1
|
Yılmaz B, Emingil G. Validating proteomic biomarkers in saliva: distinguishing between health and periodontal diseases. Expert Rev Proteomics 2024. [PMID: 39385324 DOI: 10.1080/14789450.2024.2413099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Periodontitis is a chronic inflammatory disease characterized by progressive soft tissue and alveolar bone loss due to interactions between microbial dental plaque and the host response. Despite extensive research on biomarkers from saliva or gingival crevicular fluid (GCF) for diagnosing periodontitis, clinical and radiological parameters remain the primary diagnostic tools. AREAS COVERED This review discusses the ongoing research into salivary biomarkers for periodontitis diagnosis, emphasizing the need for reliable biomarkers to differentiate between periodontal health and disease. Salivary biomarker research has gained momentum with advancements in proteomic technologies, enabling noninvasive sample collection and revealing potential candidate biomarkers. EXPERT OPINION Proteomic research since the early 2000s has identified promising biomarkers and provided insights into the pathogenesis of periodontitis. Bioinformatic analysis of proteomic data elucidates underlying biological mechanisms. This review summarizes key findings and highlights common potential biomarkers identified through proteomic research in periodontology.
Collapse
Affiliation(s)
- Büşra Yılmaz
- Department of Periodontology, Ege University School of Dentistry, İzmir
| | - Gülnur Emingil
- Department of Periodontology, Ege University School of Dentistry, İzmir
| |
Collapse
|
2
|
Vergroesen JE, Thee EF, de Crom TOE, Kiefte-de Jong JC, Meester-Smoor MA, Voortman T, Klaver CCW, Ramdas WD. The inflammatory potential of diet is associated with the risk of age-related eye diseases. Clin Nutr 2023; 42:2404-2413. [PMID: 37865012 DOI: 10.1016/j.clnu.2023.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND & AIMS Inflammation is involved in the pathogenesis of cataract, age-related macular degeneration (AMD), and possibly open-angle glaucoma (OAG). We assessed whether the inflammatory potential of diet (quantified using the dietary inflammatory index; DII) affects the incidence of these common blinding age-related eye diseases. Serum inflammation markers were investigated as possible mediators. METHODS Participants aged >45 years were selected from the prospective, population-based Rotterdam Study. From 1991 onwards, every 4-5 years, participants underwent extensive eye examinations. At baseline, blood samples and dietary data (using food frequency questionnaires) were collected. The DII was adapted based on the data available. Of the 7436 participants free of eye diseases at baseline, 4036 developed incident eye diseases during follow-up (cataract = 2895, early-intermediate AMD = 891, late AMD = 81, OAG = 169). RESULTS The adapted DII (aDII) ranged from -4.26 (i.e., anti-inflammatory) to 4.53 (i.e., pro-inflammatory). A higher aDII was significantly associated with increased inflammation. A higher neutrophil-lymphocyte ratio (NLR) was associated with an increased risk of cataract and AMD. Additionally, complement component 3c (C3c) and systemic immune-inflammation index (SII) were associated with increased risks of cataract and late AMD, respectively. Every point increase in the aDII was associated with a 9% increased risk of cataract (Odds ratio [95% confidence interval]: 1.09 [1.04-1.14]). The NLR and C3c partly mediated this association. We also identified associations of the aDII with risk of AMD (early-intermediate AMD, OR [95% CI]: 1.11 [1.03-1.19]; late AMD, OR [95% CI]: 1.24 [1.02-1.53]). The NLR partly mediated these associations. The aDII was not associated with OAG. CONCLUSIONS A pro-inflammatory diet was associated with increased risks of cataract and AMD. Particularly the NLR, a marker of subclinical inflammation, appears to be implicated. These findings are relevant for patients with AMD and substantiate the current recommendations to strive for a healthy lifestyle to prevent blindness.
Collapse
Affiliation(s)
- Joëlle E Vergroesen
- Department of Ophthalmology, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Eric F Thee
- Department of Ophthalmology, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands; EyeNED Reading Center, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Tosca O E de Crom
- Department of Epidemiology, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Jessica C Kiefte-de Jong
- Department of Public Health and Primary Care/Health Campus The Hague, Leiden University Medical Centre, The Hague, The Netherlands.
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands; Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17 6700 AA Wageningen, the Netherlands.
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands; EyeNED Reading Center, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Ophthalmology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands; Institute of Molecular and Clinical Ophthalmology, University of Basel, CH-4031 Basel, Switzerland.
| | - Wishal D Ramdas
- Department of Ophthalmology, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Huang RY, Tseng FY, Cheng CD, Van Dyke TE, Sung CE, You JJ, Weng PW, Shieh YS, Cheng WC. Complement components C3b and C4b as potential reliable site-specific diagnostic biomarkers for periodontitis. J Periodontal Res 2023; 58:1020-1030. [PMID: 37462259 DOI: 10.1111/jre.13164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVE This study aimed to investigate the correlation between the expression levels of C3b and C4b in human gingival tissue (GT) and gingival crevicular fluid (GCF) and disease severity in human periodontitis and to determine whether C3b and C4b are significant site-specific complementary diagnostic markers for periodontitis. BACKGROUND A variety of biomarkers that have potential for informing diagnoses of periodontitis have been proposed. The complement components C3b and C4b were found to be positively correlated with disease severity. The therapeutic effect of targeting C3b and C4b on inflammatory bone loss in experimental periodontitis models has been studied. However, studies on the diagnostic potential of the gingival C3b and C4b expression levels for periodontitis are scarce. METHODS The expression levels of C3b and C4b in the GT and GCF were investigated via immunohistochemistry and enzyme-linked immunosorbent assay, respectively. The correlation between the expression levels of C3b and C4b and disease severity with probing depth as well as the clinical attachment level were determined. To evaluate the diagnostic accuracy of the C3b and C4b expression levels at the periodontitis sites, the receiver operating characteristic (ROC) curve, cut-off point, area under the ROC curve, sensitivity, and specificity were analyzed. RESULTS The expression levels of C3b and C4b in human GT and GCF were significantly positively correlated with periodontitis severity. The expression levels of combined C3b + C4b in the GT can significantly differentiate the disease status at the tissue level (p < .0001). Similarly, the expression levels of C3b + C4b in GCF can statistically distinguish periodontitis sites from healthy ones (p < .0001). CONCLUSIONS Locally deposited C3b and C4b were positively correlated with periodontitis severity and recognized as site-specific diagnostic biomarkers for clinicopathological features in periodontitis. The association between the C3b and C4b network and periodontitis may be further understood and provide a basis for the development of novel screening as well as diagnostic and therapeutic strategies for periodontitis.
