1
|
Wang J, Zhao M, Fu D, Wang M, Han C, Lv Z, Wang L, Liu J. Human neural stem cell-derived extracellular vesicles protect against ischemic stroke by activating the PI3K/AKT/mTOR pathway. Neural Regen Res 2025; 20:3245-3258. [PMID: 39248158 DOI: 10.4103/nrr.nrr-d-23-01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00028/figure1/v/2024-12-20T164640Z/r/image-tiff Human neural stem cell-derived extracellular vesicles exhibit analogous functions to their parental cells, and can thus be used as substitutes for stem cells in stem cell therapy, thereby mitigating the risks of stem cell therapy and advancing the frontiers of stem cell-derived treatments. This lays a foundation for the development of potentially potent new treatment modalities for ischemic stroke. However, the precise mechanisms underlying the efficacy and safety of human neural stem cell-derived extracellular vesicles remain unclear, presenting challenges for clinical translation. To promote the translation of therapy based on human neural stem cell-derived extracellular vesicles from the bench to the bedside, we conducted a comprehensive preclinical study to evaluate the efficacy and safety of human neural stem cell-derived extracellular vesicles in the treatment of ischemic stroke. We found that administration of human neural stem cell-derived extracellular vesicles to an ischemic stroke rat model reduced the volume of cerebral infarction and promoted functional recovery by alleviating neuronal apoptosis. The human neural stem cell-derived extracellular vesicles reduced neuronal apoptosis by enhancing phosphorylation of phosphoinositide 3-kinase, mammalian target of rapamycin, and protein kinase B, and these effects were reversed by treatment with a phosphoinositide 3-kinase inhibitor. These findings suggest that human neural stem cell-derived extracellular vesicles play a neuroprotective role in ischemic stroke through activation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Finally, we showed that human neural stem cell-derived extracellular vesicles have a good in vivo safety profile. Therefore, human neural stem cell-derived extracellular vesicles are a promising potential agent for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jiayi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Mengke Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Dong Fu
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Meina Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Chao Han
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Zhongyue Lv
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
2
|
Kim PY, Vong M, Lee D, Wu C. Development of an assay to quantify tranexamic acid levels in plasma. Anal Biochem 2025; 697:115714. [PMID: 39521358 DOI: 10.1016/j.ab.2024.115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Dysregulations of blood clot breakdown (fibrinolysis) during vascular trauma can lead to excessive blood loss. Tranexamic acid (TXA) is an inhibitor of fibrinolysis that works by blocking the interaction between plasminogen and fibrin degradation products (FDPs) - a key step in fibrinolysis. Despite the widespread usage, there are no tests available in a clinical setting to monitor TXA levels. We developed a fluorescence resonance energy transfer (FRET)-based assay to quantify TXA concentrations in plasma by using 1) fluorescently labeled plasminogen, and 2) FDPs labeled with a fluorescence quencher. Once plasminogen binds the FDPs, the fluorescent signal is quenched. TXA causes plasminogen to dissociate from the FDPs, thus increasing fluorescence signal in a dose-dependent manner. The dose response was sensitive between 1 and 100 μM (0.16 and 15.7 mg/L). The intraassay and interassay variabilities were determined to be 5.7 % and 3.0 %, respectively. Limit of detection was estimated to be 0.28 μM (0.044 mg/L). When tested for measuring known levels of TXA added to plasma samples, the ratio between measured and expected TXA concentration was 1.0151. Our study demonstrates a novel assay that can rapidly quantify TXA concentrations in plasma samples, thus demonstrating its potential as an in-hospital tool.
Collapse
Affiliation(s)
- Paul Y Kim
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Michelle Vong
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | - Dani Lee
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Chengliang Wu
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Lv M, Song X, Wang W, Li J, Chen J, Huang X, Su L, Gu L. LncRNA SERPINB9P1 Mitigates Cerebral Injury Induced by Oxygen‒Glucose Deprivation/Reoxygenation by Interacting with HSPA2. Mol Neurobiol 2025:10.1007/s12035-024-04646-y. [PMID: 39798045 DOI: 10.1007/s12035-024-04646-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/25/2024] [Indexed: 01/13/2025]
Abstract
Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS. This study revealed downregulation of the lncRNA SERPINB9P1 in the peripheral blood of IS patients, which was corroborated by the GSE140275 dataset. Furthermore, high lncRNA SERPINB9P1 expression was associated with lower National Institutes of Health Stroke Scale (NIHSS) scores and favorable outcome. Clinically, lncRNA SERPINB9P1 expression was correlated with inflammation and coagulation parameters in IS patients. Furthermore, lncRNA SERPINB9P1 silencing inhibited cell viability, induced apoptosis and inflammatory response under oxygen-glucose deprivation/reperfusion ; however, these effects were reversed upon its overexpression. Additionally, Chromatin Isolation by RNA Purification and mass spectrometry (CHIRP-MS) and western blot confirmed that the lncRNA SERPINB9P1 was involved in the pathological process of IS through binding to heat shock protein 2 (HSPA2). HSPA2 was upregulated in IS patients, and its protein interaction network was significantly enriched in IS-related pathways. In conclusion, the lncRNA SERPINB9P1 may ameliorate neurological injury in IS patients by interacting with the HSPA2 protein and engaging in IS-related pathways, providing new insights into treatment strategies for IS.
Collapse
Affiliation(s)
- Miao Lv
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoxiao Song
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Weitao Wang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jiale Li
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiewen Chen
- The First Clinical Medical School, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolan Huang
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Su
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
| | - Lian Gu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Marta-Enguita J, Machado FJD, Orbe J, Muñoz R. Thrombus composition and its implication in ischemic stroke assessment and revascularization treatments. Neurologia 2024:S2173-5808(24)00086-5. [PMID: 39716574 DOI: 10.1016/j.nrleng.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/01/2022] [Indexed: 12/25/2024] Open
Abstract
INTRODUCTION Since mechanical thrombectomy has allowed ischaemic stroke thrombus retrieval, the exhaustive study of this material has enabled better understanding of the potential physiopathological processes involved in thrombus formation. DEVELOPMENT Thrombotic pathways involved in the different vascular beds share common mechanisms, causing difficulties in the identification of specific patterns associated with stroke aetiology. However, other factors such as clot formation time, associated inflammatory status, or activation of additional immune and coagulation pathways (neutrophil extracellular trap [NET] delivery, platelet aggregation, endothelial activation, and von Willebrand Factor release) have been described as determinants in thrombus characteristics. Thus, variable proportions of fibrin-/platelet-rich and erythrocyte-rich areas are closely interrelated within the thrombus, frequently associated with a protective outer shell with high concentrations of fibrin, NETs, and von Willebrand Factor. The presence of these components, as well as their distribution and interrelationships, have been shown to have effects on the thrombus' resistance to revascularisation treatments. Understanding of these pathways has enabled the development of adjuvant therapies capable of enhancing current fibrinolytic drugs and/or increasing the efficacy of endovascular treatments. CONCLUSION Understanding of thrombus components and mechanisms involved in thrombus formation represent a potential pathway for the development of ischaemic stroke therapeutics with promising perspectives.
Collapse
Affiliation(s)
- Juan Marta-Enguita
- Servicio de Neurología, Hospital Universitario Navarra, Pamplona, Navarra, Spain; Servicio de Neurología, Hospital Universitario Donostia, San Sebastián, Guipúzcoa, Spain; Laboratorio Aterotrombosis, CIMA-Universidad de Navarra, IdiSNA, Pamplona, Navarra, Spain; RICORS-ICTUS, ISCIII, Madrid, Spain.
| | - Florencio J D Machado
- Laboratorio Aterotrombosis, CIMA-Universidad de Navarra, IdiSNA, Pamplona, Navarra, Spain
| | - Josune Orbe
- Laboratorio Aterotrombosis, CIMA-Universidad de Navarra, IdiSNA, Pamplona, Navarra, Spain; RICORS-ICTUS, ISCIII, Madrid, Spain
| | - Roberto Muñoz
- Servicio de Neurología, Hospital Universitario Navarra, Pamplona, Navarra, Spain; RICORS-ICTUS, ISCIII, Madrid, Spain
| |
Collapse
|
5
|
Du X, Qi Z, Li Y, Wu S, Zhang F, Li Z, Chen J. Guhong injection attenuates brain injury and promotes neuroprotection after acute ischemic stroke. J Neuroimmunol 2024; 399:578515. [PMID: 39693770 DOI: 10.1016/j.jneuroim.2024.578515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/24/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND AND OBJECTIVES Guhong injection (GHI) has multiple components and generates diverse effects, and is mainly used in the treatment of acute ischemic stroke (AIS). The purpose of this study is to explore the multiple effects of GHI in AIS models in mice and the mechanism how they work together to affect the stroke outcome. METHODS Middle cerebral artery occlusion (MCAO) and photothrombotic stroke models were established with GHI or vehicle. Neurological function assessment including the Modified Neurological Severity Score (mNSS) and rota-rod test, and relative cerebral blood flow were monitored at day 1 and day 3 after model establishment. Flow cytometry, 2, 3, 5-Triphenyltetrazolium chloride (TTC) staining, histology and immunofluorescence, Western blotting (WB) assay were performed at day 3. RESULTS The mean mNSS score was lower and the latency to falling off the rota-rod was prolonged at day 3 in the GHI group. GHI reduced the relative infarct volume and increased the relative cerebral blood flow. The histopathological damage of ischemic core was significantly ameliorated in the GHI group. GHI decreased the Caspase-3+ cells and increased the MAP-2+ and Claudin-5+ cells. GHI increased the expression of Bcl-2 and the ratio of Bcl-2/Bax, and decreased the expression levels of Bax, Caspase-3 and Cleaved-Caspased-3. GHI reduced the microglia, decreased the IL-6 positive cells, TNF-α positive cells and increased TGF-β1 positive cells. CONCLUSIONS GHI alleviated brain injury and neurological deficits through improving cerebral blood circulation, attenuating neuronal apoptosis, reducing the disruption of blood-brain barrier (BBB) and decreasing neuroinflammation in MCAO and photothrombotic stroke models in mice. GHI has certain neuroprotective function to be applied to clinical use.
Collapse
Affiliation(s)
- Xiaoshan Du
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhihui Qi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yulin Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Siting Wu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fang Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhiguo Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingshan Chen
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
6
|
Song M, Zeng Q, Ding X. Hypoxia-Responsive Self-Assembling Nanoparticles Based on an Amphiphilic Copolymer for Targeted Delivery of Tissue Plasminogen Activator in Acute Mesenteric Ischemia Therapy. ACS APPLIED NANO MATERIALS 2024; 7:27400-27407. [DOI: 10.1021/acsanm.4c05408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Affiliation(s)
- Mingze Song
- Nanchang University Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, P. R. China
| | - Qiongrong Zeng
- Department of Gastroenterology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning 530028, P. R. China
| | - Xingwei Ding
- Nanchang University Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, P. R. China
| |
Collapse
|
7
|
Lu M, Xue J, Wang Y, Chen D, Cao Y, Zhong C, Zhang X. The Joint Effect of Renal Function Status and Coagulation Biomarkers on In-Hospital Outcomes in Acute Ischemic Stroke Patients With Intravenous Thrombolysis. Immun Inflamm Dis 2024; 12:e70099. [PMID: 39660934 PMCID: PMC11633047 DOI: 10.1002/iid3.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/24/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE To demonstrate whether combining renal function status [estimating glomerular filtration rate (eGFR)] with coagulation biomarkers [fibrinogen (Fg) and d-dimer] is more beneficial in predicting in-hospital outcomes following intravenous thrombolysis (IVT) in acute ischemic stroke (AIS) patients. METHODS We studied 417 AIS patients with IVT. According to the cut-offs of coagulation biomarkers (Fg and d-dimer) and eGFR determined by receiver operating characteristic (ROC) curves, the patients were divided into four groups: LFLG (low Fg and low eGFR), LFHG (low Fg and high eGFR), HFLG (high Fg and low eGFR), and HFHG (high Fg and high eGFR); or LDLG (low d-dimer and low eGFR), LDHG (low d-dimer and high eGFR), HDLG (high d-dimer and low eGFR), and HDHG (high d-dimer and high eGFR). Logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for poor outcomes at discharge and post-stroke pneumonia across the four groups. RESULTS The patients in the HFLG and HDLG groups had the poorest prognosis at discharge and the highest risk of in-hospital pneumonia. They experienced 3.00 or 4.59 times higher risk of in-hospital pneumonia than those in the LFHG and LDHG groups (95%CI: 1.07-8.44, p < 0.05; 95%CI: 1.58-13.32, p = 0.005). Similarly, the risk of adverse outcome at discharge was 3.02 and 1.52 times higher in HFLG and HDLG groups (95%CI: 1.63-9.91, p < 0.005; 95%CI: 1.11-5.74, p < 0.05) compared to that in LFHG and LDHG groups. Adding eGFR and Fg or d-dimer to the risk model improved the risk reclassification for in-hospital pneumonia and functional outcomes at discharge. CONCLUSION Combining renal function status and coagulation biomarkers within 4.5 h after onset could better predict in-hospital outcomes of AIS patients with IVT.
