1
|
Liang Y, Jiang X, Zhao X, Tang T, Fan X, Wang R, Yang M, Qi K, Zhang Y, Li P. Vitamin D alleviates HFD-induced hepatic fibrosis by inhibiting DNMT1 to affect the TGFβ1/Smad3 pathway. iScience 2024; 27:111262. [PMID: 39713736 PMCID: PMC11661986 DOI: 10.1016/j.isci.2024.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/26/2024] [Accepted: 10/23/2024] [Indexed: 12/24/2024] Open
Abstract
Increasing evidence points toward vitamin D (VD) having lipometabolism and immune-related properties to protect against related metabolic diseases through influencing DNA methylation with inconsistent results. Simultaneously, its relatively precise molecular metabolism on the progression of metabolic-associated fatty liver disease (MAFLD) remains uncertain. Here, we report an unprecedented role and possible mechanism for VD supplementation on the alleviation of high-fat diet (HFD)-induced MAFLD. Over time, our results demonstrated that metabolic disorders in the HFD-induced MAFLD were aggravated with a certain time-response dependence and accompanied by reduced VD metabolites. All these could be alleviated under sufficient VD supplementation in vivo and vitro. It was partially by inhibiting the expressions of DNMT1 to reverse the epigenetic patterns on the VD metabolism genes and TGFβR1, which ultimately triggered the TGFβ1/Smad3 pathway to result in the development of MAFLD. Furthermore, the protective effects of VD were weakened by the treatment with gene silencing of DNMT1.
Collapse
Affiliation(s)
- Yueqing Liang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children’s Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Xueyi Jiang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children’s Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Xinfeng Zhao
- Department of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Tiantian Tang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children’s Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Xiuqin Fan
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children’s Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Rui Wang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children’s Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Mengyi Yang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children’s Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Kemin Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children’s Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Yi Zhang
- Department of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Ping Li
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children’s Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| |
Collapse
|
2
|
Liu Z, Chen X, Yuan H, Jin L, Zhang T, Chen X. Dissecting the shared genetic architecture between nonalcoholic fatty liver disease and type 2 diabetes. Hum Mol Genet 2024:ddae184. [PMID: 39690818 DOI: 10.1093/hmg/ddae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/04/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024] Open
Abstract
Observational studies have reported a bidirectional correlation between nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D), but the shared genetic basis between the two conditions remains unclear. Using genome-wide association study (GWAS) summary data from European-ancestry populations, we examined the cross-trait genetic correlation and identified genomic overlaps and shared risk loci. We employed a latent causal variable model and Mendelian randomization (MR) analysis to infer causal relationships. Colocalization analysis and conditional/conjunctional false discovery rate (condFDR/conjFDR) were used to identify genomic overlaps and shared risk loci. Two-step MR analysis was utilized to identify potential mediators. We observed a strong positive genomic correlation between NAFLD and T2D (rg = 0.652, P = 5.67 × 10-6) and identified tissue-specific transcriptomic correlations in the pancreas, liver, skeletal muscle, subcutaneous adipose, and blood. Genetic enrichment was observed in NAFLD conditional on associations with T2D and vice versa, indicating significant polygenic overlaps. We found robust evidence for the causal effect of NAFLD on T2D, particularly insulin-related T2D, rather than vice versa. Colocalization analysis identified shared genomic regions between NAFLD and T2D, including GCKR, FTO, MAU2-TM6SF2, and PNPLA3-SAMM50. High-density lipoprotein cholesterol and insulin were partly mediated the association between NAFLD and T2D. These findings unveil a close genetic link between NAFLD and T2D, shedding light on the biological mechanisms connecting NAFLD progression to T2D.
Collapse
Affiliation(s)
- Zhenqiu Liu
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, Fudan University, 825 Zhangheng RD, Pudong New Area, Shanghai 201203, China
- Fudan University Taizhou Institute of Health Sciences, 799 Yaocheng RD, Taizhou 225316, China
| | - Xiaochen Chen
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South RD, Shanghai 200025, China
| | - Huangbo Yuan
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, Fudan University, 825 Zhangheng RD, Pudong New Area, Shanghai 201203, China
- Fudan University Taizhou Institute of Health Sciences, 799 Yaocheng RD, Taizhou 225316, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, Fudan University, 825 Zhangheng RD, Pudong New Area, Shanghai 201203, China
- Fudan University Taizhou Institute of Health Sciences, 799 Yaocheng RD, Taizhou 225316, China
| | - Tiejun Zhang
- Fudan University Taizhou Institute of Health Sciences, 799 Yaocheng RD, Taizhou 225316, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, 130 Dong'an RD, Shanghai 200032, China
- Department of Epidemiology, School of Public Health, Fudan University, 130 Dong'an RD, Shanghai 200032, China
- Yiwu Research Institute of Fudan University, 2 Chengbei RD, Yiwu 322000, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, Fudan University, 825 Zhangheng RD, Pudong New Area, Shanghai 201203, China
- Fudan University Taizhou Institute of Health Sciences, 799 Yaocheng RD, Taizhou 225316, China
- Yiwu Research Institute of Fudan University, 2 Chengbei RD, Yiwu 322000, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 12 Urumqi RD, Shanghai 200040, China
| |
Collapse
|
3
|
Reyes-Avendaño I, Villaseñor-Altamirano AB, Reyes-Jimenez E, Velazquez-Enriquez JM, Baltiérrez-Hoyos R, Piña-Vázquez C, Muriel P, Villa-Treviño S, Arellanes-Robledo J, Vásquez-Garzón VR. Identification of key markers for the stages of nonalcoholic fatty liver disease: An integrated bioinformatics analysis and experimental validation. Dig Liver Dis 2024; 56:1887-1896. [PMID: 38824040 DOI: 10.1016/j.dld.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/14/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The identification of biomarkers for the early diagnosis of nonalcoholic fatty liver disease (NAFLD) is urgently needed. Here, we aimed to identify NAFLD biomarkers in the early stages of steatosis (SS) and nonalcoholic steatohepatitis (NASH) based on differential gene expression from bioinformatics data. METHODS A meta-analysis was performed from transcriptomic databases retrieved from public repositories containing data from biopsies of patients at various stages of NAFLD development. The status of the selected molecules was validated in the serum of patients with NAFLD by ELISA. RESULTS We identified 121 differentially expressed genes (DEGs) associated with SS and 402 associated with NASH. Gene Ontology (GO) enrichment revealed that the altered genes were primarily associated with dysfunction of primary cellular processes, and pathway analyses were mainly related to cholesterol metabolism. We identified ACSS2, PCSK9, and CYP7A1 as candidate biomarkers for SS and ANGPTL3, CD36, CYP51A1, FASN, FAS, FDFT1, and LSS as candidate biomarkers for NASH. CONCLUSIONS By experimental validation of bioinformatics data from patients with NAFLD, we identified promising biomarkers for detecting SS and NASH that might be useful for screening and diagnosing early NAFLD stages in humans.
