1
|
Tyubaeva PM, Varyan IA, Romanov RR, Merzlikin VA, Gruznova OA, Gruznov DV, Popov NI, Shcherbakova GS, Shuteeva EN, Chesnokova IP, Lobanov AV, Olkhov AA. Electrospinning of Poly-3-Hydroxybutyrate Fibers Loaded with Chlorophyll for Antibacterial Purposes. Polymers (Basel) 2024; 16:3221. [PMID: 39599313 PMCID: PMC11598136 DOI: 10.3390/polym16223221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
This work is devoted to the creation of biocompatible fibrous materials with a high antimicrobial effect based on poly-3-hydroxybutyrate (PHB) and chlorophyll (Chl). The data obtained show the possibility of obtaining fibrous materials from PHB and Chl by electrospinning methods. The obtained electrospun matrices were investigated by the SEM, DSC and FTIR methods. Various key properties of the matrices were evaluated, including hydrophilicity and mechanical strength, as well as photodynamic and light-dependent antimicrobial effects against the conditionally pathogenic microorganism Staphylococcus aureus. The results demonstrate a significant improvement in electrospinning properties for a concentration of 0.5% Chl and a reduction in fiber formation defects, as well as an increase in the strength of nonwovens. It was found that the antimicrobial potential of Chl-PHB (with concentrations of Chl of 1.25 and 1.5%) is higher than that of Chl in free form. It was also determined that irradiation increases the inhibitory effect of Chl, both in free form and in the form of a complex with a polymer.
Collapse
Affiliation(s)
- Polina M. Tyubaeva
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina St., 119334 Moscow, Russia; (I.A.V.); (A.A.O.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia;
| | - Ivetta A. Varyan
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina St., 119334 Moscow, Russia; (I.A.V.); (A.A.O.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia;
| | - Roman R. Romanov
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia;
| | - Vasily A. Merzlikin
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina St., 119334 Moscow, Russia; (I.A.V.); (A.A.O.)
| | - Olga A. Gruznova
- Laboratory of Liquid-Phase Oxidation, Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia (I.P.C.)
- Laboratory of Veterinary Sanitation, All-Russian Research Institute of Veterinary Sanitation, Hygiene and Ecology—Branch of Federal State Budget Scientific Institution “Federal Scientific Center—K.I. Skryabin, Ya.R. Kovalenko All-Russian Research Institute of Experimental Veterinary Medicine, Russian Academy of Sciences”, 5 Zvenigorodskoye Highway, 123022 Moscow, Russia (E.N.S.)
| | - Dmitry V. Gruznov
- Laboratory of Veterinary Sanitation and Environmental Safety in Beekeeping, All-Russian Research Institute of Veterinary Sanitation, Hygiene and Ecology—Branch of Federal State Budget Scientific Institution “Federal Scientific Center—K.I. Skryabin, Ya.R. Kovalenko All-Russian Research Institute of Experimental Veterinary Medicine, Russian Academy of Sciences”, 5 Zvenigorodskoye Highway, 123022 Moscow, Russia
| | - Nikolay I. Popov
- Laboratory of Veterinary Sanitation, All-Russian Research Institute of Veterinary Sanitation, Hygiene and Ecology—Branch of Federal State Budget Scientific Institution “Federal Scientific Center—K.I. Skryabin, Ya.R. Kovalenko All-Russian Research Institute of Experimental Veterinary Medicine, Russian Academy of Sciences”, 5 Zvenigorodskoye Highway, 123022 Moscow, Russia (E.N.S.)
| | - Gulizar Sh. Shcherbakova
- Laboratory of Veterinary Sanitation, All-Russian Research Institute of Veterinary Sanitation, Hygiene and Ecology—Branch of Federal State Budget Scientific Institution “Federal Scientific Center—K.I. Skryabin, Ya.R. Kovalenko All-Russian Research Institute of Experimental Veterinary Medicine, Russian Academy of Sciences”, 5 Zvenigorodskoye Highway, 123022 Moscow, Russia (E.N.S.)
| | - Ekaterina N. Shuteeva
- Laboratory of Veterinary Sanitation, All-Russian Research Institute of Veterinary Sanitation, Hygiene and Ecology—Branch of Federal State Budget Scientific Institution “Federal Scientific Center—K.I. Skryabin, Ya.R. Kovalenko All-Russian Research Institute of Experimental Veterinary Medicine, Russian Academy of Sciences”, 5 Zvenigorodskoye Highway, 123022 Moscow, Russia (E.N.S.)
| | - Irina P. Chesnokova
- Laboratory of Liquid-Phase Oxidation, Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia (I.P.C.)
