1
|
Chen P, Yao L, Yuan M, Wang Z, Zhang Q, Jiang Y, Li L. Mitochondrial dysfunction: A promising therapeutic target for liver diseases. Genes Dis 2024; 11:101115. [PMID: 38299199 PMCID: PMC10828599 DOI: 10.1016/j.gendis.2023.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 02/02/2024] Open
Abstract
The liver is an important metabolic and detoxification organ and hence demands a large amount of energy, which is mainly produced by the mitochondria. Liver tissues of patients with alcohol-related or non-alcohol-related liver diseases contain ultrastructural mitochondrial lesions, mitochondrial DNA damage, disturbed mitochondrial dynamics, and compromised ATP production. Overproduction of mitochondrial reactive oxygen species induces oxidative damage to mitochondrial proteins and mitochondrial DNA, decreases mitochondrial membrane potential, triggers hepatocyte inflammation, and promotes programmed cell death, all of which impair liver function. Mitochondrial DNA may be a potential novel non-invasive biomarker of the risk of progression to liver cirrhosis and hepatocellular carcinoma in patients infected with the hepatitis B virus. We herein present a review of the mechanisms of mitochondrial dysfunction in the development of acute liver injury and chronic liver diseases, such as hepatocellular carcinoma, viral hepatitis, drug-induced liver injury, alcoholic liver disease, and non-alcoholic fatty liver disease. This review also discusses mitochondrion-centric therapies for treating liver diseases.
Collapse
Affiliation(s)
- Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qiuling Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
2
|
Tang R, Liu R, Zha H, Cheng Y, Ling Z, Li L. Gut microbiota induced epigenetic modifications in the non-alcoholic fatty liver disease pathogenesis. Eng Life Sci 2024; 24:2300016. [PMID: 38708414 PMCID: PMC11065334 DOI: 10.1002/elsc.202300016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/07/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a growing global health concern that can lead to liver disease and cancer. It is characterized by an excessive accumulation of fat in the liver, unrelated to excessive alcohol consumption. Studies indicate that the gut microbiota-host crosstalk may play a causal role in NAFLD pathogenesis, with epigenetic modification serving as a key mechanism for regulating this interaction. In this review, we explore how the interplay between gut microbiota and the host epigenome impacts the development of NAFLD. Specifically, we discuss how gut microbiota-derived factors, such as lipopolysaccharides (LPS) and short-chain fatty acids (SCFAs), can modulate the DNA methylation and histone acetylation of genes associated with NAFLD, subsequently affecting lipid metabolism and immune homeostasis. Although the current literature suggests a link between gut microbiota and NAFLD development, our understanding of the molecular mechanisms and signaling pathways underlying this crosstalk remains limited. Therefore, more comprehensive epigenomic and multi-omic studies, including broader clinical and animal experiments, are needed to further explore the mechanisms linking the gut microbiota to NAFLD-associated genes. These studies are anticipated to improve microbial markers based on epigenetic strategies and provide novel insights into the pathogenesis of NAFLD, ultimately addressing a significant unmet clinical need.
Collapse
Affiliation(s)
- Ruiqi Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Rongrong Liu
- Center of Pediatric Hematology‐oncologyPediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang ProvinceNational Clinical Research Center for Child HealthChildren's HospitalZhejiang University School of MedicineHangzhouChina
| | - Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yiwen Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| |
Collapse
|
3
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Viral Liver Disease and Intestinal Gut–Liver Axis. GASTROINTESTINAL DISORDERS 2024; 6:64-93. [DOI: 10.3390/gidisord6010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The intestinal microbiota is closely related to liver diseases via the intestinal barrier and bile secretion to the gut. Impairment of the barrier can translocate microbes or their components to the liver where they can contribute to liver damage and fibrosis. The components of the barrier are discussed in this review along with the other elements of the so-called gut–liver axis. This bidirectional relation has been widely studied in alcoholic and non-alcoholic liver disease. However, the involvement of microbiota in the pathogenesis and treatment of viral liver diseases have not been extensively studied, and controversial data have been published. Therefore, we reviewed data regarding the integrity and function of the intestinal barrier and the changes of the intestinal microbioma that contribute to progression of Hepatitis B (HBV) and Hepatitis C (HCV) infection. Their consequences, such as cirrhosis and hepatic encephalopathy, were also discussed in connection with therapeutic interventions such as the effects of antiviral eradication and the use of probiotics that may influence the outcome of liver disease. Profound alterations of the microbioma with significant reduction in microbial diversity and changes in the abundance of both beneficial and pathogenic bacteria were found.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Ioannis Tsomidis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| |
Collapse
|
4
|
Xu Y, Wan W, Zeng H, Xiang Z, Li M, Yao Y, Li Y, Bortolanza M, Wu J. Exosomes and their derivatives as biomarkers and therapeutic delivery agents for cardiovascular diseases: Situations and challenges. J Transl Int Med 2023; 11:341-354. [PMID: 38130647 PMCID: PMC10732499 DOI: 10.2478/jtim-2023-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Microvesicles known as exosomes have a diameter of 40 to 160 nm and are derived from small endosomal membranes. Exosomes have attracted increasing attention over the past ten years in part because they are functional vehicles that can deliver a variety of lipids, proteins, and nucleic acids to the target cells they encounter. Because of this function, exosomes may be used for the diagnosis, prognosis and treatment of many diseases. All throughout the world, cardiovascular diseases (CVDs) continue to be a significant cause of death. Because exosomes are mediators of communication between cells, which contribute to many physiological and pathological aspects, they may aid in improving CVD therapies as biomarkers for diagnosing and predicting CVDs. Many studies demonstrated that exosomes are associated with CVDs, such as coronary artery disease, heart failure, cardiomyopathy and atrial fibrillation. Exosomes participate in the progression or inhibition of these diseases mainly through the contents they deliver. However, the application of exosomes in diferent CVDs is not very mature. So further research is needed in this field.