Collapse
Affiliation(s)
- Itayetzi Reyes-Avendaño
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua 68020, Oaxaca, Mexico
| | - Ana Beatriz Villaseñor-Altamirano
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH), Universidad Nacional Autónoma de México (UNAM), 3001 Boulevard Juriquilla 76230, Querétaro, Mexico
| | - Edilburga Reyes-Jimenez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua 68020, Oaxaca, Mexico
| | - Juan Manuel Velazquez-Enriquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua 68020, Oaxaca, Mexico
| | - Rafael Baltiérrez-Hoyos
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua 68020, Oaxaca, Mexico; CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua 68020, Oaxaca, Mexico
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Pablo Muriel
- Laboratorio de Hepatología Experimental, Departamento de Farmacología, Cinvestav-IPN, 07360 Ciudad de México, Mexico
| | - Saul Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Jaime Arellanes-Robledo
- CONAHCYT-Instituto Nacional de Medicina Genómica, Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Alcaldía Tlalpan 14610 Ciudad de México, Mexico
| | - Verónica Rocío Vásquez-Garzón
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua 68020, Oaxaca, Mexico; CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua 68020, Oaxaca, Mexico.
| |
Collapse
|
4
|
Aghasizadeh M, Ghanei M, Ghoflchi S, Asadian-Sohan P, Haghani M, Kazemi T, Esmaily H, Avan A, Ferns GA, Miri-Moghaddam E, Ghayour-Mobarhan M. Association of Genotypes of ANGPTL3 with Vitamin D and Calcium Concentration in Cardiovascular Disease. Biochem Genet 2024; 62:2482-2494. [PMID: 37955843 DOI: 10.1007/s10528-023-10533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/18/2023] [Indexed: 11/14/2023]
Abstract
One of the leading causes of mortality worldwide is cardiovascular disease, which is influenced by some variables, including calcium and vitamin D. This study aimed to assess the relationship between Angiopoietin-Like 3 (ANGPTL3) gene polymorphisms with vitamin D and calcium levels in cardiovascular disease (CVD) patients. In this research, 1002 people participated. Participants' anthropometric parameters, and FBG, calcium, and vitamin D were assessed. Blood samples were used to extract DNA. Taqman®-based polymerase chain reaction (PCR) was used to conduct genetic analysis for the rs10789117 and rs17458195. Statistical analysis was applied to determine differences across subgroups and the relationship between polymorphisms and disease. Age, body mass index (BMI), fasting Blood Sugar (FBG), phenylalanine ammonia-lyase (PAL), and smoking history were significantly correlated with CVD. Vitamin D was statistically associated with rs10789117 and rs17458195 in non-CVD individuals. In the moderate group, individuals with the C allele in rs10789117 showed a tenfold increase in vitamin D deficiency compared to those with the A allele. However, in rs11207997, individuals with the T allele had 5 to 6 times higher vitamin D deficiency than those with the C allele in all groups. This research demonstrates the relationship between some ANGPTL3 gene polymorphisms and complement levels in CVD patients. It may be concluded that individuals carrying these variants would likely benefit from using vitamin D and calcium supplements to avoid CVD.
Collapse
Affiliation(s)
- Malihe Aghasizadeh
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Medical Genetics and Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Ghoflchi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Asadian-Sohan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Haghani
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tooba Kazemi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Razi Clinical Research Development Unit, Faculty of Medicine Birjand University of Medical Sciences, Birjand, Iran
| | - Habibollah Esmaily
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, BN19PH, UK
| | - Ebrahim Miri-Moghaddam
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Amaro-Gahete FJ, Vázquez-Lorente H, Jurado-Fasoli L, Dote-Montero M, Kohler I, Ruiz JR. Low vitamin D levels are linked with increased cardiovascular disease risk in young adults: a sub-study and secondary analyses from the ACTIBATE randomized controlled trial. J Endocrinol Invest 2024; 47:1645-1656. [PMID: 38172418 DOI: 10.1007/s40618-023-02272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE Vitamin D deficiency is related to metabolic disturbances. Indeed, a poor vitamin D status has been usually detected in patients with cardiovascular disease (CVD). However, the relationship between vitamin D and CVD risk factors in young adults remains controversial at present. This study aimed to examine the association between circulating 25-hydroxivitamin D (25(OH)D) and CVD risk factors in young adults. METHODS The present cross-sectional study included a cohort of 177 young adults aged 18-25 years old (65% women). 25(OH)D serum concentrations were assessed using a competitive chemiluminescence immunoassay. Fasting CVD risk factors (i.e., body composition, blood pressure, glucose metabolism, lipid profile, liver, and inflammatory markers) were determined by routine methods. A panel of 63 oxylipins and endocannabinoids (eCBs) was also analyzed by targeted metabolomics. RESULTS Circulating 25(OH)D concentrations were inversely associated with a wide range of CVD risk factors including anthropometrical (all P ≤ 0.005), body composition (all P ≤ 0.038), glucose metabolism (all P ≤ 0.029), lipid profile (all P < 0.035), liver (all P ≤ 0.011), and pro-inflammatory biomarkers (all P ≤ 0.030). No associations of serum 25(OH)D concentrations were found with pro-inflammatory markers (all P ≥ 0.104), omega-6 and omega-3 oxylipins, nor eCBs concentrations or their analogs (all P ≥ 0.05). CONCLUSION The present findings support the idea that 25(OH)D could be a useful predictor of CVD risk in young individuals.
Collapse
Affiliation(s)
- F J Amaro-Gahete
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain.
- Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain.
| | - H Vázquez-Lorente
- Department of Physiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix", University of Granada, Granada, Spain
| | - L Jurado-Fasoli
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - M Dote-Montero
- Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - I Kohler
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Center for Analytical Sciences Amsterdam, Amsterdam, The Netherlands
| | - J R Ruiz
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain.
- Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain.
- Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain.
| |
Collapse
|
6
|
Su X, Xu Q, Li Z, Ren Y, Jiao Q, Wang L, Wang Y. Role of the angiopoietin-like protein family in the progression of NAFLD. Heliyon 2024; 10:e27739. [PMID: 38560164 PMCID: PMC10980950 DOI: 10.1016/j.heliyon.2024.e27739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most frequent cause of chronic liver disease, with a range of conditions including non-alcoholic fatty liver, non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Currently recognized as the liver component of the metabolic syndrome, NAFLD is intimately linked to metabolic diseases. Angiopoietin-like proteins (ANGPTLs) comprise a class of proteins that resemble angiopoietins structurally. It is closely related to obesity, insulin resistance and lipid metabolism, and may be the critical factor of metabolic syndrome. In recent years, many studies have found that there is a certain correlation between ANGPTLs and the occurrence and progression of NAFLD disease spectrum. This article reviews the possible mechanisms and roles of ANGPTL protein in the pathogenesis and progression of NAFLD.