Collapse
Affiliation(s)
- Manli Lu
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Junwen Xue
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yi Wang
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Dongqin Chen
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yongjun Cao
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Chongke Zhong
- Department of EpidemiologySchool of Public Health, Medical College of Soochow UniversitySuzhouJiangsuChina
| | - Xia Zhang
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
8
|
Zhao C, Bai X, Wen A, Wang J, Ding Y. The therapeutic effects of salvianolic acids on ischemic stroke: From molecular mechanisms to clinical applications. Pharmacol Res 2024; 210:107527. [PMID: 39615615 DOI: 10.1016/j.phrs.2024.107527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Ischemic stroke (IS), primarily caused by cerebrovascular occlusion, poses a significant public health challenge with limited effective therapeutic options. Evidence suggests that salvianolic acids (SAs), mainly from Salvia miltiorrhiza Bunge, have been formulated into injections and are widely used in clinical treatments for cardiovascular and cerebrovascular diseases, including stroke. The pharmacological properties of SAs include reducing neuroinflammation, alleviating oxidative stress injury, inhibiting cellular apoptosis, preserving endothelial function, maintaining blood-brain barrier integrity, and promoting angiogenesis. Salvianolic acids for injection (SAFI) serve as a safe and effective treatment option for cardiovascular and cerebrovascular conditions by influencing various signaling pathways and molecular targets associated with these diseases. In this review, we first discuss the pathogenesis of IS, then summarize the classification of SAs, elaborate detailed molecular mechanisms of their efficacy, and the related clinical applications of SAFI. We also emphasize the recent pharmacological advancements and therapeutic possibilities of this promising drug preparation derived from herbs for cerebrovascular conditions.
Collapse
Key Words
- Caffeic acid (PubChem CID 689043)
- Clinical applications
- Danshensu (PubChem CID 11600642)
- Ischemic stroke
- Lithospermic acid (PubChem CID 6441498)
- Molecular mechanisms
- Pathogenesis
- Protocatechualdehyde (PubChem CID 8768)
- Protocatechuic acid (PubChem CID 72)
- Rosmarinic acid (PubChem CID 5281792)
- Salvia miltiorrhiza
- Salvianolic acids
- Salvianolic acids A, B, C, D, E, and Y (PubChem CIDs 5281793, 11629084, 13991590, 75412558, 86278266, 97182154)
Collapse
Affiliation(s)
- Chao Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaodan Bai
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710021, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
9
|
Zhang Y, Zhu Z, Li Z, Feng J, Long J, Deng Y, Ahmed W, Khan AA, Huang S, Fu Q, Chen L. Sbno1 mediates cell-cell communication between neural stem cells and microglia through small extracellular vesicles. Cell Biosci 2024; 14:125. [PMID: 39343943 PMCID: PMC11441009 DOI: 10.1186/s13578-024-01296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Neural stem cells (NSCs) play a crucial role in the progress of ischemic stroke. Research on zebrafish embryonic demonstrates an association between Strawberry Notch 1 (Sbno1) and central nervous system development. However, the regulation and underlying mechanism of Sbno1 in NSCs have not been studied yet. Here, we investigated the role and the mechanism of Sbno1 in NSCs development and the potential therapeutic value of Sbno1 in ischemic stroke. METHODS Adeno-associated virus (AAV) was used for overexpression or knockdown of Sbno1 in vitro or in vivo. A mouse model of MCAO was established to evaluate the neuroprotective effects of AAV-Sbno1, including balance beam test, rotarod test, and strength evaluation. H&E and immunofluorescence assessed neuronal impairment. Western blot and RT-qPCR were used to detect the expression of Sbno1 and its downstream target genes. RNA-seq and western blot were performed to explore further molecular mechanisms by which Sbno1 promoted endogenous repair of NSCs and macrophages M2 polarization. CCK8 was conducted to assess the effects of Sbno1 on NSCs proliferation. The impact of Sbno1 on NSCs apoptosis was evaluated by flow cytometry. NSCs derived from small extracellular vesicles (sEV) were obtained using ultracentrifugation and identified through nanoparticle tracking analysis (NTA) and western blot analysis. RESULTS Our results showed that Sbno1 is highly expressed in the central nervous system, which plays a crucial role in regulating the proliferation of NSCs through the PI3k-Akt-GSK3β-Wnt/β-catenin signaling pathway. In addition, with overexpression of Sbno1 in the hippocampus, post-stroke behavioral scores were superior to the wild-type mice, and immunofluorescence staining revealed an increased number of newly generated neurons. sEV released by NSCs overexpressing Sbno1 inhibited neuroinflammation, which mechanistically impaired the activation of the microglial NF-κB and MAPK signaling pathways. CONCLUSIONS Our studies indicate that sbno1 promotes the proliferation of NSCs and enhances endogenous repairing through the PI3k-Akt-GSK3β-Wnt/β-catenin signaling pathway. Additionally, NSCs overexpressing sbno1 improve ischemic stroke recovery and inhibit neuroinflammation after ischemia by sEV through the MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Zhihan Zhu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Zhinuo Li
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Jia Feng
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Jun Long
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Yushu Deng
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Waqas Ahmed
- Department of Neurology, Zhongda Hospital Southeast University, Nanjing, China
| | - Ahsan Ali Khan
- Department of Neurosurgery, The Aga Khan University, Karachi, Pakistan
| | - Shiying Huang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Zhao C, Bai X, Ding Y, Wen A, Fu Q. Combining systems pharmacology, metabolomics, and transcriptomics to reveal the mechanism of Salvia miltiorrhiza-Cortex moutan herb pair for the treatment of ischemic stroke. Front Pharmacol 2024; 15:1431692. [PMID: 39314757 PMCID: PMC11417465 DOI: 10.3389/fphar.2024.1431692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Ischemic stroke (IS), predominantly triggered by blockages in cerebral blood flow, is increasingly recognized as a critical public health issue. The combination of Salvia miltiorrhiza (SM) and Cortex moutan (CM), traditional herbs in Eastern medicine, are frequently used for managing heart and brain vascular conditions. However, the exact mechanisms by which this herb pair (SC) combats IS remain largely unexplored. This investigation focuses on pinpointing the active constituents in SC that contribute to its protective role and deciphering the mechanisms countering cerebral ischemia, particularly in a middle cerebral artery occlusion (MCAO) rat model. We employed UPLC-Q-TOF-MS/MS alongside network pharmacology for predicting SC's target actions against IS. Key ingredients were examined for their interaction with principal targets using molecular docking. The therapeutic impact was gauged through H&E, TUNEL, and Nissl staining, complemented by transcriptomic and metabolomic integration for mechanistic insights, with vital genes confirmed via western blot. UPLC-Q-TOF-MS/MS analysis revealed that the main components of SC included benzoylpaeoniflorin, salvianolic acid B, oxypaeoniflora, salvianolic acid A, and others. Network pharmacology analysis indicated that SC's mechanism in treating IS primarily involves inflammation, angiogenesis, and cell apoptosis-related pathways, potentially through targets such as AKT1, TNF, PTGS2, MMP9, PIK3CA, and VEGFA. Molecular docking underscored strong affinities between these constituents and their targets. Our empirical studies indicated SC's significant role in enhancing neuroprotection in IS, with transcriptomics suggesting the involvement of the VEGFA/PI3K/AKT pathway and metabolomics revealing improvements in various metabolic processes, including amino acids, glycerophospholipids, sphingomyelin, and fatty acids metabolisms.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xiaodan Bai
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Qiang Fu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
- Department of Pharmaceutical Analysis, College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
11
|
Zhang M, Liu R, Wang Y, Zhu X, Wang Z, Li X, Zheng L. Safety, tolerability, and pharmacokinetic of HY0721 in Chinese healthy subjects: A first-in-human randomized, double-blind, placebo-controlled dose escalation phase I study. Eur J Pharm Sci 2024; 200:106832. [PMID: 38878907 DOI: 10.1016/j.ejps.2024.106832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND HY0721 is a novel inhibitor of sulfonylurea receptor 1-transient receptor potential melastatin 4 (SUR1-TRPM4) for the treatment of acute ischemic stroke. This study aimed to evaluate the safety, tolerability, and pharmacokinetic (PK) profiles of single and multiple intravenous administration of HY0721 in Chinese healthy subjects. METHODS The study enrolled 48 and 30 healthy volunteers in the single-ascending dose (SAD) cohort (20, 60, 120, 240, and 320 mg) and multiple-ascending dose (MAD) cohort (60, 120, and 160 mg/bid), respectively, to receive the corresponding dosage of HY0721 or placebo. Safety monitoring included but was not limited to recording adverse events (AEs), vital signs, electrocardiograms, and laboratory tests. The blood samples were collected from subjects to determine the concentrations of HY0721 for PK evaluation. RESULTS The administration of HY0721 showed good safety and tolerability up to 320 mg in the SAD study and up to 160 mg twice daily in the MAD study. The most common AE was injection site reaction, and no AE led to discontinuation of administration or subject dropout. The exposures of HY0721 increased greater than dose proportional manner at the dosages of 20 to 320 mg in the SAD study. A linear PK profile was observed following multiple doses ranging from 60 to 160 mg twice daily, with no evidence of accumulation. Additionally, the human effective dose of HY0721 was estimated to be 120 mg. CONCLUSION This study demonstrated the intravenous administration of HY0721 is safe and well-tolerated in Chinese healthy subjects and provided 60 to 160 mg b.i.d. as the recommended dosing range for further clinical trials. TRIAL REGISTRATION ChinaDrugTrials.Org.cn; No. CTR20202604, 18 December 2020.
Collapse
Affiliation(s)
- Mengyu Zhang
- Department of Neurology, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; Clinical Trial Center, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China
| | - Runhan Liu
- Department of Neurology, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; Clinical Trial Center, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China
| | - Ying Wang
- Department of Neurology, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; Clinical Trial Center, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China
| | - Xiaohong Zhu
- Department of Neurology, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; Clinical Trial Center, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China
| | - Zhenlei Wang
- Department of Neurology, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; Clinical Trial Center, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China
| | - Xiaoyu Li
- Department of Neurology, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; Clinical Trial Center, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China
| | - Li Zheng
- Department of Neurology, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; Clinical Trial Center, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
12
|
Zhou B, Mui LG. Effect of comprehensive nursing on swallowing function and quality of life in patients with ischemic stroke. World J Clin Cases 2024; 12:3657-3661. [PMID: 38994308 PMCID: PMC11235462 DOI: 10.12998/wjcc.v12.i19.3657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024] Open
Abstract
Hu et al explored the impact of comprehensive nursing model on swallowing function and quality of life in patients with ischemic stroke. They divided 172 patients into the control group (routine care) and the research group (comprehensive care), and used standard scales to evaluate the swallowing function, neurological deficit, anxiety and depression, daily living ability, and exercise of the two groups of patients before and after care. Changes in indicators of function, quality of life, and compliance. The results showed that compared with the control group, patients in the study group achieved significant improvements in various indicators, with a lower incidence of adverse reactions and higher satisfaction with care. These data suggest that the comprehensive nursing model can significantly improve the swallowing function, quality of life and satisfaction of patients with ischemic stroke. In the future, the development of comprehensive nursing models needs to focus on technological innovation, humanized services, continuing education and training, multi-disciplinary collaboration, optimal allocation of resources, standardized practice and evaluation, etc., in order to improve nursing effects and promote the improvement of medical service quality.
Collapse
Affiliation(s)
- Bo Zhou
- Doctoral Student of Medicine, Bioscience and Nursing, Mahsa University, Selangor 42600, Malaysia
| | - Lim Gek Mui
- Department of Nursing, Mahsa University, Selangor 42600, Malaysia
| |
Collapse
|
13
|
Huang Y, Han Z, Shen T, Zheng Y, Yang Z, Fan J, Wang R, Yan F, Tao Z, Luo Y, Liu P. Neutrophil migration participates in the side effect of recombinant human tissue plasminogen activator. CNS Neurosci Ther 2024; 30:e14825. [PMID: 38954749 PMCID: PMC11218914 DOI: 10.1111/cns.14825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 07/04/2024] Open
Abstract
AIMS Ischemic stroke remains a challenge in medical research because of the limited treatment options. Recombinant human tissue plasminogen activator (rtPA) is the primary treatment for recanalization. However, nearly 50% of the patients experience complications that result in ineffective reperfusion. The precise factors contributing to ineffective reperfusion remain unclear; however, recent studies have suggested that immune cells, notably neutrophils, may influence the outcome of rtPA thrombolysis via mechanisms such as the formation of neutrophil extracellular traps. This study aimed to explore the nonthrombolytic effects of rtPA on neutrophils and highlight their contribution to ineffective reperfusion. METHODS We evaluated the effects of rtPA treatment on middle cerebral artery occlusion in rats. We also assessed neutrophil infiltration and activation after rtPA treatment in vitro and in vivo in a small cohort of patients with massive cerebral ischemia (MCI). RESULTS rtPA increased neutrophil infiltration into the brain microvessels and worsened blood-brain barrier damage during ischemia. It also increased the neutrophil counts of the patients with MCI. CONCLUSION Neutrophils play a crucial role in promoting ischemic injury and blood-brain barrier disruption, making them potential therapeutic targets.
