1
|
Tian H, Zhang H, Shi X, Ma W, Zhang J. Population genetic diversity and environmental adaptation of Tamarix hispida in the Tarim Basin, arid Northwestern China. Heredity (Edinb) 2024; 133:298-307. [PMID: 39138378 PMCID: PMC11528106 DOI: 10.1038/s41437-024-00714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Arid ecosystems, characterized by severe water scarcity, play a crucial role in preserving Earth's biodiversity and resources. The Tarim Basin in Northwestern China, a typical arid region isolated by the Tianshan Mountains and expansive deserts, provides a special study area for investigating how plant response and adaptation to such environments. Tamarix hispida, a species well adapted to saline-alkaline and drought conditions, dominates in the saline-alkali lands of the Tarim Basin. This study aims to examine the genetic diversity and environmental adaptation of T. hispida in the Tarim Basin. Genomic SNPs for a total of 160 individuals from 17 populations were generated using dd-RAD sequencing approach. Population genetic structure and genetic diversity were analyzed by methods including ADMIXTURE, PCA, and phylogenetic tree. Environmental association analysis (EAA) was performed using LFMM and RDA analyses. The results revealed two major genetic lineages with geographical substitution patterns from west to east, indicating significant gene flow and hybridization. Environmental factors such as Precipitation Seasonality (bio15) and Topsoil Sand Fraction (T_SAND) significantly shaped allele frequencies, supporting the species' genetic adaptability. Several genes associated with environmental adaptation were identified and annotated, highlighting physiological and metabolic processes crucial for survival in arid conditions. The study highlights the role of geographical isolation and environmental factors in shaping genetic structure and adaptive evolution. The identified adaptive genes related to stress tolerance emphasize the species' resilience and highlight the importance of specific physiological and metabolic pathways.
Collapse
Affiliation(s)
- Haowen Tian
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Conservation and Utilization of Gene Resources, Urumqi, Xinjiang, China
- Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Hongxiang Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China.
- Xinjiang Key Laboratory of Conservation and Utilization of Gene Resources, Urumqi, Xinjiang, China.
- Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China.
| | - Xiaojun Shi
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi, Xinjiang, China.
| | - Wenhui Ma
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
| | - Jian Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Conservation and Utilization of Gene Resources, Urumqi, Xinjiang, China
- Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Farrand ZM, Galbreath KE, Teeter KC. Evidence of Intraspecific Adaptive Variation in the American Pika (Ochotona princeps) on a Continental Scale Using a Target Enrichment and Mitochondrial Genome Skimming Approach. Mol Ecol 2024:e17557. [PMID: 39425616 DOI: 10.1111/mec.17557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/23/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
Montane landscapes present an array of abiotic challenges that drive adaptive evolution amongst organisms. These adaptations can promote habitat specialisation, which may heighten the risk of extirpation from environmental change. For example, higher metabolic rates in an endothermic species may contribute to heightened cold tolerance, whilst simultaneously limiting heat tolerance. Here, using the climate-sensitive American pika (Ochotona princeps), we test for evidence of intraspecific adaptive variation amongst environmental gradients across the Intermountain West of North America. We leveraged results from previous studies on pika adaptation to generate a custom nuclear target enrichment design to sequence several hundred candidate genes related to cold, hypoxia and dietary detoxification. We also applied a 'genome skimming' approach to sequence mitochondrial DNA. Using genotype-environment association tests, we identified rare genomic variants associated with elevation and temperature variation amongst populations. Amongst mitochondrial genes, we identified intraspecific variation in selective signals and significant changes to the amino acid property equilibrium constant, which may relate to electron transport chain efficiency. These results illustrate a complex dynamic of adaptive variation amongst O. princeps where lineages and populations have adapted to unique regional conditions. Some of the clearest signals of selection were in a genetic lineage that includes pikas of the Great Basin region, which is also where recent localised extirpations have taken place and highlights the risk of losing adaptive alleles during environmental change.
Collapse
Affiliation(s)
- Zachery M Farrand
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biology, Northern Michigan University, Marquette, Michigan, USA
| | - Kurt E Galbreath
- Department of Biology, Northern Michigan University, Marquette, Michigan, USA
| | - Katherine C Teeter
- Department of Biology, Northern Michigan University, Marquette, Michigan, USA
| |
Collapse
|
3
|
Muelbaier H, Arthen F, Collins G, Hickler T, Hohberg K, Lehmitz R, Pauchet Y, Pfenninger M, Potapov A, Romahn J, Schaefer I, Scheu S, Schneider C, Ebersberger I, Bálint M. Genomic evidence for the widespread presence of GH45 cellulases among soil invertebrates. Mol Ecol 2024; 33:e17351. [PMID: 38712904 DOI: 10.1111/mec.17351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/06/2023] [Accepted: 02/26/2024] [Indexed: 05/08/2024]
Abstract
Lignocellulose is a major component of vascular plant biomass. Its decomposition is crucial for the terrestrial carbon cycle. Microorganisms are considered primary decomposers, but evidence increases that some invertebrates may also decompose lignocellulose. We investigated the taxonomic distribution and evolutionary origins of GH45 hydrolases, important enzymes for the decomposition of cellulose and hemicellulose, in a collection of soil invertebrate genomes. We found that these genes are common in springtails and oribatid mites. Phylogenetic analysis revealed that cellulase genes were acquired early in the evolutionary history of these groups. Domain architectures and predicted 3D enzyme structures indicate that these cellulases are functional. Patterns of presence and absence of these genes across different lineages prompt further investigation into their evolutionary and ecological benefits. The ubiquity of cellulase genes suggests that soil invertebrates may play a role in lignocellulose decomposition, independently or in synergy with microorganisms. Understanding the ecological and evolutionary implications might be crucial for understanding soil food webs and the carbon cycle.