Collapse
Affiliation(s)
- Ren-Yeong Huang
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Fang-Yi Tseng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Dan Cheng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Thomas E Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
- Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Cheng-En Sung
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | | | - Pei-Wei Weng
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Shing Shieh
- Department of Operative Dentistry and Endodontics, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Wan-Chien Cheng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
4
|
Hu H, Leung WK. Mass Spectrometry-Based Proteomics for Discovering Salivary Biomarkers in Periodontitis: A Systematic Review. Int J Mol Sci 2023; 24:14599. [PMID: 37834046 PMCID: PMC10572407 DOI: 10.3390/ijms241914599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Periodontitis is one of the primary causes of tooth loss, and is also related to various systemic diseases. Early detection of this condition is crucial when it comes to preventing further oral damage and the associated health complications. This study offers a systematic review of the literature published up to April 2023, and aims to clearly explain the role of proteomics in identifying salivary biomarkers for periodontitis. Comprehensive searches were conducted on PubMed and Web of Science to shortlist pertinent studies. The inclusion criterion was those that reported on mass spectrometry-driven proteomic analyses of saliva samples from periodontitis cohorts, while those on gingivitis or other oral diseases were excluded. An assessment for risk of bias was carried out using the Newcastle-Ottawa Scale and Quality Assessment of Diagnostic Accuracy Studies or the NIH quality assessment tool, and a meta-analysis was performed for replicable candidate biomarkers, i.e., consistently reported candidate biomarkers (in specific saliva samples, and periodontitis subgroups, reported in ≥2 independent cohorts/reports) were identified. A Gene Ontology enrichment analysis was conducted using the Database for Annotation, Visualization, and Integrated Discovery bioinformatics resources, which consistently expressed candidate biomarkers, to explore the predominant pathway wherein salivary biomarkers consistently manifested. Of the 15 studies included, 13 were case-control studies targeting diagnostic biomarkers for periodontitis participants (periodontally healthy/diseased, n = 342/432), while two focused on biomarkers responsive to periodontal treatment (n = 26 participants). The case-control studies were considered to have a low risk of bias, while the periodontitis treatment studies were deemed fair. Summary estimate and confidence/credible interval, etc. determination for the identified putative salivary biomarkers could not be ascertained due to the low number of studies in each case. The results from the included case-control studies identified nine consistently expressed candidate biomarkers (from nine studies with 230/297 periodontally healthy/diseased participants): (i) those that were upregulated: alpha-amylase, serum albumin, complement C3, neutrophil defensin, profilin-1, and S100-P; and (ii) those that were downregulated: carbonic anhydrase 6, immunoglobulin J chain, and lactoferrin. All putative biomarkers exhibited consistent regulation patterns. The implications of the current putative marker proteins identified were reviewed, with a focus on their potential roles in periodontitis diagnosis and pathogenesis, and as putative therapeutic targets. Although in its early stages, mass spectrometry-based salivary periodontal disease biomarker proteomics detection appeared promising. More mass spectrometry-based proteomics studies, with or without the aid of already available clinical biochemical approaches, are warranted to aid the discovery, identification, and validation of periodontal health/disease indicator molecule(s). Protocol registration number: CRD42023447722; supported by RD-02-202410 and GRF17119917.
Collapse
Affiliation(s)
- Hongying Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medical Imaging, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Wai Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Huang Z, Yang X, Huang Y, Tang Z, Chen Y, Liu H, Huang M, Qing L, Li L, Wang Q, Jie Z, Jin X, Jia B. Saliva - a new opportunity for fluid biopsy. Clin Chem Lab Med 2023; 61:4-32. [PMID: 36285724 DOI: 10.1515/cclm-2022-0793] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 12/15/2022]
Abstract
Saliva is a complex biological fluid with a variety of biomolecules, such as DNA, RNA, proteins, metabolites and microbiota, which can be used for the screening and diagnosis of many diseases. In addition, saliva has the characteristics of simple collection, non-invasive and convenient storage, which gives it the potential to replace blood as a new main body of fluid biopsy, and it is an excellent biological diagnostic fluid. This review integrates recent studies and summarizes the research contents of salivaomics and the research progress of saliva in early diagnosis of oral and systemic diseases. This review aims to explore the value and prospect of saliva diagnosis in clinical application.
Collapse
Affiliation(s)
- Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiaoxia Yang
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ling Qing
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Li Li
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Qin Wang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhuye Jie
- BGI Genomics, BGI-Shenzhen, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen, P.R. China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Jin
- BGI Genomics, BGI-Shenzhen, Shenzhen, P.R. China
- School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
6
|
Shang YF, Shen YY, Zhang MC, Lv MC, Wang TY, Chen XQ, Lin J. Progress in salivary glands: Endocrine glands with immune functions. Front Endocrinol (Lausanne) 2023; 14:1061235. [PMID: 36817607 PMCID: PMC9935576 DOI: 10.3389/fendo.2023.1061235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
The production and secretion of saliva is an essential function of the salivary glands. Saliva is a complicated liquid with different functions, including moistening, digestion, mineralization, lubrication, and mucosal protection. This review focuses on the mechanism and neural regulation of salivary secretion, and saliva is secreted in response to various stimuli, including odor, taste, vision, and mastication. The chemical and physical properties of saliva change dynamically during physiological and pathophysiological processes. Moreover, the central nervous system modulates salivary secretion and function via various neurotransmitters and neuroreceptors. Smell, vision, and taste have been investigated for the connection between salivation and brain function. The immune and endocrine functions of the salivary glands have been explored recently. Salivary glands play an essential role in innate and adaptive immunity and protection. Various immune cells such as B cells, T cells, macrophages, and dendritic cells, as well as immunoglobins like IgA and IgG have been found in salivary glands. Evidence supports the synthesis of corticosterone, testosterone, and melatonin in salivary glands. Saliva contains many potential biomarkers derived from epithelial cells, gingival crevicular fluid, and serum. High level of matrix metalloproteinases and cytokines are potential markers for oral carcinoma, infectious disease in the oral cavity, and systemic disease. Further research is required to monitor and predict potential salivary biomarkers for health and disease in clinical practice and precision medicine.
