1
|
Pericàs JM, Anstee QM, Augustin S, Bataller R, Berzigotti A, Ciudin A, Francque S, Abraldes JG, Hernández-Gea V, Pons M, Reiberger T, Rowe IA, Rydqvist P, Schabel E, Tacke F, Tsochatzis EA, Genescà J. A roadmap for clinical trials in MASH-related compensated cirrhosis. Nat Rev Gastroenterol Hepatol 2024; 21:809-823. [PMID: 39020089 DOI: 10.1038/s41575-024-00955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/19/2024]
Abstract
Although metabolic dysfunction-associated steatohepatitis (MASH) is rapidly becoming a leading cause of cirrhosis worldwide, therapeutic options are limited and the number of clinical trials in MASH-related compensated cirrhosis is low as compared to those conducted in earlier disease stages. Moreover, designing clinical trials in MASH cirrhosis presents a series of challenges regarding the understanding and conceptualization of the natural history, regulatory considerations, inclusion criteria, recruitment, end points and trial duration, among others. The first international workshop on the state of the art and future direction of clinical trials in MASH-related compensated cirrhosis was held in April 2023 at Vall d'Hebron University Hospital in Barcelona (Spain) and was attended by a group of international experts on clinical trials from academia, regulatory agencies and industry, encompassing expertise in MASH, cirrhosis, portal hypertension, and regulatory affairs. The presented Roadmap summarizes important content of the workshop on current status, regulatory requirements and end points in MASH-related compensated cirrhosis clinical trials, exploring alternative study designs and highlighting the challenges that should be considered for upcoming studies on MASH cirrhosis.
Collapse
Affiliation(s)
- Juan M Pericàs
- Liver Unit, Division of Digestive Diseases, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Centros de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| | - Quentin M Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | | | - Ramón Bataller
- Liver Unit, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat Barcelona, Barcelona, Spain
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreea Ciudin
- Endocrinology and Nutrition Department, Morbid Obesity Unit Coordinator, Vall d'Hebron University Hospital, Barcelona, Spain
- Centros de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Juan G Abraldes
- Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, Canada
| | - Virginia Hernández-Gea
- Centros de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Liver Unit, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat Barcelona, Barcelona, Spain
| | - Mònica Pons
- Liver Unit, Division of Digestive Diseases, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ian A Rowe
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
| | - Peter Rydqvist
- Medical Department, Madrigal Pharmaceuticals, West Conshohocken, PA, USA
| | - Elmer Schabel
- Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Joan Genescà
- Liver Unit, Division of Digestive Diseases, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centros de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
van de Graaf SFJ, Paulusma CC, In Het Panhuis W. Getting in the zone: Metabolite transport across liver zones. Acta Physiol (Oxf) 2024; 240:e14239. [PMID: 39364668 DOI: 10.1111/apha.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
The liver has many functions including the regulation of nutrient and metabolite levels in the systemic circulation through efficient transport into and out of hepatocytes. To sustain these functions, hepatocytes display large functional heterogeneity. This heterogeneity is reflected by zonation of metabolic processes that take place in different zones of the liver lobule, where nutrient-rich blood enters the liver in the periportal zone and flows through the mid-zone prior to drainage by a central vein in the pericentral zone. Metabolite transport plays a pivotal role in the division of labor across liver zones, being either transport into the hepatocyte or transport between hepatocytes through the blood. Signaling pathways that regulate zonation, such as Wnt/β-catenin, have been shown to play a causal role in the development of metabolic dysfunction-associated steatohepatitis (MASH) progression, but the (patho)physiological regulation of metabolite transport remains enigmatic. Despite the practical challenges to separately study individual liver zones, technological advancements in the recent years have greatly improved insight in spatially divided metabolite transport. This review summarizes the theories behind the regulation of zonation, diurnal rhythms and their effect on metabolic zonation, contemporary techniques used to study zonation and current technological challenges, and discusses the current view on spatial and temporal metabolite transport.