Collapse
Affiliation(s)
- Hannah Muelbaier
- Applied Bioinformatics Group, Inst. of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
| | - Freya Arthen
- Applied Bioinformatics Group, Inst. of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
| | - Gemma Collins
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Manaaki Whenua - Landcare Research, Auckland, New Zealand
| | - Thomas Hickler
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Department of Physical Geography, Goethe University, Frankfurt/Main, Germany
| | - Karin Hohberg
- Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
| | - Ricarda Lehmitz
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
| | - Yannick Pauchet
- Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Pfenninger
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Anton Potapov
- Senckenberg Museum for Natural History Görlitz, Görlitz, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- International Institute Zittau, TUD Dresden University of Technology, Zittau, Germany
| | - Juliane Romahn
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Institute of Insect Biotechnology, Justus-Liebig University, Giessen, Germany
| | - Ina Schaefer
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Animal Ecology, University of Goettingen, Goettingen, Germany
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Goettingen, Germany
| | - Clément Schneider
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Senckenberg Museum of Natural History Görlitz, Görlitz, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Inst. of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Miklós Bálint
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Institute of Insect Biotechnology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
4
|
Wu J, Yang Q, Zhao W, Miao X, Qin Y, Qu Y, Zheng P. Assessment of Population Genetic Diversity of Medicinal Meconopsis integrifolia (Maxim.) Franch. Using Newly Developed SSR Markers. PLANTS (BASEL, SWITZERLAND) 2024; 13:2561. [PMID: 39339536 PMCID: PMC11435270 DOI: 10.3390/plants13182561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
Meconopsis integrifolia is an endangered Tibetan medicinal plant with significant medicinal and ornamental value. Understanding its genetic diversity and structure is crucial for its sustainable utilization and effective conservation. Here, we develop a set of SSR markers based on transcriptome data to analyze the genetic diversity and structure of 185 individuals from 16 populations of M. integrifolia. The results indicate that M. integrifolia exhibits relatively high genetic diversity at the species level (the percentage of polymorphic bands PPB = 91.67%, Nei's genetic diversity index He = 0.2989, Shannon's information index I = 0.4514) but limited genetic variation within populations (PPB = 12.08%, He = 0.0399, I = 0.0610). The genetic differentiation among populations is relatively high (the coefficient of gene differentiation GST = 0.6902), and AMOVA analysis indicates that 63.39% of the total variation occurs among populations. This suggests that maintaining a limited number of populations is insufficient to preserve the overall diversity of M. integrifolia. Different populations are categorized into four representative subclusters, but they do not cluster strictly according to geographical distribution. Limited gene flow (Nm = 0.2244) is likely the main reason for the high differentiation among these populations. Limited seed and pollen dispersal abilities, along with habitat fragmentation, may explain the restricted gene flow among populations, highlighting the necessity of conserving as many populations in the wild as possible.
Collapse
Affiliation(s)
- Jiahao Wu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Q.Y.)
| | - Quanyin Yang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Q.Y.)
| | - Wanyue Zhao
- Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Science, Southwest Forestry University, Kunming 650224, China; (W.Z.); (X.M.)
| | - Xue Miao
- Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Science, Southwest Forestry University, Kunming 650224, China; (W.Z.); (X.M.)
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Q.Y.)
| | - Yan Qu
- Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Science, Southwest Forestry University, Kunming 650224, China; (W.Z.); (X.M.)
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Q.Y.)
| |
Collapse
|
5
|
Lucas M, Rašić G, Filazzola A, Matter S, Roland J, Keyghobadi N. Extremes of snow and temperature affect patterns of genetic diversity and differentiation in the alpine butterfly Parnassius smintheus. Mol Ecol 2024; 33:e17503. [PMID: 39162219 DOI: 10.1111/mec.17503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Weather is an important short-term, local driver of population size and dispersal, which in turn contribute to patterns of genetic diversity and differentiation within species. Climate change is leading to greater weather variability and more frequent extreme weather events. While the effects of long-term and broad-scale mean climate conditions on genetic variation are well studied, our understanding of the effects of weather variability and extreme conditions on genetic variation is less developed. We assessed the influence of temperature and snow depth on genetic diversity and differentiation of populations of the alpine butterfly, Parnassius smintheus. We examined the relationships between a suite of variables, including those representing extreme conditions, and population-level genetic diversity and differentiation across 1453 single nucleotide polymorphisms, using both linear and gravity models. We additionally examined effects of land cover variables known to influence dispersal and gene flow in this species. We found that extreme low temperature events and the lowest recorded mean snow depth were significant predictors of genetic diversity. Extreme low temperature events, mean snow depth and land cover resistance were significant predictors of genetic differentiation. These results are congruent with known effects of early winter weather on population size and habitat connectivity on dispersal in P. smintheus. Our results demonstrate the potential for changes in the frequency or magnitude of extreme weather events to alter patterns of genetic diversity and differentiation.