Collapse
Affiliation(s)
- Yu Feng Shang
- Department of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University School of Stomatology, Hangzhou, China
| | - Yi Yang Shen
- Department of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University School of Stomatology, Hangzhou, China
| | - Meng Chen Zhang
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Min Chao Lv
- Department of Orthopedics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Tong Ying Wang
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
| | - Xue Qun Chen
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, School of Brain Science and Brain Medicine, Hangzhou, China
| | - Jun Lin
- Department of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University School of Stomatology, Hangzhou, China
- *Correspondence: Jun Lin,
| |
Collapse
|
7
|
Agnihotri R, Gaur S. C3 Targeted Complement Therapy for Chronic Periodontitis - A Scoping Review. J Int Soc Prev Community Dent 2022; 12:500-505. [PMID: 36532323 PMCID: PMC9753925 DOI: 10.4103/jispcd.jispcd_161_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 01/25/2023] Open
Abstract
AIM Chronic Periodontitis (CP) is a complex disease initiated by inflammation caused by dysbiotic bacterial communities in the subgingival environment. The Porphyromonas gingivalis, a keystone pathogen at low colonization, causes immune subversion of complement component C5aR, leading to complement C3-dependent destructive inflammation responsible for the inflammatory bone loss in CP. Animal studies have shown that targeting complement C3 with its inhibitor like AMY-101 may help reduce inflammatory bone loss in CP. This scoping review elaborates on the role of complement C3 targeted therapy for CP. MATERIALS AND METHODS About 66 original studies were obtained during an initial electronic search in Medline (Pubmed), Scopus, Web of Science, and Embase. About four articles were included in the review after screening the duplicates and reading the full text. Their aims and objectives, drug dosage, route of administration, results, and conclusions were recorded. RESULTS Of the four-original research, 3 were animal studies and one randomized Phase IIa clinical trial. They showed that C3 targeted complement therapy reduced the inflammatory and clinical periodontal parameters in CP. CONCLUSION C3 targeted complement therapy may be regarded as a valuable adjunct to non-surgical periodontal treatment for CP. However, the results are still under investigation and require further verification through clinical trials.
Collapse
Affiliation(s)
- Rupali Agnihotri
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Sumit Gaur
- Department of Pedodontics and Preventive Dentistry, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India,Address for correspondence: Dr. Sumit Gaur, Department of Pedodontics and Preventive Dentistry, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India -576104. E-mail: ,
| |
Collapse
|
8
|
Bhalla SP, Shaju AM, Figueredo CMDS, Miranda LA. Increased Levels of C5a in Gingival Crevicular Fluid and Saliva of Patients with Periodontal Disease. Pathogens 2022; 11:pathogens11090983. [PMID: 36145415 PMCID: PMC9503606 DOI: 10.3390/pathogens11090983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
C5a is a powerful complement effector molecule that is considered to be an important proinflammatory mediator in several systemic chronic inflammatory diseases. However, its levels in periodontal diseases are yet to be assessed. We aimed to analyse the secretion of C5a in gingival crevicular fluid (GCF) and saliva of patients with periodontal disease. Twenty-eight patients diagnosed with stage 3–4 periodontitis and 16 periodontally healthy subjects participated in this study. GCF was collected from sites with the deepest probing depth of each patient, and volume was measured using a Periotron 8000®. One mL of unstimulated saliva was also collected. Samples were analysed using a commercially available ELISA kit. The data were analysed using the Mann–Whitney U test, Pearson’s bivariate testing, and receiver operating characteristic curve. C5a was present in GCF from patients with periodontitis (1.06 ± 0.25 ng/mL) whilst it was undetected in controls. Saliva concentration was also significantly higher in periodontitis (1.82 ± 2.31 ng/mL) than controls (0.60 ± 0.72 ng/mL, p = 0.006). C5a levels were more pronounced in periodontitis in both oral fluids assessed by the present pilot study. These results suggest that the more pronounced levels of C5a in oral fluids from periodontitis patients indicate a potential role of this molecule in this disease pathogenesis, deserving to be better explored in subsequent studies.
Collapse
Affiliation(s)
| | - Ann Maria Shaju
- Discipline of Periodontics, UWA Dental School, Nedlands, WA 6009, Australia
| | - Carlos Marcelo da Silva Figueredo
- School of Medicine and Dentistry, Griffith University, Nathan, QLD 4111, Australia
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 141 04 Huddinge, Sweden
| | | |
Collapse
|
9
|
Bezerra B, Monajemzadeh S, Silva D, Pirih FQ. Modulating the Immune Response in Periodontitis. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.879131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is a chronic inflammatory condition initiated by the accumulation of bacterial biofilm. It is highly prevalent and when left untreated can lead to tooth loss. The presence of bacterial biofilm is essential for the initiation of the inflammatory response but is not the sole initiator. Currently it is unknown which mechanisms drive the dysbiosis of the bacterial biofilm leading to the dysregulation of the inflammatory response. Other players in this equation include environmental, systemic, and genetic factors which can play a role in exacerbating the inflammatory response. Treatment of periodontal disease consists of removal of the bacterial biofilm with the goal of resolving the inflammatory response; however, this does not occur in every case. Understanding the way the inflammatory response does not return to a state of homeostasis has led investigators to consider both systemic and local pharmacological interventions. Nonetheless, a better understanding of the impact that genetics and environmental factors may have on the inflammatory response could be key to helping identify how inflammation can be modulated therefore stopping the destruction of the periodontium. In this article, we will explore the current evidence associating the microbial dysbiosis and the dysregulation of the immune response, potential mechanisms or pathways that may be targeted for the modulation of the inflammatory response, and discuss the advantages and drawbacks associated with local and systemic inflammatory modulation in the management of periodontal disease. This information will be valuable for those interested in understanding potential adjunct methods for managing periodontal diseases, but not limited to, dental professionals, clinical researchers and the public at large.