Collapse
Affiliation(s)
- Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Yidan Ren
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Qinlian Jiao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Lina Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| |
Collapse
|
7
|
Jiang YJ, Cao YM, Cao YB, Yan TH, Jia CL, He P. A Review: Cytochrome P450 in Alcoholic and Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2024; 17:1511-1521. [PMID: 38586542 PMCID: PMC10997053 DOI: 10.2147/dmso.s449494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/16/2024] [Indexed: 04/09/2024] Open
Abstract
Alcoholic fatty liver disease (FALD) and non-alcoholic fatty liver disease (NAFLD) have similar pathological spectra, both of which are associated with a series of symptoms, including steatosis, inflammation, and fibrosis. These clinical manifestations are caused by hepatic lipid synthesis and metabolism dysregulation and affect human health. Despite having been studied extensively, targeted therapies remain elusive. The Cytochrome P450 (CYP450) family is the most important drug-metabolising enzyme in the body, primarily in the liver. It is responsible for the metabolism of endogenous and exogenous compounds, completing biological transformation. This process is relevant to the occurrence and development of AFLD and NAFLD. In this review, the correlation between CYP450 and liver lipid metabolic diseases is summarised, providing new insights for the treatment of AFLD and NAFLD.
Collapse
Affiliation(s)
- Yu-Jie Jiang
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211100, People’s Republic of China
| | - Ye-Ming Cao
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| | - Yong-Bing Cao
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| | - Tian-Hua Yan
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211100, People’s Republic of China
| | - Cheng-Lin Jia
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| | - Ping He
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| |
Collapse
|
8
|
Sinha RA. Targeting nuclear receptors for NASH/MASH: From bench to bedside. LIVER RESEARCH 2024; 8:34-45. [PMID: 38544909 PMCID: PMC7615772 DOI: 10.1016/j.livres.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The onset of metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) represents a tipping point leading to liver injury and subsequent hepatic complications in the natural progression of what is now termed metabolic dysfunction-associated steatotic liver diseases (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD). With no pharmacological treatment currently available for MASH/NASH, the race is on to develop drugs targeting multiple facets of hepatic metabolism, inflammation, and pro-fibrotic events, which are major drivers of MASH. Nuclear receptors (NRs) regulate genomic transcription upon binding to lipophilic ligands and govern multiple aspects of liver metabolism and inflammation. Ligands of NRs may include hormones, lipids, bile acids, and synthetic ligands, which upon binding to NRs regulate the transcriptional activities of target genes. NR ligands are presently the most promising drug candidates expected to receive approval from the United States Food and Drug Administration as a pharmacological treatment for MASH. This review aims to cover the current understanding of NRs, including nuclear hormone receptors, non-steroid hormone receptors, circadian NRs, and orphan NRs, which are currently undergoing clinical trials for MASH treatment, along with NRs that have shown promising results in preclinical studies.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
9
|
Li R, Wang G, Liu R, Luo L, Zhang Y, Wan Z. Quercetin improved hepatic circadian rhythm dysfunction in middle-aged mice fed with vitamin D-deficient diet. J Physiol Biochem 2024; 80:137-147. [PMID: 37948027 DOI: 10.1007/s13105-023-00990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
We aimed to determine whether quercetin is capable of improving circadian rhythm and metabolism disorder under vitamin D-deficient condition. Middle-aged mice were randomly divided into four groups, namely, control (CON), vitamin D-deficient diet (VDD), quercetin (Q), and quercetin intervention in vitamin D-deficient diet (VDQ), with a total of 12 weeks' intervention. Mice were sacrificed at zeitgeber time1 (ZT1) and ZT13 time points. At ZT1, circadian locomotor output cycle kaput (CLOCK) protein expression from VDD, Q, and VDQ groups; CRY1 from Q group; and CRY2 from VDD group were significantly lower compared to CON group. The mRNA expression of Sirt1, Bmal1, Clock, Cry1, and Cry2 in VDQ groups, also Bmal1, Clock, and Cry1 from Q group, were significantly decreased compared to CON group. At ZT13, compared to CON group, fasting insulin and homeostasis model assessment-insulin resistance (HOMA-IR) were higher in VDD group; BMAL1 was significantly increased, while CLOCK and CRY1 protein were significantly decreased from VDD group; CLOCK protein from VDQ group was significantly higher compared to CON, VDD, and Q groups, and also, BMAL1 protein expression from VDQ group was elevated compared to CON group. The mRNA expression of Bmal1, Clock, Per2, Cry1, and Cry2 in VDQ groups were significantly increased compared to CON groups. The mRNA expression of Bmal1 from VDQ group was decreased compared to both VDD and Q group. In conclusion, vitamin D-deficient diet resulted in a disordered liver circadian rhythm, and quercetin improved the hepatic circadian desynchronization. Quercetin supplementation might be effective for balancing circadian rhythm under vitamin D-deficient condition.
Collapse
Affiliation(s)
- Rui Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Guiping Wang
- Laboratory Animal Center, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, China
| | - Ruitong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Lan Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
- Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, No. 568, Zhongxing North Road, Shaoxing, Zhejiang, 312000, China
| | - Ying Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
| |
Collapse
|
10
|
Li Z, Zheng D, Zhang T, Ruan S, Li N, Yu Y, Peng Y, Wang D. The roles of nuclear receptors in cholesterol metabolism and reverse cholesterol transport in nonalcoholic fatty liver disease. Hepatol Commun 2024; 8:e0343. [PMID: 38099854 PMCID: PMC10727660 DOI: 10.1097/hc9.0000000000000343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023] Open
Abstract
As the most prevalent chronic liver disease globally, NAFLD encompasses a pathological process that ranges from simple steatosis to NASH, fibrosis, cirrhosis, and HCC, closely associated with numerous extrahepatic diseases. While the initial etiology was believed to be hepatocyte injury caused by lipid toxicity from accumulated triglycerides, recent studies suggest that an imbalance of cholesterol homeostasis is of greater significance. The role of nuclear receptors in regulating liver cholesterol homeostasis has been demonstrated to be crucial. This review summarizes the roles and regulatory mechanisms of nuclear receptors in the 3 main aspects of cholesterol production, excretion, and storage in the liver, as well as their cross talk in reverse cholesterol transport. It is hoped that this review will offer new insights and theoretical foundations for the study of the pathogenesis and progression of NAFLD and provide new research directions for extrahepatic diseases associated with NAFLD.