Collapse
Affiliation(s)
- Mel Lucas
- Department of Biology, Western University, London, Ontario, Canada
| | - Gordana Rašić
- Pest and Disease Vector Group, Department of Genetics, The University of Melbourne, Melbourne, Victoria, Australia
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Steve Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jens Roland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nusha Keyghobadi
- Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
6
|
Yuan M, Bao M, Zhang Q, Guo Z, Li M, Wang J. Mitochondrial phylogeography of grassland caterpillars (Lepidoptera: Lymantriinae: Gynaephora) endemic to the Qinghai-Tibetan plateau. Ecol Evol 2024; 14:e70270. [PMID: 39279803 PMCID: PMC11402507 DOI: 10.1002/ece3.70270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024] Open
Abstract
Grassland caterpillars (Lepidoptera: Lymantriinae: Gynaephora) are the most damaging pests to alpine meadows in the Qinghai-Tibetan Plateau (QTP). Here, we conducted extensive sampling from 39 geographic populations covering almost the entire distribution of the eight QTP Gynaephora (Hübner) species to investigate phylogeographic patterns and speciation based on two mitochondrial genes (COI and ND5). A total of 40 haplotypes were detected in the 39 populations, with >70% of all haplotypes not shared between populations. The monophyletic QTP Gynaephora migrated from non-QTP regions during the Pliocene, corresponding to the uplift of the QTP, suggesting a mode of transport into the QTP. Among the eight QTP Gynaephora species described by morphological characteristics, two species (G. alpherakii and G. menyuanensis) were recovered as monophyletic groups (Clades B and C), while the remaining six formed two monophyletic clades: Clade A (G. qinghaiensis, G. jiuzhiensis, and G. qumalaiensis) and Clade D (G. aureata, G. ruoergensis, and G. minora). These results suggested that the number of the QTP Gynaephora species may be overestimated and further studies based on both morphological and nuclear gene data are needed. Genetic differentiation and speciation of the QTP Gynaephora were likely driven by the QTP uplifts and associated climate fluctuations during the Pleistocene, indicated by divergence time estimation, suggesting that isolation and subsequent divergence was the dominant mode of speciation. The Sanjiangyuan region (i.e., Clade A, characterized by high genetic diversity) may have been a glacial refugium of the QTP Gynaephora, as supported by analyses of gene flow and biogeography. High levels of genetic diversity were found in QTP Gynaephora, without population expansion, which may explain the high-altitude adaptation and outbreaks of grassland caterpillars in alpine meadows of the QTP. This study provides the largest phylogeographic analysis of QTP Gynaephora and improves our understanding of the diversity and speciation of QTP insects.
Collapse
Affiliation(s)
- Ming‐Long Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro‐Ecosystems, College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Ming‐Hui Bao
- State Key Laboratory of Herbage Improvement and Grassland Agro‐Ecosystems, College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Qi‐Lin Zhang
- Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingChina
| | - Zhong‐Long Guo
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
| | - Min Li
- State Key Laboratory of Herbage Improvement and Grassland Agro‐Ecosystems, College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Juan Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro‐Ecosystems, College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| |
Collapse
|
7
|
Bocianowski J, Niemann J, Jagieniak A, Szwarc J. Comparison of Six Measures of Genetic Similarity of Interspecific Brassicaceae Hybrids F 2 Generation and Their Parental Forms Estimated on the Basis of ISSR Markers. Genes (Basel) 2024; 15:1114. [PMID: 39336706 PMCID: PMC11431533 DOI: 10.3390/genes15091114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Genetic similarity determines the extent to which two genotypes share common genetic material. It can be measured in various ways, such as by comparing DNA sequences, proteins, or other genetic markers. The significance of genetic similarity is multifaceted and encompasses various fields, including evolutionary biology, medicine, forensic science, animal and plant breeding, and anthropology. Genetic similarity is an important concept with wide application across different scientific disciplines. The research material included 21 rapeseed genotypes (ten interspecific Brassicaceae hybrids of F2 generation and 11 of their parental forms) and 146 alleles obtained using 21 ISSR molecular markers. In the presented study, six measures for calculating genetic similarity were compared: Euclidean, Jaccard, Kulczyński, Sokal and Michener, Nei, and Rogers. Genetic similarity values were estimated between all pairs of examined genotypes using the six measures proposed above. For each genetic similarity measure, the average, minimum, maximum values, and coefficient of variation were calculated. Correlation coefficients between the genetic similarity values obtained from each measure were determined. The obtained genetic similarity coefficients were used for the hierarchical clustering of objects using the unweighted pair group method with an arithmetic mean. A multiple regression model was written for each method, where the independent variables were the remaining methods. For each model, the coefficient of multiple determination was calculated. Genetic similarity values ranged from 0.486 to 0.993 (for the Euclidean method), from 0.157 to 0.986 (for the Jaccard method), from 0.275 to 0.993 (for the Kulczyński method), from 0.272 to 0.993 (for the Nei method), from 0.801 to 1.000 (for the Rogers method) and from 0.486 to 0.993 (for the Sokal and Michener method). The results indicate that the research material was divided into two identical groups using any of the proposed methods despite differences in the values of genetic similarity coefficients. Two of the presented measures of genetic similarity (the Sokal and Michener method and the Euclidean method) were the same.