Collapse
|
10
|
Hussain B, Karaca EO, Kuru BE, Gursoy H, Haugen HJ, Wohlfahrt JC. Treatment of residual pockets using an oscillating chitosan device versus regular curettes alone-A randomized, feasibility parallel-arm clinical trial. J Periodontol 2022; 93:780-789. [PMID: 34710240 DOI: 10.1002/jper.21-0496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND A brush made of chitosan has shown to be an effective and harmless device for non-surgical treatment of mild to moderate peri-implantitis. To date, no study has evaluated the use of a chitosan brush in the non-surgical treatment of residual pockets in periodontal treatment. METHODS Seventy-eight patients with periodontitis were included in this multicenter, randomized, examiner-blind clinical trial of 6 months duration. Patients with residual probing pocket depth (PPD) of ≥5 mm and ≤7 mm following previous active periodontal treatment were included. Patients were assigned either subgingival treatment with curettes (control) or an oscillating chitosan brush (test). Changes in bleeding on probing (BoP) and PPD between baseline and terminal evaluation at 6 months were evaluated. RESULTS A significant reduction in both PPD and BoP was seen within both groups. There was no significant difference in BoP between test and control groups after 6 months, but the reduction in PPD was significantly improved in the test group (P ≤ 0.01). The combined outcome of no BOP and PPD ≤4 mm was significantly better in the test group (P ≤ 0.01). No adverse reactions were seen. CONCLUSION Treatment of residual periodontal pockets (PPD = 5 to 7 mm) with a chitosan brush disclosed equal or better clinical results as compared to regular curettes. This study supports that a chitosan brush can be used for subgingival biofilm removal and soft tissue curretage in the treatment of periodontitis.
Collapse
Affiliation(s)
- Badra Hussain
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Ebru Ozkan Karaca
- Department of Periodontology, Yeditepe University School of Dentistry, Istanbul, Turkey
| | - Bahar Eren Kuru
- Department of Periodontology, Yeditepe University School of Dentistry, Istanbul, Turkey
| | - Hare Gursoy
- Department of Periodontology, Yeditepe University School of Dentistry, Istanbul, Turkey
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Johan Caspar Wohlfahrt
- Department of Periodontology, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway.,Bjerke Tannmedisin, Oslo, Norway
| |
Collapse
|
11
|
Ferrisse TM, Dias LM, de Oliveira AB, Jordão CC, Mima EGDO, Pavarina AC. EFFICACY OF CURCUMIN-MEDIATED ANTIBACTERIAL PHOTODYNAMIC THERAPY FOR ORAL ANTISEPSIS: A SYSTEMATIC REVIEW AND NETWORK META-ANALYSIS OF RANDOMIZED CLINICAL TRIALS. Photodiagnosis Photodyn Ther 2022; 39:102876. [PMID: 35472640 DOI: 10.1016/j.pdpdt.2022.102876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/09/2022] [Accepted: 04/20/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND currently, the presence of oral microorganisms resistant to traditional treatment is increasing, thus search for new modalities of therapies is needed. In this context, antimicrobial photodynamic therapy (aPDT) is an alternative approach for the treatment of resistant or not resistant microorganisms. Therefore, the aim of the present study was to conduct a systematic review and meta-analysis of randomized clinical trials of aPDT for oral antisepsis against oral polymicrobial biofilms. METHODS PubMed, Science Direct, Scopus, SciELO, Lilacs, Cochrane Library and Embase databases were searched. In total, five articles were included for qualitative analysis and four articles were used for quantitative analyses. Bias assessment of the eligible articles was made using the RoB 2 criteria. Network meta-analysis was performed using the random-effect model. Subgroup's analysis was also conducted. The groups evaluated were aPDT, exposure to light only and no treatment at all (control group). The quality of evidence was accessed by CINeMA approach. RESULTS aPDT mediated by curcumin had significant results in the reducing bacterial load (0.31-0.49 log10 UFC/ I2=0%) when compared with the control group. The included articles were classified as low risk of bias, despite biases detected by allocation and blinding. Moreover, quantitative analysis between aPDT and control group and between light and control group were classified with low risk of confidence rating, while the results from aPDT versus light were classified as moderate risk of confidence rating. CONCLUSION aPDT has significant efficacy for oral antisepsis, however more randomized clinical trials will be needed to validate the present results.
Collapse
Affiliation(s)
- Túlio Morandin Ferrisse
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | - Luana Mendonça Dias
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | - Analú Barros de Oliveira
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry São Paulo State University (Unesp), School of Dentistry, Araraquara, SP, Brazil
| | - Claudia Carolina Jordão
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | - Ewerton Garcia de Oliveira Mima
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | - Ana Cláudia Pavarina
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil.