Collapse
Affiliation(s)
- Yunyang Xu
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Weimin Wan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Huixuan Zeng
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Mo Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Yiwen Yao
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424Homburg, Germany
| | - Yuan Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Mariza Bortolanza
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424Homburg, Germany
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| |
Collapse
|
5
|
Orozco-Cordoba J, Mazas C, Du Pont G, Lamoyi E, Cárdenas G, Fierro NA. Viral Biology and Immune Privilege in the Development of Extrahepatic Manifestations During Hepatitis E Virus Infection. Viral Immunol 2023; 36:627-641. [PMID: 38064537 DOI: 10.1089/vim.2023.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Hepatitis E virus (HEV) exhibits tropism toward hepatocytes and thus affects the liver; however, HEV may also affect other tissues, including the heart, kidneys, intestines, testicles, and central nervous system. To date, the pathophysiological links between HEV infection and extrahepatic manifestations have not yet been established. Considering that HEV infects multiple types of cells, the direct effects of virus replication in peripheral tissues represent a plausible explanation for extrahepatic manifestations. In addition, since the immune response is crucial in the development of the disease, the immune characteristics of affected tissues should be revisited to identify commonalities explaining the effects of the virus. This review summarizes the most recent advances in understanding the virus biology and immune-privileged status of specific tissues as major elements for HEV replication in diverse organs. These discoveries may open avenues to explain the multiple extrahepatic manifestations associated with HEV infection and ultimately to design effective strategies for infection control.
Collapse
Affiliation(s)
- Javier Orozco-Cordoba
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Camila Mazas
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Gisela Du Pont
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Edmundo Lamoyi
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Graciela Cárdenas
- Departamento de Neuroinfectología, Instituto Nacional de Neurología Manuel Velasco Suárez, Mexico City, Mexico
| | - Nora A Fierro
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
6
|
Yang X, Mai H, Zhou J, Li Z, Wang Q, Lan L, Lu F, Yang X, Guo B, Ye L, Cui P, Liang H, Huang J. Alterations of the gut microbiota associated with the occurrence and progression of viral hepatitis. Front Cell Infect Microbiol 2023; 13:1119875. [PMID: 37342245 PMCID: PMC10277638 DOI: 10.3389/fcimb.2023.1119875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Background Gut microbiota is the largest population of microorganisms and is closely related to health. Many studies have explored changes in gut microbiota in viral hepatitis. However, the correlation between gut microbiota and the occurrence and progression of viral hepatitis has not been fully clarified. Methods PubMed and BioProject databases were searched for studies about viral hepatitis disease and 16S rRNA gene sequencing of gut microbiota up to January 2023. With bioinformatics analyses, we explored changes in microbial diversity of viral hepatitis, screened out crucial bacteria and microbial functions related to viral hepatitis, and identified the potential microbial markers for predicting risks for the occurrence and progression of viral hepatitis based on ROC analysis. Results Of the 1389 records identified, 13 studies met the inclusion criteria, with 950 individuals including 656 patient samples (HBV, n = 546; HCV, n = 86; HEV, n = 24) and 294 healthy controls. Gut microbial diversity is significantly decreased as the infection and progression of viral hepatitis. Alpha diversity and microbiota including Butyricimonas, Escherichia-Shigella, Lactobacillus, and Veillonella were identified as the potential microbial markers for predicting the risk of development of viral hepatitis (AUC>0.7). Microbial functions including tryptophan metabolism, fatty acid biosynthesis, lipopolysaccharide biosynthesis, and lipid metabolism related to the microbial community increased significantly as the development of viral hepatitis. Conclusions This study demonstrated comprehensively the gut microbiota characteristics in viral hepatitis, screened out crucial microbial functions related to viral hepatitis, and identified the potential microbial markers for predicting the risk of viral hepatitis.