Collapse
|
11
|
Di Giulio F, Castellini C, Tienforti D, Felzani G, Baroni MG, Barbonetti A. Independent association of hypovitaminosis d with non-alcoholic fatty liver disease in people with chronic spinal cord injury: a cross-sectional study. J Endocrinol Invest 2024; 47:79-89. [PMID: 37273143 DOI: 10.1007/s40618-023-02124-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) and hypovitaminosis D are highly prevalent in people with spinal cord injury (SCI) and could exert an unfavorable influence on cardiovascular profile and rehabilitation outcomes. We aimed to assess the independent association between low 25-hydroxy vitamin D (25(OH)D) levels and NAFLD in people with chronic (> 1 year) SCI. METHODS One hundred seventy-three consecutive patients with chronic SCI (132 men and 41 women) admitted to a rehabilitation program underwent clinical/biochemical evaluations and liver ultrasonography. RESULTS NAFLD was found in 105 patients (60.7% of the study population). They were significantly older and exhibited a poorer leisure time physical activity (LTPA) and functional independence in activities of daily living, a greater number of comorbidities and a higher prevalence of metabolic syndrome (MetS) and its correlates, including lower HDL and higher values of body mass index (BMI), systolic blood pressure, HOMA-index of insulin resistance and triglycerides. 25(OH)D levels were significantly lower in NAFLD (median: 10.6 ng/ml, range: 2.0-31.0) than in non-NAFLD group (22.5 ng/ml, 4.2-51.6). When all these variables were included in a multiple logistic regression analysis, a significant independent association with NAFLD only persisted for lower 25(OH)D levels, a greater number of comorbidities and a poorer LTPA. The ROC analysis revealed that 25(OH)D levels < 18.25 ng/ml discriminated patients with NAFLD with a sensitivity of 89.0% and a specificity of 73.0% (AUC: 85.7%; 95%CI: 79.6-91.7%). NAFLD was exhibited by 83.9% of patients with 25(OH)D levels < 18.25 ng/ml and by 18% of those with 25(OH)D levels ≥ 18.25 ng/ml (p < 0.0001). CONCLUSION In people with chronic SCI, 25(OH)D levels < 18.25 ng/ml may represent a marker of NAFLD independent of MetS-related features. Further studies are warranted to define the cause-effect relationships of this association.
Collapse
Affiliation(s)
- F Di Giulio
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - C Castellini
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - D Tienforti
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - G Felzani
- Spinal Unit, San Raffaele Sulmona Institute, Sulmona, Italy
| | - M G Baroni
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, Pozzilli, Italy
| | - A Barbonetti
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
12
|
Liu J, Song Y, Wang Y, Hong H. Vitamin D/vitamin D receptor pathway in non-alcoholic fatty liver disease. Expert Opin Ther Targets 2023; 27:1145-1157. [PMID: 37861098 DOI: 10.1080/14728222.2023.2274099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide, but underlying mechanisms are not fully understood. In recent years, a growing body of evidence has emphasized the therapeutic role of vitamin D in NAFLD, but the specific mechanism remains to be investigated. AREAS COVERED This review summarized the roles of vitamin D/VDR (vitamin D receptor) pathway in different types of liver cells (such as hepatocytes, hepatic stellate cells, liver macrophages, T lymphocytes, and other hepatic immune cells) in case of NAFLD. Meanwhile, the effects of pathways in the gut-liver axis, adipose tissue-liver axis, and skeletal muscle-liver axis on the development of NAFLD were further reviewed. Relevant literature was searched on PubMed for the writing of this review. EXPERT OPINION The precise regulation of regional vitamin D/VDR signaling pathway based on cell-specific or tissue-specific function will help clarify the potential mechanism of vitamin D in NAFLD, which may provide new therapeutic targets to improve the safety and efficacy of vitamin D based drugs.
Collapse
Affiliation(s)
- Jingqi Liu
- Fujian Key Laboratory of Vascular Aging, Department of Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Xiamen Institute of Geriatric Rehabilitation, Department of Geriatrics, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Yang Song
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Ye Wang
- Xiamen Institute of Geriatric Rehabilitation, Department of Geriatrics, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Huashan Hong
- Fujian Key Laboratory of Vascular Aging, Department of Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
13
|
Tourkochristou E, Mouzaki A, Triantos C. Gene Polymorphisms and Biological Effects of Vitamin D Receptor on Nonalcoholic Fatty Liver Disease Development and Progression. Int J Mol Sci 2023; 24:ijms24098288. [PMID: 37175993 PMCID: PMC10179740 DOI: 10.3390/ijms24098288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, with increasing prevalence worldwide. The genetic and molecular background of NAFLD pathogenesis is not yet clear. The vitamin D/vitamin D receptor (VDR) axis is significantly associated with the development and progression of NAFLD. Gene polymorphisms may influence the regulation of the VDR gene, although their biological significance remains to be elucidated. VDR gene polymorphisms are associated with the presence and severity of NAFLD, as they may influence the regulation of adipose tissue activity, fibrosis, and hepatocellular carcinoma (HCC) development. Vitamin D binds to the hepatic VDR to exert its biological functions, either by activating VDR transcriptional activity to regulate gene expression associated with inflammation and fibrosis or by inducing intracellular signal transduction through VDR-mediated activation of Ca2+ channels. VDR activity has protective and detrimental effects on hepatic steatosis, a characteristic feature of NAFLD. Vitamin D-VDR signaling may control the progression of NAFLD by regulating immune responses, lipotoxicity, and fibrogenesis. Elucidation of the genetic and molecular background of VDR in the pathophysiology of NAFLD will provide new therapeutic targets for this disease through the development of VDR agonists, which already showed promising results in vivo.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504 Patras, Greece
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504 Patras, Greece
| |
Collapse
|
14
|
Qin L, Wu J, Sun X, Huang X, Huang W, Weng C, Cai J. The regulatory role of metabolic organ-secreted factors in the nonalcoholic fatty liver disease and cardiovascular disease. Front Cardiovasc Med 2023; 10:1119005. [PMID: 37180779 PMCID: PMC10169694 DOI: 10.3389/fcvm.2023.1119005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disease characterized by an excessive accumulation of fat in the liver, which is becoming a major global health problem, affecting about a quarter of the population. In the past decade, mounting studies have found that 25%-40% of NAFLD patients have cardiovascular disease (CVD), and CVD is one of the leading causes of death in these subjects. However, it has not attracted enough awareness and emphasis from clinicians, and the underlying mechanisms of CVD in NAFLD patients remain unclear. Available research reveals that inflammation, insulin resistance, oxidative stress, and glucose and lipid metabolism disorders play indispensable roles in the pathogenesis of CVD in NAFLD. Notably, emerging evidence indicates that metabolic organ-secreted factors, including hepatokines, adipokines, cytokines, extracellular vesicles, and gut-derived factors, are also involved in the occurrence and development of metabolic disease and CVD. Nevertheless, few studies have focused on the role of metabolic organ-secreted factors in NAFLD and CVD. Therefore, in this review, we summarize the relationship between metabolic organ-secreted factors and NAFLD as well as CVD, which is beneficial for clinicians to comprehensive and detailed understanding of the association between both diseases and strengthen management to improve adverse cardiovascular prognosis and survival.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunyan Weng
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
15
|
Finney AC, Das S, Kumar D, McKinney MP, Cai B, Yurdagul A, Rom O. The interplay between nonalcoholic fatty liver disease and atherosclerotic cardiovascular disease. Front Cardiovasc Med 2023; 10:1116861. [PMID: 37200978 PMCID: PMC10185914 DOI: 10.3389/fcvm.2023.1116861] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/23/2023] [Indexed: 05/20/2023] Open
Abstract
Therapeutic approaches that lower circulating low-density lipoprotein (LDL)-cholesterol significantly reduced the burden of cardiovascular disease over the last decades. However, the persistent rise in the obesity epidemic is beginning to reverse this decline. Alongside obesity, the incidence of nonalcoholic fatty liver disease (NAFLD) has substantially increased in the last three decades. Currently, approximately one third of world population is affected by NAFLD. Notably, the presence of NAFLD and particularly its more severe form, nonalcoholic steatohepatitis (NASH), serves as an independent risk factor for atherosclerotic cardiovascular disease (ASCVD), thus, raising interest in the relationship between these two diseases. Importantly, ASCVD is the major cause of death in patients with NASH independent of traditional risk factors. Nevertheless, the pathophysiology linking NAFLD/NASH with ASCVD remains poorly understood. While dyslipidemia is a common risk factor underlying both diseases, therapies that lower circulating LDL-cholesterol are largely ineffective against NASH. While there are no approved pharmacological therapies for NASH, some of the most advanced drug candidates exacerbate atherogenic dyslipidemia, raising concerns regarding their adverse cardiovascular consequences. In this review, we address current gaps in our understanding of the mechanisms linking NAFLD/NASH and ASCVD, explore strategies to simultaneously model these diseases, evaluate emerging biomarkers that may be useful to diagnose the presence of both diseases, and discuss investigational approaches and ongoing clinical trials that potentially target both diseases.