- Department of Chemistry and Technology of High-Molecular Compounds Named After S.S. Medvedev, MIREA—Russian Technological University, 78 Vernadsky Avenue, 119454 Moscow, Russia
| | - Anton V. Lobanov
- Department of General Chemistry, Moscow Pedagogical State University, 1/1 Malaya Pirogovskaya Street, 119435 Moscow, Russia
| | - Anatoly A. Olkhov
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina St., 119334 Moscow, Russia; (I.A.V.); (A.A.O.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia;
| |
Collapse
|
2
|
Luca L, Pauliuc D, Oroian M. Honey microbiota, methods for determining the microbiological composition and the antimicrobial effect of honey - A review. Food Chem X 2024; 23:101524. [PMID: 38947342 PMCID: PMC11214184 DOI: 10.1016/j.fochx.2024.101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Honey is a natural product used since ancient times due to its taste, aroma, and therapeutic properties (antibacterial, antiviral, anti-inflammatory, and antioxidant activity). The purpose of this review is to present the species of microorganisms that can survive in honey and the effect they can have on bees and consumers. The techniques for identifying the microorganisms present in honey are also described in this study. Honey contains bacteria, yeasts, molds, and viruses, and some of them may present beneficial properties for humans. The antimicrobial effect of honey is due to its acidity and high viscosity, high sugar concentration, low water content, the presence of hydrogen peroxide and non-peroxidase components, particularly methylglyoxal (MGO), phenolic acids, flavonoids, proteins, peptides, and non-peroxidase glycopeptides. Honey has antibacterial action (it has effectiveness against bacteria, e.g. Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter, etc.), antifungal (effectiveness against Candida spp., Aspergillus spp., Fusarium spp., Rhizopus spp., and Penicillium spp.), antiviral (effectiveness against SARS-CoV-2, Herpes simplex virus type 1, Influenza virus A and B, Varicella zoster virus), and antiparasitic action (effectiveness against Plasmodium berghei, Giardia and Trichomonas, Toxoplasma gondii) demonstrated by numerous studies that are comprised and discussed in this review.
Collapse
Affiliation(s)
- Liliana Luca
- Suceava-Botoșani Regional Innovative Bioeconomy Cluster Association, 720229 Suceava, Romania
| | - Daniela Pauliuc
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mircea Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
3
|
Aydin M, Unusan N, Sumlu E, Korucu EN. Rosmarinic Acid Exhibits Antifungal and Antibiofilm Activities Against Candida albicans: Insights into Gene Expression and Morphological Changes. J Fungi (Basel) 2024; 10:751. [PMID: 39590670 PMCID: PMC11595412 DOI: 10.3390/jof10110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Candida species, opportunistic pathogens that cause various infections, pose a significant threat due to their ability to form biofilms that resist antifungal treatments and immune responses. The increasing resistance of Candida spp. and the limited availability of effective treatments have prompted the research of natural compounds as alternative therapies. This study assessed the antifungal properties of RA against Candida species, focusing on its impact on C. albicans biofilms and the underlying mechanisms. The antifungal efficacy of RA was evaluated using the CLSI M27-A3 microdilution method on both fluconazole-susceptible and -resistant strains. Biofilm formation by C. albicans was assessed through a crystal violet assay, while its antibiofilm activity was analyzed using an MTT assay and field emission scanning electron microscopy (FESEM). Gene expression related to biofilm formation was studied using quantitative real-time PCR (qRT-PCR), and statistical analysis was performed with an ANOVA. Among the 28 Candida strains tested, RA exhibited minimum inhibitory concentration (MIC) values ranging from 160 to 1280 μg/mL. At a 640 μg/mL concentration, it significantly reduced the expression of genes associated with adhesion (ALS3, HWP1, and ECE1), hyphal development (UME6 and HGC1), and hyphal cAMP-dependent protein kinase regulators (CYR1, RAS1, and EFG1) in RAS1-cAMP-EFG1 pathway (p < 0.05). FESEM analysis revealed a reduction in hyphal networks and disruptions on the cell surface. Our study is the first to demonstrate the effects of RA on C. albicans adhesion, hyphae development, and biofilm formation through gene expression analysis with findings supported by FESEM. This approach distinguishes our study from previous studies on the effect of RA on Candida. However, the high MIC values of RA limit its antifungal potential. Therefore, more extensive research using innovative methods is required to increase the antifungal effect of RA.
Collapse
Affiliation(s)
- Merve Aydin
- Department of Medical Microbiology, Faculty of Medicine, KTO Karatay University, Konya 42020, Turkey
| | - Nurhan Unusan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, KTO Karatay University, Konya 42020, Turkey;
| | - Esra Sumlu
- Department of Medical Pharmacology, Faculty of Medicine, KTO Karatay University, Konya 42020, Turkey;
| | - Emine Nedime Korucu
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya 42090, Turkey;
| |
Collapse
|
4
|
Khataybeh B, Jaradat Z, Ababneh Q. Anti-bacterial, anti-biofilm and anti-quorum sensing activities of honey: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116830. [PMID: 37400003 DOI: 10.1016/j.jep.2023.116830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Man has used honey to treat diseases since ancient times, perhaps even before the history of medicine itself. Several civilizations have utilized natural honey as a functional and therapeutic food to ward off infections. Recently, researchers worldwide have been focusing on the antibacterial effects of natural honey against antibiotic-resistant bacteria. AIM OF THE STUDY This review aims to summarize research on the use of honey properties and constituents with their anti-bacterial, anti-biofilm, and anti-quorum sensing mechanisms of action. Further, honey's bacterial products, including probiotic organisms and antibacterial agents which are produced to curb the growth of other competitor microorganisms is addressed. MATERIALS AND METHODS In this review, we have provided a comprehensive overview of the antibacterial, anti-biofilm, and anti-quorum sensing activities of honey and their mechanisms of action. Furthermore, the review addressed the effects of antibacterial agents of honey from bacterial origin. Relevant information on the antibacterial activity of honey was obtained from scientific online databases such as Web of Science, Google Scholar, ScienceDirect, and PubMed. RESULTS Honey's antibacterial, anti-biofilm, and anti-quorum sensing activities are mostly attributed to four key components: hydrogen peroxide, methylglyoxal, bee defensin-1, and phenolic compounds. The performance of bacteria can be altered by honey components, which impact their cell cycle and cell morphology. To the best of our knowledge, this is the first review that specifically summarizes every phenolic compound identified in honey along with their potential antibacterial mechanisms of action. Furthermore, certain strains of beneficial lactic acid bacteria such as Bifidobacterium, Fructobacillus, and Lactobacillaceae, as well as Bacillus species can survive and even grow in honey, making it a potential delivery system for these agents. CONCLUSION Honey could be regarded as one of the best complementary and alternative medicines. The data presented in this review will enhance our knowledge of some of honey's therapeutic properties as well as its antibacterial activities.