Collapse
Affiliation(s)
- Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Janetta Niemann
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (J.N.); (A.J.); (J.S.)
| | - Anna Jagieniak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (J.N.); (A.J.); (J.S.)
| | - Justyna Szwarc
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (J.N.); (A.J.); (J.S.)
| |
Collapse
|
8
|
Hu L, Wang J, Wang X, Zhang D, Sun Y, Lu T, Shi W. Development of SSR Markers and Evaluation of Genetic Diversity of Endangered Plant Saussurea involucrata. Biomolecules 2024; 14:1010. [PMID: 39199397 PMCID: PMC11353235 DOI: 10.3390/biom14081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
The conservation biology field underscores the importance of understanding genetic diversity and gene flow within plant populations and the factors that influence them. This study employs Simple Sequence Repeat (SSR) molecular markers to investigate the genetic diversity of the endangered plant species Saussurea involucrata, offering a theoretical foundation for its conservation efforts. Utilizing sequencing results to screen SSR loci, we designed and scrutinized 18 polymorphic microsatellite primers across 112 samples from 11 populations in the Bayinbuluke region. Our findings reveal high genetic diversity (I = 0.837, He = 0.470) and substantial gene flow (Nm = 1.390) among S. involucrata populations (China, Xinjiang), potentially attributed to efficient pollen and seed dispersal mechanisms. Principal Coordinate Analysis (PCoA) indicates a lack of distinct genetic structuring within the Bayinbuluke populations. The cluster analysis using STRUCTURE reflected the genetic structure of S. involucrata to a certain extent compared with PCoA. The results showed that all samples were divided into four groups. To safeguard this species, we advocate for the in situ conservation of all S. involucrata populations in the area. The SSR markers developed in this study provide a valuable resource for future genetic research on S. involucrata.
Collapse
Affiliation(s)
- Lin Hu
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830011, China;
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (J.W.); (X.W.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Jiancheng Wang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (J.W.); (X.W.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Xiyong Wang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (J.W.); (X.W.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (J.W.); (X.W.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Yanxia Sun
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Ting Lu
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830011, China;
| | - Wei Shi
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (J.W.); (X.W.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| |
Collapse
|
9
|
Laine AL, Tylianakis JM. The coevolutionary consequences of biodiversity change. Trends Ecol Evol 2024; 39:745-756. [PMID: 38705768 DOI: 10.1016/j.tree.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
Coevolutionary selection is a powerful process shaping species interactions and biodiversity. Anthropogenic global environmental change is reshaping planetary biodiversity, including by altering the structure and intensity of interspecific interactions. However, remarkably little is understood of how coevolutionary selection is changing in the process. Here, we outline three interrelated pathways - change in evolutionary potential, change in community composition, and shifts in interaction trait distributions - that are expected to redirect coevolutionary selection under biodiversity change. Assessing how both ecological and evolutionary rules governing species interactions are disrupted under anthropogenic global change is of paramount importance to understand the past, present, and future of Earth's biodiversity.
Collapse
Affiliation(s)
- Anna-Liisa Laine
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikinkaari 1 (PO Box 65), University of Helsinki, FI-00014 Helsinki, Finland.
| | - Jason M Tylianakis
- Bioprotection Aotearoa, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
10
|
Freitas O, Campos PRA. Understanding evolutionary rescue and parallelism in response to environmental stress. Evolution 2024; 78:1453-1463. [PMID: 38738664 DOI: 10.1093/evolut/qpae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Evolutionary rescue, the process by which populations facing environmental stress avoid extinction through genetic adaptation, is a critical area of study in evolutionary biology. The order in which mutations arise and get established will be relevant to the population's rescue. This study investigates the degree of parallel evolution at the genotypic level between independent populations facing environmental stress and subject to different demographic regimes. Under density regulation, 2 regimes exist: In the first, the population can restore positive growth rates by adjusting its population size or through adaptive mutations, whereas in the second regime, the population is doomed to extinction unless a rescue mutation occurs. Analytical approximations for the likelihood of evolutionary rescue are obtained and contrasted with simulation results. We show that the initial level of maladaptation and the demographic regime significantly affect the level of parallelism. There is an evident transition between these 2 regimes. Whereas in the first regime, parallelism decreases with the level of maladaptation, it displays the opposite behavior in the rescue/extinction regime. These findings have important implications for understanding population persistence and the degree of parallelism in evolutionary responses as they integrate demographic effects and evolutionary processes.