Collapse
Affiliation(s)
- Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Wietse In Het Panhuis
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Bernardo CCDO, Godoy G, Eik Filho W, Curi R, Bazotte RB. Heterogeneous Pathological Changes in Liver Lobes During Liver Disease: A Perspective Review. Metab Syndr Relat Disord 2024; 22:494-498. [PMID: 39037911 DOI: 10.1089/met.2023.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Liver diseases have a global prevalence of 25%, accounting for 4% of all deaths worldwide, and are associated with a 36% increased risk of fatal and nonfatal cardiovascular events. Metabolic dysfunction-associated steatotic liver disease constitutes the liver expression of metabolic syndrome and represents the primary type of liver disease. Microscopical analysis of biopsies, which allows the evaluation of a small portion of tissue with inferences made to the entire organ, is considered the gold standard for determining the presence of liver diseases. However, potential sampling errors in liver biopsies are conceivable because the obtained tissue represents only a tiny fraction of the entire liver mass and may not accurately reflect the true pathological state. Studies have demonstrated the existence of sampling errors in liver biopsies, particularly concerning the severity of inflammation, degree of fibrosis, and the presence of cirrhosis. Also, clinical studies have shown that histopathological abnormalities are better detected in humans when liver samples are collected from both the right and the left lobes. However, a gap exists in clinical investigation to clarify the role of differences between these lobes in improving the diagnostic and prognostic for liver diseases. Building upon the heterogeneous nature of pathological alterations observed in liver lobes, this perspective review provided recommendations to enhance the precision of diagnosis and prognostic accuracy of liver diseases.
Collapse
Affiliation(s)
| | - Guilherme Godoy
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Wilson Eik Filho
- Department of Medicine, State University of Maringá, Maringá, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Roberto Barbosa Bazotte
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| |
Collapse
|
4
|
Sonkar R, Ma H, Waxman DJ. Steatotic liver disease induced by TCPOBOP-activated hepatic constitutive androstane receptor: primary and secondary gene responses with links to disease progression. Toxicol Sci 2024; 200:324-345. [PMID: 38710495 DOI: 10.1093/toxsci/kfae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Constitutive androstane receptor (CAR, Nr1i3), a liver nuclear receptor and xenobiotic sensor, induces drug, steroid, and lipid metabolizing enzymes, stimulates liver hypertrophy and hyperplasia, and ultimately, hepatocellular carcinogenesis. The mechanisms linking early CAR responses to later disease development are poorly understood. Here we show that exposure of CD-1 mice to TCPOBOP (1,4-bis[2-(3,5-dichloropyridyloxy)]benzene), a halogenated xenochemical and selective CAR agonist ligand, induces pericentral steatosis marked by hepatic accumulation of cholesterol and neutral lipid, and elevated circulating alanine aminotransferase, indicating hepatocyte damage. TCPOBOP-induced steatosis was weaker in the pericentral region but stronger in the periportal region in females compared with males. Early (1 day) TCPOBOP transcriptional responses were enriched for CAR-bound primary response genes, and for lipogenesis and xenobiotic metabolism and oxidative stress protection pathways; late (2 weeks) TCPOBOP responses included many CAR binding-independent secondary response genes, with enrichment for macrophage activation, immune response, and cytokine and reactive oxygen species production. Late upstream regulators specific to TCPOBOP-exposed male liver were linked to proinflammatory responses and hepatocellular carcinoma progression. TCPOBOP administered weekly to male mice using a high corn oil vehicle induced carbohydrate-responsive transcription factor (MLXIPL)-regulated target genes, dysregulated mitochondrial respiratory and translation regulatory pathways, and induced more advanced liver pathology. Overall, TCPOBOP exposure recapitulates histological and gene expression changes characteristic of emerging steatotic liver disease, including secondary gene responses in liver nonparenchymal cells indicative of transition to a more advanced disease state. Upstream regulators of both the early and late TCPOBOP response genes include novel biomarkers for foreign chemical-induced metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Ravi Sonkar
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Hong Ma
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
5
|
Abel ED, Gloyn AL, Evans-Molina C, Joseph JJ, Misra S, Pajvani UB, Simcox J, Susztak K, Drucker DJ. Diabetes mellitus-Progress and opportunities in the evolving epidemic. Cell 2024; 187:3789-3820. [PMID: 39059357 PMCID: PMC11299851 DOI: 10.1016/j.cell.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Diabetes, a complex multisystem metabolic disorder characterized by hyperglycemia, leads to complications that reduce quality of life and increase mortality. Diabetes pathophysiology includes dysfunction of beta cells, adipose tissue, skeletal muscle, and liver. Type 1 diabetes (T1D) results from immune-mediated beta cell destruction. The more prevalent type 2 diabetes (T2D) is a heterogeneous disorder characterized by varying degrees of beta cell dysfunction in concert with insulin resistance. The strong association between obesity and T2D involves pathways regulated by the central nervous system governing food intake and energy expenditure, integrating inputs from peripheral organs and the environment. The risk of developing diabetes or its complications represents interactions between genetic susceptibility and environmental factors, including the availability of nutritious food and other social determinants of health. This perspective reviews recent advances in understanding the pathophysiology and treatment of diabetes and its complications, which could alter the course of this prevalent disorder.