Collapse
Affiliation(s)
- Xing Yang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China
| | - Huanzhuo Mai
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China
| | - Jie Zhou
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China
| | - Zhuoxin Li
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China
| | - Qing Wang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China
| | - Liuyan Lan
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China
| | - Fang Lu
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China
| | - Xiping Yang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China
| | - Baodong Guo
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China
| | - Li Ye
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China
| | - Ping Cui
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Hao Liang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Jiegang Huang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Yang J, Wang D, Li Y, Wang H, Hu Q, Wang Y. Metabolomics in viral hepatitis: advances and review. Front Cell Infect Microbiol 2023; 13:1189417. [PMID: 37265499 PMCID: PMC10229802 DOI: 10.3389/fcimb.2023.1189417] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Viral hepatitis is a major worldwide public health issue, affecting hundreds of millions of people and causing substantial morbidity and mortality. The majority of the worldwide burden of viral hepatitis is caused by five biologically unrelated hepatotropic viruses: hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). Metabolomics is an emerging technology that uses qualitative and quantitative analysis of easily accessible samples to provide information of the metabolic levels of biological systems and changes in metabolic and related regulatory pathways. Alterations in glucose, lipid, and amino acid levels are involved in glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, and amino acid metabolism. These changes in metabolites and metabolic pathways are associated with the pathogenesis and medication mechanism of viral hepatitis and related diseases. Additionally, differential metabolites can be utilized as biomarkers for diagnosis, prognosis, and therapeutic responses. In this review, we present a thorough overview of developments in metabolomics for viral hepatitis.
Collapse
Affiliation(s)
- Jiajia Yang
- Department of Infection Management, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Dawei Wang
- Department of Infectious Disease, The Second People’s Hospital of Yancheng City, Yancheng, China
| | - Yuancheng Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections (STIs), Nanjing, China
| | - Hongmei Wang
- Department of Infection Management, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Qiang Hu
- Department of Infection Management, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ying Wang
- Department of Infection Management, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
8
|
Li J, Xuan S, Dong P, Xiang Z, Gao C, Li M, Huang L, Wu J. Immunotherapy of hepatocellular carcinoma: recent progress and new strategy. Front Immunol 2023; 14:1192506. [PMID: 37234162 PMCID: PMC10206122 DOI: 10.3389/fimmu.2023.1192506] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Due to its widespread occurrence and high mortality rate, hepatocellular carcinoma (HCC) is an abhorrent kind of cancer. Immunotherapy is a hot spot in the field of cancer treatment, represented by immune checkpoint inhibitors (ICIs), which aim to improve the immune system's ability to recognize, target and eliminate cancer cells. The composition of the HCC immune microenvironment is the result of the interaction of immunosuppressive cells, immune effector cells, cytokine environment, and tumor cell intrinsic signaling pathway, and immunotherapy with strong anti-tumor immunity has received more and more research attention due to the limited responsiveness of HCC to ICI monotherapy. There is evidence of an organic combination of radiotherapy, chemotherapy, anti-angiogenic agents and ICI catering to the unmet medical needs of HCC. Moreover, immunotherapies such as adoptive cellular therapy (ACT), cancer vaccines and cytokines also show encouraging efficacy. It can significantly improve the ability of the immune system to eradicate tumor cells. This article reviews the role of immunotherapy in HCC, hoping to improve the effect of immunotherapy and develop personalized treatment regimens.
Collapse
Affiliation(s)
- Jiarui Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shihai Xuan
- Department of Laboratory Medicine, The People’s Hospital of Dongtai City, Dongtai, China
| | - Peng Dong
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ce Gao
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Mo Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Ling B, Xu Y, Qian S, Xiang Z, Xuan S, Wu J. Regulation of hematopoietic stem cells differentiation, self-renewal, and quiescence through the mTOR signaling pathway. Front Cell Dev Biol 2023; 11:1186850. [PMID: 37228652 PMCID: PMC10203478 DOI: 10.3389/fcell.2023.1186850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are important for the hematopoietic system because they can self-renew to increase their number and differentiate into all the blood cells. At a steady state, most of the HSCs remain in quiescence to preserve their capacities and protect themselves from damage and exhaustive stress. However, when there are some emergencies, HSCs are activated to start their self-renewal and differentiation. The mTOR signaling pathway has been shown as an important signaling pathway that can regulate the differentiation, self-renewal, and quiescence of HSCs, and many types of molecules can regulate HSCs' these three potentials by influencing the mTOR signaling pathway. Here we review how mTOR signaling pathway regulates HSCs three potentials, and introduce some molecules that can work as the regulator of HSCs' these potentials through the mTOR signaling. Finally, we outline the clinical significance of studying the regulation of HSCs three potentials through the mTOR signaling pathway and make some predictions.
Collapse
Affiliation(s)
- Bai Ling
- Department of Pharmacy, The Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Yunyang Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siyuan Qian
- The Second School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shihai Xuan
- Department of Laboratory Medicine, The People’s Hospital of Dongtai City, Dongtai, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
10
|
Qian W, Wu M, Qian T, Xie C, Gao Y, Qian S. The roles and mechanisms of gut microbiome and metabolome in patients with cerebral infarction. Front Cell Infect Microbiol 2023; 13:1112148. [PMID: 36761896 PMCID: PMC9905239 DOI: 10.3389/fcimb.2023.1112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
As the most common type of stroke, ischemic stroke, also known as cerebral infarction (CI), with its high mortality and disability rate, has placed a huge burden on social economy and public health. Treatment methods for CI mainly include thrombectomy, thrombolysis, drug therapy, and so on. However, these treatments have certain timeliness and different side effects. In recent years, the gut-brain axis has become a hot topic, and its role in nervous system diseases has been confirmed by increasing evidences. The intestinal microbiota, as an important part of the gut-brain axis, has a non-negligible impact on the progression of CI through mechanisms such as inflammatory response and damage-associated molecular patterns, and changes in the composition of intestinal microbiota can also serve as the basis for predicting CI. At the same time, the diagnosis of CI requires more high-throughput techniques, and the analysis method of metabolomics just fits this demand. This paper reviewed the changes of intestinal microbiota in patients within CI and the effects of the intestinal microbiota on the course of CI, and summarized the therapeutic methods of the intervention with the intestinal microbiota. Furthermore, metabolic changes of CI patients were also discussed to reveal the molecular characteristics of CI and to elucidate the potential pathologic pathway of its interference.