Collapse
Affiliation(s)
- Yuyou Huang
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Ziping Han
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Tong Shen
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yangmin Zheng
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Zhenhong Yang
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Junfen Fan
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Rongliang Wang
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Feng Yan
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Zhen Tao
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yumin Luo
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Institute for Brain Disorders, Capital Medical UniversityBeijingChina
| | - Ping Liu
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| |
Collapse
|
14
|
Uekawa K, Anfray A, Ahn SJ, Casey N, Seo J, Zhou P, Iadecola C, Park L. tPA supplementation preserves neurovascular and cognitive function in Tg2576 mice. Alzheimers Dement 2024; 20:4572-4582. [PMID: 38899570 PMCID: PMC11247712 DOI: 10.1002/alz.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Amyloid beta (Aβ) impairs the cerebral blood flow (CBF) increase induced by neural activity (functional hyperemia). Tissue plasminogen activator (tPA) is required for functional hyperemia, and in mouse models of Aβ accumulation tPA deficiency contributes to neurovascular and cognitive impairment. However, it remains unknown if tPA supplementation can rescue Aβ-induced neurovascular and cognitive dysfunction. METHODS Tg2576 mice and wild-type littermates received intranasal tPA (0.8 mg/kg/day) or vehicle 5 days a week starting at 11 to 12 months of age and were assessed 3 months later. RESULTS Treatment of Tg2576 mice with tPA restored resting CBF, prevented the attenuation in functional hyperemia, and improved nesting behavior. These effects were associated with reduced cerebral atrophy and cerebral amyloid angiopathy, but not parenchymal amyloid. DISCUSSION These findings highlight the key role of tPA deficiency in the neurovascular and cognitive dysfunction associated with amyloid pathology, and suggest potential therapeutic strategies involving tPA reconstitution. HIGHLIGHTS Amyloid beta (Aβ) induces neurovascular dysfunction and impairs the increase of cerebral blood flow induced by neural activity (functional hyperemia). Tissue plasminogen activator (tPA) deficiency contributes to the neurovascular and cognitive dysfunction caused by Aβ. In mice with florid amyloid pathology intranasal administration of tPA rescues the neurovascular and cognitive dysfunction and reduces brain atrophy and cerebral amyloid angiopathy. tPA deficiency plays a crucial role in neurovascular and cognitive dysfunction induced by Aβ and tPA reconstitution may be of therapeutic value.
Collapse
Affiliation(s)
- Ken Uekawa
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Sung Ji Ahn
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Nicole Casey
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - James Seo
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
15
|
Chen L, Zhang M, Yu L, Huyan M, Zhao M, Deng B, Zhang P. The role of the D-dimer to fibrinogen ratio in the classification of cardioembolism and atherosclerotic stroke. J Clin Neurosci 2024; 125:43-50. [PMID: 38749330 DOI: 10.1016/j.jocn.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 10/24/2024]
Abstract
BACKGROUND The D-dimer-to-fibrinogen ratio (DFR) is a good indicator of thrombus activity in thrombotic diseases, but its clinical role in acute ischaemic stroke (AIS) patients with different etiologies has not been studied. We evaluated the diagnostic value of the DFR for different subtypes of AIS. METHODS We conducted a single-center retrospective study of 269 patients with AIS who were referred to our stroke center within 4.5 h from Jan 2017 to Oct 2019. Coagulation data including DFRs were compared among the different stroke subtypes, and a separate retrospective validation sample was utilized to evaluate the prediction efficiency of the DFR for subtype diagnosis. RESULTS A higher DFR was observed in patients with cardioembolism than in those with large artery atherosclerosis (LAA) (odds ratio (OR) per 0.1 increase of the DFR: 1.49 [1.01-2.18]) after we adjusted for vascular risk factors. The diagnostic value of the DFR for detecting cardioembolism (AUC = 0.722, 95 % CI = 0.623-0.820) exceeded that of isolated D-dimer or fibrinogen. The validation sample (n = 117) further supported the notion that a diagnosis of cardioembolism was more common in patients with a DFR > 0.11 (multivariable risk ratio = 3.11[1.33-7.31], P = 0.009). CONCLUSION High DFRs were associated with cardioembolism in patients with AIS. The utilization of DFR can be beneficial for distinguishing a cardiac embolic source from atherosclerotic stroke.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Minmin Zhang
- Department of Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Longjuan Yu
- Department of Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Meihua Huyan
- Department of Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Ming Zhao
- Department of Neurology, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Benqiang Deng
- Department of Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Ping Zhang
- Department of Neurology, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China.
| |
Collapse
|
16
|
Duan Z, Chen H, Miao W, He J, Xu D, Qi Z, Yang L, Jia W, Wu C. Scutellarin alleviates microglia-mediated neuroinflammation and apoptosis after ischemic stroke through the PI3K/AKT/GSK3 β signaling pathway. J Cell Commun Signal 2024; 18:e12023. [PMID: 38946727 PMCID: PMC11208122 DOI: 10.1002/ccs3.12023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/13/2024] [Accepted: 03/09/2024] [Indexed: 07/02/2024] Open
Abstract
Microglia are resident immune cells in the central nervous system that are rapidly activated to mediate neuroinflammation and apoptosis, thereby aggravating brain tissue damage after ischemic stroke (IS). Although scutellarin has a specific therapeutic effect on IS, the potential target mechanism of its treatment has not been fully elucidated. In this study, we explored the potential mechanism of scutellarin in treating IS using network pharmacology. Lipopolysaccharide (LPS) was used to induce an in vitro BV-2 microglial cell model, while middle cerebral artery occlusion (MCAO) was used to induce an in vivo animal model. Our findings indicated that scutellarin promoted the recovery of cerebral blood flow in MCAO rats at 3 days, significantly different from that in the MCAO group. Western blotting and immunofluorescence revealed that scutellarin treatment of BV-2 microglial cells resulted in a significant reduction in the protein expression levels and incidence of cells immunopositive for p-NF-κB, TNF-α, IL-1β, Bax, and C-caspase-3. In contrast, the expression levels of p-PI3K, p-AKT, p-GSK3β, and Bcl-2 were further increased, significantly different from those in the LPS group. The PI3K inhibitor LY294002 had similar effects to scutellarin by inhibiting neuroinflammation and apoptosis in activated microglia. The results of the PI3K/AKT/GSK3β signaling pathway and NF-κB pathway in vivo in MCAO models induced microglia at 3 days were consistent with those obtained from in vitro cells. These findings indicate that scutellarin plays a neuroprotective role by reducing microglial neuroinflammation and apoptosis mediated by the activated PI3K/AKT/GSK3β/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhaoda Duan
- Department of Anatomy and Histology/EmbryologyFaculty of Basic Medical SciencesKunming Medical UniversityKunmingChina
| | - Haolun Chen
- Department of Anatomy and Histology/EmbryologyFaculty of Basic Medical SciencesKunming Medical UniversityKunmingChina
| | - Wei Miao
- Department of NeurologyThe Second Affiliated HospitalKunming Medical UniversityKunmingChina
| | - Jing He
- Department of NeurologyThe Second Affiliated HospitalKunming Medical UniversityKunmingChina
| | - Dongyao Xu
- Department of Anatomy and Histology/EmbryologyFaculty of Basic Medical SciencesKunming Medical UniversityKunmingChina
| | - Zhi Qi
- Department of NeurologyThe Second Affiliated HospitalKunming Medical UniversityKunmingChina
| | - Li Yang
- Department of Anatomy and Histology/EmbryologyFaculty of Basic Medical SciencesKunming Medical UniversityKunmingChina
| | - Wenji Jia
- Department of NeurologyThe Second Affiliated HospitalKunming Medical UniversityKunmingChina
| | - Chunyun Wu
- Department of Anatomy and Histology/EmbryologyFaculty of Basic Medical SciencesKunming Medical UniversityKunmingChina
| |
Collapse
|
17
|
Hu HF, Sang YF, Xiao YQ. Effect of comprehensive nursing on the quality of life and swallowing function in individuals diagnosed with ischemic stroke. World J Clin Cases 2024; 12:1406-1415. [PMID: 38576809 PMCID: PMC10989452 DOI: 10.12998/wjcc.v12.i8.1406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Ischemic stroke (IS) is a widely recognized disease characterized by high prevalence, mortality, morbidity, disability, and recurrence rates. It ranks prominently in terms of mortality, constituting 60%-80% of stroke cases. AIM To explore the impact of comprehensive nursing care on the quality of life and swallowing function in individuals diagnosed with IS. METHODS This study comprised 172 patients with IS admitted to our hospital between February 2018 to March 2021. The participants were divided into two groups, namely the control group (n = 80) receiving routine care and the research group (n = 92) receiving comprehensive care. Various assessment scales, including the standard swallowing function assessment scale (SSA), National Institutes of Health Stroke scale (NIHSS), European stroke scale (ESS), self-rating anxiety scale (SAS), self-rating depression scale (SDS), Barthel index (BI), and the motor function assessment scale (MAS), were employed to evaluate the improvement in swallowing function, neurological deficits, clinical outcomes, anxiety, depression, daily living activities, and motor function before and after care. Furthermore, the study compared the occurrence of adverse reactions during the nursing period, life quality before and after the intervention, rehabilitation compliance, and nursing satisfaction between the two groups. RESULTS After the nursing intervention, the research group exhibited significantly improved SSA and NIHSS scores compared to the control group (P < 0.05). Moreover, both groups demonstrated significant reductions in SAS and SDS scores (P < 0.05), with the research group showing more obvious advantages (P < 0.05). Compared to the control group, the research group displayed significantly better ESS, BI, and MAS scores (P < 0.05), coupled with a lower incidence of adverse reactions (P < 0.05). Additionally, the research group demonstrated markedly higher levels of life quality, rehabilitation compliance, and nursing satisfaction compared to the control group (P < 0.05). CONCLUSION Comprehensive nursing effectively improved swallowing function, quality of life, and patient satisfaction, highlighting its clinical significance.
Collapse
Affiliation(s)
- Heng-Fen Hu
- Medical School, Hunan Vocational and Technical College of Environmental Biology, Hengyang 421005, Hunan Province, China
| | - Yu-Fei Sang
- Medical Team, The Unit 95246 Of Chinese People’s Liberation Army, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Yan-Qing Xiao
- Department of Gynecology and Obstetrics, Hengyang Maternal and Child Health Hospital, Hengyang 421001, Hunan Province, China
| |
Collapse
|
18
|
Zdyrski C, Gabriel V, Gessler TB, Ralston A, Sifuentes-Romero I, Kundu D, Honold S, Wickham H, Topping NE, Sahoo DK, Bista B, Tamplin J, Ospina O, Piñeyro P, Arriaga M, Galan JA, Meyerholz DK, Allenspach K, Mochel JP, Valenzuela N. Establishment and characterization of turtle liver organoids provides a potential model to decode their unique adaptations. Commun Biol 2024; 7:218. [PMID: 38388772 PMCID: PMC10883927 DOI: 10.1038/s42003-024-05818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024] Open
Abstract
Painted turtles are remarkable for their freeze tolerance and supercooling ability along with their associated resilience to hypoxia/anoxia and oxidative stress, rendering them an ideal biomedical model for hypoxia-induced injuries (including strokes), tissue cooling during surgeries, and organ cryopreservation. Yet, such research is hindered by their seasonal reproduction and slow maturation. Here we developed and characterized adult stem cell-derived turtle liver organoids (3D self-assembled in vitro structures) from painted, snapping, and spiny softshell turtles spanning ~175My of evolution, with a subset cryopreserved. This development is, to the best of our knowledge, a first for this vertebrate Order, and complements the only other non-avian reptile organoids from snake venom glands. Preliminary characterization, including morphological, transcriptomic, and proteomic analyses, revealed organoids enriched in cholangiocytes. Deriving organoids from distant turtles and life stages demonstrates that our techniques are broadly applicable to chelonians, permitting the development of functional genomic tools currently lacking in herpetological research. Such platform could potentially support studies including genome-to-phenome mapping, gene function, genome architecture, and adaptive responses to climate change, with implications for ecological, evolutionary, and biomedical research.