Collapse
Affiliation(s)
- Osmar Freitas
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Brazil
| | - Paulo R A Campos
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
11
|
Freitas O, Campos PRA. The role of epistasis in evolutionary rescue. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:49. [PMID: 39066883 DOI: 10.1140/epje/s10189-024-00445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
The process by which adaptive evolution preserves a population threatened with extinction due to environmental changes is known as evolutionary rescue. Several factors determine the fate of those populations, including demography and genetic factors, such as standing genetic variation, gene flow, availability of de novo mutations, and so on. Despite the extensive debate about evolutionary rescue in the current literature, a study about the role of epistasis and the topography of the fitness landscape on the fate of dwindling populations is missing. In the current work, we aim to fill this gap and study the influence of epistasis on the probability of extinction of populations. We present simulation results, and analytical approximations are derived. Counterintuitively, we show that the likelihood of extinction is smaller when the degree of epistasis is higher. The reason underneath is twofold: first, higher epistasis can promote mutations of more significant phenotypic effects, but also, the incongruence between the maps genotype-phenotype and phenotype-fitness turns the fitness landscape at low epistasis more rugged, thus curbing some of its advantages.
Collapse
Affiliation(s)
- Osmar Freitas
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Paulo R A Campos
- Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
12
|
Lim C, Kang JH, Bayartogtokh B, Bae YJ. Climate change will lead to range shifts and genetic diversity losses of dung beetles in the Gobi Desert and Mongolian Steppe. Sci Rep 2024; 14:15639. [PMID: 38977719 PMCID: PMC11231139 DOI: 10.1038/s41598-024-66260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Desertification is known to be a major threat to biodiversity, yet our understanding of the consequent decline in biodiversity remains insufficient. Here, we predicted climate change-induced range shifts and genetic diversity losses in three model dung beetles: Colobopterus erraticus, Cheironitis eumenes, and Gymnopleurus mopsus, distributed across the Gobi Desert and Mongolian Steppe, areas known for desertification. Phylogeographic analyses of mitochondrial COI sequences and species distribution modeling, based on extensive field investigations spanning 14 years, were performed. Species confined to a single biome were predicted to contract and shift their distribution in response to climate change, whereas widespread species was predicted to expand even if affected by range shifts. We indicated that all species are expected to experience significant haplotype losses, yet the presence of high singleton frequencies and low genetic divergence across geographic configurations and lineages mitigate loss of genetic diversity. Notably, Cheironitis eumenes, a desert species with low genetic diversity, appears to be the most vulnerable to climate change due to the extensive degradation in the Gobi Desert. This is the first study to predict the response of insects to desertification in the Gobi Desert. Our findings highlight that dung beetles in the Gobi Desert and Mongolian Steppe might experience high rates of occupancy turnover and genetic loss, which could reshuffle the species composition.
Collapse
Affiliation(s)
- Changseob Lim
- Ojeong Resilience Institute, Korea University, Seoul, Republic of Korea
- Korean Entomological Institute, Korea University, Seoul, Republic of Korea
| | - Ji Hyoun Kang
- Korean Entomological Institute, Korea University, Seoul, Republic of Korea
| | - Badamdorj Bayartogtokh
- Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Yeon Jae Bae
- Korean Entomological Institute, Korea University, Seoul, Republic of Korea.
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Dong J, Qiu L, Zhou X, Liu S. Drivers of genomic differentiation landscapes in populations of disparate ecological and geographical settings within mainland Apis cerana. Mol Ecol 2024; 33:e17414. [PMID: 38801184 DOI: 10.1111/mec.17414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Elucidating the evolutionary processes that drive population divergence can enhance our understanding of the early stages of speciation and inform conservation management decisions. The honeybee Apis cerana displays extensive population divergence, providing an informative natural system for exploring these processes. The mainland lineage A. cerana includes several peripheral subspecies with disparate ecological and geographical settings radiated from a central ancestor. Under this evolutionary framework, we can explore the patterns of genome differentiation and the evolutionary models that explain them. We can also elucidate the contribution of non-genomic spatiotemporal mechanisms (extrinsic features) and genomic mechanisms (intrinsic features) that influence these genomic differentiation landscapes. Based on 293 whole genomes, a small part of the genome is highly differentiated between central-peripheral subspecies pairs, while low and partial parallelism partly reflects idiosyncratic responses to environmental differences. Combined elements of recurrent selection and speciation-with-gene-flow models generate the heterogeneous genome landscapes. These elements weight differently between central-island and other central-peripheral subspecies pairs, influenced by glacial cycles superimposed on different geomorphologies. Although local recombination rates exert a significant influence on patterns of genomic differentiation, it is unlikely that low-recombination rates regions were generated by structural variation. In conclusion, complex factors including geographical isolation, divergent ecological selection and non-uniform genome features have acted concertedly in the evolution of reproductive barriers that could reduce gene flow in part of the genome and facilitate the persistence of distinct populations within mainland lineage of A. cerana.