Collapse
Affiliation(s)
- E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Diabetes, Department of Genetics, Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua J Joseph
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, and Imperial College NHS Trust, London, UK
| | - Utpal B Pajvani
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Judith Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Wu Z, Xia M, Wang J, Aguilar MM, Buist-Homan M, Moshage H. Extracellular vesicles originating from steatotic hepatocytes promote hepatic stellate cell senescence via AKT/mTOR signaling. Cell Biochem Funct 2024; 42:e4077. [PMID: 38881228 DOI: 10.1002/cbf.4077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing rapidly due to the obesity epidemic. In the inflammatory stages of MASLD (MASH), activation of hepatic stellate cells (HSCs) leads to initiation and progression of liver fibrosis. Extracellular vesicles (EVs) are released from all cell types and play an important role in intercellular communication. However, the role of EVs released from hepatocytes in the context of MASLD is largely unknown. Therefore, the present study aimed to investigate the role of EVs derived from both normal and steatotic (free fatty acid-treated) hepatocytes on the phenotype of HSCs via the senescence pathway. Primary rat hepatocytes were treated with free fatty acids (FFAs: oleic acid and palmitic acid). EVs were collected by ultracentrifugation. EVs markers and HSCs activation and senescence markers were assessed by Western blot analysis, qPCR and cytochemistry. Reactive oxygen species (ROS) production was assessed by fluorescence assay. RNA profiles of EVs were evaluated by sequencing. We found that EVs from hepatocytes treated with FFAs (FFA-EVs) inhibit collagen type 1 and α-smooth muscle actin expression, increase the production of ROS and the expression of senescence markers (IL-6, IL-1β, p21 and senescence-associated β-galactosidase activity) in early activating HSCs via the AKT-mTOR pathway. Sequencing showed differentially enriched RNA species between the EVs groups. In conclusion, EVs from FFA-treated hepatocytes inhibit HSC activation by inducing senescence via the AKT-mTOR signaling pathway. Determining the components in EVs from steatotic hepatocytes that induce HSC senescence may lead to the identification of novel targets for intervention in the treatment of MASLD in the future.
Collapse
Affiliation(s)
- Zongmei Wu
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mengmeng Xia
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Junyu Wang
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Magnolia Martinez Aguilar
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Zhou Y, Zhao Y, Carbonaro M, Chen H, Germino M, Adler C, Ni M, Zhu YO, Kim SY, Altarejos J, Li Z, Burczynski ME, Glass DJ, Sleeman MW, Lee AH, Halasz G, Cheng X. Perturbed liver gene zonation in a mouse model of non-alcoholic steatohepatitis. Metabolism 2024; 154:155830. [PMID: 38428673 DOI: 10.1016/j.metabol.2024.155830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Liver zonation characterizes the separation of metabolic pathways along the lobules and is required for optimal hepatic function. Wnt signaling is a master regulator of spatial liver zonation. A perivenous-periportal Wnt activity gradient orchestrates metabolic zonation by activating gene expression in perivenous hepatocytes, while suppressing gene expression in their periportal counterparts. However, the understanding as to the liver gene zonation and zonation regulators in diseases is limited. Non-alcoholic steatohepatitis (NASH) is a chronic liver disease characterized by fat accumulation, inflammation, and fibrosis. Here, we investigated the perturbation of liver gene zonation in a mouse NASH model by combining spatial transcriptomics, bulk RNAseq and in situ hybridization. Wnt-target genes represented a major subset of genes showing altered spatial expression in the NASH liver. The altered Wnt-target gene expression levels and zonation spatial patterns were in line with the up regulation of Wnt regulators and the augmentation of Wnt signaling. Particularly, we found that the Wnt activator Rspo3 expression was restricted to the perivenous zone in control liver but expanded to the periportal zone in NASH liver. AAV8-mediated RSPO3 overexpression in controls resulted in zonation changes, and further amplified the disturbed zonation of Wnt-target genes in NASH, similarly Rspo3 knockdown in Rspo3+/- mice resulted in zonation changes of Wnt-target genes in both chow and HFD mouse. Interestingly, there were no impacts on steatosis, inflammation, or fibrosis NASH pathology from RSPO3 overexpression nor Rspo3 knockdown. In summary, our study demonstrated the alteration of Wnt signaling in a mouse NASH model, leading to perturbed liver zonation.