Collapse
Affiliation(s)
- Christopher Zdyrski
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA.
- 3D Health Solutions Inc., Ames, IA, USA.
- SMART Pharmacology, Precision One Health Initiative, University of Georgia, Athens, GA, USA.
| | - Vojtech Gabriel
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Thea B Gessler
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Itzel Sifuentes-Romero
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Debosmita Kundu
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Sydney Honold
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Hannah Wickham
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Nicholas E Topping
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | - Basanta Bista
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jeffrey Tamplin
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA
| | - Oscar Ospina
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Pablo Piñeyro
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA, USA
| | - Marco Arriaga
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Jacob A Galan
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | | | - Karin Allenspach
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- 3D Health Solutions Inc., Ames, IA, USA
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
- SMART Pharmacology, Precision One Health Initiative, University of Georgia, Athens, GA, USA
| | - Jonathan P Mochel
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- 3D Health Solutions Inc., Ames, IA, USA
- SMART Pharmacology, Precision One Health Initiative, University of Georgia, Athens, GA, USA
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
19
|
Coppi E, Cherchi F, Gibb AJ. Adenosine A 2A receptor blockade attenuates excitotoxicity in rat striatal medium spiny neurons during an ischemic-like insult. Neural Regen Res 2024; 19:255-257. [PMID: 37488874 PMCID: PMC10503621 DOI: 10.4103/1673-5374.375309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 05/13/2023] [Indexed: 07/26/2023] Open
Abstract
During brain ischemia, excitotoxicity and peri-infarct depolarization injuries occur and cause cerebral tissue damage. Indeed, anoxic depolarization, consisting of massive neuronal depolarization due to the loss of membrane ion gradients, occurs in vivo or in vitro during an energy failure. The neuromodulator adenosine is released in huge amounts during cerebral ischemia and exerts its effects by activating specific metabotropic receptors, namely: A1, A2A, A2B, and A3. The A2A receptor subtype is highly expressed in striatal medium spiny neurons, which are particularly susceptible to ischemic damage. Evidence indicates that the A2A receptors are upregulated in the rat striatum after stroke and the selective antagonist SCH58261 protects from exaggerated glutamate release within the first 4 hours from the insult and alleviates neurological impairment and histological injury in the following 24 hours. We recently added new knowledge to the mechanisms by which the adenosine A2A receptor subtype participates in ischemia-induced neuronal death by performing patch-clamp recordings from medium spiny neurons in rat striatal brain slices exposed to oxygen and glucose deprivation. We demonstrated that the selective block of A2A receptors by SCH58261 significantly reduced ionic imbalance and delayed the anoxic depolarization in medium spiny neurons during oxygen and glucose deprivation and that the mechanism involves voltage-gated K+ channel modulation and a presynaptic inhibition of glutamate release by the A2A receptor antagonist. The present review summarizes the latest findings in the literature about the possibility of developing selective ligands of A2A receptors as advantageous therapeutic tools that may contribute to counteracting neurodegeneration after brain ischemia.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Alasdair J. Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
20
|
Xu G, Dong F, Su L, Tan ZX, Lei M, Li L, Wen D, Zhang F. The role and therapeutic potential of nuclear factor κB (NF-κB) in ischemic stroke. Biomed Pharmacother 2024; 171:116140. [PMID: 38211425 DOI: 10.1016/j.biopha.2024.116140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Stroke is a prevalent cerebrovascular condition with a global impact, causing significant rates of illness and death. Despite extensive research, the available treatment options for stroke remain restricted. Hence, it is crucial to gain a deeper understanding of the molecular mechanisms associated with the onset and advancement of stroke in order to establish a theoretical foundation for novel preventive and therapeutic approaches. NF-κB, also known as nuclear factor κB, is a transcription factor responsible for controlling the expression of numerous genes and plays a crucial role in diverse physiological processes. NF-κB is triggered and regulates neuroinflammation and other processes after stroke, promoting the generation of cytokine storms and contributing to the advancement of ischemic stroke (IS). Therefore, NF-κB could potentially play a vital role in stroke by regulating diverse pathophysiological processes. This review provides an overview of the functions of NF-κB in stroke and its governing mechanisms. In addition, our attention is directed towards various potential therapies that aim to inhibit the NF-κB signaling pathway in order to offer valuable insights for the advancement of innovative treatment approaches for stroke.
Collapse
Affiliation(s)
- Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lei Su
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lina Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, PR China.
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
21
|
Sienel RI, Mamrak U, Biller J, Roth S, Zellner A, Parakaw T, Khambata RS, Liesz A, Haffner C, Ahluwalia A, Seker BF, Plesnila N. Inhaled nitric oxide suppresses neuroinflammation in experimental ischemic stroke. J Neuroinflammation 2023; 20:301. [PMID: 38102677 PMCID: PMC10725028 DOI: 10.1186/s12974-023-02988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Ischemic stroke is a major global health issue and characterized by acute vascular dysfunction and subsequent neuroinflammation. However, the relationship between these processes remains elusive. In the current study, we investigated whether alleviating vascular dysfunction by restoring vascular nitric oxide (NO) reduces post-stroke inflammation. Mice were subjected to experimental stroke and received inhaled NO (iNO; 50 ppm) after reperfusion. iNO normalized vascular cyclic guanosine monophosphate (cGMP) levels, reduced the elevated expression of intercellular adhesion molecule-1 (ICAM-1), and returned leukocyte adhesion to baseline levels. Reduction of vascular pathology significantly reduced the inflammatory cytokines interleukin-1β (Il-1β), interleukin-6 (Il-6), and tumor necrosis factor-α (TNF-α), within the brain parenchyma. These findings suggest that vascular dysfunction is responsible for leukocyte adhesion and that these processes drive parenchymal inflammation. Reversing vascular dysfunction may therefore emerge as a novel approach to diminish neuroinflammation after ischemic stroke and possibly other ischemic disorders.
Collapse
Affiliation(s)
- Rebecca I Sienel
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Uta Mamrak
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Janina Biller
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Stefan Roth
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Andreas Zellner
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Tipparat Parakaw
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rayomand S Khambata
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christof Haffner
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Burcu F Seker
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Klinikum der Universität München and Ludwig Maximilian University (LMU) Munich, Feodor-Lynen Str. 17, 81377, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
22
|
Tao Y, Ma J, Feng Y, Gao C, Wu T, Xia Y, Cheng Z, Zhang Y, Liu T, Hu Y, Tang LV. Tissue-type plasminogen activator (tPA) homozygous Tyr471His mutation associates with thromboembolic disease. MedComm (Beijing) 2023; 4:e392. [PMID: 37808270 PMCID: PMC10556205 DOI: 10.1002/mco2.392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Tissue-type plasminogen activator (tPA) encoded by PLAT is a major mediator that promotes fibrinolysis and prevents thrombosis. Pathogenetic mutations in PLAT associated with venous thromboembolism have rarely been reported. Here, we report the first case of a homozygous point mutation c.1411T>C (p.Y471H) in PLAT leading to thromboembolic events and conduct related functional studies. The corresponding tPA mutant protein (tPA-Y471H) and wild-type tPA (tPA-WT) were synthesized in vitro, and mutant mice (PLATH/H mice) were constructed. The molecular docking and surface plasmon resonance results indicated that the mutation impeded the hydrogen-bonding interactions between the protease domain of tPA and the kringle 4 domain of plasminogen, and the binding affinity of tPA and plasminogen was significantly reduced with a difference of one order of magnitude. mRNA half-life assay showed that the half-life of tPA-Y471H was shortened. The inferior vena cava thrombosis model showed that the rate of venous thrombosis in PLATH/H mice was 80% compared with 53% in wild-type mice. Our data suggested a novel role for the protease domain of tPA in efficient plasminogen activation, and demonstrated that this tPA mutation could reduce the fibrinolysis function of the body and lead to an increased propensity for thrombosis.
Collapse
Affiliation(s)
- Yanyi Tao
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jiewen Ma
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanzheng Feng
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chenggang Gao
- Department of Critical Care MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tingting Wu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yunqing Xia
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhipeng Cheng
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yi Zhang
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tingting Liu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Hu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Liang V. Tang
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
23
|
Pereira JF, de Sousa Neves JC, Fonteles AA, Bezerra JR, Pires RC, da Silva ATA, Lima FAV, Neves KRT, Oriá RB, de Barros Viana GS, Tavares J, de Sousa Nascimento T, Oliveira AV, Parente ACB, Gomes JMP, de Andrade GM. Palmatine, a natural alkaloid, attenuates memory deficits and neuroinflammation in mice submitted to permanent focal cerebral ischemia. J Neuroimmunol 2023; 381:578131. [PMID: 37413943 DOI: 10.1016/j.jneuroim.2023.578131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
Ischemic stroke is one of the major causes of human morbidity and mortality. The pathophysiology of ischemic stroke involves complex events, including oxidative stress and inflammation, that lead to neuronal loss and cognitive deficits. Palmatine (PAL) is a naturally occurring (Coptidis rhizome) isoquinoline alkaloid that belongs to the class of protoberberines and has a wide spectrum of pharmacological and biological effects. In the present study, we evaluated the impact of Palmatine on neuronal damage, memory deficits, and inflammatory response in mice submitted to permanent focal cerebral ischemia induced by middle cerebral artery (pMCAO) occlusion. The animals were treated with Palmatine (0.2, 2 and 20 mg/kg/day, orally) or vehicle (3% Tween + saline solution) 2 h after pMCAO once daily for 3 days. Cerebral ischemia was confirmed by evaluating the infarct area (TTC staining) and neurological deficit score 24 h after pMCAO. Treatment with palmatine (2 and 20 mg/kg) reduced infarct size and neurological deficits and prevented working and aversive memory deficits in ischemic mice. Palmatine, at a dose of 2 mg/kg, had a similar effect of reducing neuroinflammation 24 h after cerebral ischemia, decreasing TNF-, iNOS, COX-2, and NF- κB immunoreactivities and preventing the activation of microglia and astrocytes. Moreover, palmatine (2 mg/kg) reduced COX-2, iNOS, and IL-1β immunoreactivity 96 h after pMCAO. The neuroprotective properties of palmatine make it an excellent adjuvant treatment for strokes due to its inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Juliana Fernandes Pereira
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil
| | - Juliana Catharina de Sousa Neves
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Analu Aragão Fonteles
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Jéssica Rabelo Bezerra
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Rayssa Costa Pires
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Ana Thais Araújo da Silva
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Francisco Arnaldo Viana Lima
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Kelly Rose Tavares Neves
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Reinaldo Barreto Oriá
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil
| | - Glauce Socorro de Barros Viana
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Juliete Tavares
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Tyciane de Sousa Nascimento
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Alfaete Vieira Oliveira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Ana Caroline Barros Parente
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Jessica Maria Pessoa Gomes
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Geanne Matos de Andrade
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil.
| |
Collapse
|
24
|
Wei H, Xiao X, Zeng S, Liu Y, Liu X, Zeng T, Xu P, Xia W, Guo L, Hong S, Lv W, Chen Y, Xu R. Alterations in factors associated with diabetic retinopathy combined with thrombosis: A review. Medicine (Baltimore) 2023; 102:e34373. [PMID: 37543800 PMCID: PMC10403020 DOI: 10.1097/md.0000000000034373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/07/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the most common and serious microvascular complications of diabetes mellitus, the incidence of which has been increasing annually, and it is the main cause of vision loss in diabetic patients and a common cause of blindness. It is now found that thrombosis plays a crucial role in the disease progression in DR patients, and the final vision loss in DR may be related to the occurrence of thrombosis in the retinal vessels, which is dominated by abnormal endothelial cell function, together with platelet dysfunction, imbalance of coagulation and fibrinolytic function, and related alterations of inflammatory factors leading to the main cause of thrombotic disease in DR patients. In this review, we examine the role between DR and thrombosis and the association of each factor, including endothelial dysfunction; platelet dysfunction; coagulation-fibrinolytic imbalance; and alterations in inflammatory factors.