Collapse
Affiliation(s)
| | | | - Tingting Qian
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chen Xie
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yaxin Gao
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | | |
Collapse
|
11
|
Sun Z, Ge X, Qiu B, Xiang Z, Jiang C, Wu J, Li Y. Vulvovaginal candidiasis and vaginal microflora interaction: Microflora changes and probiotic therapy. Front Cell Infect Microbiol 2023; 13:1123026. [PMID: 36816582 PMCID: PMC9936092 DOI: 10.3389/fcimb.2023.1123026] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Vaginal microbiome is mutually beneficial to the host and has a significant impact on health and disease. Candida species, including Candida albicans, are part of the mucosal flora of most healthy women. Under suitable conditions, they can live in the vulvovaginal mucosa, resulting in symptomatic vulvovaginal candidiasis (VVC). Based on the analysis of 16S ribosomal RNA gene sequences, great progress has been made in exploring the composition and structure of vaginal bacterial community. Moreover, researchers have conducted several studies on whether vaginal microbiome will change during VVC infection. In addition, it has been reported that vaginal colonization of probiotics in vaginal microorganisms, especially Lactobacillus, can effectively reduce the risk of VVC and treat VVC. This review aims to summarize the changes of vaginal microflora during VVC infection, and further point out the possibility of using lactic acid bacteria as probiotics to treat VVC, so as to reduce the adverse consequences of VVC infection and reduce the expensive treatment cost.
Collapse
Affiliation(s)
- Zhongwen Sun
- Department of Medical Technology, Suzhou Vocational Health College, Suzhou, Jiangsu, China
| | - Xinnuo Ge
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bo Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yuan Li
- Departments of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Qian B, Zhang K, Li Y, Sun K. Update on gut microbiota in cardiovascular diseases. Front Cell Infect Microbiol 2022; 12:1059349. [PMID: 36439214 PMCID: PMC9684171 DOI: 10.3389/fcimb.2022.1059349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
In recent years, due to the development and widespread utilization of metagenomic sequencing and metabolomics, the relationship between gut microbiota and human cardiovascular diseases (CVDs) has received extensive attention. A growing number of studies have shown a strong relationship between gut microbiota and CVDs, such as coronary atherosclerosis, hypertension (HTN) and heart failure (HF). It has also been revealed that intestinal flora-related metabolites, such as trimethylamine-N-oxide (TMAO), short-chain fatty acids (SCFA) and bile acids (BAs), are also related to the development, prevention, treatment and prognosis of CVDs. In this review, we presented and summarized the recent findings on the relationship between gut microbiota and CVDs, and concluded several currently known gut microbiota-related metabolites and the occurrence and development of CVDs.
Collapse
Affiliation(s)
| | | | - Yuan Li
- *Correspondence: Kangyun Sun, ; Yuan Li,
| | | |
Collapse
|
13
|
Jin X, Chen J, Wu J, Lu Y, Li B, Fu W, Wang W, Cui D. Aberrant expansion of follicular helper T cell subsets in patients with systemic lupus erythematosus. Front Immunol 2022; 13:928359. [PMID: 36119056 PMCID: PMC9478104 DOI: 10.3389/fimmu.2022.928359] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Systemic lupus erythematosus (SLE) is a chronic and complex autoimmune disease characterized by multiple autoantibodies, resulting in multiple organ and tissue damages. These pathogenic autoantibodies produced by B cells are closely correlated with follicular helper T (Tfh) cell subsets that play a fundamental role in the pathogenesis of SLE. The aim of the present study was to study the phenotype and role of circulating Tfh (cTfh) cell subsets and associated B cell subpopulations in active and inactive SLE patients. Methods Thirty SLE outpatients and 24 healthy controls (HCs) were enrolled in this study. The frequency of cTfh cell and B cell subsets in peripheral blood mononuclear cells (PBMCs) and the plasma levels of eight cytokines were determined by flow cytometry, and plasma IL-21 levels were measured by ELISA. Meanwhile, we used MRL/lpr mice as the model of SLE to research the alterations of Tfh cells in the thymus and spleen of mice. Results Frequencies of CD4+CXCR5+CD45RA-effector cTfh cells, PD1+cTfh, PD1+ICOS+cTfh, PD1+cTfh1, PD1+cTfh2, PD1+cTfh17, and PD1+ICOS+cTfh1 cells as well as plasmablasts showed significant differences among HC, active and inactive SLE patients. Moreover, cytokines typically associated with cTfh cells, including IL-6 and IL-21, were elevated in active SLE patients compared to inactive SLE patients and HCs. Additionally, a positive correlation was observed between PD1+ICOS+ cTfh or PD1+ICOS+ cTfh1 cell frequencies and plasmablasts or IL-21 levels, as well as between plasmablasts. We also found PD1+ICOS+ Tfh cells expansion in both thymus and spleen of MRL/lpr mice, accompanied by increased frequencies in B cells and plasmablasts, meanwhile, cTfh1which expressing IFN-γ was increased in the peripheral blood of MRL/lpr mice. Conclusion Tfh cell subsets and plasmablasts may play a fundamental role in the pathogenesis of SLE and may provide potential targets for therapeutic interventions for SLE.