Collapse
Affiliation(s)
- Batool Khataybeh
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ziad Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Qutaiba Ababneh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
5
|
Ghéczy N, Tao S, Pour-Esmaeil S, Szymańska K, Jarzębski AB, Walde P. Performance of a Flow-Through Enzyme Reactor Prepared from a Silica Monolith and an α-Poly(D-Lysine)-Enzyme Conjugate. Macromol Biosci 2023; 23:e2200465. [PMID: 36598452 DOI: 10.1002/mabi.202200465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Indexed: 01/05/2023]
Abstract
Horseradish peroxidase (HRP) is covalently bound in aqueous solution to polycationic α-poly(D-lysine) chains of ≈1000 repeating units length, PDL, via a bis-aryl hydrazone bond (BAH). Under the experimental conditions used, about 15 HRP molecules are bound along the PDL chain. The purified PDL-BAH-HRP conjugate is very stable when stored at micromolar HRP concentration in a pH 7.2 phosphate buffer solution at 4 °C. When a defined volume of such a conjugate solution of desired HRP concentration (i.e., HRP activity) is added to a macro- and mesoporous silica monolith with pore sizes of 20-30 µm as well as below 30 nm, quantitative and stable noncovalent conjugate immobilization is achieved. The HRP-containing monolith can be used as flow-through enzyme reactor for bioanalytical applications at neutral or slightly alkaline pH, as demonstrated for the determination of hydrogen peroxide in diluted honey. The conjugate can be detached from the monolith by simple enzyme reactor washing with an aqueous solution of pH 5.0, enabling reloading with fresh conjugate solution at pH 7.2. Compared to previously investigated polycationic dendronized polymer-enzyme conjugates with approximately the same average polymer chain length, the PDL-BAH-HRP conjugate appears to be equally suitable for HRP immobilization on silica surfaces.
Collapse
Affiliation(s)
- Nicolas Ghéczy
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, CH-8093, Switzerland
| | - Siyuan Tao
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, CH-8093, Switzerland
| | - Sajad Pour-Esmaeil
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, CH-8093, Switzerland
| | - Katarzyna Szymańska
- Department of Chemical Engineering and Process Design, Silesian University of Technology, Gliwice, 44-100, Poland
| | - Andrzej B Jarzębski
- Institute of Chemical Engineering, Polish Academy of Sciences, Gliwice, 44-100, Poland
| | - Peter Walde
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, CH-8093, Switzerland
| |
Collapse
|
6
|
Faúndez X, Báez ME, Martínez J, Zúñiga-López MC, Espinoza J, Fuentes E. Evaluation of the generation of reactive oxygen species and antibacterial activity of honey as a function of its phenolic and mineral composition. Food Chem 2023; 426:136561. [PMID: 37321119 DOI: 10.1016/j.foodchem.2023.136561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
The antibacterial activity (ABA) of honey is associated with the generation of reactive oxygen species (ROS), where polyphenols (PFs) play a key role due to their pro-oxidant action modulated by metallic cations. In this work, the contents of PFs, H2O2, OH radicals, Cu, Fe, Mn, Zn, and ABA against Staphylococcus epidermidis and Pseudomonas aeruginosa were determined in honeys from central Chile. Then, their relationships were evaluated through partial least squares regression. The average contents of phenolic acids, flavonoids and metals in honey ranged from 0.4 to 4 μg/g, 0.3-1.5 μg/g and 3-6 μg/g, respectively. All honeys showed accumulation of H2O2 (1-35 μg/g) and OH radicals. The PLS showed that gallic acid, p-coumaric acid, chrysin, kaempferol, Fe, and Mn stimulate the generation of ROS. Quercetin, Cu, and Zn showed marginal antioxidant effects. PFs favor the ABA of honey against both bacteria and H2O2 against S. epidermidis.