Collapse
Affiliation(s)
- Ye Zhou
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Yuanqi Zhao
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Marisa Carbonaro
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Helen Chen
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Mary Germino
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Christina Adler
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Min Ni
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Yuan O Zhu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Sun Y Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Judith Altarejos
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Zhe Li
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | | | - David J Glass
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Mark W Sleeman
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Ann-Hwee Lee
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Gabor Halasz
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Xiping Cheng
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America.
| |
Collapse
|
8
|
Fujiwara N, Kimura G, Nakagawa H. Emerging Roles of Spatial Transcriptomics in Liver Research. Semin Liver Dis 2024; 44:115-132. [PMID: 38574750 DOI: 10.1055/a-2299-7880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Spatial transcriptomics, leveraging sequencing- and imaging-based techniques, has emerged as a groundbreaking technology for mapping gene expression within the complex architectures of tissues. This approach provides an in-depth understanding of cellular and molecular dynamics across various states of healthy and diseased livers. Through the integration of sophisticated bioinformatics strategies, it enables detailed exploration of cellular heterogeneity, transitions in cell states, and intricate cell-cell interactions with remarkable precision. In liver research, spatial transcriptomics has been particularly revelatory, identifying distinct zonated functions of hepatocytes that are crucial for understanding the metabolic and detoxification processes of the liver. Moreover, this technology has unveiled new insights into the pathogenesis of liver diseases, such as the role of lipid-associated macrophages in steatosis and endothelial cell signals in liver regeneration and repair. In the domain of liver cancer, spatial transcriptomics has proven instrumental in delineating intratumor heterogeneity, identifying supportive microenvironmental niches and revealing the complex interplay between tumor cells and the immune system as well as susceptibility to immune checkpoint inhibitors. In conclusion, spatial transcriptomics represents a significant advance in hepatology, promising to enhance our understanding and treatment of liver diseases.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Genki Kimura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Mie, Japan
| |
Collapse
|
9
|
Rajak S. Dynamics of cellular plasticity in non-alcoholic steatohepatitis (NASH). Biochim Biophys Acta Mol Basis Dis 2024; 1870:167102. [PMID: 38422712 DOI: 10.1016/j.bbadis.2024.167102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Non-alcoholic steatohepatitis (NASH) is a pathogenic stage of the broader non-alcoholic fatty liver disease (NAFLD). Histological presentation of NASH includes hepatocyte ballooning, macrophage polarization, ductular reaction, and hepatic stellate cell (HSCs) activation. At a cellular level, a heterogenous population of cells such as hepatocytes, macrophages, cholangiocytes, and HSCs undergo dramatic intra-cellular changes in response to extracellular triggers, which are termed "cellular plasticity. This dynamic switch in the cellular structure and function of hepatic parenchymal and non-parenchymal cells and their crosstalk culminates in the perpetuation of inflammation and fibrosis in NASH. This review presents an overview of our current understanding of cellular plasticity in NASH and its molecular mechanisms, along with possible targeting to develop cell-specific NASH therapies.
Collapse
Affiliation(s)
- Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India.