| |
Collapse
|
12
|
Damgaard C, Massarenti L, Danielsen AK, Graversen JH, Holmstrup P, Nielsen CH, Palarasah Y. Complement component 3 (C3) and its activation split-products in saliva associates with periodontitis. J Periodontol 2022; 93:1294-1301. [PMID: 35218227 DOI: 10.1002/jper.21-0530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis (PD) is classified by grades A through C according to the risk of further progression, PD grade C (PD-C) being the most severe progressing form. It is a matter of controversy, whether the disease activity observed in PD-C is due to impaired immune reactivity towards bacteria embedded in biofilms or a hyper-reactive immune response causing tissue damage as a bystander phenomenon. Little is known about the role of complement in this respect. MATERIALS AND METHODS Plasma and unstimulated saliva samples were collected from patients with PD-B (n = 34) or -C (n = 27) and healthy controls (HCs) (n = 28). Salivary and plasma levels of total C3, C3c and C3dg were quantified using sandwich ELISA. RESULTS Salivary levels of total C3 and C3dg were elevated in PD-B and PD-C patients compared to HCs (both p< 0.05), while the levels of C3c were elevated in PD-C compared to HCs. Plasma levels of C3c were higher in PD-B patients than in HCs (p< 0.05). CONCLUSION PD-B and PD-C patients show increased complement activation compared to HCs, but no difference was found between the two disease grades. PD-B, but not PD-C, is associated with increased systemic complement activation as assessed by C3c in plasma. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Christian Damgaard
- Research area Periodontology, Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Cxopenhagen, Denmark
| | - Laura Massarenti
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Cxopenhagen, Denmark
| | - Anne Katrine Danielsen
- Research area Periodontology, Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Cxopenhagen, Denmark
| | - Jonas H Graversen
- Department of Cancer and Inflammation, Institute of Molecular Medicine, Faculty of Health and Medical Sciences, University of Southern Denmark, Odense, Denmark
| | - Palle Holmstrup
- Research area Periodontology, Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus H Nielsen
- Research area Periodontology, Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Cxopenhagen, Denmark
| | - Yaseelan Palarasah
- Department of Cancer and Inflammation, Institute of Molecular Medicine, Faculty of Health and Medical Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
13
|
Kajikawa T, Mastellos DC, Hasturk H, Kotsakis GA, Yancopoulou D, Lambris JD, Hajishengallis G. C3-targeted host-modulation approaches to oral inflammatory conditions. Semin Immunol 2022; 59:101608. [PMID: 35691883 DOI: 10.1016/j.smim.2022.101608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Periodontitis is an inflammatory disease caused by biofilm accumulation and dysbiosis in subgingival areas surrounding the teeth. If not properly treated, this oral disease may result in tooth loss and consequently poor esthetics, deteriorated masticatory function and compromised quality of life. Epidemiological and clinical intervention studies indicate that periodontitis can potentially aggravate systemic diseases, such as, cardiovascular disease, type 2 diabetes mellitus, rheumatoid arthritis, and Alzheimer disease. Therefore, improvements in the treatment of periodontal disease may benefit not only oral health but also systemic health. The complement system is an ancient host defense system that plays pivotal roles in immunosurveillance and tissue homeostasis. However, complement has unwanted consequences if not controlled appropriately or excessively activated. Complement overactivation has been observed in patients with periodontitis and in animal models of periodontitis and drives periodontal inflammation and tissue destruction. This review places emphasis on a promising periodontal host-modulation therapy targeting the complement system, namely the complement C3-targeting drug, AMY-101. AMY-101 has shown safety and efficacy in reducing gingival inflammation in a recent Phase 2a clinical study. We also discuss the potential of AMY-101 to treat peri-implant inflammatory conditions, where complement also seems to be involved and there is an urgent unmet need for effective treatment.
Collapse
Affiliation(s)
- Tetsuhiro Kajikawa
- University of Pennsylvania, Penn Dental Medicine, Department of Basic and Translational Sciences, Philadelphia, PA, USA; Tohoku University Graduate School of Dentistry, Department of Periodontology and Endodontology, Sendai, Miyagi, Japan
| | - Dimitrios C Mastellos
- National Center for Scientific Research 'Demokritos', Division of Biodiagnostic Sciences and Technologies, INRASTES, Athens, Greece
| | - Hatice Hasturk
- The Forsyth Institute, Center for Clinical and Translational Research, Cambridge, MA, USA
| | - Georgios A Kotsakis
- University of Texas Health Science Center at San Antonio, School of Dentistry, Department of Periodontics, San Antonio, TX, USA
| | | | - John D Lambris
- University of Pennsylvania, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, PA, USA
| | - George Hajishengallis
- University of Pennsylvania, Penn Dental Medicine, Department of Basic and Translational Sciences, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Li P, Wang N, Zhang Y, Wang C, Du L. HLA-G/sHLA-G and HLA-G-Bearing Extracellular Vesicles in Cancers: Potential Role as Biomarkers. Front Immunol 2021; 12:791535. [PMID: 34868081 PMCID: PMC8636042 DOI: 10.3389/fimmu.2021.791535] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022] Open
Abstract
As a non-classic major histocompatibility complex (MHC) class I molecule, human leukocyte antigen G (HLA-G) is expressed in fetal-maternal interface and immunoprivileged site only in healthy condition, and in pathological conditions such as cancer, it can be de novo expressed. It is now widely accepted that HLA-G is a key molecule in the process of immune escape of cancer cells, which is ubiquitously expressed in the tumor environment. This raises the possibility that it may play an adverse role in tumor immunity. The expression level of HLA-G has been demonstrated to be highly correlated with clinical parameters in many tumors, and its potential significance in the diagnosis and prognosis of cancer has been postulated. However, because HLA-G itself has up to seven different subtypes, and for some subtypes, detected antibodies are few or absent, it is hard to evaluate the actual expression of HLA-G in tumors. In the present work, we described (a) the structure and three main forms of HLA-G, (b) summarized the mechanism of HLA-G in the immune escape of tumor cells, (c) discussed the potential role of HLA-G as a tumor marker, and reviewed (d) the methods for detecting and quantifying HLA-G.
Collapse
Affiliation(s)
- Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Engineering & Technology Research Center for Tumor Marker Detection , Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Nan Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Yi Zhang
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Engineering & Technology Research Center for Tumor Marker Detection , Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Engineering & Technology Research Center for Tumor Marker Detection , Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| |
Collapse
|
15
|
Hasturk H, Hajishengallis G, Lambris JD, Mastellos DC, Yancopoulou D. Phase 2a clinical trial of complement C3 inhibitor AMY-101 in adults with periodontal inflammation. J Clin Invest 2021; 131:152973. [PMID: 34618684 DOI: 10.1172/jci152973] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Gingivitis and periodontitis are prevalent inflammatory diseases of the periodontal tissues. Current treatments are often ineffective or do not prevent disease recurrence. Uncontrolled complement activation and resulting chronic gingival inflammation is a hallmark of periodontal diseases. We determined efficacy and safety of a complement 3-targeted therapeutic, AMY-101, locally administered in adults with periodontal inflammation. METHODS Thirty-two patients with gingival inflammation were enrolled into a randomized, placebo-controlled, double-blind, split-mouth design phase 2a trial, after dose-escalation study to select safe and effective dose with additional 8 patients. Half of the mouth was randomly assigned to AMY-101 (0.1mg/site) or placebo injections at sites of inflammation, administered on days 0, 7 and 14 and evaluated for safety and efficacy outcomes at days 28, 60 and 90. The primary efficacy outcome was change in gingival inflammation, measured by modified gingival index (MGI), and secondary outcomes included changes in bleeding-on-probing (BOP), amount of plaque, pocket depth, clinical attachment level, and gingival crevicular fluid levels of matrix metalloproteinases (MMPs) over 90 days. RESULTS A once-per-week intragingival injection of AMY-101 for 3 weeks was safe and well-tolerated in all participants resulting in significant (P<0.001) reductions in clinical indices measuring gingival inflammation (MGI and BOP). AMY-101 significantly (P<0.05) reduced MMP-8 and MMP-9 levels, indicators of inflammatory tissue destruction. These therapeutic effects persisted for at least 3 months post-treatment. CONCLUSION AMY-101 causes significant and sustainable reduction in gingival inflammation without adverse events and merits further investigation for the treatment of periodontitis and other oral or peri-implant inflammatory conditions. TRIAL REGISTRATION ClinicalTrials.gov: NCT03694444. FUNDING Amyndas Pharmaceuticals. Amyndas contributed to the design and conducts of the clinical trial and in the writing of the manuscript.