Collapse
Affiliation(s)
- Ximena Faúndez
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - María E Báez
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Jessica Martínez
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - María C Zúñiga-López
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Jeannette Espinoza
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Edwar Fuentes
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
7
|
Brudzynski K. Unexpected Value of Honey Color for Prediction of a Non-Enzymatic H 2O 2 Production and Honey Antibacterial Activity: A Perspective. Metabolites 2023; 13:metabo13040526. [PMID: 37110183 PMCID: PMC10141347 DOI: 10.3390/metabo13040526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Hydrogen peroxide is the principal antibacterial compound of honey and its concentration determines honey bacteriostatic (MIC) and bactericidal (MBC) potencies. Levels of H2O2 produced are highly relevant to honey therapeutic potential, but they vary extensively among honey with reasons not immediately apparent. According to a traditional view, H2O2 is produced as a by-product of glucose oxidation by the honey bee enzyme, glucose oxidase; however, significant levels of H2O2 could be produced in a non-enzymatic way via polyphenol autooxidation. The aim of this study was to evaluate the potential for such an alternative pathway by re-examining evidence from many experimental and correlative studies in order to identify factors and compounds required for pro-oxidant activity. Unexpectedly, the color intensity was found to be the main indicator separating honey varieties based on the quantitative differences in the polyphenolic content, antioxidant activity and the content of transition metals, Fe, Cu and Mn, the main factors required for pro-oxidant effects. The color-impeding polyphenolics and their oxidation products (semiquinones and quinones) further contributed to color development through multiple chemical conjugations with proteins, phenolic oxidative polymerization, chelation or the reduction of metal ions. Moreover, quinones, as an intrinsic part of polyphenol redox activity, play an active role in the formation of higher-order structures, melanoidins and colloids in honey. The latter structures are also known to chelate metal ions, potentially contributing to H2O2 production. Thus, the color intensity appears as a major parameter that integrates polyphenol-dependent pro-oxidant reactions resulting in H2O2 generation.
Collapse
Affiliation(s)
- Katrina Brudzynski
- Department of Drug Discovery, Bee-Biomedicals Inc., St. Catharines, ON L2T 3T4, Canada
- Department of Biological Sciences, Formerly, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
8
|
Afsah-Sahebi A, Shahangian SS, Khodajou-Masouleh H, H Sajedi R. A novel TMD-based peroxidase-mimicking nanozyme: From naked eye detection of leukocytosis-related diseases to sensing different bioanalytes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122260. [PMID: 36580748 DOI: 10.1016/j.saa.2022.122260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Being emerged as alternatives to natural enzymes, nanozymes have recently drawn much attention in sensing. Herein, the first multicomponent transition metal dicalchogenide (TMD)-based nanozyme (MCFS/rGO) was synthesized by a facile hydrothermal method and characterized. This peroxidase-mimic nanozyme follows the typical Michaelis-Menten kinetics, showing a higher affinity for H2O2 substrate (Km = 9 μM) compared to that of natural peroxidase (Km = 3700 μM). The remarkable potential of the MCFS/rGO nanozyme to detect H2O2 provided us with a great opportunity to design some simple and fast colorimetric sensing systems. Coupling the efficient peroxidase-mimicking activity of the nanozyme with the H2O2 production capacity of white blood cells (WBCs) leads to the development of a novel, simple, rapid, and efficient colorimetric method to distinguish leukocytosis-related patients from healthy people by the naked eye. This pioneering diagnostic technique can also be utilized to quantitatively measure the WBC count. Moreover, we coupled the mentioned nanozyme-based system with the activity of glucose oxidase enzyme available in different types of honey samples, an innovative mechanism proved to be an effective quality indicator of the samples. Last but not least, the MCFS/rGO nanozyme is also able to determine the quantity of some biologically significant analytes, including glutathione (GSH), ascorbic acid (AA), and mercury ions (Hg2+), of which the limit of detection (LOD) was 9.3 nM, 22.5 nM, and 0.32 μM, respectively. Our results, however, demonstrated the superior performance of the MCFS/rGO nanozyme to determine the first two mentioned bioanalytes compared with other TMDs. Overall, this novel nanozyme-based sensor system can be considered a suitable candidate for developing multipurpose biosensors for medical and biochemical applications.