| |
Collapse
|
10
|
Meroueh C, Warasnhe K, Tizhoosh HR, Shah VH, Ibrahim SH. Digital pathology and spatial omics in steatohepatitis: Clinical applications and discovery potentials. Hepatology 2024:01515467-990000000-00815. [PMID: 38517078 DOI: 10.1097/hep.0000000000000866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Steatohepatitis with diverse etiologies is the most common histological manifestation in patients with liver disease. However, there are currently no specific histopathological features pathognomonic for metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, or metabolic dysfunction-associated steatotic liver disease with increased alcohol intake. Digitizing traditional pathology slides has created an emerging field of digital pathology, allowing for easier access, storage, sharing, and analysis of whole-slide images. Artificial intelligence (AI) algorithms have been developed for whole-slide images to enhance the accuracy and speed of the histological interpretation of steatohepatitis and are currently employed in biomarker development. Spatial biology is a novel field that enables investigators to map gene and protein expression within a specific region of interest on liver histological sections, examine disease heterogeneity within tissues, and understand the relationship between molecular changes and distinct tissue morphology. Here, we review the utility of digital pathology (using linear and nonlinear microscopy) augmented with AI analysis to improve the accuracy of histological interpretation. We will also discuss the spatial omics landscape with special emphasis on the strengths and limitations of established spatial transcriptomics and proteomics technologies and their application in steatohepatitis. We then highlight the power of multimodal integration of digital pathology augmented by machine learning (ML)algorithms with spatial biology. The review concludes with a discussion of the current gaps in knowledge, the limitations and premises of these tools and technologies, and the areas of future research.
Collapse
Affiliation(s)
- Chady Meroueh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Khaled Warasnhe
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hamid R Tizhoosh
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samar H Ibrahim
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Murphy WA, Diehl AM, Loop MS, Fu D, Guy CD, Abdelmalek MF, Karachaliou GS, Sjöstedt N, Neuhoff S, Honkakoski P, Brouwer KLR. Alterations in zonal distribution and plasma membrane localization of hepatocyte bile acid transporters in patients with NAFLD. Hepatol Commun 2024; 8:e0377. [PMID: 38381537 PMCID: PMC10871794 DOI: 10.1097/hc9.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/16/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND NAFLD is highly prevalent with limited treatment options. Bile acids (BAs) increase in the systemic circulation and liver during NAFLD progression. Changes in plasma membrane localization and zonal distribution of BA transporters can influence transport function and BA homeostasis. However, a thorough characterization of how NAFLD influences these factors is currently lacking. This study aimed to evaluate the impact of NAFLD and the accompanying histologic features on the functional capacity of key hepatocyte BA transporters across zonal regions in human liver biopsies. METHODS A novel machine learning image classification approach was used to quantify relative zonal abundance and plasma membrane localization of BA transporters (bile salt export pump [BSEP], sodium-taurocholate cotransporting polypeptide, organic anion transporting polypeptide [OATP] 1B1 and OATP1B3) in non-diseased (n = 10), NAFL (n = 9), and NASH (n = 11) liver biopsies. Based on these data, membrane-localized zonal abundance (MZA) measures were developed to estimate transporter functional capacity. RESULTS NAFLD diagnosis and histologic scoring were associated with changes in transporter membrane localization and zonation. Increased periportal BSEPMZA (mean proportional difference compared to non-diseased liver of 0.090) and decreased pericentral BSEPMZA (-0.065) were observed with NASH and also in biopsies with higher histologic scores. Compared to Non-diseased Liver, periportal OATP1B3MZA was increased in NAFL (0.041) and NASH (0.047). Grade 2 steatosis (mean proportional difference of 0.043 when compared to grade 0) and grade 1 lobular inflammation (0.043) were associated with increased periportal OATP1B3MZA. CONCLUSIONS These findings provide novel mechanistic insight into specific transporter alterations that impact BA homeostasis in NAFLD. Changes in BSEPMZA likely contribute to altered BA disposition and pericentral microcholestasis previously reported in some patients with NAFLD. BSEPMZA assessment could inform future development and optimization of NASH-related pharmacotherapies.