Collapse
Affiliation(s)
- Hatice Hasturk
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, United States of America
| | - George Hajishengallis
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, United States of America
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Dimitrios C Mastellos
- Division of Biodiagnostic Sciences and Technologies, National Center for Scientific Research 'Demokritos', Athens, Greece
| | | |
Collapse
|
16
|
Hajishengallis G, Hasturk H, Lambris JD. C3-targeted therapy in periodontal disease: moving closer to the clinic. Trends Immunol 2021; 42:856-864. [PMID: 34483038 PMCID: PMC8487962 DOI: 10.1016/j.it.2021.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
Complement plays a key role in immunosurveillance and homeostasis. When dysregulated or overactivated, complement can become a pathological effector, as seen in several inflammatory disorders, including periodontal disease. Recently, clinical correlative studies and preclinical mechanistic investigations have collectively demonstrated that complement is hyperactivated during periodontitis and that targeting its central component (C3) provides therapeutic benefit in nonhuman primates (NHPs). The preclinical efficacy of a C3-targeted drug candidate combined with excellent safety and pharmacokinetic profiles supported its use in a recent Phase IIa clinical study in which C3 inhibition resolved gingival inflammation in patients with periodontal disease. We posit that C3-targeted intervention might represent a novel and transformative host-modulation therapy meriting further investigation in Phase III clinical trials for the treatment of periodontitis.
Collapse
Affiliation(s)
- George Hajishengallis
- University of Pennsylvania, Penn Dental Medicine, Department of Basic and Translational Sciences, Philadelphia, PA, USA.
| | - Hatice Hasturk
- The Forsyth Institute, Center for Clinical and Translational Research, Cambridge, MA, USA.
| | - John D Lambris
- University of Pennsylvania, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, USA.
| |
Collapse
|
17
|
Li M, Qi Y, Wang G, Bu S, Chen M, Yu J, Luo T, Meng L, Dai A, Zhou Y, Liu S, Huo X. Proteomic profiling of saliva reveals association of complement system with primary Sjögren's syndrome. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1724-1739. [PMID: 34516718 PMCID: PMC8589410 DOI: 10.1002/iid3.529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION To compare the saliva proteomes of experimental Sjögren's syndrome (ESS) model mice and healthy controls to identify potential diagnostic biomarkers for primary Sjögren's syndrome (pSS). METHODS Proteins were extracted from the saliva of three ESS and three normal control mice using the data-independent acquisition technique. R language was used to identify the differentially expressed proteins (DEPs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to functionally annotate the DEPs. The protein-protein interaction (PPI) network was constructed and the core proteins were identified with the STRING website and Cytoscape software. The concentrations of Serpin family G member 1 (SERPING1), C3, complement factor H (CFH), fibrinogen alpha (FGA), and fibrinogen gamma (FGG) in saliva were determined by ELISA. RESULTS A total of 1722 DEPs were identified in the saliva of the ESS mice relative to the controls, of which 50 showed significantly different expression levels between the two groups. SERPING1, C3, CFH, FGA, and FGG were significantly downregulated, and keratin 4 (Krt4) and transglutaminase 3 (TGM3) were upregulated in the saliva of ESS mice. The PPI network showed that SERPING1, C3, FGG, FGA, TGM3, and hemopexin (HPX) were the core proteins. ELISA results showed that the expression of C3, CFH, FGA, and SERPING1 were significantly downregulated in the saliva of ESS mice. However, the expression of FGG was a little downregulated but with no significant difference. SERPING1, FGG, and FGA may downregulate the complement C3 by inhibiting immune complement system, thereby promoting pSS progression. CONCLUSIONS The salivary proteome of ESS mice was markedly different from that of healthy controls, suggesting that salivary proteomics is a promising noninvasive diagnostic tool for pSS. SERPING1, C3, CFH, FGA, and FGG are potential biomarkers of pSS.