Collapse
Affiliation(s)
- Xin Jin
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jia Chen
- Department of Nephrology Research, The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian Wu
- Department of Clinical Laboratory, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Ying Lu
- Department of Rheumatology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Baohua Li
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wenning Fu
- Department of Rheumatology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wei Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
- *Correspondence: Dawei Cui, ; Wei Wang,
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Dawei Cui, ; Wei Wang,
| |
Collapse
|
14
|
Chen L, Yu X, Lv C, Dai Y, Wang T, Zheng S, Qin Y, Zhou X, Wang Y, Pei H, Fang H, Huang B. Increase in Serum Soluble Tim-3 Level Is Related to the Progression of Diseases After Hepatitis Virus Infection. Front Med (Lausanne) 2022; 9:880909. [PMID: 35646962 PMCID: PMC9133670 DOI: 10.3389/fmed.2022.880909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundViral hepatitis is a widespread and serious infectious disease, and most patients with liver cirrhosis and hepatocellular carcinoma are prone to viral infections. T cell immunoglobulin-and mucin-domain-containing molecule-3 (Tim-3) is an immune checkpoint molecule that negatively regulates T cell responses, playing an extremely important role in controlling infectious diseases. However, reports about the role of serum soluble Tim-3 (sTim-3) in hepatitis virus infection are limited. Therefore, this study explored changes in sTim-3 levels in patients infected with hepatitis B virus (HBV), hepatitis C virus (HCV), and hepatitis E virus (HEV).MethodsThis study applied high-sensitivity time-resolved fluorescence immunoassay for the detection of sTim-3 levels. A total of 205 cases of viral hepatitis infection (68 cases of HBV infection, 60 cases of HCV infection, and 77 cases of HEV virus infection) and 88 healthy controls were quantitatively determined. The changes in serum sTim-3 level and its clinical value in hepatitis virus infection were analyzed.ResultsPatients with HBV infection (14.00, 10.78–20.45 ng/mL), HCV infection (15.99, 11.83–27.00 ng/mL), or HEV infection (19.09, 10.85–33.93 ng/mL) had significantly higher sTim-3 levels than that in the healthy control group (7.69, 6.14–10.22 ng/mL, P < 0.0001). Patients with hepatitis and fibrosis infected with HBV (22.76, 12.82–37.53 ng/mL), HCV (33.06, 16.36–39.30 ng/mL), and HEV (28.90, 17.95–35.94 ng/mL) had significantly higher sTim-3 levels than patients with hepatitis without fibrosis (13.29, 7.75–17.28; 13.86, 11.48–18.64; 14.77, 9.79–29.79 ng/mL; P < 0.05).ConclusionsTim-3 level was elevated in patients infected with HBV, HCV, or HEV and gradually increased in patients with either hepatitis or hepatitis with hepatic fibrosis. It has a certain role in the evaluation of the course of a disease after hepatitis virus infection.
Collapse
Affiliation(s)
- Lingli Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaomei Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chunyan Lv
- Wuxi No.5 People’s Hospital, Wuxi, China
| | - Yaping Dai
- Wuxi No.5 People’s Hospital, Wuxi, China
| | - Tao Wang
- Wuxi No.5 People’s Hospital, Wuxi, China
| | - Shaoxiong Zheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiumei Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hao Pei
- Wuxi No.5 People’s Hospital, Wuxi, China
- Hao Pei,
| | - Hongming Fang
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
- Hongming Fang,
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Biao Huang,
| |
Collapse
|
15
|
Mizutani T, Ishizaka A, Koga M, Tsutsumi T, Yotsuyanagi H. Role of Microbiota in Viral Infections and Pathological Progression. Viruses 2022; 14:950. [PMID: 35632692 PMCID: PMC9144409 DOI: 10.3390/v14050950] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Viral infections are influenced by various microorganisms in the environment surrounding the target tissue, and the correlation between the type and balance of commensal microbiota is the key to establishment of the infection and pathogenicity. Some commensal microorganisms are known to resist or promote viral infection, while others are involved in pathogenicity. It is also becoming evident that the profile of the commensal microbiota under normal conditions influences the progression of viral diseases. Thus, to understand the pathogenesis underlying viral infections, it is important to elucidate the interactions among viruses, target tissues, and the surrounding environment, including the commensal microbiota, which should have different relationships with each virus. In this review, we outline the role of microorganisms in viral infections. Particularly, we focus on gaining an in-depth understanding of the correlations among viral infections, target tissues, and the surrounding environment, including the commensal microbiota and the gut virome, and discussing the impact of changes in the microbiota (dysbiosis) on the pathological progression of viral infections.