Collapse
Affiliation(s)
- Jiangxing Dong
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lifei Qiu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Reynes L, Fouqueau L, Aurelle D, Mauger S, Destombe C, Valero M. Temporal genomics help in deciphering neutral and adaptive patterns in the contemporary evolution of kelp populations. J Evol Biol 2024; 37:677-692. [PMID: 38629140 DOI: 10.1093/jeb/voae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 06/30/2024]
Abstract
The impact of climate change on populations will be contingent upon their contemporary adaptive evolution. In this study, we investigated the contemporary evolution of 4 populations of the cold-water kelp Laminaria digitata by analyzing their spatial and temporal genomic variations using ddRAD-sequencing. These populations were sampled from the center to the southern margin of its north-eastern Atlantic distribution at 2 time points, spanning at least 2 generations. Through genome scans for local adaptation at a single time point, we identified candidate loci that showed clinal variation correlated with changes in sea surface temperature (SST) along latitudinal gradients. This finding suggests that SST may drive the adaptive response of these kelp populations, although factors such as species' demographic history should also be considered. Additionally, we performed a simulation approach to distinguish the effect of selection from genetic drift in allele frequency changes over time. This enabled the detection of loci in the southernmost population that exhibited temporal differentiation beyond what would be expected from genetic drift alone: these are candidate loci which could have evolved under selection over time. In contrast, we did not detect any outlier locus based on temporal differentiation in the population from the North Sea, which also displayed low and decreasing levels of genetic diversity. The diverse evolutionary scenarios observed among populations can be attributed to variations in the prevalence of selection relative to genetic drift across different environments. Therefore, our study highlights the potential of temporal genomics to offer valuable insights into the contemporary evolution of marine foundation species facing climate change.
Collapse
Affiliation(s)
- Lauric Reynes
- IRL 3614, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, Roscoff 29688, France
| | - Louise Fouqueau
- IRL 3614, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, Roscoff 29688, France
| | - Didier Aurelle
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France
- Institut de Systématique Évolution Biodiversité (ISYEB, UMR 7205), Muséum National d'Histoire Naturelle, CNRS, EPHE, Sorbonne Université, Paris, France
| | - Stéphane Mauger
- IRL 3614, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, Roscoff 29688, France
| | - Christophe Destombe
- IRL 3614, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, Roscoff 29688, France
| | - Myriam Valero
- IRL 3614, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, Roscoff 29688, France
| |
Collapse
|
15
|
Wang Z, Li N, Xu R, Ying Z, Ruan X, Wang T, Liao W, Su Y. Distribution model and prediction of the tree fern Alsophila costularis Baker (Cyatheaceae) in China. Ecol Evol 2024; 14:e11594. [PMID: 38911490 PMCID: PMC11192646 DOI: 10.1002/ece3.11594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Climatic change is a challenge for plant conservation due to plants' limited dispersal abilities. The survival and sustainable development of plants directly depend on the availability of suitable habitats. In this study, we employed an optimized MaxEnt model to evaluate the relative contribution of each environmental variable and predict the suitable habitat for Alsophila costularis under past, current, and future periods, which is an endangered relict tree fern known as a living fossil. For the Last Glacial Maximum (LGM) and Mid-Holocene scenarios, we adopted two atmosphere-ocean general circulation models: CCSM4 and MIROC-ESM. The BCC-CSM2-MR model was used for future projections. The results revealed that temperature annual range (Bio7) contributed most to the model construction with an optimal range of 13.74-22.44°C. Species distribution modeling showed that current suitable areas were mainly located in most areas of Yunnan, most areas of Hainan, most areas of Taiwan, southeastern Tibet, southwestern Guizhou, western Guangxi, southern Sichuan, and southern Guangdong, with an area of 35.90 × 104 km2. The suitable habitat area expanded northward in Yunnan from the Last Interglacial to the LGM under the CCSM4 model, while a significant contraction toward southwestern Yunnan was found under the MIROC-ESM model. Furthermore, the potential distributions during the Mid-Holocene were more widespread in Yunnan compared to those under current period. It is predicted that in the future, the range will significantly expand to northern Yunnan and western Guizhou. Almost all centroids of suitable habitats were distributed in southeastern Yunnan under different periods. The stable areas were located in southwestern Yunnan in all scenarios. The simulation results could provide a theoretical basis for the formulation of reasonable conservation and management measures to mitigate the effects of future climate change for A. costularis.
Collapse
Affiliation(s)
- Zhen Wang
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ning Li
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ruixiang Xu
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhanming Ying
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- College of Chemistry, Xiangtan UniversityXiangtanChina
| | - Xiaoxian Ruan
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ting Wang
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhenChina
- College of Life Sciences, South China Agricultural UniversityGuangzhouChina
| | - Wenbo Liao
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhenChina
| |
Collapse
|
16
|
Daco L, Colling G, Matthies D. Clinal variation in quantitative traits but not in evolutionary potential along elevational and latitudinal gradients in the widespread Anthyllis vulneraria. AMERICAN JOURNAL OF BOTANY 2024; 111:e16360. [PMID: 38888183 DOI: 10.1002/ajb2.16360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 06/20/2024]
Abstract
PREMISE Strong elevational and latitudinal gradients allow the study of genetic differentiation in response to similar environmental changes. However, it is uncertain whether the environmental changes along the two types of gradients result in similar genetically based changes in quantitative traits. Peripheral arctic and alpine populations are thought to have less evolutionary potential than more central populations do. METHODS We studied quantitative traits of the widespread Anthyllis vulneraria in a common garden. Plants originated from 20 populations along a 2000-m elevational gradient from the lowlands to the elevational limit of the species in the Alps, and from 20 populations along a 2400-km latitudinal gradient from the center of the distribution of the species in Central Europe to its northern distributional margin. RESULTS Most traits showed similar clinal variations with elevation and latitude of origin, and the magnitude of all measured traits in relation to mean annual temperature was similar. Higher QST values than FST values in several traits indicated diversifying selection, but for others QST was smaller than FST. Genetic diversity of quantitative traits and neutral molecular markers was not correlated. Plasticity in response to favorable conditions declined with elevation and less strongly with latitude of origin, but the evolvability of traits did not. CONCLUSIONS The clinal variation suggests adaptive differentiation of quantitative traits along the two gradients. The evolutionary potential of peripheral populations is not necessarily reduced, but lower plasticity may threaten their survival under rapidly changing climatic conditions.