Collapse
Affiliation(s)
- Mingde Li
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.,Department of Anesthesiology, Second Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Yajun Qi
- Department of Traditional Chinese Medicine, College of Acupuncture and Massage, Anhui University of traditional Chinese Medicine, Hefei, Anhui, China
| | - Guizhen Wang
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Su Bu
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Ming Chen
- Department of Anesthesiology, Second Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Jiahui Yu
- Department of Traditional Chinese Pharmacology, College of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Tianyang Luo
- Department of Anesthesiology, Second Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Lulu Meng
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Anran Dai
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yong Zhou
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shuai Liu
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xingxing Huo
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
18
|
Garcia-Arguinzonis M, Diaz-Riera E, Peña E, Escate R, Juan-Babot O, Mata P, Badimon L, Padro T. Alternative C3 Complement System: Lipids and Atherosclerosis. Int J Mol Sci 2021; 22:ijms22105122. [PMID: 34066088 PMCID: PMC8151937 DOI: 10.3390/ijms22105122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Familial hypercholesterolemia (FH) is increasingly associated with inflammation, a phenotype that persists despite treatment with lipid lowering therapies. The alternative C3 complement system (C3), as a key inflammatory mediator, seems to be involved in the atherosclerotic process; however, the relationship between C3 and lipids during plaque progression remains unknown. The aim of the study was to investigate by a systems biology approach the role of C3 in relation to lipoprotein levels during atherosclerosis (AT) progression and to gain a better understanding on the effects of C3 products on the phenotype and function of human lipid-loaded vascular smooth muscle cells (VSMCs). By mass spectrometry and differential proteomics, we found the extracellular matrix (ECM) of human aortas to be enriched in active components of the C3 complement system, with a significantly different proteomic signature in AT segments. Thus, C3 products were more abundant in AT-ECM than in macroscopically normal segments. Furthermore, circulating C3 levels were significantly elevated in FH patients with subclinical coronary AT, evidenced by computed tomographic angiography. However, no correlation was identified between circulating C3 levels and the increase in plaque burden, indicating a local regulation of the C3 in AT arteries. In cell culture studies of human VSMCs, we evidenced the expression of C3, C3aR (anaphylatoxin receptor) and the integrin αMβ2 receptor for C3b/iC3b (RT-PCR and Western blot). C3mRNA was up-regulated in lipid-loaded human VSMCs, and C3 protein significantly increased in cell culture supernatants, indicating that the C3 products in the AT-ECM have a local vessel-wall niche. Interestingly, C3a and iC3b (C3 active fragments) have functional effects on VSMCs, significantly reversing the inhibition of VSMC migration induced by aggregated LDL and stimulating cell spreading, organization of F-actin stress fibers and attachment during the adhesion of lipid-loaded human VSMCs. This study, by using a systems biology approach, identified molecular processes involving the C3 complement system in vascular remodeling and in the progression of advanced human atherosclerotic lesions.
Collapse
MESH Headings
- Adult
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Case-Control Studies
- Cell Adhesion
- Cells, Cultured
- Complement C3/metabolism
- Female
- Humans
- Hyperlipoproteinemia Type II/immunology
- Hyperlipoproteinemia Type II/metabolism
- Hyperlipoproteinemia Type II/pathology
- Male
- Middle Aged
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Proteome/analysis
- Proteome/metabolism
- Vascular Remodeling
- Wound Healing
- Young Adult
Collapse
Affiliation(s)
- Maisa Garcia-Arguinzonis
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
| | - Elisa Diaz-Riera
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
| | - Esther Peña
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Escate
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Oriol Juan-Babot
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, 28010 Madrid, Spain;
| | - Lina Badimon
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, UAB, 08025 Barcelona, Spain
| | - Teresa Padro
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-935-565-886; Fax: +34-935-565-559
| |
Collapse
|
19
|
Becerra-Ruiz JS, Guerrero-Velázquez C, Martínez-Esquivias F, Martínez-Pérez LA, Guzmán-Flores JM. Innate and adaptive immunity of periodontal disease. From etiology to alveolar bone loss. Oral Dis 2021; 28:1441-1447. [PMID: 33884712 DOI: 10.1111/odi.13884] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
Periodontal disease refers to inflammation of the tissues that support the tooth. It is of multifactorial etiology. Innate and adaptive immune cells participate jointly through the release of their molecules and mechanisms of action in order to maintain homeostasis in periodontal tissues, so the host's immune response plays an essential role in defense against microorganisms. However, bacterial persistence and the dysregulation of the immune system as an exaggerated response can lead to the worsening of periodontal disease, leading to loss of gingival tissue and alveolar bone and thereby loss of teeth. Therefore, a better understanding of the cellular mechanisms involved in the development of periodontal disease is necessary to design new treatments and prophylactic measures in order to decrease the prevalence of this disease that afflicts a large part of the world population.
Collapse
Affiliation(s)
- Julieta Saraí Becerra-Ruiz
- Doctorado en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Jalisco, México
| | - Celia Guerrero-Velázquez
- Instituto de Investigación en Odontología, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Jalisco, México
| | | | - Luz Andrea Martínez-Pérez
- Doctorado en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Jalisco, México
| | - Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Jalisco, México
| |
Collapse
|
20
|
Balta MG, Papathanasiou E, Blix IJ, Van Dyke TE. Host Modulation and Treatment of Periodontal Disease. J Dent Res 2021; 100:798-809. [PMID: 33655803 DOI: 10.1177/0022034521995157] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is the sixth-most prevalent disease in the world and the first cause for tooth loss in adults. With focus shifted to the inflammatory/immune response in the pathogenesis of periodontitis, there is a critical need to evaluate host modulatory agents. Synthetic and biological disease-modifying antirheumatic drugs are a cornerstone for the treatment of inflammatory diseases. Recent prospective cohort studies showed that synthetic disease-modifying antirheumatic drugs improved periodontal clinical parameters following nonsurgical periodontal treatment in patients with rheumatoid arthritis. Treatment with recombinant humanized monoclonal antibodies against CD20 (rituximab) and IL-6 receptor (tocilizumab), the latter also in clinical trials for the treatment of COVID-19 pneumonia, resulted in decreased periodontal inflammation and improved periodontal status. Studies on the effect of TNF-α inhibitors in patients with periodontitis yielded inconsistent results. Recent data suggest that probiotics provide anti-inflammatory clinical benefit, as do nutritional supplements, such as n-3 fatty acids, when combined with periodontal therapy. Probiotics reduce the production of proinflammatory cytokines/chemokines by suppressing NF-κB pathways and promote the accumulation of T regulatory cells. Statins, like aspirin, have been shown to exhibit anti-inflammatory and bone-preserving actions by upregulating production of Specialized Proresolving Mediators (SPMs). Currently, there is insufficient scientific support for the topical delivery of statins or bisphosphonates as adjuncts to periodontal therapy. Here, we present a critical review of the most recent host modulatory agents applied in humans and the key immune pathways that they target. Emerging evidence from novel drug candidates, including SPMs and complement inhibitors as previously studied in animal models and currently in human clinical trials, suggests future availability of adjunctive therapeutic strategies for the management of periodontitis.