Collapse
Affiliation(s)
- William A. Murphy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anna Mae Diehl
- Division of Gastroenterology and Hepatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew Shane Loop
- Department of Health Outcomes Research and Policy, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Dong Fu
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cynthia D. Guy
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Manal F. Abdelmalek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Georgia Sofia Karachaliou
- Division of Gastroenterology and Hepatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Paavo Honkakoski
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kim L. R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
van Riet S, Julien A, Atanasov A, Nordling Å, Ingelman-Sundberg M. The role of sinusoidal endothelial cells and TIMP1 in the regulation of fibrosis in a novel human liver 3D NASH model. Hepatol Commun 2024; 8:e0374. [PMID: 38358377 PMCID: PMC10871795 DOI: 10.1097/hc9.0000000000000374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/16/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND The prevalence of NAFLD is rapidly increasing. NAFLD can progress to NASH, fibrosis, cirrhosis, and HCC, which will soon become the main causes of liver transplantation. To date, no effective drug for NASH has been approved by the Food and Drug Administration. This is partly due to the lack of reliable human in vitro models. Here, we present a novel human liver spheroid model that can be used to study the mechanisms underlying liver fibrosis formation and degradation. METHODS AND RESULTS Such spheroids, which contain hepatocytes, stellate cells, KC, and LSECs, spontaneously develop fibrosis that is exacerbated by treatment with free fatty acids. Conditioned medium from activated LSECs caused similar activation of fibrosis in spheroids containing primary human hepatocyte and NPCs, indicating the action of soluble mediators from the LSECs. Spheroids containing LSECs treated with free fatty acids produced tissue inhibitor of metalloproteinases inhibitor 1, a matrix metalloproteinases inhibitor important for fibrosis progression. Tissue inhibitor of metalloproteinases inhibitor 1 knockdown using siRNA led to a reduction in collagen and procollagen accumulation, which could be partially rescued using a potent matrix metalloproteinases inhibitor. Interestingly, tissue inhibitor of metalloproteinases inhibitor 1 was found to be expressed at higher levels, specifically in a subtype of endothelial cells in the pericentral region of human fibrotic livers, than in control livers. CONCLUSION Potential anti-NASH drugs and compounds were evaluated for their efficacy in reducing collagen accumulation, and we found differences in specificity between spheroids with and without LSECs. This new human NASH model may reveal novel mechanisms for the regulation of liver fibrosis and provide a more appropriate model for screening drugs against NASH.
Collapse
Affiliation(s)
- Sander van Riet
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Anais Julien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Atanasov
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Åsa Nordling
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Nejak-Bowen K, Monga SP. Wnt-β-catenin in hepatobiliary homeostasis, injury, and repair. Hepatology 2023; 78:1907-1921. [PMID: 37246413 PMCID: PMC10687322 DOI: 10.1097/hep.0000000000000495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/30/2023]
Abstract
Wnt-β-catenin signaling has emerged as an important regulatory pathway in the liver, playing key roles in zonation and mediating contextual hepatobiliary repair after injuries. In this review, we will address the major advances in understanding the role of Wnt signaling in hepatic zonation, regeneration, and cholestasis-induced injury. We will also touch on some important unanswered questions and discuss the relevance of modulating the pathway to provide therapies for complex liver pathologies that remain a continued unmet clinical need.
Collapse
Affiliation(s)
- Kari Nejak-Bowen
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA USA
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
14
|
Kakiyama G, Rodriguez-Agudo D, Pandak WM. Mitochondrial Cholesterol Metabolites in a Bile Acid Synthetic Pathway Drive Nonalcoholic Fatty Liver Disease: A Revised "Two-Hit" Hypothesis. Cells 2023; 12:1434. [PMID: 37408268 PMCID: PMC10217489 DOI: 10.3390/cells12101434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
The rising prevalence of nonalcoholic fatty liver disease (NAFLD)-related cirrhosis highlights the need for a better understanding of the molecular mechanisms responsible for driving the transition of hepatic steatosis (fatty liver; NAFL) to steatohepatitis (NASH) and fibrosis/cirrhosis. Obesity-related insulin resistance (IR) is a well-known hallmark of early NAFLD progression, yet the mechanism linking aberrant insulin signaling to hepatocyte inflammation has remained unclear. Recently, as a function of more distinctly defining the regulation of mechanistic pathways, hepatocyte toxicity as mediated by hepatic free cholesterol and its metabolites has emerged as fundamental to the subsequent necroinflammation/fibrosis characteristics of NASH. More specifically, aberrant hepatocyte insulin signaling, as found with IR, leads to dysregulation in bile acid biosynthetic pathways with the subsequent intracellular accumulation of mitochondrial CYP27A1-derived cholesterol metabolites, (25R)26-hydroxycholesterol and 3β-Hydroxy-5-cholesten-(25R)26-oic acid, which appear to be responsible for driving hepatocyte toxicity. These findings bring forth a "two-hit" interpretation as to how NAFL progresses to NAFLD: abnormal hepatocyte insulin signaling, as occurs with IR, develops as a "first hit" that sequentially drives the accumulation of toxic CYP27A1-driven cholesterol metabolites as the "second hit". In the following review, we examine the mechanistic pathway by which mitochondria-derived cholesterol metabolites drive the development of NASH. Insights into mechanistic approaches for effective NASH intervention are provided.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| | - William M. Pandak