Collapse
Affiliation(s)
- Haiyan Wei
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| | - Xiaoping Xiao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, P.R. China
- Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, Gannan Normal University, Ganzhou, P. R. China
| | - Shuqin Zeng
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| | - Ye Liu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| | - Xiaofang Liu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| | - Tianyu Zeng
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| | - Pengxiang Xu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| | - Wenyan Xia
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| | - Li Guo
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| | - Shihua Hong
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| | - Weiming Lv
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| | - Yijian Chen
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| | - Rong Xu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| |
Collapse
|
25
|
Wang H, Li J, Zhang H, Wang M, Xiao L, Wang Y, Cheng Q. Regulation of microglia polarization after cerebral ischemia. Front Cell Neurosci 2023; 17:1182621. [PMID: 37361996 PMCID: PMC10285223 DOI: 10.3389/fncel.2023.1182621] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Stroke ranks second as a leading cause of death and permanent disability globally. Microglia, innate immune cells in the brain, respond rapidly to ischemic injury, triggering a robust and persistent neuroinflammatory reaction throughout the disease's progression. Neuroinflammation plays a critical role in the mechanism of secondary injury in ischemic stroke and is a significant controllable factor. Microglia activation takes on two general phenotypes: the pro-inflammatory M1 type and the anti-inflammatory M2 type, although the reality is more complex. The regulation of microglia phenotype is crucial to controlling the neuroinflammatory response. This review summarized the key molecules and mechanisms of microglia polarization, function, and phenotypic transformation following cerebral ischemia, with a focus on the influence of autophagy on microglia polarization. The goal is to provide a reference for the development of new targets for the treatment for ischemic stroke treatment based on the regulation of microglia polarization.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Jingjing Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Han Zhang
- School of Medicine, Nantong University, Nantong, China
| | - Mengyao Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Lifang Xiao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Yitong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
26
|
Long J, Sun Y, Liu S, Yang S, Chen C, Zhang Z, Chu S, Yang Y, Pei G, Lin M, Yan Q, Yao J, Lin Y, Yi F, Meng L, Tan Y, Ai Q, Chen N. Targeting pyroptosis as a preventive and therapeutic approach for stroke. Cell Death Discov 2023; 9:155. [PMID: 37165005 PMCID: PMC10172388 DOI: 10.1038/s41420-023-01440-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023] Open
Abstract
Stroke has caused tremendous social stress worldwide, yet despite decades of research and development of new stroke drugs, most have failed and rt-PA (Recombinant tissue plasminogen activator) is still the accepted treatment for ischemic stroke. the complexity of the stroke mechanism has led to unsatisfactory efficacy of most drugs in clinical trials, indicating that there are still many gaps in our understanding of stroke. Pyroptosis is a programmed cell death (PCD) with inflammatory properties and are thought to be closely associated with stroke. Pyroptosis is regulated by the GSDMD of the gasdermin family, which when cleaved by Caspase-1/Caspase-11 into N-GSDMD with pore-forming activity can bind to the plasma membrane to form small 10-20 nm pores, which would allow the release of inflammatory factors IL-18 and IL-1β before cell rupture, greatly exacerbating the inflammatory response. The pyroptosis occurs mainly in the border zone of cerebral infarction, and glial cells, neuronal cells and brain microvascular endothelial cells (BMECs) all undergo pyroptosis after stroke, which largely exacerbates the breakdown of the blood-brain barrier (BBB) and thus aggravates brain injury. Therefore, pyroptosis may be a good direction for the treatment of stroke. In this review, we focus on the latest mechanisms of action of pyroptosis and the process by which pyroptosis regulates stroke development. We also suggest potential therapeutic stroke drugs that target the pyroptosis pathway, providing additional therapeutic strategies for the clinical management of stroke. The role of pyroptosis after stroke. After stroke, microglia first rush to the damaged area and polarize into M1 and M2 types. Under the influence of various stimuli, microglia undergo pyroptosis, release pro-inflammatory factors, and are converted to the M1 type; astrocytes and neuronal cells also undergo pyroptosis under the stimulation of various pro-inflammatory factors, leading to astrocyte death due to increased osmotic pressure in the membrane, resulting in water absorption and swelling until rupture. BMECs, the main structural component of the BBB, also undergo pyroptosis when stimulated by pro-inflammatory factors released from microglia and astrocytes, leading to the destruction of the structural integrity of the BBB, ultimately causing more severe brain damage. In addition, GSDMD in neutrophils mainly mediate the release of NETs rather than pyroptosis, which also aggravates brain injury. IL-10=interleukin-10; TGF-β = transforming growth factor-β; IL-18=interleukin-18; IL-1β = interleukin-1β; TNF-α = tumor necrosis factor-α; iNOS=induced nitrogen monoxide synthase; MMPs=Matrix metalloproteinases; GSDMD = gasdermin D; BMECs=brain microvascular endothelial cells; BBB = blood-brain barrier.
Collapse
Affiliation(s)
- Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal & Child Health Care, Changsha, P. R. China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, P. R. China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Gang Pei
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, P. R. China
| | - Lei Meng
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Yong Tan
- Department of Nephrology, Xiangtan Central Hospital, Xiangtan, P. R. China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
27
|
Pegadraju H, Abby Thomas J, Kumar R. Mechanistic and therapeutic role of Drp1 in the pathogenesis of stroke. Gene 2023; 855:147130. [PMID: 36543307 DOI: 10.1016/j.gene.2022.147130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Stroke had emerged as one of the leading causes of death and long-term disability across the globe. Emerging evidence suggests a significant increase in the incidence of stroke with age, which is further expected to increase dramatically owing to an ever-expanding elderly population. The current situation imposes a significant burden on the healthcare system and requires a deeper understanding of the underlying mechanisms and development of novel interventions. It is well established that mitochondrial dysfunction plays a pivotal role in the onset of stroke. Dynamin-related protein 1 (Drp1), is a key regulator of mitochondria fission, and plays a crucial role during the pathogenesis of stroke. Drp1 protein levels significantly increase after stroke potentially in a p38 mitogen-activated protein kinases (MAPK) dependent manner. Protein phosphatase 2A (PP2A) facilitate mitochondrial fission and cell death by dephosphorylating the mitochondrial fission enzyme Drp1 at the inhibitory phosphorylation site serine 637. Outer mitochondrial membrane A-Kinase Anchoring Proteins 1 (AKAP 1) and protein kinase A complex (PKA) complex inhibits Drp1-dependent mitochondrial fission by phosphorylating serine 637. Drp1 activation promotes the release of cytochrome C from mitochondria and therefore leads to apoptosis. In addition, Drp1 activation inhibits mitochondrial glutathione dependent free radical scavenging, which further enhances the ROS level and exacerbate mitochondrial dysfunction. Drp1 translocate p53 to mitochondrial membrane and leads to mitochondria-related necrosis. The current review article discusses the possible mechanistic pathways by which Drp1 can influence the pathogenesis of stroke. Besides, it will describe various inhibitors for Drp1 and their potential role as therapeutics for stroke in the future.
Collapse
Affiliation(s)
- Himaja Pegadraju
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Joshua Abby Thomas
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Rahul Kumar
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India.
| |
Collapse
|
28
|
Sugimoto MA, Perucci LO, Tavares LP, Teixeira MM, Sousa LP. Fibrinolysis in COVID-19: Impact on Clot Lysis and Modulation of Inflammation. Curr Drug Targets 2022; 23:1578-1592. [PMID: 36221881 DOI: 10.2174/1389450123666221011102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
COVID-19 is a multisystem disease caused by SARS-CoV-2 and is associated with an imbalance between the coagulation and fibrinolytic systems. Overall, hypercoagulation, hypofibrinolysis and fibrin-clot resistance to fibrinolysis predispose patients to thrombotic and thromboembolic events. In the lungs, the virus triggers alveolar and interstitial fibrin deposition, endothelial dysfunction, and pulmonary intravascular coagulation, all events intrinsically associated with the activation of inflammation and organ injury. Adding to the pathogenesis of COVID-19, there is a positive feedback loop by which local fibrin deposition in the lungs can fuel inflammation and consequently dysregulates coagulation, a process known as immunothrombosis. Therefore, fibrinolysis plays a central role in maintaining hemostasis and tissue homeostasis during COVID-19 by cleaning fibrin clots and controlling feed-forward products of coagulation. In addition, components of the fibrinolytic system have important immunomodulatory roles, as evidenced by studies showing the contribution of Plasminogen/Plasmin (Plg/Pla) to the resolution of inflammation. Herein, we review clinical evidence for the dysregulation of the fibrinolytic system and discuss its contribution to thrombosis risk and exacerbated inflammation in severe COVID-19. We also discuss the current concept of an interplay between fibrinolysis and inflammation resolution, mirroring the well-known crosstalk between inflammation and coagulation. Finally, we consider the central role of the Plg/Pla system in resolving thromboinflammation, drawing attention to the overlooked consequences of COVID-19-associated fibrinolytic abnormalities to local and systemic inflammation.
Collapse
Affiliation(s)
- Michelle A Sugimoto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Division of Medicine, University College London, London, UK.,Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luiza O Perucci
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Nucleus of Research on Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luciana P Tavares
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Lirlândia P Sousa
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
29
|
Zhang X, Wang Y, Dong B, Jiang Y, Liu D, Xie K, Yu Y. Expression pattern and clinical value of Key RNA methylation modification regulators in ischemic stroke. Front Genet 2022; 13:1009145. [PMID: 36263422 PMCID: PMC9574037 DOI: 10.3389/fgene.2022.1009145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke (IS) is one of the major causes of death and disability worldwide, and effective diagnosis and treatment methods are lacking. RNA methylation, a common epigenetic modification, plays an important role in disease progression. However, little is known about the role of RNA methylation modification in the regulation of IS. The aim of this study was to investigate RNA methylation modification patterns and immune infiltration characteristics in IS through bioinformatics analysis. We downloaded gene expression profiles of control and IS model rat brain tissues from the Gene Expression Omnibus database. IS profiles were divided into two subtypes based on RNA methylation regulators, and functional enrichment analyses were conducted to determine the differentially expressed genes (DEGs) between the subtypes. Weighted gene co-expression network analysis was used to explore co-expression modules and genes based on DEGs. The IS clinical diagnosis model was successfully constructed and four IS characteristic genes (GFAP, GPNMB, FKBP9, and CHMP5) were identified, which were significantly upregulated in IS samples. Characteristic genes were verified by receiver operating characteristic curve and real-time quantitative PCR analyses. The correlation between characteristic genes and infiltrating immune cells was determined by correlation analysis. Furthermore, GPNMB was screened using the protein-protein interaction network, and its regulatory network and the potential therapeutic drug chloroquine were predicted. Our finding describes the expression pattern and clinical value of key RNA methylation modification regulators in IS and novel diagnostic and therapeutic targets of IS from a new perspective.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yuanlin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Beibei Dong
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Dan Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
- *Correspondence: Yonghao Yu,
| |
Collapse
|
30
|
Hu S, Chen Y, Huang S, Liu M, Liu Y, Huang S. Sodium Danshensu protects against oxygen glucose deprivation/reoxygenation-induced astrocytes injury through regulating NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome and tuberous sclerosis complex-2 (TSC2)/mammalian target of rapamycin (mTOR) pathways. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1097. [PMID: 36388798 PMCID: PMC9652549 DOI: 10.21037/atm-22-2143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/31/2022] [Indexed: 09/18/2023]
Abstract
BACKGROUND Cerebral ischemic stroke is a serious condition with high incidence, mortality, and associated disability. Currently, effective therapeutic options are available for ischemic stroke are limited. Accumulating evidence indicates that sodium Danshensu, mono sodium compound derived from Salvia miltiorrhiza, plays protective roles in ischemic stroke. However, the underlying protective mechanism of sodium Danshensu in cerebral ischemic stroke remains unknown. METHODS In the current study, we explored the role and mechanism of sodium Danshensu on astrocytes exposed to oxygen-glucose deprivation/reoxygenation (OGD/R), which mimics the process of ischemia-reperfusion. The impact of sodium Danshensu on cell viability and apoptosis after OGD/R were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-dophenyl tetrazolium bromide (MTT) assay and flow cytometry. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were used to detect the expression of target messenger RNA (mRNA) and proteins associated with apoptosis and autophagy. The release of lactate dehydrogenase (LDH) was determined, and the production of proinflammatory cytokines were detected using enzyme-linked immunosorbent assay (ELISA) kits. RESULTS It was found that sodium Danshensu could significantly increase cell viability and decrease LDH release and apoptosis. Besides, it inhibited the production of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6. Sodium Danshensu also dose-dependently decreased protein and mRNA levels of nucleotide binding oligomerization NOD-like receptor pyrin domain containing 3 (NLRP3) and high mobility group box 1 (HMGB1), which play a crucial role in promoting ischemic stroke-induced cell injury. Moreover, sodium Danshensu dose-dependently upregulated Beclin 1 expression, downregulated P62 protein expression, and further increased LC3B-II/LC3B-I ratio through inducing autophagy in astrocytes. Additionally, we noticed that sodium Danshensu dose-dependently increased tuberous sclerosis complex-2 (TSC2) protein expression, while significantly reduced the levels of mammalian target of rapamycin (mTOR) in the presence of OGD/R insult. CONCLUSIONS These findings suggest that sodium Danshensu protects against OGD/R-induced injury by modulating the NLRP3 inflammasome and TSC2/mTOR pathways.