Collapse
Affiliation(s)
- Taketoshi Mizutani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
16
|
Marascio N, Rotundo S, Quirino A, Matera G, Liberto MC, Costa C, Russo A, Trecarichi EM, Torti C. Similarities, differences, and possible interactions between hepatitis E and hepatitis C viruses: Relevance for research and clinical practice. World J Gastroenterol 2022; 28:1226-1238. [PMID: 35431515 PMCID: PMC8968488 DOI: 10.3748/wjg.v28.i12.1226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/06/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) and hepatitis C virus (HCV) are both RNA viruses with a tropism for liver parenchyma but are also capable of extrahepatic manifestations. Hepatitis E is usually a viral acute fecal-oral transmitted and self-limiting disease presenting with malaise, jaundice, nausea and vomiting. Rarely, HEV causes a chronic infection in immunocompromised persons and severe fulminant hepatitis in pregnant women. Parenteral HCV infection is typically asymptomatic for decades until chronic complications, such as cirrhosis and cancer, occur. Despite being two very different viruses in terms of phylogenetic and clinical presentations, HEV and HCV show many similarities regarding possible transmission through organ transplantation and blood transfusion, pathogenesis (production of antinuclear antibodies and cryoglobulins) and response to treatment with some direct-acting antiviral drugs. Although both HEV and HCV are well studied individually, there is a lack of knowledge about coinfection and its consequences. The aim of this review is to analyze current literature by evaluating original articles and case reports and to hypothesize some interactions that can be useful for research and clinical practice.
Collapse
Affiliation(s)
- Nadia Marascio
- Department of Health Sciences, Unit of Microbiology, University “Magna Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Salvatore Rotundo
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Catanzaro 88100, Italy
| | - Angela Quirino
- Department of Health Sciences, Unit of Microbiology, University “Magna Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Giovanni Matera
- Department of Health Sciences, Unit of Microbiology, University “Magna Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Maria Carla Liberto
- Department of Health Sciences, Unit of Microbiology, University “Magna Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Chiara Costa
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Catanzaro 88100, Italy
| | - Alessandro Russo
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Catanzaro 88100, Italy
| | - Enrico Maria Trecarichi
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Catanzaro 88100, Italy
| | - Carlo Torti
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|
17
|
Wu J, Xu Y, Cui Y, Bortolanza M, Wang M, Jiang B, Yan M, Liang W, Yao Y, Pan Q, Yang J, Yu J, Wang D, Cao H, Li L. Dynamic changes of serum metabolites associated with infection and severity of patients with acute hepatitis E infection. J Med Virol 2022; 94:2714-2726. [PMID: 35199373 DOI: 10.1002/jmv.27669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022]
Abstract
Dynamic changes in metabolites may affect liver disease progression, and provide new methods for predicting liver damage. We used ultra-performance liquid chromatography-mass spectroscopy to assess serum metabolites in healthy controls (HC), and patients with acute hepatitis E (AHE) or hepatitis E virus acute liver failure (HEV-ALF). The principal component analysis, partial least squares discriminant analysis, and discriminant analysis of orthogonal projections to latent structures models illustrated significant differences in the metabolite components between AHE patients and HCs, or between HEV-ALF and AHE patients. In pathway enrichment analysis, we further identified two altered pathways, including linoleic acid metabolism and phenylalanine, tyrosine, and tryptophan biosynthesis, when comparing AHE patients with HCs. Linoleic acid metabolism and porphyrin and chlorophyll metabolism pathways were significantly different in HEV-ALF when compared with AHE patients. The discriminative performances of differential metabolites showed that taurocholic acid, glycocholic acid, glycochenodeoxycholate-3-sulfate, and docosahexaenoic acid could be used to distinguish HEV-ALF from AHE patients. The serum levels of glycocholic acid, taurocholic acid, deoxycholic acid glycine conjugate, and docosahexaenoic acid were associated with the prognosis of HEV-ALF patients. Dynamic changes in serum metabolites were associated with AHE infection and severity. The identified metabolites can be used to diagnose and predict the prognosis of HEV-ALF.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yanping Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yubao Cui
- Department of Clinical Laboratory, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Mariza Bortolanza
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Minjie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Jiang
- Department of Laboratory Medicine, The Central Blood Station of Yancheng City, Yancheng, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Wei Liang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yiwen Yao