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
15
|
Lonardo A. Precision medicine in nonalcoholic fatty liver disease. J Gastroenterol Hepatol 2022; 37:1175-1178. [PMID: 35801994 DOI: 10.1111/jgh.15850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/31/2022] [Accepted: 02/27/2022] [Indexed: 12/09/2022]
Affiliation(s)
- Amedeo Lonardo
- Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| |
Collapse
|
16
|
Selective PPARα Modulator Pemafibrate and Sodium-Glucose Cotransporter 2 Inhibitor Tofogliflozin Combination Treatment Improved Histopathology in Experimental Mice Model of Non-Alcoholic Steatohepatitis. Cells 2022; 11:cells11040720. [PMID: 35203369 PMCID: PMC8870369 DOI: 10.3390/cells11040720] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Ballooning degeneration of hepatocytes is a major distinguishing histological feature of non-alcoholic steatosis (NASH) progression that can lead to cirrhosis and hepatocellular carcinoma (HCC). In this study, we evaluated the effect of the selective PPARα modulator (SPPARMα) pemafibrate (Pema) and sodium-glucose cotransporter 2 (SGLT2) inhibitor tofogliflozin (Tofo) combination treatment on pathological progression in the liver of a mouse model of NASH (STAM) at two time points (onset of NASH progression and HCC survival). At both time points, the Pema and Tofo combination treatment significantly alleviated hyperglycemia and hypertriglyceridemia. The combination treatment significantly reduced ballooning degeneration of hepatocytes. RNA-seq analysis suggested that Pema and Tofo combination treatment resulted in an increase in glyceroneogenesis, triglyceride (TG) uptake, lipolysis and liberated fatty acids re-esterification into TG, lipid droplet (LD) formation, and Cidea/Cidec ratio along with an increased number and reduced size and area of LDs. In addition, combination treatment reduced expression levels of endoplasmic reticulum stress-related genes (Ire1a, Grp78, Xbp1, and Phlda3). Pema and Tofo treatment significantly improved survival rates and reduced the number of tumors in the liver compared to the NASH control group. These results suggest that SPPARMα and SGLT2 inhibitor combination therapy has therapeutic potential to prevent NASH-HCC progression.
Collapse
|
17
|
Valenti L, Romeo S, Pajvani U. A genetic hypothesis for burnt-out steatohepatitis. Liver Int 2021; 41:2816-2818. [PMID: 34935283 DOI: 10.1111/liv.15103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Luca Valenti
- Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.,Precision Medicine Lab, Biological Resource Center, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden.,Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Clinical Nutrition Unit, Department of Medical and Surgical Science, University Magna Graecia, Catanzaro, Italy
| | - Utpal Pajvani
- Department of Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
18
|
Christ B, Collatz M, Dahmen U, Herrmann KH, Höpfl S, König M, Lambers L, Marz M, Meyer D, Radde N, Reichenbach JR, Ricken T, Tautenhahn HM. Hepatectomy-Induced Alterations in Hepatic Perfusion and Function - Toward Multi-Scale Computational Modeling for a Better Prediction of Post-hepatectomy Liver Function. Front Physiol 2021; 12:733868. [PMID: 34867441 PMCID: PMC8637208 DOI: 10.3389/fphys.2021.733868] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023] Open
Abstract
Liver resection causes marked perfusion alterations in the liver remnant both on the organ scale (vascular anatomy) and on the microscale (sinusoidal blood flow on tissue level). These changes in perfusion affect hepatic functions via direct alterations in blood supply and drainage, followed by indirect changes of biomechanical tissue properties and cellular function. Changes in blood flow impose compression, tension and shear forces on the liver tissue. These forces are perceived by mechanosensors on parenchymal and non-parenchymal cells of the liver and regulate cell-cell and cell-matrix interactions as well as cellular signaling and metabolism. These interactions are key players in tissue growth and remodeling, a prerequisite to restore tissue function after PHx. Their dysregulation is associated with metabolic impairment of the liver eventually leading to liver failure, a serious post-hepatectomy complication with high morbidity and mortality. Though certain links are known, the overall functional change after liver surgery is not understood due to complex feedback loops, non-linearities, spatial heterogeneities and different time-scales of events. Computational modeling is a unique approach to gain a better understanding of complex biomedical systems. This approach allows (i) integration of heterogeneous data and knowledge on multiple scales into a consistent view of how perfusion is related to hepatic function; (ii) testing and generating hypotheses based on predictive models, which must be validated experimentally and clinically. In the long term, computational modeling will (iii) support surgical planning by predicting surgery-induced perfusion perturbations and their functional (metabolic) consequences; and thereby (iv) allow minimizing surgical risks for the individual patient. Here, we review the alterations of hepatic perfusion, biomechanical properties and function associated with hepatectomy. Specifically, we provide an overview over the clinical problem, preoperative diagnostics, functional imaging approaches, experimental approaches in animal models, mechanoperception in the liver and impact on cellular metabolism, omics approaches with a focus on transcriptomics, data integration and uncertainty analysis, and computational modeling on multiple scales. Finally, we provide a perspective on how multi-scale computational models, which couple perfusion changes to hepatic function, could become part of clinical workflows to predict and optimize patient outcome after complex liver surgery.