Collapse
Affiliation(s)
- M G Balta
- The CrossTalk Group, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - E Papathanasiou
- Department of Periodontology, School of Dental Medicine, Tufts University, Boston, MA, USA.,Center for Clinical and Translational Research, Forsyth Institute, Cambridge, MA, USA
| | - I J Blix
- The CrossTalk Group, Institute of Oral Biology, University of Oslo, Oslo, Norway.,Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - T E Van Dyke
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, MA, USA.,Department of Oral Medicine, Infection, and Immunity, Faculty of Medicine, Harvard University, Boston, MA, USA
| |
Collapse
|
21
|
Gürsoy UK, Fteita D, Bikker FJ, Grande MA, Nazmi K, Gürsoy M, Könönen E, Belstrøm D. Elevated Baseline Salivary Protease Activity May Predict the Steadiness of Gingival Inflammation During Periodontal Healing: A 12-Week Follow-Up Study on Adults. Pathogens 2020; 9:pathogens9090751. [PMID: 32942694 PMCID: PMC7558121 DOI: 10.3390/pathogens9090751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/26/2022] Open
Abstract
Aim was to profile salivary total protease, Porphyromonas gingivalis gingipain, and neutrophil elastase activities in relation to the resolution of periodontal inflammation, salivary macrophage-derived chemokine (MDC), and macrophage inflammatory protein-1α concentrations. Nonsurgical periodontal treatment was performed in 24 periodontitis patients in a prospective interventional study design. Periodontal clinical parameters were recorded, and stimulated saliva samples were collected at baseline and 2, 6, and 12 weeks after treatment. Salivary total protease and gingipain activities were determined using fluorogenic substrates, elastase activity by chromogenic substrates, and cytokine concentrations by Luminex immunoassay. For statistical analyses, generalized linear mixed models for repeated measures were used. Salivary total protease activity elevated, while gingival inflammation and plaque accumulation decreased 2 and 6 weeks after periodontal therapy. Salivary MDC concentration was elevated 12 weeks after periodontal treatment. Patients with elevated protease activities at baseline in comparison to patients with low baseline total protease activities, had higher levels of gingival inflammation before and after periodontal treatment. In conclusion, elevations in salivary total protease activity seem to be part of periodontal healing at its early phases. Higher levels of salivary total protease activities before periodontal treatment may predict the severity and steadiness of unresolved gingival inflammation.
Collapse
Affiliation(s)
- Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (D.F.); (M.G.); (E.K.)
- Correspondence:
| | - Dareen Fteita
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (D.F.); (M.G.); (E.K.)
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, 1081LA Amsterdam, The Netherlands; (F.J.B.); (K.N.)
| | - Maria Anastasia Grande
- Section for Clinical Oral Microbiology, Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.A.G.); (D.B.)
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, 1081LA Amsterdam, The Netherlands; (F.J.B.); (K.N.)
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (D.F.); (M.G.); (E.K.)
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (D.F.); (M.G.); (E.K.)
| | - Daniel Belstrøm
- Section for Clinical Oral Microbiology, Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.A.G.); (D.B.)
| |
Collapse
|
22
|
Grande MA, Belstrøm D, Damgaard C, Holmstrup P, Thangaraj SS, Nielsen CH, Palarasah Y. Complement split product C3c in saliva as biomarker for periodontitis and response to periodontal treatment. J Periodontal Res 2020; 56:27-33. [PMID: 32681659 PMCID: PMC7891408 DOI: 10.1111/jre.12788] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/28/2020] [Accepted: 06/30/2020] [Indexed: 12/23/2022]
Abstract
Background and Objective The complement system is engaged in inflammatory reactions both in the periodontal pockets and in the periodontium itself, where it can mediate tissue destruction. The aim of this study was, first, to compare salivary levels of the total complement system protein C3 and its split product, fluid‐phase C3c in patients with periodontitis and periodontally healthy controls. Next, to determine if C3 and C3c levels had biomarker potential in diagnosing and monitoring periodontitis and its treatment. We hypothesized that salivary levels of total C3 and the split product C3c associated with the severity of periodontitis and reflected decreased inflammatory activity after periodontal treatment. Methods At baseline, stimulated saliva samples were collected from patients with periodontitis (n = 18) and periodontally healthy controls (n = 15). Subsequently, non‐surgical periodontal treatment was performed in the patients, and saliva sampling from patients was repeated two‐, six‐, and twelve weeks post‐treatment (NCT02913248 at clinicaltrials.gov). The patients were grouped as good and poor responders to treatment according to the achieved reduction in bleeding on probing (BOP). Salivary levels of C3 and C3c were quantified using sandwich ELISA. Results Patients with periodontitis had higher baseline levels of both total C3 and the split product C3c in saliva than did periodontally healthy controls (P < .0001). Receiver operating curve (ROC) analyses discriminated patients with periodontitis from controls based on both C3 (AUC (area under curve) = 0.91, P < .001) and C3c levels (AUC = 0.84, P < .001) in saliva. Periodontal treatment improved all clinical parameters (P < .01). Good responders (n = 10) had lower baseline levels of C3c than poor responders (n = 8), (P < .05), and baseline levels of C3c discriminated between good and poor responders (AUC = 0.80, P < .05). Conclusion In conclusion, patients with periodontitis had higher salivary levels of C3c, and the C3c levels were predictive of reductions in BOP, that is, the poor responders. This suggests that salivary C3c levels possess potential to serve as a biomarker predicting the clinical response to non‐surgical periodontal treatment.
Collapse
Affiliation(s)
- Maria Anastasia Grande
- Section Clinical Oral Microbiology, Periodontology, Faculty of Health and Medical Sciences, Department of Odontology, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Belstrøm
- Section Clinical Oral Microbiology, Periodontology, Faculty of Health and Medical Sciences, Department of Odontology, University of Copenhagen, Copenhagen, Denmark
| | - Christian Damgaard
- Section for Oral Biology and Immunopathology, Periodontology, Faculty of Health and Medical Sciences, Department of Odontology, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - Palle Holmstrup
- Section for Oral Biology and Immunopathology, Periodontology, Faculty of Health and Medical Sciences, Department of Odontology, University of Copenhagen, Copenhagen, Denmark
| | - Sai Sindhu Thangaraj
- Faculty of Health and Medical Sciences, Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Claus Henrik Nielsen
- Section for Oral Biology and Immunopathology, Periodontology, Faculty of Health and Medical Sciences, Department of Odontology, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - Yaseelan Palarasah
- Faculty of Health and Medical Sciences, Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|