Collapse
Affiliation(s)
- Shengzhao Hu
- Department of Emergency, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yingli Chen
- Department of Hematology, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Shipeng Huang
- Department of Emergency, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Liu
- Department of Emergency, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Liu
- Department of Emergency, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shaofang Huang
- Department of Emergency, the First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
31
|
Wang D, Ousaka D, Qiao H, Wang Z, Zhao K, Gao S, Liu K, Teshigawara K, Takada K, Nishibori M. Treatment of Marmoset Intracerebral Hemorrhage with Humanized Anti-HMGB1 mAb. Cells 2022; 11:cells11192970. [PMID: 36230933 PMCID: PMC9563572 DOI: 10.3390/cells11192970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is recognized as a severe clinical problem lacking effective treatment. High mobility group box-1 (HMGB1) exhibits inflammatory cytokine-like activity once released into the extracellular space from the nuclei. We previously demonstrated that intravenous injection of rat anti-HMGB1 monoclonal antibody (mAb) remarkably ameliorated brain injury in a rat ICH model. Therefore, we developed a humanized anti-HMGB1 mAb (OKY001) for clinical use. The present study examined whether and how the humanized anti-HMGB1 mAb ameliorates ICH injury in common marmosets. The results show that administration of humanized anti-HMGB1 mAb inhibited HMGB1 release from the brain into plasma, in association with a decrease of 4-hydroxynonenal (4-HNE) accumulation and a decrease in cerebral iron deposition. In addition, humanized anti-HMGB1 mAb treatment resulted in a reduction in brain injury volume at 12 d after ICH induction. Our in vitro experiment showed that recombinant HMGB1 inhibited hemoglobin uptake by macrophages through CD163 in the presence of haptoglobin, suggesting that the release of excess HMGB1 from the brain may induce a delay in hemoglobin scavenging, thereby allowing the toxic effects of hemoglobin, heme, and Fe2+ to persist. Finally, humanized anti-HMGB1 mAb reduced body weight loss and improved behavioral performance after ICH. Taken together, these results suggest that intravenous injection of humanized anti-HMGB1 mAb has potential as a novel therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Dengli Wang
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Daiki Ousaka
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Handong Qiao
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Ziyi Wang
- Research Fellow of Japan Society for the Promotion of Science, Tokyo 1020083, Japan
- Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Kun Zhao
- Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Shangze Gao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Keyue Liu
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Kenzo Takada
- Sapporo Laboratory, EVEC, Inc., Sapporo 0606642, Japan
| | - Masahiro Nishibori
- Department of Translational Research and Drug Development, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
- Correspondence:
| |
Collapse
|
32
|
Cun Y, Jin Y, Wu D, Zhou L, Zhang C, Zhang S, Yang X, Zuhong Wang, Zhang P. Exosome in Crosstalk between Inflammation and Angiogenesis: A Potential Therapeutic Strategy for Stroke. Mediators Inflamm 2022; 2022:7006281. [PMID: 36052309 PMCID: PMC9427301 DOI: 10.1155/2022/7006281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
The endothelial dysfunction, associated with inflammation and vascular permeability, remains the key event in the pathogenesis of cerebral ischemic stroke. Angiogenesis is essential for neuroprotection and neural repair following stroke. The neuroinflammatory reaction plays a vital role in stroke, and inhibition of inflammation contributes to establishing an appropriate external environment for angiogenesis. Exosomes are the heterogeneous population of extracellular vesicles which play critical roles in intercellular communication through transmitting various proteins and nucleic acids to nearby and distant recipient cells by body fluids and circulation. Recent reports have shown that exosomal therapy is a valuable and potential treatment strategy for stroke. In this review, we discussed the exosomes in complex interaction mechanisms of angiogenesis and inflammation following stroke as well as the challenges of exosomal studies such as secretion, uptake, modification, and application.
Collapse
Affiliation(s)
- Yongdan Cun
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Li Zhou
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Chengcai Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Simei Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Xicheng Yang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Zuhong Wang
- Acupuncture Department, Kunming Traditional Chinese Medicine Hospital, Kunming 650500, China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| |
Collapse
|
33
|
Need for a Paradigm Shift in the Treatment of Ischemic Stroke: The Blood-Brain Barrier. Int J Mol Sci 2022; 23:ijms23169486. [PMID: 36012745 PMCID: PMC9409167 DOI: 10.3390/ijms23169486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Blood-brain barrier (BBB) integrity is essential to maintaining brain health. Aging-related alterations could lead to chronic progressive leakiness of the BBB, which is directly correlated with cerebrovascular diseases. Indeed, the BBB breakdown during acute ischemic stroke is critical. It remains unclear, however, whether BBB dysfunction is one of the first events that leads to brain disease or a down-stream consequence. This review will focus on the BBB dysfunction associated with cerebrovascular disease. An added difficulty is its association with the deleterious or reparative effect, which depends on the stroke phase. We will first outline the BBB structure and function. Then, we will focus on the spatiotemporal chronic, slow, and progressive BBB alteration related to ischemic stroke. Finally, we will propose a new perspective on preventive therapeutic strategies associated with brain aging based on targeting specific components of the BBB. Understanding BBB age-evolutions will be beneficial for new drug development and the identification of the best performance window times. This could have a direct impact on clinical translation and personalised medicine.
Collapse
|
34
|
Quan X, Han Y, Lu P, Ding Y, Wang Q, Li Y, Wei J, Huang Q, Wang R, Zhao Y. Annexin V-Modified Platelet-Biomimetic Nanomedicine for Targeted Therapy of Acute Ischemic Stroke. Adv Healthc Mater 2022; 11:e2200416. [PMID: 35708176 DOI: 10.1002/adhm.202200416] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Indexed: 01/24/2023]
Abstract
Thromboembolic stroke is typically characterized by the activation of platelets, resulting in thrombus in the cerebral vascular system, leading to high morbidity and mortality globally. Intravenous thrombolysis by tissue plasminogen activator (tPA) administration within 4.5 h from the onset of symptoms is providing a standard therapeutic strategy for ischemic stroke, but this reagent simultaneously shows potential serious adverse effects, e.g., hemorrhagic transformation. Herein, a novel delivery platform based on Annexin V and platelet membrane is developed for tPA (APLT-PA) to enhance targeting efficiency, therapeutic effects, and reduce the risk of intracerebral hemorrhage in acute ischemic stroke. After preparation by extrusion of platelet membrane and subsequent insertion of Annexin V to liposomes, APLT-PA exhibits a high targeting efficiency to activated platelet in vitro and thrombosis site in vivo, due to the binding to phosphatidylserine (PS) and activated platelet membrane proteins. One dose of APLT-PA leads to obvious thrombolysis and significant improvement of neurological function within 7 days in mice with photochemically induced acute ischemic stroke. This study provides a novel, safe platelet-biomimetic nanomedicine for precise thrombolytic treatment of acute ischemic stroke, and offers new theories for the design and exploitation of cell-mimetic nanomedicine for diverse biomedical applications.
Collapse
Affiliation(s)
- Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Pengde Lu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Yuanfu Ding
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Qingfu Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Jianwen Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Qiaoxian Huang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| |
Collapse
|
35
|
Székely EG, Orbán-Kálmándi R, Szegedi I, Katona É, Baráth B, Czuriga-Kovács KR, Lóczi L, Vasas N, Fekete I, Fekete K, Berényi E, Oláh L, Csiba L, Bagoly Z. Low α2-Plasmin Inhibitor Antigen Levels on Admission Are Associated With More Severe Stroke and Unfavorable Outcomes in Acute Ischemic Stroke Patients Treated With Intravenous Thrombolysis. Front Cardiovasc Med 2022; 9:901286. [PMID: 35911531 PMCID: PMC9334909 DOI: 10.3389/fcvm.2022.901286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/13/2022] [Indexed: 12/03/2022] Open
Abstract
Background Intravenous administration of recombinant tissue plasminogen activator (rt-PA) fails to succeed in a subset of acute ischemic stroke (AIS) patients, while in approximately 6–8% of cases intracerebral hemorrhage (ICH) occurs as side effect. Objective Here, we aimed to investigate α2-plasmin inhibitor (α2-PI) levels during thrombolysis and to find out whether they predict therapy outcomes in AIS patients. Patients/Methods In this prospective, observational study, blood samples of 421 AIS patients, all undergoing i.v. thrombolysis by rt-PA within 4.5 h of their symptom onset, were taken before and 24 h after thrombolysis. In a subset of patients (n = 131), blood was also obtained immediately post-lysis. α2-PI activity and antigen levels were measured by chromogenic assay and an in-house ELISA detecting all forms of α2-PI. α2-PI Arg6Trp polymorphism was identified in all patients. Stroke severity was determined by NIHSS on admission and day 7. Therapy-associated ICH was classified according to ECASSII. Long-term outcomes were defined at 3 months post-event by the modified Rankin Scale (mRS). Results Median α2-PI activity and antigen levels showed a significant drop immediately post-lysis and increased to subnormal levels at 24 h post-event. Admission α2-PI levels showed a significant negative stepwise association with stroke severity. Patients with favorable long-term outcomes (mRS 0–1) had significantly higher admission α2-PI antigen levels (median:61.6 [IQR:55.9–70.5] mg/L) as compared to patients with poor outcomes (mRS 2–5: median:59.7 [IQR:54.5–69.1] and mRS 6: median:56.0 [IQR:48.5–61.0] mg/L, p < 0.001). In a Kaplan–Meier survival analysis, patients with an α2-PI antigen in the highest quartile on admission showed significantly better long-term survival as compared to those with α2-PI antigen in the lowest quartile (HR: 4.54; 95%CI:1.92–10.8, p < 0.001); however, in a multivariate analysis, a low admission α2-PI antigen did not prove to be an independent risk factor of poor long-term outcomes. In patients with therapy-related ICH (n = 34), admission α2-PI antigen levels were significantly, but only marginally, lower as compared to those without hemorrhage. Conclusions Low α2-PI antigen levels on admission were associated with more severe strokes and poor long-term outcomes in this cohort. Our results suggest that in case of more severe strokes, α2-PI may be involved in the limited efficacy of rt-PA thrombolysis.
Collapse
Affiliation(s)
- Edina Gabriella Székely
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Rita Orbán-Kálmándi
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - István Szegedi
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Katona
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Barbara Baráth
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | | | - Linda Lóczi
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Nikolett Vasas
- Department of Radiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Fekete
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Klára Fekete
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ervin Berényi
- Department of Radiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Oláh
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Csiba
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH Cerebrovascular and Neurodegenerative Research Group, Debrecen, Hungary
| | - Zsuzsa Bagoly
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
- ELKH Cerebrovascular and Neurodegenerative Research Group, Debrecen, Hungary
- *Correspondence: Zsuzsa Bagoly
| |
Collapse
|
36
|
Molecular Detection of Venous Thrombosis in Mouse Models Using SPECT/CT. Biomolecules 2022; 12:biom12060829. [PMID: 35740954 PMCID: PMC9221411 DOI: 10.3390/biom12060829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
The efficacy of thrombolysis is inversely correlated with thrombus age. During early thrombogenesis, activated factor XIII (FXIIIa) cross-links α2-AP to fibrin to protect it from early lysis. This was exploited to develop an α2-AP-based imaging agent to detect early clot formation likely susceptible to thrombolysis treatment. In this study, this imaging probe was improved and validated using 111In SPECT/CT in a mouse thrombosis model. In vitro fluorescent- and 111In-labelled imaging probe-to-fibrin cross-linking assays were performed. Thrombus formation was induced in C57Bl/6 mice by endothelial damage (FeCl3) or by ligation (stenosis) of the infrarenal vena cava (IVC). Two or six hours post-surgery, mice were injected with 111In-DTPA-A16 and ExiTron Nano 12000, and binding of the imaging tracer to thrombi was assessed by SPECT/CT. Subsequently, ex vivo IVCs were subjected to autoradiography and histochemical analysis for platelets and fibrin. Efficient in vitro cross-linking of A16 imaging probe to fibrin was obtained. In vivo IVC thrombosis models yielded stable platelet-rich thrombi with FeCl3 and fibrin and red cell-rich thrombi with stenosis. In the stenosis model, clot formation in the vena cava corresponded with a SPECT hotspot using an A16 imaging probe as a molecular tracer. The fibrin-targeting A16 probe showed specific binding to mouse thrombi in in vitro assays and the in vivo DVT model. The use of specific and covalent fibrin-binding probes might enable the clinical non-invasive imaging of early and active thrombosis.
