRV infection.
Collapse
Affiliation(s)
- Lvyan Liao
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou 350002, People's Republic of China
| | - Jian Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou 350002, People's Republic of China
| | - Jun Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Yifan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou 350002, People's Republic of China
| | - Yijian Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou 350002, People's Republic of China.
| |
Collapse
|
43
|
Using Traditional Chinese Medicine to Treat Hepatocellular Carcinoma by Targeting Tumor Immunity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9843486. [PMID: 32595757 PMCID: PMC7305542 DOI: 10.1155/2020/9843486] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
As the leading cause of cancer-related death, hepatocellular carcinoma (HCC) threatens human health and limited treatments are available to cure the disease efficiently and effectively. The particularly immunotolerant environment of the liver lowers the efficacy of current therapies in patients with advanced HCC. Traditional Chinese medicine (TCM) is gathering increasing interest due to the immunoregulatory properties of certain compounds. In advanced HCC, TCM can restore immunosurveillance to promote antitumor effects in several ways, including the upregulation of immunostimulatory factors and the downregulation of immunosuppressive factors. The characteristic multitarget regulation of TCM compounds may provide new insights regarding effective HCC immunotherapies. Here, we review the immunoregulatory potency of TCMs for treating HCC and explain how individual TCM drugs and complex formulas remodel the immune environment in various cell- and cytokine-dependent manners.
Collapse
|
44
|
Zheng Y, Ren W, Zhang L, Zhang Y, Liu D, Liu Y. A Review of the Pharmacological Action of Astragalus Polysaccharide. Front Pharmacol 2020; 11:349. [PMID: 32265719 PMCID: PMC7105737 DOI: 10.3389/fphar.2020.00349] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
Astragalus membranaceus (A. membranaceus) is a type of traditional Chinese medicine with a long history of clinical application. It is used in the improvement and treatment of various diseases as medicine and food to invigorate the spleen and replenish qi. The main components of A. membranaceus are Astragalus polysaccharide (APS), flavonoids compounds, saponins compounds, alkaloids, etc. APS is the most important natural active component in A. membranaceus, and possesses multiple pharmacological properties. At present, APS possess the huge potential to develop a drug improving or treating different diseases. In this review, we reveal the potential approaches of pre-treating and preparation on APS as much as possible and the study on content of APS and its chemical composition including different monosaccharides. More importantly, this paper summarize pharmacological actions on immune regulation, such as enhancing the immune organ index, promoting the proliferation of immune cells, stimulating the release of cytokines, and affecting the secretion of immunoglobulin and conduction of immune signals; anti-aging; anti-tumor by enhancing immunity, inducing apoptosis of tumor cells and inhibiting the proliferation and transfer of tumor cells; antiviral effects; regulation of blood glucose such as type I diabetes mellitus, type II diabetes mellitus and diabetic complications; lipid-lowering; anti-fibrosis; antimicrobial activities and anti-radiation. It provided theoretical basis for the further research such as its structure and mechanism of action, and clinical application of APS.
Collapse
Affiliation(s)
- Yijun Zheng
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weiyu Ren
- Pharmacy College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Lina Zhang
- School of Education, University of Leeds, Leeds, United Kingdom
| | - Yuemei Zhang
- Ophthalmology Department, First Hospital of Lanzhou University, Lanzhou, China
| | - Dongling Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Pharmacy College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|