Collapse
Affiliation(s)
| | - S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | | | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Lin T, Huang L, Cheng N, Wang Y, Ning Z, Huang S, Wu Y, Chen T, Su S, Lin Y. The in vitro and in vivo antibacterial activities of uniflorous honey from a medicinal plant, Scrophularia ningpoensis Hemsl., and characterization of its chemical profile with UPLC-MS/MS. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115499. [PMID: 35752262 DOI: 10.1016/j.jep.2022.115499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the Compendium of Materia Medica, honey has been used as a traditional medicine in treatment against mucositis, tinea, hemorrhoids and psoriasis. In complementary medicine, due to its significant antimicrobial activity, honey has been widely used as a remedy for skin wounds and gastrohelcosis for thousands of years. AIM OF THE STUDY This study is aimed at exploring the antimicrobial activity and mechanisms of honey sourced from medicinal plants, and revealing the composition-activity relationship, to facilitate their complementary and alternative application in the therapy of bacterial infectious diseases. MATERIALS AND METHODS Eight kinds of medicinal plant-derived uniflorous honey, native to China, were gathered. Their antimicrobial activities were evaluated in vitro, and then in vivo with the systemically infected mouse model and the acute skin infection model. SYTOX uptake assay, scanning electron microscopy, DNA binding assay, and quantitative real-time PCR, were carried out to elucidate the antibacterial mechanisms. This was followed by an investigation of the componential profile with the UPLC-MS/MS technique. RESULTS It was found that Scrophularia ningpoensis Hemsl. (figwort) honey (S. ningpoensis honey) exhibited broad-spectrum and the strongest antibacterial potency (MICs of 7.81-125.00%, w/v), comparable to manuka honey. In the in vivo assays, S. ningpoensis honey significantly decreased the bacterial load of the muscles under the acute MRSA-infected skin wounds; the sera level of TNF-α in the S. aureus and P. aeruginosa-infected mice decreased by 45.38% and 51.75%, respectively, after the treatment of S. ningpoensis honey (125 mg/10 g). It was capable of killing bacteria through disrupting the cell membranes and the genomic DNA, as well as down-regulating the expression of genes associated with virulence, biofilm formation and invasion, including icaA, icaD, eno, sarA, agrA, sigB, fib and ebps in S. aureus, and lasI, lasR, rhlI, rhlR and algC in P. aeruginosa. Apart from H2O2, some other nonperoxide compounds such as adenosine, chavicol, 4-methylcatechol, trehalose, palmitoleic acid and salidroside, might play a vital role in the antibacterial properties of S. ningpoensis honey. CONCLUSIONS This is the first study to thoroughly investigate the antibacterial activity, mode of action, and componential profile of S. ningpoensis honey. It suggested that S. ningpoensis honey might be a potential supplement or substitute for manuka honey, for the prevention or treatment of bacterial infections. It will facilitate the precise application of medicinal plant-sourced honey, provide a new thread for the development of antibacterial drugs, and assist in the distinction of different kinds of honey.
Collapse
Affiliation(s)
- Tianxing Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lei Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ningna Cheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuzhen Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhen Ning
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaokang Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanhua Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
10
|
Halawani EM. Potential effects of Saudi Shaoka ( Fagonia bruguieri) honey against multi-drug-resistant bacteria and cancer cells in comparison to Manuka honey. Saudi J Biol Sci 2021; 28:7379-7389. [PMID: 34867041 PMCID: PMC8626341 DOI: 10.1016/j.sjbs.2021.08.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/16/2022] Open
Abstract
The global spread of antimicrobial-resistant infectious diseases and cancer are the most widespread public health issue and has led to high mortality rates. This study aims to evaluate and verify the antibacterial and antitumor activities of Shaoka and Manuka honey against pathogenic bacteria, human hepatocarcinoma (HepG2) and breast cancer (MCF-7) cell lines. Shaoka hone was analyzed using HPLC, UV–vis, and GC/MC, while antibacterial activity was measured by agar diffusion, broth microdilution methods, and Transmission Electron Microscopy (TEM). Antitumor activity was investigated morphologically and by MTT assay. According to the presented data of HPLC analysis, Shaoka honey was generally richer in polyphenolic components, the antibacterial activity showed that Shaoka honey is equivalent or relatively more active than Manuka honey against a broad spectrum of multi-drug-resistant bacteria. It inhibited the growth of ESBL Escherichia coli in the absence or presence of catalase enzyme with a concentration approximately 8.5%–7.3% equivalent to phenol, which supported the highest level of non-peroxide-dependent activity. The minimum bactericidal concentrations (MBCs) ranged between 5.0% and 15.0% honey (w/v). TEM observation revealed distorted cell morphology, cytoplasmic shrinkage, and cell wall destruction of treated bacteria. The selected honey exerted cytotoxicity on both cancer cell lines, inhibiting cell proliferation rate and viability percent in HepG2 and MCF-7 cancer cells, by different degrees depending on the honey quality, Shaoka honey competed Manuka inhibitory effects against both cancer cells. The obtained data confirmed the potential for use of Saudi Shaoka honey as a remedy, this well introduces a new honey template as medical-grade honey for treating infectious disease and cancer.
Collapse
Affiliation(s)
- Eman Mohammed Halawani
- Medical Bacteriology, Department of Biology, Collage of Science, Taif University, P.O. Box11099, Taif 21944, Saudi Arabia
| |
Collapse
|
11
|
The Rediscovery of Honey for Skin Repair: Recent Advances in Mechanisms for Honey-Mediated Wound Healing and Scaffolded Application Techniques. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Honey is a honey-bee product obtained mainly by the enzymatic processing of nectar from a variety of plants, which leads to the wide range of colours and flavours available on the market. These organoleptic and nutritional features are influenced by the chemical composition, which in turn depends on the botanical origin. Bioactive compounds account for honey beneficial activity in medical applications, which explains the extensive use of honey in ethno-pharmacology since antiquity, from cough remedies to dermatological treatments. Wound healing is one of the main therapeutic uses of honey, and various design options in pharmaceutical technology such as smart delivery systems and advanced dressings are currently being developed to potentiate honey’s valuable properties for better performance and improved final outcome. In this review, we will focus on the latest research that discloses crucial factors in determining what properties are most beneficial when considering honey as a medicinal product. We will present the most recent updates on the possible mechanisms responsible for the exceptional effects of this ageless therapeutical remedy on skin repair. Furthermore, the state-of-the-art in application techniques (incorporation into scaffolds as an alternative to direct administration) used to enhance honey-mediated wound-healing properties are explored.