Collapse
|
37
|
Lv M, He W, Liang T, Yang J, Huang X, Liu S, Liang X, Long J, Su L. Exploring biomarkers for ischemic stroke through integrated microarray data analysis. Brain Res 2022; 1790:147982. [PMID: 35691413 DOI: 10.1016/j.brainres.2022.147982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Stroke is the third leading cause of disability-adjusted life years worldwide, and drugs available for its treatment are limited. This study aimed to explore high-confidence candidate genes associated with ischemic stroke (IS) through bioinformatics analysis and identify potential diagnostic biomarkers and gene-drug interactions. Weighted gene coexpression network analysis (WGCNA) and differentially expressed genes (DEGs) were integrated to identify overlapping genes. Then, high-confidence candidate genes were screened by least absolute shrinkage and selection operator (LASSO) regression. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic value of high-confidence candidate genes as biomarkers for IS. The NetworkAnalyst database was used to construct the TF-gene network and miRNA-TF regulatory network of the high-confidence candidate genes. The DGIdb database was used to identified gene-drug interactions. Through the comprehensive analysis of GSE58294 and GSE16561, 10 high-confidence candidate genes were identified by LASSO regression: ARG1, LY96, ABCA1, SLC22A4, CD163, TPM2, SLC25A42, ID3, FAM102A and CD79B. FAM102A had the highest diagnostic value, and the area under curve (AUC), sensitivity and specificity values were 0.974, 0.919 and 0.936, respectively. The HPA database demonstrated that 10 high-confidence candidate genes were expressed in the brain and blood in normal humans. Finally, DGIdb database analysis identified 8 gene-drug interactions. We identified IS-related diagnostic biomarkers and gene-drug interactions that potentially provide new insights into the diagnosis and treatment of IS.
Collapse
Affiliation(s)
- Miao Lv
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Wanting He
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Tian Liang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Jialei Yang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Xiaolan Huang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Shengying Liu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Xueying Liang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Jianxiong Long
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Li Su
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| |
Collapse
|
38
|
Mosconi MG, Paciaroni M, Ageno W. Investigational drugs for ischemic stroke: what's in the clinical development pipeline for acute phase and prevention? Expert Opin Investig Drugs 2022; 31:645-667. [PMID: 35486110 DOI: 10.1080/13543784.2022.2072725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Stroke is a leading cause of disability and mortality and its burden expected to increase. The only approved drug for acute ischemic stroke is the intravenous thrombolytic alteplase. The risk of bleeding complications is one of the reasons for the undertreatment of eligible patients. Numerous drugs are currently being developed to improve safety-efficacy. AREAS COVERED We reviewed literature from January 1st, 2000, to 15th January 2022 for the development and testing of novel drugs with the aim of targeting treatment at prevention of ischemic stroke: PubMed, MEDLINE, Google Scholar, and ClinicalTrial.gov. EXPERT OPINION The pathophysiology of ischemic stroke involves multiple pathways causing cerebral artery obstruction and brain tissue ischemia. Data suggest that tenecteplase is a more promising fibrinolytic agent with a superior efficacy-safety profile, compared to the currently approved alteplase. Current guidelines consider a short-term cycle of mannitol or hypertonic saline to be advisable in patients with space-occupying hemispheric infarction. Regarding primary and secondary prevention, research is primarily focused on identifying mechanisms to improve the safety-efficacy profile using a "hemostasis-sparing" approach. Further evaluation on those agents that have already shown promise for their risk/benefit profiles, would benefit greatly a neurologist's capacity to successfully prevent and treat ischemic stroke patients.
Collapse
Affiliation(s)
- Maria Giulia Mosconi
- Emergency and vascular medicine Stroke Unit University of Perugia, Perugia, Italy
| | - Maurizio Paciaroni
- Emergency and vascular medicine Stroke Unit University of Perugia, Perugia, Italy
| | - Walter Ageno
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
39
|
Fu L, Wang F, Ma Z, Zhang J, Xiong W, Wang L. Effect of Acupuncture and Rehabilitation Therapy on the Recovery of Neurological Function and Prognosis of Stroke Patients. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4581248. [PMID: 35242206 PMCID: PMC8888046 DOI: 10.1155/2022/4581248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Stroke is a common cerebrovascular disease among the middle-aged and elderly, which can lead to a series of neurological disorders. Acupuncture is an important part of traditional Chinese medicine, with great value in improving the neurological deficits of stroke patients. In addition, rehabilitation therapy is also of great significance for alleviating the neurological deficits of patients and improving their activities of daily living. OBJECTIVE To explore the effect of acupuncture and moxibustion combined with rehabilitation therapy on the recovery of neurological function and prognosis of stroke patients. METHODS The case data of 100 stroke patients treated in the Wuhan Hospital of Traditional Chinese Medicine from January 2019 to July 2021 were analyzed retrospectively. According to the treatment plan patients received, they were divided into the following two groups: an observation group (n = 52) treated with acupuncture combined with rehabilitation therapy and a control group (n = 48) treated with rehabilitation therapy alone. The two groups were compared in terms of the following items: therapeutic efficacy, plasma levels of cortisol (Cor) and neuropeptide Y (NPY), nerve function, motor function, balance ability, self-care ability, swallowing function, negative emotions, and quality of life. RESULTS The therapeutic effect of the observation group was significantly higher than that of the control group (P < 0.05). The levels of Cor and NPY, as well as the neurological function, motor function, balance ability, self-care ability, swallowing function, and negative emotions, were not significantly different between the two groups before treatment (P > 0.05). While after intervention, all the above indexes improved in both groups, with better improvements in the observation group compared with the control group (P < 0.05). And the various dimensions concerning the quality of life of patients were also significantly better in the observation group when compared with the control group. CONCLUSION Acupuncture of traditional Chinese medicine combined with rehabilitation therapy has outstanding effects in stroke treatment and can effectively improve the neurological function, prognosis, and quality of life of patients, which is worthy of clinical promotion.
Collapse
Affiliation(s)
- Lanping Fu
- Department of Acupuncture and Moxibustion, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430000 Hubei Province, China
| | - Fei Wang
- Stroke Department of Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430000 Hubei Province, China
| | - Zhiyi Ma
- Department of Rheumatology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430000 Hubei Province, China
| | - Jin Zhang
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430000 Hubei Province, China
| | - Wuzhong Xiong
- Department of Internal Medicine, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430000 Hubei Province, China
| | - Le Wang
- Department of Acupuncture and Moxibustion, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430000 Hubei Province, China
| |
Collapse
|
40
|
Disharoon D, Trewyn BG, Herson PS, Marr DW, Neeves KB. Breaking the fibrinolytic speed limit with microwheel co-delivery of tissue plasminogen activator and plasminogen. J Thromb Haemost 2022; 20:486-497. [PMID: 34882946 PMCID: PMC8792280 DOI: 10.1111/jth.15617] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND To reestablish blood flow in vessels occluded by clots, tissue plasminogen activator (tPA) can be used; however, its efficacy is limited by transport to and into a clot and by the depletion of its substrate, plasminogen. OBJECTIVES To overcome these rate limitations, a platform was designed to co-deliver tPA and plasminogen based on microwheels (µwheels), wheel-like assemblies of superparamagnetic colloidal beads that roll along surfaces at high speeds. METHODS The biochemical speed limit was determined by measuring fibrinolysis of plasma clots at varying concentrations of tPA (10-800 nM) and plasminogen (1-6 µM). Biotinylated magnetic mesoporous silica nanoparticles were synthesized and bound to streptavidin-coated superparamagnetic beads to make studded beads. Studded beads were loaded with plasminogen and tPA was immobilized on their surface. Plasminogen release and tPA activity were measured on the studded beads. Studded beads were assembled into µwheels with rotating magnetic fields and fibrinolysis of plasma clots was measured in a microfluidic device. RESULTS The biochemical speed limit for plasma clots was ~15 µm/min. Plasminogen-loaded, tPA-immobilized µwheels lyse plasma clots at rates comparableto the biochemical speed limit. With the addition of a corkscrew motion, µwheels penetrate clots, thereby exceeding the biochemical speed limit (~20 µm/min) and achieving lysis rates 40-fold higher than 50 nM tPA. CONCLUSIONS Co-delivery of an immobilized enzyme and its substrate via a microbot capable of mechanical work has the potential to target and rapidly lyse clots that are inaccessible by mechanical thrombectomy devices or recalcitrant to systemic tPA delivery.
Collapse
Affiliation(s)
- Dante Disharoon
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States
| | - Brian G. Trewyn
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, United States
| | - Paco S. Herson
- Department of Anesthesiology, University of Colorado Denver ∣ Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - David W.M. Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States
| | - Keith B. Neeves
- Departments of Bioengineering and Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver ∣ Anschutz Medical Campus, Aurora, CO 80045, United States
| |
Collapse
|
41
|
A Micro-lyse goes a long way. Blood 2022; 139:477-479. [PMID: 35084478 DOI: 10.1182/blood.2021014618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
|
42
|
Tian H, Chen X, Liao J, Yang T, Cheng S, Mei Z, Ge J. Mitochondrial quality control in stroke: From the mechanisms to therapeutic potentials. J Cell Mol Med 2022; 26:1000-1012. [PMID: 35040556 PMCID: PMC8831937 DOI: 10.1111/jcmm.17189] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/17/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial damage is a critical contributor to stroke‐induced injury, and mitochondrial quality control (MQC) is the cornerstone of restoring mitochondrial homeostasis and plays an indispensable role in alleviating pathological process of stroke. Mitochondria quality control promotes neuronal survival via various adaptive responses for preserving mitochondria structure, morphology, quantity and function. The processes of mitochondrial fission and fusion allow for damaged mitochondria to be segregated and facilitate the equilibration of mitochondrial components such as DNA, proteins and metabolites. The process of mitophagy is responsible for the degradation and recycling of damaged mitochondria. This review aims to offer a synopsis of the molecular mechanisms involved in MQC for recapitulating our current understanding of the complex role that MQC plays in the progression of stroke. Speculating on the prospect that targeted manipulation of MQC mechanisms may be exploited for the rationale design of novel therapeutic interventions in the ischaemic stroke and haemorrhagic stroke. In the review, we highlight the potential of MQC as therapeutic targets for stroke treatment and provide valuable insights for clinical strategies.
Collapse
Affiliation(s)
- Heyan Tian
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Xiangyu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Jun Liao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Shaowu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
43
|
CircDLGAP4 overexpression relieves oxygen-glucose deprivation-induced neuronal injury by elevating NEGR1 through sponging miR-503-3p. J Mol Histol 2021; 53:321-332. [PMID: 34739656 DOI: 10.1007/s10735-021-10036-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/28/2021] [Indexed: 12/08/2022]
Abstract
Circular RNAs (circRNAs) have been reported to play vital regulatory roles in human diseases. However, the functions of circRNAs in ischemic stroke (IS) are limited. In this study, we aimed to explore the functions and mechanisms of circRNA DLG associated protein 4 (circDLGAP4) in IS development. Oxygen-glucose deprivation (OGD)-treated HCN-2 cells were used to mimic IS environment in vitro. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was used to detect the levels of circDLGAP4, microRNA-503-3p (miR-503-3p) and neuronal growth regulator 1 (NEGR1) mRNA. RNase R assay was conducted to analyze the stability of circDLGAP4. Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis were adopted for cell viability and death, respectively. Western blot assay was performed for protein levels. Enzyme-linked immunosorbent assay (ELISA) kits were used to examine the concentrations of inflammatory cytokines. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay were employed to analyze the relationships among circDLGAP4, miR-503-3p and NEGR1. CircDLGAP4 level was declined in HCN-2 cells after OGD treatment. CircDLGAP4 overexpression promoted cell viability and suppressed cell death and inflammatory cytokine concentrations in OGD-treated HCN-2 cells. CircDLGAP4 acted as the sponge for miR-503-3p and the impacts of circDLGAP4 overexpression on cell viability, death and inflammation in OGD-treated HCN-2 cells were reversed by miR-503-3p elevation. Furthermore, NEGR1 was the target gene of miR-503-3p. MiR-503-3p inhibition ameliorated OGD-induced HCN-2 cell impairments, but NEGR1 knockdown abolished the effects. CircDLGAP4 alleviated OGD-induced HCN-2 cell damage by regulating miR-503-3p/NEGR1 axis.