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Qiaoling Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfeng Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dawei Wang
- Department of Infectious Diseases, The Second People's Hospital of Yancheng City, Yancheng, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Chen Y, Yang Y, Li S, Lin M, Xie X, Shi H, Jiang Y, Zheng S, Shao H, Yang N, Lu M. Changes and Clinical Significance of PIVKA-II in Hepatitis E Patients. Front Public Health 2022; 9:784718. [PMID: 35145947 PMCID: PMC8821524 DOI: 10.3389/fpubh.2021.784718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Increased protein induced by vitamin K absence or antagonist-II (PIVKA-II) levels had been widely reported in patients with hepatocellular carcinoma (HCC) and chronic hepatitis. However, the role of PIVKA-II in hepatitis E is unclear. The aim of this study was to clarify the changes related with PIVKA-II and its clinical significance in hepatitis E. We enrolled 84 patients with hepatitis E hospitalized in two hospitals from December 2019 to June 2021. The levels of serum PIVKA-II and related serological indicators in the patients were determined to elucidate the role of PIVKA-II in hepatitis E. We observed that 59.51% (50/84) of patients showed an increase in PIVKA-II levels. Compared with the normal PIVKA-II group (<32 mAU/L), patients in the elevated PIVKA-II group (>32 mAU/L) had much higher serum total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), and total bile acid (TBA) levels (p < 0.05 for each). Compared with the slightly elevated PIVKA-II group (32–125 mAU/L), patients in the significantly elevated PIVKA-II group (>125 mAU/L) had much lower serum albumin, alanine aminotransferase (ALT), aspartate transaminase (AST) levels, and longer days for the hospital stay (p < 0.05 for each). The association of PIVKA-II with TBIL and DBIL was an inverted U-shaped curve with an inflection point at 199.1 mAU/L). The association of PIVKA-II with IBIL was a U-shaped curve with an inflection point at 18.6 mAU/L while the association of PIVKA-II with albumin was an inverted U-shaped curve with an inflection point at 18.6 mAU/L. With the improvement of the disease, PIVKA-II levels were gradually decreased and finally returned to normal. This trend was consistent with that of bilirubin, and a peak appeared in the third week. Therefore, findings from our study show that the increase in PIVKA-II levels can be related to the degree of hepatic insufficiency in patients with hepatitis E, wherein PIVKA-II levels are transiently increased, and the trend of change can be related to the disease course.
Collapse
Affiliation(s)
- Youran Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanyan Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shanshan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minghao Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueting Xie
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huifang Shi
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuchun Jiang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sijie Zheng
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hui Shao
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Naibin Yang
- Department of Infectious Diseases, Ningbo First Hospital, Ningbo, China
- *Correspondence: Naibin Yang
| | - Mingqin Lu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Mingqin Lu
| |
Collapse
|
19
|
Uterine Injury Caused by Genotype 4 Hepatitis E Virus Infection Based on a BALB/c Mice Model. Viruses 2021; 13:v13101950. [PMID: 34696377 PMCID: PMC8538062 DOI: 10.3390/v13101950] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
To evaluate whether uterine injury caused by hepatitis E virus (HEV) infection is responsible for adverse pregnancy outcomes. HEV-infected female BALB/c mice were coupled with healthy male BALB/c mice at 0, 7, 14, 21, and 91 dpi to explore the uterine injury caused by HEV infection. Mice were euthanized after 10 days of copulation, and uteruses were collected for HEV RNA and antigen detection and histopathological analysis. Inflammatory responses; apoptosis; and estrogen receptor ɑ (ER-ɑ), endomethal antibody (ERAb), cytokeratin-7 (CK7), vimentin (VIM), and vascular endothelial growth factor (VEGF) expression levels were evaluated. After 10 days of copulation, miscarriage and nonpregnancy, as well as enlarged uteruses filled with inflammatory cytokines, were found in HEV-infected mice. HEV RNA and antigens were detected in the sera and uteruses of HEV-infected mice. Significant endometrial thickness (EMT) thinning, severe inflammatory responses, and aggravated apoptosis in the uteruses of HEV-infected mice that experienced miscarriage might contribute to adverse pregnancy outcomes. Furthermore, significantly suppressed ER-ɑ expression and increased ERAb, CK7, VIM, and VEGF expression levels were found in the uteruses of HEV-infected mice that had miscarried. However, uterine damage recovered after complete HEV clearance, and impaired fertility was improved. EMT injury, severe inflammatory responses, and aggravated apoptosis in the uterus caused by HEV infection are responsible for poor pregnancy outcomes.