Collapse
|
12
|
Guttentag A, Krishnakumar K, Cokcetin N, Harry E, Carter D. Factors affecting the production and measurement of hydrogen peroxide in honey samples. Access Microbiol 2021; 3:000198. [PMID: 34151153 PMCID: PMC8209695 DOI: 10.1099/acmi.0.000198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/17/2020] [Indexed: 11/18/2022] Open
Abstract
Many Australian native honeys possess significant antimicrobial properties due to the production of hydrogen peroxide (H2O2) by glucose oxidase, an enzyme derived from the honeybee. The level of H2O2 produced in different honey samples is highly variable, and factors governing its production and stability are not well understood. In this study, highly active Australian honeys that had been stored for >10 years lost up to 54 % of their antibacterial activity, although almost all retained sufficient activity to be considered potentially therapeutically useful. We used a simple colourimetric assay to quantify H2O2 production. Although we found a significant correlation between H2O2 production and antibacterial activity across diverse honey samples, variation in H2O2 only explained 47 % of the variation observed in activity, limiting the assay as a screening tool and highlighting the complexity of the relationship between H2O2 and the killing power of honey. To further examine this, we tested whether H2O2 detection in honey was being inhibited by pigmented compounds and if H2O2 might be directly degraded in some honey samples. We found no correlation between H2O2 detection and honey colour. Some honey samples rapidly lost endogenous and spiked H2O2, suggesting that components in honey, such as catalase or antioxidant polyphenols, may degrade or quench H2O2. Despite this rapid loss of H2O2, these honeys had significant peroxide-based antibacterial activity, indicating a complex relationship between H2O2 and other honey components that may act synergistically to augment activity.
Collapse
Affiliation(s)
- Annabel Guttentag
- School of Life and Environmental Sciences and the Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW 2006, Australia
| | - Krishothman Krishnakumar
- School of Life and Environmental Sciences and the Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW 2006, Australia
| | - Nural Cokcetin
- ithree Institute, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Elizabeth Harry
- ithree Institute, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dee Carter
- School of Life and Environmental Sciences and the Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Proaño A, Coello D, Villacrés-Granda I, Ballesteros I, Debut A, Vizuete K, Brenciani A, Álvarez-Suarez JM. The osmotic action of sugar combined with hydrogen peroxide and bee-derived antibacterial peptide Defensin-1 is crucial for the antibiofilm activity of eucalyptus honey. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110379] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Combarros-Fuertes P, Fresno JM, Estevinho MM, Sousa-Pimenta M, Tornadijo ME, Estevinho LM. Honey: Another Alternative in the Fight against Antibiotic-Resistant Bacteria? Antibiotics (Basel) 2020; 9:antibiotics9110774. [PMID: 33158063 PMCID: PMC7694208 DOI: 10.3390/antibiotics9110774] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Antibacterial resistance has become a challenging situation worldwide. The increasing emergence of multidrug-resistant pathogens stresses the need for developing alternative or complementary antimicrobial strategies, which has led the scientific community to study substances, formulas or active ingredients used before the antibiotic era. Honey has been traditionally used not only as a food, but also with therapeutic purposes, especially for the topical treatment of chronic-infected wounds. The intrinsic characteristics and the complex composition of honey, in which different substances with antimicrobial properties are included, make it an antimicrobial agent with multiple and different target sites in the fight against bacteria. This, together with the difficulty to develop honey-resistance, indicates that it could become an effective alternative in the treatment of antibiotic-resistant bacteria, against which honey has already shown to be effective. Despite all of these assets, honey possesses some limitations, and has to fulfill a number of requirements in order to be used for medical purposes.
Collapse
Affiliation(s)
- Patricia Combarros-Fuertes
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, Campus de Vegazana, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - José M. Fresno
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, Campus de Vegazana, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - Maria Manuela Estevinho
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Mário Sousa-Pimenta
- Department of Onco-Hematology, Portuguese Institute of Oncology of Porto (IPO-Porto), 4200-072 Porto, Portugal;
| | - M. Eugenia Tornadijo
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, Campus de Vegazana, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - Leticia M. Estevinho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
- Correspondence: ; Tel.: +351-273303342
| |
Collapse
|
15
|
Abstract
AbstractThis paper presents the effect of polyphenols on microorganisms inhabiting the human gastrointestinal tract (mainly bacteria belonging to the Lactobacillus genus) and pathogenic microorganisms classified as the most common food contaminants. Plant secondary metabolites have the ability to modulate the growth of many microorganisms. Due to the metabolic changes induced by their presence in the environment, many pathogenic microorganisms are unable to grow, which in turn cause a significant reduction in their pathogenic potential. These processes include primarily the induction of ruptures in the cell membrane and disturbance of cell respiration. Often, the lack of integrity of cell membranes also leads to the disturbance of intracellular homeostasis and leakage of cellular components, such as proteins, ATP molecules or intracellular ions. Autoxidizing polyphenols also act as pro-oxidative substances. Hydrogen peroxide formed in the process of oxidation of polyphenolic compounds acts as a bactericidal substance (by induction of DNA breaks). With regard to intestinal microbiota, polyphenols are considered prebiotic substances that increase the number of commensal bacteria. They can positively influence the growth of Lactobacillus bacteria, which have the ability to metabolize undigested antioxidants in the digestive tract of humans and animals. Depending on the pH of the environment and the presence of ions, plant polyphenols in the human digestive tract can act as substances with antioxidant potential or become pro-oxidants. Thus, combining functional food with polyphenols and Lactobacillus bacteria not only protects food products against the development of undesirable and pathogenic microbiota, but also has a positive effect on human health. The paper also describes the possibility of changes in the genome of Lactobacillus bacteria (under the influence of polyphenols) and the influence of Lactobacillus spp. bacteria on the antimicrobial properties of polyphenols. The enzymatic abilities of bacteria of the genus Lactobacillus, which influence the transformation of polyphenolic compounds, were also described.