Collapse
Affiliation(s)
- Alexandra C. Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Sandeep Das
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Dhananjay Kumar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - M. Peyton McKinney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Correspondence: Arif Yurdagul Oren Rom
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Correspondence: Arif Yurdagul Oren Rom
| |
Collapse
|
16
|
Chen Y, Feng S, Chang Z, Zhao Y, Liu Y, Fu J, Liu Y, Tang S, Han Y, Zhang S, Fan Z. Higher Serum 25-Hydroxyvitamin D Is Associated with Lower All-Cause and Cardiovascular Mortality among US Adults with Nonalcoholic Fatty Liver Disease. Nutrients 2022; 14:nu14194013. [PMID: 36235666 PMCID: PMC9571761 DOI: 10.3390/nu14194013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/26/2022] Open
Abstract
Aims: We aimed to assess the association between serum 25-hydroxyvitamin D (25(OH)D) levels with all-cause and cardiovascular mortality in patients with nonalcoholic fatty liver disease (NAFLD). Methods: We performed a retrospective cohort study based on the US National Health and Nutrition Examination Survey 2001–2016 on adults aged ≥20 years. NAFLD was determined as a US Fatty Liver Index score ≥ 30 in the absence of other liver conditions. Weighted Cox proportional hazards regression models were applied to explore the relationship between serum 25(OH)D levels and mortality. Results: 898 all-cause deaths and 305 cardiovascular deaths were recorded over a median follow-up of 8.7 years. Compared with those in the severe deficiency group (below 25.0 nmol/L), the fully adjusted HRs and 95% CIs of NAFLD patients with sufficient serum 25(OH)D concentrations (≥75.0 nmol/L) were 0.36 (0.22, 0.60) for all-cause mortality and 0.14 (0.07, 0.29) for cardiovascular mortality. Each one-unit increase in the natural log-transformed serum 25(OH)D concentration was related to a 41% lower risk for all-cause deaths (HR = 0.59, 95% CI: 0.46, 0.77) and a 65% lower risk for cardiovascular deaths (HR = 0.35, 95% CI: 0.22, 0.58). Conclusions: Among NAFLD patients, increased serum 25(OH)D levels were independently associated with reduced risk for all-cause and cardiovascular deaths.
Collapse
|
17
|
Pop TL, Sîrbe C, Benţa G, Mititelu A, Grama A. The Role of Vitamin D and Vitamin D Binding Protein in Chronic Liver Diseases. Int J Mol Sci 2022; 23:ijms231810705. [PMID: 36142636 PMCID: PMC9503777 DOI: 10.3390/ijms231810705] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Vitamin D (calciferol) is a fat-soluble vitamin that has a significant role in phospho-calcium metabolism, maintaining normal calcium levels and bone health development. The most important compounds of vitamin D are cholecalciferol (vitamin D3, or VD3) and ergocalciferol (vitamin D2, or VD2). Besides its major role in maintaining an adequate level of calcium and phosphate concentrations, vitamin D is involved in cell growth and differentiation and immune function. Recently, the association between vitamin D deficiency and the progression of fibrosis in chronic liver disease (CLD) was confirmed, given the hepatic activation process and high prevalence of vitamin D deficiency in these diseases. There are reports of vitamin D deficiency in CLD regardless of the etiology (chronic viral hepatitis, alcoholic cirrhosis, non-alcoholic fatty liver disease, primary biliary cirrhosis, or autoimmune hepatitis). Vitamin D binding protein (VDBP) is synthesized by the liver and has the role of binding and transporting vitamin D and its metabolites to the target organs. VDBP also plays an important role in inflammatory response secondary to tissue damage, being involved in the degradation of actin. As intense research during the last decades revealed the possible role of vitamin D in liver diseases, a deeper understanding of the vitamin D, vitamin D receptors (VDRs), and VDBP involvement in liver inflammation and fibrogenesis could represent the basis for the development of new strategies for diagnosis, prognosis, and treatment of liver diseases. This narrative review presents an overview of the evidence of the role of vitamin D and VDBP in CLD, both at the experimental and clinical levels.
Collapse
Affiliation(s)
- Tudor Lucian Pop
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Claudia Sîrbe
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Gabriel Benţa
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alexandra Mititelu
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alina Grama
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Han L, Fu S, Li J, Liu D, Tan Y. Association between grip strength and non-alcoholic fatty liver disease: A systematic review and meta-analysis. Front Med (Lausanne) 2022; 9:988566. [PMID: 36091710 PMCID: PMC9458919 DOI: 10.3389/fmed.2022.988566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background The association between grip strength (GS) and non-alcoholic fatty liver disease (NAFLD) has been reported by recent epidemiological studies, however, the results of these studies are inconsistent. This meta-analysis was conducted to collect all available data and estimate the risk of NAFLD among people with low GS, as well as the risk of low GS among patients with NAFLD. Methods We systematically searched several literature databases including PubMed, Web of Science, Cochrane Library, and Embase from inception to March 2022. These observational studies reported the risk of NAFLD among people with low GS and/or the risk of low GS among patients with NAFLD. Qualitative and quantitative information was extracted, statistical heterogeneity was assessed using the I2 test, and potential for publication bias was assessed qualitatively by a visual estimate of a funnel plot and quantitatively by calculation of the Begg’s test and the Egger’s test. Results Of the citations, 10 eligible studies involving 76,676 participants met inclusion criteria. The meta-analysis of seven cross-section studies (69,757 participants) showed that people with low GS had increased risk of NAFLD than those with normal GS (summary OR = 3.32, 95% CI: 1.91–5.75). In addition, the meta-analysis of four studies (14,920 participants) reported that the risk of low GS patients with NAFLD was higher than those in normal people (summary OR = 3.31, 95% CI: 2.45–4.47). Conclusion In this meta-analysis, we demonstrated a strong relationship between low GS and NAFLD. We found an increased risk of NAFLD among people with low GS, and an increased risk of lower GS among NAFLD patients. Systematic review registration [www.crd.york.ac.uk/prospero], identifier [CRD42022334687].