Collapse
Affiliation(s)
- Bruno Christ
- Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Maximilian Collatz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
- Optisch-Molekulare Diagnostik und Systemtechnologié, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus Jena, Jena, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Sebastian Höpfl
- Faculty of Engineering Design, Production Engineering and Automotive Engineering, Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
| | - Matthias König
- Systems Medicine of the Liver Lab, Institute for Theoretical Biology, Humboldt-University Berlin, Berlin, Germany
| | - Lena Lambers
- Faculty of Aerospace Engineering and Geodesy, Institute of Mechanics, Structural Analysis and Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Daria Meyer
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Nicole Radde
- Faculty of Engineering Design, Production Engineering and Automotive Engineering, Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Tim Ricken
- Faculty of Aerospace Engineering and Geodesy, Institute of Mechanics, Structural Analysis and Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| |
Collapse
|
19
|
Lonardo A. Separating the apples from the oranges: from NAFLD heterogeneity to personalized medicine. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recently, Arrese and Colleagues have published a review article entitled, “Insights into Nonalcoholic Fatty-Liver Disease (NAFLD) Heterogeneity” (Semin Liver Dis. 2021;41:421-34. doi: 10.1055/s-0041-1730927). This milestone publication clearly and exhaustively explains the multitude of pathogenic pathways involved in the development and progression of disease eventually conducive to heterogeneous clinical phenotypes and different disease outcomes. The present commentary first briefly discusses the biological grounds of NAFLD heterogeneity and then illustrates the work by Arrese et al. In conclusion, the presently adopted nomenclatures appear inadequate in rendering the complexity of disease in the individual patient. In order to adopt the principles of personalized care, what remains to be done is to propose and validate a simple and accurate classification system. This should give full consideration to the principal disease modifiers and should shape a scheme to be adopted in both clinical practice and in the research arena. Care should be taken to not neglect the systemic nature of disease.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria of Modena, 41100 Modena, Italy
| |
Collapse
|
20
|
Lonardo A. Separating the apples from the oranges: from NAFLD heterogeneity to personalized medicine. EXPLORATION OF MEDICINE 2021. [DOI: doi.org/10.37349/emed.2021.00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Recently, Arrese and Colleagues have published a review article entitled, “Insights into Nonalcoholic Fatty-Liver Disease (NAFLD) Heterogeneity” (Semin Liver Dis. 2021;41:421-34. doi: 10.1055/s-0041-1730927). This milestone publication clearly and exhaustively explains the multitude of pathogenic pathways involved in the development and progression of disease eventually conducive to heterogeneous clinical phenotypes and different disease outcomes. The present commentary first briefly discusses the biological grounds of NAFLD heterogeneity and then illustrates the work by Arrese et al. In conclusion, the presently adopted nomenclatures appear inadequate in rendering the complexity of disease in the individual patient. In order to adopt the principles of personalized care, what remains to be done is to propose and validate a simple and accurate classification system. This should give full consideration to the principal disease modifiers and should shape a scheme to be adopted in both clinical practice and in the research arena. Care should be taken to not neglect the systemic nature of disease.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria of Modena, 41100 Modena, Italy
| |
Collapse
|