Collapse
Affiliation(s)
- Laura Daco
- Musée national d'histoire naturelle, 25 rue Münster, Luxembourg, L-2160, Luxembourg
- Department of Biology, University of Marburg, Karl-von-Frisch-Str. 8, Marburg, D-35043, Germany
- Fondation faune-flore, 24 rue Münster, Luxembourg, L-2160, Luxembourg
| | - Guy Colling
- Musée national d'histoire naturelle, 25 rue Münster, Luxembourg, L-2160, Luxembourg
| | - Diethart Matthies
- Department of Biology, University of Marburg, Karl-von-Frisch-Str. 8, Marburg, D-35043, Germany
| |
Collapse
|
17
|
Mesas A, Aguilera VM, González CE, Giesecke R, Escribano R, Vargas CA. Molecular evidence for a new endemic species of Acartia (Copepoda, Calanoida) from the Southeast Pacific coast. Sci Rep 2024; 14:12366. [PMID: 38811606 PMCID: PMC11137159 DOI: 10.1038/s41598-024-62080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
The loss of biodiversity in marine populations is one of the consequences of the increased events of extreme environmental conditions in the oceans, which can condition the persistence of populations to future scenarios of climate change. Therefore, it is extremely necessary to explore and monitor the genetic diversity of natural populations. In the Southeast Pacific Ocean (SEPO), specifically on the coast of Chile, the presence of the copepod Acartia tonsa has been indicated solely using morphological evidence, due to the absence of genetic information. In the present work, the genetic diversity, population structure and phylogenetic position within the genus Acartia, of populations identified morphologically as A. tonsa, was evaluated by amplification of the mitochondrial cytochrome c oxidase subunit I and nuclear marker 18 s. Our results showed that the populations identified as A. tonsa correspond to a new monophyletic group endemic to SEPO (GMYC = 1.00; PTP = 0.95). The populations showed moderate to high genetic diversity with an incipient structuring between populations and biogeographic zones. Our results suggest that despite the homogenizing effect of the Humboldt Current, isolation by distance and contrasting environmental conditions at different geographic scales have an important influence on the genetic diversity of zooplankton in the SEPO region.
Collapse
Affiliation(s)
- Andrés Mesas
- Millennium Institute of Oceanography, Universidad de Concepción, Concepción, Chile.
- Coastal Ecosystems and Global Environmental Change Lab (ECCALab), Department of Aquatic System, Faculty of Environmental Sciences, Universidad de Concepción, Concepción, Chile.
| | - Víctor M Aguilera
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Bernardo Ossandón #877, C.P. 1781681, Coquimbo, Chile
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Carolina E González
- Millennium Institute of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Ricardo Giesecke
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Rubén Escribano
- Millennium Institute of Oceanography, Universidad de Concepción, Concepción, Chile
- Department of Oceanography, Faculty of Natural and Oceanographic Sciences, University of Concepción, 4030000, Concepción, Chile
| | - Cristian A Vargas
- Millennium Institute of Oceanography, Universidad de Concepción, Concepción, Chile
- Coastal Ecosystems and Global Environmental Change Lab (ECCALab), Department of Aquatic System, Faculty of Environmental Sciences, Universidad de Concepción, Concepción, Chile
- Coastal Social-Ecological Millennium Institute (SECOS), Universidad de Concepción & P. Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Cassan O, Pimpare LL, Mozzanino T, Fizames C, Devidal S, Roux F, Milcu A, Lebre S, Gojon A, Martin A. Natural genetic variation underlying the negative effect of elevated CO 2 on ionome composition in Arabidopsis thaliana. eLife 2024; 12:RP90170. [PMID: 38780431 PMCID: PMC11115449 DOI: 10.7554/elife.90170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
The elevation of atmospheric CO2 leads to a decline in plant mineral content, which might pose a significant threat to food security in coming decades. Although few genes have been identified for the negative effect of elevated CO2 on plant mineral composition, several studies suggest the existence of genetic factors. Here, we performed a large-scale study to explore genetic diversity of plant ionome responses to elevated CO2, using six hundred Arabidopsis thaliana accessions, representing geographical distributions ranging from worldwide to regional and local environments. We show that growth under elevated CO2 leads to a global decrease of ionome content, whatever the geographic distribution of the population. We observed a high range of genetic diversity, ranging from the most negative effect to resilience or even to a benefit in response to elevated CO2. Using genome-wide association mapping, we identified a large set of genes associated with this response, and we demonstrated that the function of one of these genes is involved in the negative effect of elevated CO2 on plant mineral composition. This resource will contribute to understand the mechanisms underlying the effect of elevated CO2 on plant mineral nutrition, and could help towards the development of crops adapted to a high-CO2 world.