Collapse
Affiliation(s)
- Liu Han
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Shifeng Fu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Jianglei Li
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
- *Correspondence: Yuyong Tan,
| |
Collapse
|
19
|
Ravaioli F, Pivetti A, Di Marco L, Chrysanthi C, Frassanito G, Pambianco M, Sicuro C, Gualandi N, Guasconi T, Pecchini M, Colecchia A. Role of Vitamin D in Liver Disease and Complications of Advanced Chronic Liver Disease. Int J Mol Sci 2022; 23:ijms23169016. [PMID: 36012285 PMCID: PMC9409132 DOI: 10.3390/ijms23169016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin D is a crucial nutrient with many pleiotropic effects on health and various chronic diseases. The purpose of this review is to provide a detailed report on the pathophysiological mechanisms underlying vitamin D deficiency in patients with chronic liver disease, addressing the different liver etiologies and the condition of advanced chronic liver disease (cirrhosis) with related complications. To date, patients with liver disease, regardless of underlying etiology, have been shown to have reduced levels of vitamin D. There is also evidence of the predictive role of vitamin D values in complications and progression of advanced disease. However, specific indications of vitamin D supplementation are not conclusive concerning what is already recommended in the general population. Future studies should make an effort to unify and validate the role of vitamin D supplementation in chronic liver disease.
Collapse
Affiliation(s)
- Federico Ravaioli
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40128 Bologna, Italy
- Correspondence:
| | - Alessandra Pivetti
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
| | - Lorenza Di Marco
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena & Reggio Emilia, 41121 Modena, Italy
| | - Christou Chrysanthi
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
| | - Gabriella Frassanito
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
| | - Martina Pambianco
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
| | - Chiara Sicuro
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
| | - Noemi Gualandi
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
| | - Tomas Guasconi
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
| | - Maddalena Pecchini
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
| | - Antonio Colecchia
- Gastroenterology Unit, Department of Medical Specialties, University Hospital of Modena, University of Modena & Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
20
|
Hu X, Fan J, Ma Q, Han L, Cao Z, Xu C, Luan J, Jing G, Nan Y, Wu T, Zhang Y, Wang H, Zhang Y, Ju D. A novel nanobody-heavy chain antibody against Angiopoietin-like protein 3 reduces plasma lipids and relieves nonalcoholic fatty liver disease. J Nanobiotechnology 2022; 20:237. [PMID: 35590366 PMCID: PMC9118633 DOI: 10.1186/s12951-022-01456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/07/2022] [Indexed: 11/29/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a metabolic disease mainly on account of hypercholesterolemia and may progress to cirrhosis and hepatocellular carcinoma. The discovery of effective therapy for NAFLD is an essential unmet need. Angiopoietin-like protein 3 (ANGPTL3), a critical lipid metabolism regulator, resulted in increased blood lipids and was elevated in NAFLD. Here, we developed a nanobody-heavy chain antibody (VHH-Fc) to inhibit ANGPTL3 for NAFLD treatment. Results In this study, we retrieved an anti-ANGPTL3 VHH and Fc fusion protein, C44-Fc, which exhibited high affinities to ANGPTL3 proteins and rescued ANGPLT3-mediated inhibition of lipoprotein lipase (LPL) activity. The C44-Fc bound a distinctive epitope within ANGPTL3 when compared with the approved evinacumab, and showed higher expression yield. Meanwhile, C44-Fc had significant reduction of the triglyceride (~ 44.2%), total cholesterol (~ 36.6%) and LDL-cholesterol (~ 54.4%) in hypercholesterolemic mice and ameliorated hepatic lipid accumulation and liver injury in NAFLD mice model. Conclusions We discovered a VHH-Fc fusion protein with high affinity to ANGPTL3, strong stability and also alleviated the progression of NAFLD, which might offer a promising therapy for NAFLD. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01456-z.
Collapse
Affiliation(s)
- Xiaozhi Hu
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Jiajun Fan
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Qianqian Ma
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China.,National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, 201203, China
| | - Lei Han
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Zhonglian Cao
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Caili Xu
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Jingyun Luan
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China.,Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, 60615, USA
| | - Guangjun Jing
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Yanyang Nan
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Tao Wu
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Yuting Zhang
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Hanqi Wang
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Yuanzhen Zhang
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China
| | - Dianwen Ju
- School of Pharmacy & Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutic, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
21
|
Li M, Fan R, Peng X, Huang J, Zou H, Yu X, Yang Y, Shi X, Ma D. Association of ANGPTL8 and Resistin With Diabetic Nephropathy in Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:695750. [PMID: 34603198 PMCID: PMC8479106 DOI: 10.3389/fendo.2021.695750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Background Previous studies showed altered angiopoietin-like protein-8 (ANGPTL-8) and resistin circulating levels in type 2 diabetes mellitus (T2DM). Whether or not the alteration in ANGPTL-8 and resistin level can be a predictive maker for increased diabetic nephropathy risk remains unclear. Aim To Investigate the possible association of ANGPTL-8 and resistin with DN, and whether this association is affected by NAFLD status. Methods A total of 278 T2DM patients were enrolled. Serum levels of ANGPTL8, resistin, BMI, blood pressure, duration of diabetes, glycosylated hemoglobin (HbA1c), fasting blood glucose (FPG), hypersensitive C-reactive protein (hs-CRP), lipid profile, liver, and kidney function tests were assessed. The relationship between DN with ANGPTL8 and resistin was analyzed in the unadjusted and multiple-adjusted regression models. Results Serum levels of ANGPTL8 and resistin were significantly higher in DN compared with T2DM subjects without DN (respectively; P <0.001), especially in non-NAFLD populations. ANGPTL8 and resistin showed positive correlation with hs-CRP (respectively; P<0.01), and negative correlation with estimated GFR (eGFR) (respectively; P=<0.001) but no significant correlation to HOMA-IR(respectively; P>0.05). Analysis showed ANGPTL8 levels were positively associated with resistin but only in T2DM patients with DN(r=0.1867; P<0.05), and this significant correlation disappeared in T2DM patients without DN. After adjusting for confounding factors, both ANGPTL8(OR=2.095, 95%CI 1.253-3.502 P=0.005) and resistin (OR=2.499, 95%CI 1.484-4.208 P=0.001) were risk factors for DN. Data in non-NAFLD population increased the relationship between ANGPTL8 (OR=2.713, 95% CI 1.494-4.926 P=0.001), resistin (OR=4.248, 95% CI 2.260-7.987 P<0.001)and DN. The area under the curve (AUC) on receiver operating characteristic (ROC) analysis of the combination of ANGPTL8 and resistin was 0.703, and the specificity was 70.4%. These data were also increased in non-NAFLD population, as the AUC (95%CI) was 0.756, and the specificity was 91.2%. Conclusion This study highlights a close association between ANGPTL8, resistin and DN, especially in non-NAFLD populations. These results suggest that ANGPTL-8 and resistin may be risk predictors of DN.