Collapse
|
44
|
Bagoly Z, Behme D, Kaesmacher J, Martinez De Lizarrondo S. Editorial: Hemostasis and Stroke. Front Neurol 2021; 12:737556. [PMID: 34456855 PMCID: PMC8385136 DOI: 10.3389/fneur.2021.737556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Zsuzsa Bagoly
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen and Eötvös Loránd Research Network-University of Debrecen Cerebrovascular and Neurodegenerative Research Group, Debrecen, Hungary
| | - Daniel Behme
- Faculty of Medicine, Otto von Guericke University Magdeburg, Madgeburg, Germany
| | - Johannes Kaesmacher
- University Institute of Diagnostic and Interventional Neuroradiology and University Institute of Diagnostic, Pediatric and Interventional Radiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Sara Martinez De Lizarrondo
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Bd H. Becquerel, BP 5229, Caen, France
| |
Collapse
|
45
|
Nguyen PC, Stevens H, Peter K, McFadyen JD. Submassive Pulmonary Embolism: Current Perspectives and Future Directions. J Clin Med 2021; 10:jcm10153383. [PMID: 34362166 PMCID: PMC8347177 DOI: 10.3390/jcm10153383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022] Open
Abstract
Submassive pulmonary embolism (PE) lies on a spectrum of disease severity between standard and high-risk disease. By definition, patients with submassive PE have a worse outcome than the majority of those with standard-risk PE, who are hemodynamically stable and lack imaging or laboratory features of cardiac dysfunction. Systemic thrombolytic therapy has been proven to reduce mortality in patients with high-risk disease; however, its use in submassive PE has not demonstrated a clear benefit, with haemodynamic improvements being offset by excess bleeding. Furthermore, meta-analyses have been confusing, with conflicting results on overall survival and net gain. As such, significant interest remains in optimising thrombolysis, with recent efforts in catheter-based delivery as well as upcoming studies on reduced systemic dosing. Recently, long-term cardiorespiratory limitations following submassive PE have been described, termed post-PE syndrome. Studies on the ability of thrombolytic therapy to prevent this condition also present conflicting evidence. In this review, we aim to clarify the current evidence with respect to submassive PE management, and also to highlight shortcomings in current definitions and prognostic factors. Additionally, we discuss novel therapies currently in preclinical and early clinical trials that may improve outcomes in patients with submassive PE.
Collapse
Affiliation(s)
- Phillip C. Nguyen
- Department of Haematology, Alfred Hospital, Melbourne, VIC 3181, Australia; (P.C.N.); (H.S.)
| | - Hannah Stevens
- Department of Haematology, Alfred Hospital, Melbourne, VIC 3181, Australia; (P.C.N.); (H.S.)
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia;
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia;
- Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Cardiology, The Alfred Hospital, Melbourne, VIC 3181, Australia
| | - James D. McFadyen
- Department of Haematology, Alfred Hospital, Melbourne, VIC 3181, Australia; (P.C.N.); (H.S.)
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia;
- Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Correspondence: ; Tel.: +61-3-9076-2179
| |
Collapse
|
46
|
Gauberti M, Martinez de Lizarrondo S, Vivien D. Thrombolytic strategies for ischemic stroke in the thrombectomy era. J Thromb Haemost 2021; 19:1618-1628. [PMID: 33834615 DOI: 10.1111/jth.15336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/03/2023]
Abstract
Twenty-five years ago, intravenous thrombolysis has revolutionized the care of patients with acute ischemic stroke. Since 2015, randomized clinical trials have demonstrated that mechanical thrombectomy improves functional outcome in stroke patients over intravenous thrombolysis alone. More recently, three randomized clinical trials have suggested that mechanical thrombectomy alone is noninferior to a combined strategy with both intravenous thrombolysis and mechanical thrombectomy. In the present review, we will present the last clinical and preclinical studies on the use of thrombolysis in stroke patients in the modern thrombectomy era. At the cost of a potential increased risk of hemorrhagic transformation, thrombolysis may promote arterial recanalization before thrombectomy, improve the rate of successful recanalization after thrombectomy, and restore microcirculation patency downstream of the main thrombus. Besides, new thrombolytic strategies targeting tissue-type plasminogen activator resistant thrombi are being developed, which could strengthen the beneficial effects of thrombolysis without carrying additional pro-hemorrhagic effects. For instance, tenecteplase has shown improved rate of recanalization compared with tissue-type plasminogen activator (alteplase). Beyond fibrinolysis, DNA- and von Willebrand factor-targeted thrombolytic strategies have shown promising results in experimental models of ischemic stroke. New combined strategies, improved thrombolytics, and dedicated clinical trials in selected patients are eagerly awaited to further improve functional outcome in stroke.
Collapse
Affiliation(s)
- Maxime Gauberti
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
- CHU Caen, Department of Neuroradiology, CHU de Caen Côte de Nacre, Caen, France
| | - Sara Martinez de Lizarrondo
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
- CHU Caen, Clinical Research Department, CHU de Caen Côte de Nacre, Caen, France
| |
Collapse
|
47
|
Liu M, Pu Y, Gu J, He Q, Liu Y, Zeng Y, Li J, Long X, Yang S, Wu Q, Zhou H. Evaluation of Zhilong Huoxue Tongyu capsule in the treatment of acute cerebral infarction: A systematic review and meta-analysis of randomized controlled trials. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153566. [PMID: 33940333 DOI: 10.1016/j.phymed.2021.153566] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Zhilong Huoxue Tongyu capsule (ZL) is a Chinese patent medicine and used for the treatment of acute cerebral infarction (ACI) and its clinical application has gradually been widely recognized in China. However, the effects of ZL for patients with ACI have never been systematically evaluated. PURPOSE A systematic review and meta-analysis was performed to evaluate the efficacy of ZL in ACI. STUDY DESIGN A systematic review and meta-analysis of randomized clinical trials (RCTs). MATERIALS AND METHODS A systematic review and meta-analysis were performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. The comprehensive literature search was accomplished in 6 electronic databases to find relevant randomized controlled trials from their inception until October 31, 2020. The Cochrane Handbook for Systematic Reviews of Interventions was used for methodological quality and independent evaluation. Review Manager 5.3 was used to analyze all the data obtained. The Clinical Effective Rate (CER) was the primary outcome, and the National Institutes of Health Stroke Score (NIHSS), Barthel Index (BI), and Modified Rankin Scale (MRS) were the secondary outcomes. RESULTS Seven clinical studies recruiting 571 eligible patients were included in this meta-analysis. The results of meta-analysis suggested that compared with conventional treatment alone, ZL combined with conventional treatment significantly improved CER (RR = 1.20, 95% CI: 1.12-1.29, p < 0.00001), decrease National Institutes of Health Stroke Scale Score (NIHSS) (MD = -2.60, 95% CI: -3.41-1.79, p < 0.00001), Barthel Index (BI) (MD = -9.75, 95% CI: 7.15-12.36, p < 0.00001) and Modified Rankin Scale (MRS) (MD = -0.57, 95% CI: -0.84-0.30, p < 0.00001). There were no reported adverse events in the studies. Most results were robust and the quality of evidence was from moderate to low. CONCLUSION ZL combined with conventional treatment can improve the short-term outcomes of ACI patients, indicating ZL is a promising treatment choice for ACI and may be used as adjunctive treatment to the conventional treatment of ACI. However, due to the limitations of included clinical trials, high-quality clinical trials with longer follow-ups are still needed to further assess the effectiveness and safety of ZL for ACI patients.
Collapse
Affiliation(s)
- Mengnan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Yuting Pu
- Department of Neurology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Juan Gu
- Department of Neurology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Qida He
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Yan Liu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Yiwei Zeng
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingchi Li
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese, and Western Medicine for Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingru Long
- Medical Imaging Department, Southwest Medical University, Luzhou, Sichuan, China
| | - Sijin Yang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China.
| | - Qibiao Wu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China.
| |
Collapse
|
48
|
Therapeutic Applications of Stem Cells and Extracellular Vesicles in Emergency Care: Futuristic Perspectives. Stem Cell Rev Rep 2021; 17:390-410. [PMID: 32839921 PMCID: PMC7444453 DOI: 10.1007/s12015-020-10029-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regenerative medicine (RM) is an interdisciplinary field that aims to repair, replace or regenerate damaged or missing tissue or organs to function as close as possible to its physiological architecture and functions. Stem cells, which are undifferentiated cells retaining self-renewal potential, excessive proliferation and differentiation capacity into offspring or daughter cells that form different lineage cells of an organism, are considered as an important part of the RM approaches. They have been widely investigated in preclinical and clinical studies for therapeutic purposes. Extracellular vesicles (EVs) are the vital mediators that regulate the therapeutic effects of stem cells. Besides, they carry various types of cargo between cells which make them a significant contributor of intercellular communication. Given their role in physiological and pathological conditions in living cells, EVs are considered as a new therapeutic alternative solution for a variety of diseases in which there is a high unmet clinical need. This review aims to summarize and identify therapeutic potential of stem cells and EVs in diseases requiring acute emergency care such as trauma, heart diseases, stroke, acute respiratory distress syndrome and burn injury. Diseases that affect militaries or societies including acute radiation syndrome, sepsis and viral pandemics such as novel coronavirus disease 2019 are also discussed. Additionally, featuring and problematic issues that hamper clinical translation of stem cells and EVs are debated in a comparative manner with a futuristic perspective. Graphical Abstract.
Collapse
|
49
|
Ma R, Xie Q, Li H, Guo X, Wang J, Li Y, Ren M, Gong D, Gao T. l-Borneol Exerted the Neuroprotective Effect by Promoting Angiogenesis Coupled With Neurogenesis via Ang1-VEGF-BDNF Pathway. Front Pharmacol 2021; 12:641894. [PMID: 33746762 PMCID: PMC7973462 DOI: 10.3389/fphar.2021.641894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
At present, Stroke is still one of the leading causes of population death worldwide and leads to disability. Traditional Chinese medicine plays an important role in the prevention or treatment of stroke. l-borneol, a traditional Chinese medicine, has been used in China to treat stroke for thousands of years. However, its mechanism of action is unclear. After cerebral ischemia, promoting angiogenesis after cerebral ischemia and providing nutrition for the infarct area is an important strategy to improve the damage in the ischemic area, but it is also essential to promote neurogenesis and replenish new neurons. Here, our research shows that l-borneol can significantly improve the neurological deficits of pMCAO model rats, reduce cerebral infarction, and improve the pathological damage of cerebral ischemia. and significantly increase serum level of Ang-1 and VEGF, and significantly decrease level of ACE and Tie2 to promote angiogenesis. PCR and WB showed the same results. Immunohistochemistry also showed that l-borneol can increase the number of CD34 positive cells, further verifying that l-borneol can play a neuroprotective effect by promoting angiogenesis after cerebral ischemia injury. In addition, l-borneol can significantly promote the expression level of VEGF, BDNF and inhibit the expression levels of TGF-β1 and MMP9 to promote neurogenesis. The above suggests that l-borneol can promote angiogenesis coupled neurogenesis by regulating Ang1-VEGF-BDNF to play a neuroprotective effect. Molecular docking also shows that l-borneol has a very high binding rate with the above target, which further confirmed the target of l-borneol to improve cerebral ischemic injury. These results provide strong evidence for the treatment of cerebral ischemia with l-borneol and provide reference for future research.
Collapse
Affiliation(s)
- Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqing Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daoyin Gong
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Gao
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Adverse Reaction Monitoring Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
50
|
Ma H, Jiang Z, Xu J, Liu J, Guo ZN. Targeted nano-delivery strategies for facilitating thrombolysis treatment in ischemic stroke. Drug Deliv 2021; 28:357-371. [PMID: 33517820 PMCID: PMC8725844 DOI: 10.1080/10717544.2021.1879315] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ischemic stroke is one of the major causes of severe disability and death worldwide. It is mainly caused by a sudden reduction in cerebral blood flow due to obstruction of the supplying vessel by thrombi and subsequent initiation of a complex cascade of pathophysiological changes, which ultimately lead to brain ischemia and even irreversible infarction. Thus, timely and effective thrombolysis therapy remains a mainstay for acute ischemic stroke treatment. Tissue plasminogen activator (tPA), the only thrombolytic agent approved globally, provides substantial benefits by exerting a fibrinolysis effect, recovering the blood supply in occluded vessels and, thereby, salvaging the ischemic tissue. However, the clinical application of tPA was limited because of a few unsolved issues, such as a narrow therapeutic window, hemorrhagic complications, and limited thrombolytic efficacy, especially, for large thrombi. With the prosperous development of nanotechnology, a series of targeted delivery strategies and nanocomposites have been extensively investigated for delivering thrombolytic agents to facilitate thrombolysis treatment. Excitingly, numerous novel attempts have been reported to be effective in extending the half-life, targeting the thrombus site, and improving the thrombolytic efficacy in preclinical models. This article begins with a brief introduction to ischemic stroke, then describes the current state of thrombolysis treatment and, finally, introduces the application of various nanotechnology-based strategies for targeted delivery of thrombolytic agents. Representative studies are reviewed according to diverse strategies and nano-formulations, with the aim of providing integrated and up-to-date information and to improve the development of thrombolysis treatment for stroke patients.
Collapse
Affiliation(s)
- Hongyin Ma
- Department of Neurology, The First Hospital of Jilin University, ChangChun, China
| | - Zhenmin Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, ChangChun, China
| | - Jiayun Xu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Junqiu Liu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Zhen-Ni Guo
- Department of Neurology, The First Hospital of Jilin University, ChangChun, China
| |
Collapse
|