Collapse
|
20
|
Wu J, Bortolanza M, Zhai G, Shang A, Ling Z, Jiang B, Shen X, Yao Y, Yu J, Li L, Cao H. Gut microbiota dysbiosis associated with plasma levels of Interferon-γ and viral load in patients with acute hepatitis E infection. J Med Virol 2021; 94:692-702. [PMID: 34549810 DOI: 10.1002/jmv.27356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
Few studies have focused on the effect of hepatitis E virus (HEV) infection on gut microbiota. To explore the relationship between changes in gut microbiota and inflammatory factors and viral load, we conducted a comparative study of 33 patients with acute hepatitis E (AHE) patients and 25 healthy controls (HCs) using high-throughput 16S ribosomal ribonucleic acid gene sequencing. Shannon and Simpson's indices showed no significant differences in bacterial diversity between the AHE and HCs groups. Proteobacteria, Gammaproteobacteria, and Enterobacteriaceae were most abundant in the AHE group, which contributed to the difference between the gut microbiota of the AHE and HCs groups, and the same difference between the HEV-RNA-positive and HEV-RNA-negative groups. Functional prediction analysis showed that ribosome, purine metabolism, and two-component system were the top three pathways. Compared with the AHE group with normal interferon (IFN)-γ, Proteobacteria, Gammaproteobacteria, Xanthomonadaceae, and Enterobacteriaceae were more abundant in the high-IFN-γ group. The abundance of Gammaproteobacteria was positively correlated with the level of serum alanine transaminase and total bilirubin. The abundance of Gammaproteobacteria could discriminate AHE patients from HCs, and could better predict the severity of AHE patients. We believe that our findings will contribute toward a novel treatment strategy for AHE.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Mariza Bortolanza
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Guanghua Zhai
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Anquan Shang
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Jiang
- Department of Laboratory Medicine, The Central Blood Station of Yancheng City, Yancheng, China
| | - Xiaochen Shen
- Department of Health Examination Center, The First People's Hospital of Yancheng City, Yancheng, China
| | - Yiwen Yao
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, Hangzhou, China
| |
Collapse
|
21
|
Wu J, Ling B, Guo N, Zhai G, Li M, Guo Y. Immunological Manifestations of Hepatitis E-Associated Acute and Chronic Liver Failure and Its Regulatory Mechanisms. Front Med (Lausanne) 2021; 8:725993. [PMID: 34434948 PMCID: PMC8380956 DOI: 10.3389/fmed.2021.725993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV) is a common cause of viral hepatitis in developing countries, most commonly transmitted through the fecal-oral route. The virus is mainly of genotypes (GT) 1 and GT2 genotypes, and patients usually show symptoms of acute hepatitis. Due to the rising trend of HEV serological prevalence in global population, HEV has become an important public health problem in developed countries. Severe hepatitis caused by HEV includes acute and chronic liver failure (ACLF). ACLF frequently occurs in developed countries and is caused by overlapping chronic liver diseases of HEV with genotypes GT3 and GT4. Because the onset of hepatitis E is closely associated with immunity, it is critical to understand the immunological mechanism of hepatitis E associated with acute and chronic liver failure (HEV-ACLF). This review discusses the immunological manifestations and mechanisms of HEV-ACLF, intrahepatic immune microenvironment and treatment, and raises outstanding questions about the immunological mechanism and treatment of the disease.
Collapse
Affiliation(s)
- Jian Wu
- Department of Clinical Laboratory, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Bai Ling
- Department of Pharmacy, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China
| | - Naizhou Guo
- Department of Clinical Laboratory, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China
| | - Guanghua Zhai
- Department of Clinical Laboratory, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Meifen Li
- Department of Clinical Laboratory, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Yurong Guo
- Department of Laboratory Medicine, Yancheng Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Traditional Chinese Medicine, Yancheng, China
| |
Collapse
|
22
|
Park SY, Hwang BO, Lim M, Ok SH, Lee SK, Chun KS, Park KK, Hu Y, Chung WY, Song NY. Oral-Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers (Basel) 2021; 13:2124. [PMID: 33924899 PMCID: PMC8125773 DOI: 10.3390/cancers13092124] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral-gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral-gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral-gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral-gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral-gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.
Collapse
Affiliation(s)
- Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Mihwa Lim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Seung-Ho Ok
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Sun-Kyoung Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Korea;
| | - Kwang-Kyun Park
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Won-Yoon Chung
- Department of Oral Biology, Oral Cancer Research Institute, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Na-Young Song
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| |
Collapse
|
23
|
Oral–Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers (Basel) 2021. [DOI: 10.3390/cancers13071748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral–gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral–gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral–gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral–gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral–gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.
Collapse
|
24
|
Wang R, Tang R, Li B, Ma X, Schnabl B, Tilg H. Gut microbiome, liver immunology, and liver diseases. Cell Mol Immunol 2021; 18:4-17. [PMID: 33318628 PMCID: PMC7852541 DOI: 10.1038/s41423-020-00592-6] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/08/2020] [Indexed: 02/08/2023] Open
Abstract
The gut microbiota is a complex and plastic consortium of microorganisms that are intricately connected with human physiology. The liver is a central immunological organ that is particularly enriched in innate immune cells and constantly exposed to circulating nutrients and endotoxins derived from the gut microbiota. The delicate interaction between the gut and liver prevents accidental immune activation against otherwise harmless antigens. Work on the interplay between the gut microbiota and liver has assisted in understanding the pathophysiology of various liver diseases. Of immense importance is the step from high-throughput sequencing (correlation) to mechanistic studies (causality) and therapeutic intervention. Here, we review the gut microbiota, liver immunology, and the interaction between the gut and liver. In addition, the impairment in the gut-liver axis found in various liver diseases is reviewed here, with an emphasis on alcohol-associated liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), and autoimmune liver disease (AILD). On the basis of growing evidence from these preclinical studies, we propose that the gut-liver axis paves the way for targeted therapeutic modalities for liver diseases.
Collapse
Affiliation(s)
- Rui Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|