Collapse
Affiliation(s)
- Mengni Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongping Fan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuemin Peng
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaojiao Huang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huajie Zou
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - DeLin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| |
Collapse
|
22
|
Gastaldelli A, Stefan N, Häring HU. Liver-targeting drugs and their effect on blood glucose and hepatic lipids. Diabetologia 2021; 64:1461-1479. [PMID: 33877366 PMCID: PMC8187191 DOI: 10.1007/s00125-021-05442-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
The global epidemic of non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) and the high prevalence among individuals with type 2 diabetes has attracted the attention of clinicians specialising in liver disorders. Many drugs are in the pipeline for the treatment of NAFLD/NASH, and several glucose-lowering drugs are now being tested specifically for the treatment of liver disease. Among these are nuclear hormone receptor agonists (e.g. peroxisome proliferator-activated receptor agonists, farnesoid X receptor agonists and liver X receptor agonists), fibroblast growth factor-19 and -21, single, dual or triple incretins, sodium-glucose cotransporter inhibitors, drugs that modulate lipid or other metabolic pathways (e.g. inhibitors of fatty acid synthase, diacylglycerol acyltransferase-1, acetyl-CoA carboxylase and 11β-hydroxysteroid dehydrogenase type-1) or drugs that target the mitochondrial pyruvate carrier. We have reviewed the metabolic effects of these drugs in relation to improvement of diabetic hyperglycaemia and fatty liver disease, as well as peripheral metabolism and insulin resistance.
Collapse
Affiliation(s)
- Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council-CNR, Pisa, Italy.
| | - Norbert Stefan
- Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany.
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, Tübingen, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
| | - Hans-Ulrich Häring
- Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, Tübingen, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
23
|
Zhang R, Wang M, Wang M, Zhang L, Ding Y, Tang Z, Fu Z, Fan H, Zhang W, Wang J. Vitamin D Level and Vitamin D Receptor Genetic Variation Were Involved in the Risk of Non-Alcoholic Fatty Liver Disease: A Case-Control Study. Front Endocrinol (Lausanne) 2021; 12:648844. [PMID: 34421816 PMCID: PMC8377425 DOI: 10.3389/fendo.2021.648844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND It has been demonstrated that vitamin D receptor (VDR), a key gene in the metabolism of vitamin D (VD), may affect the development of Non-alcoholic fatty liver disease (NAFLD) by regulating VD level and its biological effects. OBJECTIVES To investigate the effects of serum VD level, VDR variation, and a combination of VDR SNP and environmental behavior factor on the risk of NAFLD. METHODS A total of 3023 subjects from a community in Nanjing were enrolled, including 1120 NAFLD cases and 1903 controls. Serum 25(OH)D3 levels were measured and eight single nucleotide polymorphisms (SNPs) in VDR gene were genotyped. RESULTS Logistic regression analyses indicated that VD sufficiency and VD insufficiency were significantly associated with a low risk of NAFLD (all P<0.05; all Ptrend<0.05, in a locus-dosage manner). After adjusting for gender and age, VDR rs2228570-A and rs11168287-A alleles were all reduced the risk of NAFLD (all PFDR=0.136, in dominant model; Ptrend =0.039, combined effects in a locus-dosage manner). The protective effects of two favorable alleles were more evident among subjects ≤40 years, non-hypertension, non-hyperglycemia and non-low high density lipoprotein-cholesterol (all P<0.05). The area under the receiver operating curve of the combination of VDR SNP and exercise time for assessing NAFLD risk was slightly higher than that of only including exercise time or neither (all P<0.05). CONCLUSION High serum VD levels and VDR variants (rs2228570-A and rs11168287-A) might contribute to a low risk of NAFLD in Chinese Han population. The inclusion of VDR SNP and exercise time could improve the efficiency in assessment of NAFLD risk, which might provide a novel perspective for early screening and preventing NAFLD.
Collapse
Affiliation(s)
- Ru Zhang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Minxian Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Liuxin Zhang
- Department of Nursing, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yajie Ding
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Zongzhe Tang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Zuqiang Fu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haozhi Fan
- Department of Information, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Jie Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
- *Correspondence: Jie Wang,
| |
Collapse
|
24
|
Ceccarelli V, Barchetta I, Cimini FA, Bertoccini L, Chiappetta C, Capoccia D, Carletti R, Di Cristofano C, Silecchia G, Fontana M, Leonetti F, Lenzi A, Baroni MG, Barone E, Cavallo MG. Reduced Biliverdin Reductase-A Expression in Visceral Adipose Tissue is Associated with Adipocyte Dysfunction and NAFLD in Human Obesity. Int J Mol Sci 2020; 21:ijms21239091. [PMID: 33260451 PMCID: PMC7730815 DOI: 10.3390/ijms21239091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Biliverdin reductase A (BVR-A) is an enzyme involved in the regulation of insulin signalling. Knockout (KO) mice for hepatic BVR-A, on a high-fat diet, develop more severe glucose impairment and hepato-steatosis than the wild type, whereas loss of adipocyte BVR-A is associated with increased visceral adipose tissue (VAT) inflammation and adipocyte size. However, BVR-A expression in human VAT has not been investigated. We evaluated BVR-A mRNA expression levels by real-time PCR in the intra-operative omental biopsy of 38 obese subjects and investigated the association with metabolic impairment, VAT dysfunction, and biopsy-proven non-alcoholic fatty liver disease (NAFLD). Individuals with lower VAT BVR-A mRNA levels had significantly greater VAT IL-8 and Caspase 3 expression than those with higher BVR-A. Lower VAT BVR-A mRNA levels were associated with an increased adipocytes’ size. An association between lower VAT BVR-A expression and higher plasma gamma-glutamyl transpeptidase was also observed. Reduced VAT BVR-A was associated with NAFLD with an odds ratio of 1.38 (95% confidence interval: 1.02–1.9; χ2 test) and with AUROC = 0.89 (p = 0.002, 95% CI = 0.76–1.0). In conclusion, reduced BVR-A expression in omental adipose tissue is associated with VAT dysfunction and NAFLD, suggesting a possible involvement of BVR-A in the regulation of VAT homeostasis in presence of obesity.
Collapse
Affiliation(s)
- Valentina Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (I.B.); (F.A.C.); (L.B.); (A.L.)
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (I.B.); (F.A.C.); (L.B.); (A.L.)
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (I.B.); (F.A.C.); (L.B.); (A.L.)
| | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (I.B.); (F.A.C.); (L.B.); (A.L.)
| | - Caterina Chiappetta
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, 04100 Latina, Italy; (C.C.); (D.C.); (R.C.); (C.D.C.); (G.S.); (F.L.)
| | - Danila Capoccia
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, 04100 Latina, Italy; (C.C.); (D.C.); (R.C.); (C.D.C.); (G.S.); (F.L.)
| | - Raffaella Carletti
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, 04100 Latina, Italy; (C.C.); (D.C.); (R.C.); (C.D.C.); (G.S.); (F.L.)
| | - Claudio Di Cristofano
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, 04100 Latina, Italy; (C.C.); (D.C.); (R.C.); (C.D.C.); (G.S.); (F.L.)
| | - Gianfranco Silecchia
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, 04100 Latina, Italy; (C.C.); (D.C.); (R.C.); (C.D.C.); (G.S.); (F.L.)
| | - Mario Fontana
- Department of Biochemical Sciences “A. Rossi-Fanelli” Sapienza University of Rome, 00185 Rome, Italy;
| | - Frida Leonetti
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, 04100 Latina, Italy; (C.C.); (D.C.); (R.C.); (C.D.C.); (G.S.); (F.L.)