Collapse
|
16
|
Schvezov N, Pucciarelli AB, Valdes B, Dallagnol AM. Characterization of yateí (Tetragonisca fiebrigi) honey and preservation treatments: Dehumidification, pasteurization and refrigeration. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Combarros-Fuertes P, M. Estevinho L, Teixeira-Santos R, G. Rodrigues A, Pina-Vaz C, Fresno JM, Tornadijo ME. Antibacterial Action Mechanisms of Honey: Physiological Effects of Avocado, Chestnut, and Polyfloral Honey upon Staphylococcus aureus and Escherichia coli. Molecules 2020; 25:molecules25051252. [PMID: 32164305 PMCID: PMC7179468 DOI: 10.3390/molecules25051252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 11/16/2022] Open
Abstract
Numerous studies have explored the antibacterial properties of different types of honey from all around the world. However, the data available describing how honey acts against bacteria are few. The aim of this study was to apply a flow cytometry (FC) protocol to examine and characterize the primary effects of three varieties of honey (avocado, chestnut and polyfloral) upon physiological status of Staphylococcus aureus and Escherichia coli cells to reveal their antibacterial action mechanisms. The effects of honey samples on membrane potential, membrane integrity, and metabolic activity were assessed using different fluorochromes, in a 180 min time course assay. Time-kill experiments were also carried out under similar conditions. Exposure of S. aureus and E. coli to the distinct honey samples resulted in physiological changes related to membrane polarization and membrane integrity. Moreover, honey induced a remarkable metabolic disruption as primary physiological effect upon S. aureus. The different honey samples induced quite similar effects on both bacteria. However, the depth of bacteria response throughout the treatment varied depending on the concentration tested and among honey varieties, probably due to compositional differences in the honey.
Collapse
Affiliation(s)
- Patricia Combarros-Fuertes
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, Campus de Vegazana, 24071 León, Spain; (J.M.F.); (M.E.T.)
- Correspondence: ; Tel.: +34-987-291182
| | - Leticia M. Estevinho
- CIMO, Mountain Research Center, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal;
| | - Rita Teixeira-Santos
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal; (R.T.-S.); (A.G.R.); (C.P.-V.)
| | - Acácio G. Rodrigues
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal; (R.T.-S.); (A.G.R.); (C.P.-V.)
- CINTESIS—Center for Research in Health Technologies and Information Systems, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
- Burn Unit, Department of Plastic and Reconstructive Surgery, Hospital São João, 4200-319 Porto, Portugal
| | - Cidália Pina-Vaz
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal; (R.T.-S.); (A.G.R.); (C.P.-V.)
- CINTESIS—Center for Research in Health Technologies and Information Systems, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Jose M. Fresno
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, Campus de Vegazana, 24071 León, Spain; (J.M.F.); (M.E.T.)
| | - M. Eugenia Tornadijo
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, Campus de Vegazana, 24071 León, Spain; (J.M.F.); (M.E.T.)
| |
Collapse
|
18
|
Owayss AA, Elbanna K, Iqbal J, Abulreesh HH, Organji SR, Raweh HSA, Alqarni AS. In vitro antimicrobial activities of Saudi honeys originating from Ziziphus spina-christi L. and Acacia gerrardii Benth. trees. Food Sci Nutr 2020; 8:390-401. [PMID: 31993165 PMCID: PMC6977423 DOI: 10.1002/fsn3.1320] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 02/03/2023] Open
Abstract
Honeys originating from Sidr (Ziziphus spina-christi L.) and Talh (Acacia gerrardii Benth.) trees in Saudi Arabia exhibited substantial antimicrobial activity against pathogenic gram-positive bacteria (Bacillus cereus, Staphylococcus aureus), gram-negative bacteria (Escherichia coli, Salmonella enteritidis), and a dermatophytic fungus (Trichophyton mentagrophytes). The diameter of zones of inhibition represents the level of antimicrobial potency of the honey samples. Precisely, Talh honey showed significantly higher antibacterial activity against all tested bacteria than Sidr honey. The antifungal activity of Talh and Sidr honey types was significantly at par against a dermatophytic fungus. The water-diluted honey types (33% w/v) significantly induced a rise in the antimicrobial activity from that of the natural nondiluted honeys. Microbial strains displayed differential sensitivity; gram-positive bacteria were more sensitive and presented larger inhibition zones than gram-negative bacteria and the fungus. The sensitivity was highest in B. cereus and S. aureus, followed by T. mentagrophytes, E. coli, and S. enteritidis. The antimicrobial activity of water-diluted honeys (Sidr and Talh) was high than that of broad-spectrum antibacterial antibiotics (tetracycline and chloramphenicol) against bacterial strains, but these honeys were relativity less potent than antifungal antibiotics (flucoral and mycosat) against a fungal strain. Our findings indicate the antimicrobial potential of Saudi honeys to be considered in honey standards, and their therapeutic use as medical-grade honeys needs further investigations.