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (I.B.); (F.A.C.); (L.B.); (A.L.)
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 Coppito, Italy;
- Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi-Fanelli” Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (E.B.); (M.G.C.); Tel.: +39-(0)6-4997-4692 (M.G.C.)
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (I.B.); (F.A.C.); (L.B.); (A.L.)
- Correspondence: (E.B.); (M.G.C.); Tel.: +39-(0)6-4997-4692 (M.G.C.)
| |
Collapse
|
25
|
Vitamin D and Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD): An Update. Nutrients 2020; 12:nu12113302. [PMID: 33126575 PMCID: PMC7693133 DOI: 10.3390/nu12113302] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the first cause of chronic liver disease worldwide; it ranges from simple steatosis to steatohepatitis (NASH) and, potentially, cirrhosis and hepatocarcinoma. NAFLD is also an independent risk factor for type 2 diabetes, cardiovascular diseases, and mortality. As it is largely associated with insulin resistance and related disorders, NAFLD has been recently re-named as Metabolic dysfunction-Associated Fatty Liver Disease (MAFLD). At present, there are no approved pharmacological treatments for this condition. Vitamin D is a molecule with extensive anti-fibrotic, anti-inflammatory, and insulin-sensitizing properties, which have been proven also in hepatic cells and is involved in immune-metabolic pathways within the gut–adipose tissue–liver axis. Epidemiological data support a relationship hypovitaminosis D and the presence of NAFLD and steatohepatitis (NASH); however, results from vitamin D supplementation trials on liver outcomes are controversial. This narrative review provides an overview of the latest evidence on pathophysiological pathways connecting vitamin D to NAFLD, with emphasis on the effects of vitamin D treatment in MAFLD by a nonsystematic literature review of PubMed published clinical trials. This article conforms to the Scale for Assessment of Narrative Review Articles (SANRA) guidelines. Evidence so far available supports the hypothesis of potential benefits of vitamin D supplementation in selected populations of NAFLD patients, as those with shorter disease duration and mild to moderate liver damage.
Collapse
|
26
|
Deprince A, Haas JT, Staels B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol Metab 2020; 42:101092. [PMID: 33010471 PMCID: PMC7600388 DOI: 10.1016/j.molmet.2020.101092] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is rapidly becoming a global health problem. Cardiovascular diseases (CVD) are the most common cause of mortality in NAFLD patients. NAFLD and CVD share several common risk factors including obesity, insulin resistance, and type 2 diabetes (T2D). Atherogenic dyslipidemia, characterized by plasma hypertriglyceridemia, increased small dense low-density lipoprotein (LDL) particles, and decreased high-density lipoprotein cholesterol (HDL-C) levels, is often observed in NAFLD patients. Scope of review In this review, we highlight recent epidemiological studies evaluating the link between NAFLD and CVD risk. We further focus on recent mechanistic insights into the links between NAFLD and altered lipoprotein metabolism. We also discuss current therapeutic strategies for NAFLD and their potential impact on NAFLD-associated CVD risk. Major conclusions Alterations in hepatic lipid and lipoprotein metabolism are major contributing factors to the increased CVD risk in NAFLD patients, and many promising NASH therapies in development also improve dyslipidemia in clinical trials.
Collapse
Affiliation(s)
- Audrey Deprince
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - Joel T Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France.
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France.
| |
Collapse
|
27
|
Barchetta I, Chiappetta C, Ceccarelli V, Cimini FA, Bertoccini L, Gaggini M, Cristofano CD, Silecchia G, Lenzi A, Leonetti F, Baroni MG, Gastaldelli A, Cavallo MG. Angiopoietin-Like Protein 4 Overexpression in Visceral Adipose Tissue from Obese Subjects with Impaired Glucose Metabolism and Relationship with Lipoprotein Lipase. Int J Mol Sci 2020; 21:ijms21197197. [PMID: 33003532 PMCID: PMC7582588 DOI: 10.3390/ijms21197197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4) regulates lipid partitioning by inhibiting circulating and tissue lipoprotein lipase (LPL); ANGPTL4 loss-of-function variants improve insulin sensitivity and reduce type 2 diabetes (T2D) risk with mechanisms partially unknown. This study was designed to explore metabolic implications of differential ANGPTL4 and LPL expression in human adipose tissue (AT). We recruited eighty-eight obese individuals, with and without abnormal glucose metabolism (AGM), undergoing bariatric surgery; visceral AT (VAT) fragments were obtained intra-operatively and analyzed by immunohistochemistry and mRNA by rt-PCR. Data on hepatic ANGPTL4 mRNA were available for 40 participants. VAT ANGPTL4 expression was higher in AGM individuals than in those with normal glucose tolerance (NGT) and associated with VAT inflammation, insulin resistance, and presence of adipocyte size heterogeneity. Increased ANGPTL4 was associated with AGM with OR = 5.1 (95% C.I.: 1.2–23; p = 0.02) and AUROC = 0.76 (95% C.I.: 1.2–23; p < 0.001). High LPL was associated with the detection of homogeneous adipocyte size, reduced microvessel density, and higher HIF-1α levels and inversely correlated to blood transaminases. In conclusion, in obese individuals, VAT ANGPTL4 levels are increased in the presence of local inflammation and AGM. Conversely, higher LPL expression describes a condition of increased lipid storage in adipocytes, which may serve as a protective mechanism against ectopic fat accumulation and related metabolic disease in obesity.
Collapse
Affiliation(s)
- Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Caterina Chiappetta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (C.C.); (C.D.C.); (G.S.); (F.L.)
| | - Valentina Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Melania Gaggini
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, 56100 Pisa, Italy;
| | - Claudio Di Cristofano
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (C.C.); (C.D.C.); (G.S.); (F.L.)
| | - Gianfranco Silecchia
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (C.C.); (C.D.C.); (G.S.); (F.L.)
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
| | - Frida Leonetti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, 04100 Latina, Italy; (C.C.); (C.D.C.); (G.S.); (F.L.)
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA) University of L’Aquila, 67100 Coppito (AQ) Italy;
- IRCCS Neuromed, 86077 Pozzilli (Is), Italy
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, 56100 Pisa, Italy;
- Correspondence: (A.G.); (M.G.C.); Tel.: +39-(0)6-4997-4692 (M.G.C.)
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (V.C.); (F.A.C.); (L.B.); (A.L.)
- Correspondence: (A.G.); (M.G.C.); Tel.: +39-(0)6-4997-4692 (M.G.C.)
| |
Collapse
|