Collapse
Affiliation(s)
- Ayman A. Owayss
- Department of Plant ProtectionCollege of Food and Agriculture SciencesKing Saud UniversityRiyadhSaudi Arabia
- Department of Plant ProtectionFaculty of AgricultureFayoum UniversityFayoumEgypt
| | - Khaled Elbanna
- Department of Agricultural MicrobiologyFaculty of AgricultureFayoum UniversityFayoumEgypt
- Department of BiologyFaculty of Applied ScienceUmm Al‐Qura UniversityMakkahSaudi Arabia
- Research Laboratories CentreFaculty of Applied ScienceUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Javaid Iqbal
- Department of Plant ProtectionCollege of Food and Agriculture SciencesKing Saud UniversityRiyadhSaudi Arabia
| | - Hussein H. Abulreesh
- Department of BiologyFaculty of Applied ScienceUmm Al‐Qura UniversityMakkahSaudi Arabia
- Research Laboratories CentreFaculty of Applied ScienceUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Sameer R. Organji
- Department of BiologyFaculty of Applied ScienceUmm Al‐Qura UniversityMakkahSaudi Arabia
- Research Laboratories CentreFaculty of Applied ScienceUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Hael S. A. Raweh
- Department of Plant ProtectionCollege of Food and Agriculture SciencesKing Saud UniversityRiyadhSaudi Arabia
| | - Abdulaziz S. Alqarni
- Department of Plant ProtectionCollege of Food and Agriculture SciencesKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
19
|
Antioxidant properties and antimicrobial activity of manuka honey versus Polish honeys. Journal of Food Science and Technology 2019; 57:1269-1277. [PMID: 32180623 DOI: 10.1007/s13197-019-04159-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/12/2019] [Accepted: 11/08/2019] [Indexed: 12/26/2022]
Abstract
Originating from New Zealand manuka honey distinguishes itself from other honeys. The purpose of this study was to compare the antioxidant and antimicrobial properties of manuka honey and selected Polish honeys. Antioxidant capacity, total polyphenol and total flavonoid content were determined. Furthermore, the antimicrobial activity and the Minimum Inhibitory Concentration (MIC) were evaluated. Obtained results demonstrated that manuka honeys possessed relatively high antioxidant capacity compared to the other, Polish honeys. It was only honeydew honey that achieved comparable antioxidant properties to manuka honeys. The findings were supported by the results of microbial assays. Manuka MGO-250 and MGO-400, alongside honeydew honey, showed a stronger antimicrobial effect against Gram(+) than against Gram(-) bacteria. Moreover, the MIC-values, expressed as an inhibin number, proved the high antibiotic activity of manuka honey against the strains of Staphylococcus aureus and Enterococcus faecalis. Research concerning the influence of manuka honey on human health should be continued.
Collapse
|
20
|
Bucekova M, Jardekova L, Juricova V, Bugarova V, Di Marco G, Gismondi A, Leonardi D, Farkasovska J, Godocikova J, Laho M, Klaudiny J, Majtan V, Canini A, Majtan J. Antibacterial Activity of Different Blossom Honeys: New Findings. Molecules 2019; 24:E1573. [PMID: 31010070 PMCID: PMC6514785 DOI: 10.3390/molecules24081573] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 01/22/2023] Open
Abstract
Antibacterial activity is the most investigated biological property of honey. The goal of this study was to evaluate the antibacterial activity of 57 Slovak blossom honeys against Staphylococcus aureus and Pseudomonas aeruginosa and investigate the role of several bioactive substances in antibacterial action of honeys. Inhibitory and bactericidal activities of honeys were studied to determine the minimum inhibitory and bactericidal concentrations. The contents of glucose oxidase (GOX) enzyme, hydrogen peroxide (H2O2), and total polyphenols (TP) were determined in honeys. We found that honey samples showed different antibacterial efficacy against the tested bacteria as follows: wildflower honeys > acacia honeys > rapeseed honeys. Overall antibacterial activity of the honeys was statistically-significantly correlated with the contents of H2O2 and TP in honeys. A strong correlation was found between the H2O2 and TP content. On the other hand, no correlation was found between the content of GOX and level of H2O2. Antibacterial activity of 12 selected honeys was markedly reduced by treatment with catalase, but it remained relatively stable after inactivation of GOX with proteinase-K digestion. Obtained results suggest that the antibacterial activity of blossom honeys is mainly mediated by H2O2 levels present in honeys which are affected mainly by polyphenolic substances and not directly by GOX content.
Collapse
Affiliation(s)
- Marcela Bucekova
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Lucia Jardekova
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Valeria Juricova
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Veronika Bugarova
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Gabriele Di Marco
- Honey Research Center, Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Angelo Gismondi
- Honey Research Center, Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Donatella Leonardi
- Honey Research Center, Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Jarmila Farkasovska
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Jana Godocikova
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Maros Laho
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia.
| | - Jaroslav Klaudiny
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia.
| | - Viktor Majtan
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia.
| | - Antonella Canini
- Honey Research Center, Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Juraj Majtan
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| |
Collapse
|