Collapse
Affiliation(s)
- Oceane Cassan
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellierFrance
| | - Lea-Lou Pimpare
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellierFrance
| | - Timothy Mozzanino
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellierFrance
| | - Cecile Fizames
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellierFrance
| | - Sebastien Devidal
- Montpellier European Ecotron, Univ Montpellier, CNRS, Campus BaillarguetMontpellierFrance
| | - Fabrice Roux
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS, Université de ToulouseCastanet-TolosanFrance
| | - Alexandru Milcu
- Montpellier European Ecotron, Univ Montpellier, CNRS, Campus BaillarguetMontpellierFrance
- CEFE, Univ Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | | | - Alain Gojon
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellierFrance
| | - Antoine Martin
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellierFrance
| |
Collapse
|
19
|
Deng Z, Li Y, Gao Z, Zhang Z, Yang D. Genetic diversity and haplotype distribution patterns analysis of cytb and RAG2 sequences in Rana hanluica from southern China. Front Genet 2024; 15:1374263. [PMID: 38831774 PMCID: PMC11145506 DOI: 10.3389/fgene.2024.1374263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
Rana hanluica: an endemic amphibian of China, is found in the hills and mountains south of the Yangtze River. In this comprehensive study, we collected 162 samples from 14 different localities to delve into the genetic diversity of Rana hanluica using mitochondrial Cytb and nuclear RAG2 as genetic markers. Our findings reveal that the Nanling Mountains, specifically regions like Jiuyi Shan, Jinggang Shan, Mang Shan, and Qiyun Shan, are genetic hotspots harboring remarkable diversity. The research results also indicate that there is gene flow among the various populations of the species, and no distinct population structure has formed, which may be due to migration. Moreover, populations in some regions, as well as the overall population, show signs of a possible genetic bottleneck, which we speculate may have been caused by climate change. However, given the exploratory nature of our study, further investigations are warranted to confirm these observations. Through phylogenetic analyses, we uncovered indications that R. hanluica might have originated within the Nanling region, dispersing along the east-west mountain ranges, with a significant contribution originating from Jiuyi Shan. The genetic distributions uncovered through our research reflect historical migratory patterns, evident in the distinct haplotypes of the RAG2 gene between the western and eastern parts of the studied area. Moreover, Heng Shan and Yangming Shan exhibited unique genetic signatures, possibly influenced by geographic isolation, which has shaped their distinct genotypes. The insights gained from this study hold profound implications for conservation efforts. By identifying regions rich in genetic diversity and crucial gene flow corridors, we can develop more effective conservation strategies. Preserving these genetically diverse areas, especially within the Nanling Mountains, is vital for maintaining the evolutionary potential of R. hanluica. In conclusion, our research has laid a solid foundation for understanding the genetic landscape of R. hanluica, shedding light on its origins, population structures, and evolutionary trajectories. This knowledge will undoubtedly guide future research endeavors and inform conservation strategies for this endemic amphibian.
Collapse
Affiliation(s)
| | | | | | | | - Daode Yang
- Institute of Wildlife Conservation, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
20
|
Yadav NK, Patel AB, Singh SK, Mehta NK, Anand V, Lal J, Dekari D, Devi NC. Climate change effects on aquaculture production and its sustainable management through climate-resilient adaptation strategies: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31731-31751. [PMID: 38652188 DOI: 10.1007/s11356-024-33397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Aquaculture witnessed a remarkable growth as one of the fastest-expanding sector in the food production industry; however, it faces serious threat from the unavoidable impacts of climate change. Understanding this threat, the present review explores the consequences of climate change on aquaculture production and provides need based strategies for its sustainable management, with a particular emphasis on climate-resilient approaches. The study examines the multi-dimensional impacts of climate change on aquaculture which includes the shifts in water temperature, sea-level rise, ocean acidification, harmful algal blooms, extreme weather events, and alterations in ecological dynamics. The review subsequently investigates innovative scientific interventions and climate-resilient aquaculture strategies aimed at strengthening the adaptive capacity of aquaculture practices. Some widely established solutions include selective breeding, species diversification, incorporation of ecosystem-based management practices, and the implementation of sustainable and advanced aquaculture systems (aquaponics and recirculating aquaculture systems (RAS). These strategies work towards fortifying aquaculture systems against climate-induced disturbances, thereby mitigating risks and ensuring sustained production. This review provides a detailed insight to the ongoing discourse on climate-resilient aquaculture, emphasizing an immediate need for prudent measures to secure the future sustainability of fish food production sector.
Collapse
Affiliation(s)
- Nitesh Kumar Yadav
- Department of Aquaculture, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Tripura (West), 799210, India.
| | - Arun Bhai Patel
- Department of Aquaculture, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Tripura (West), 799210, India
| | - Soibam Khogen Singh
- Department of Aquaculture, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Tripura (West), 799210, India
- Krishi Vigyan Kendra, ICAR Research Complex for NEH Region, Imphal, Manipur, 795142, India
| | - Naresh Kumar Mehta
- Department of Fish Processing Technology, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Tripura (West), 799210, India
| | - Vishwajeet Anand
- Department of Aquaculture, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Tripura (West), 799210, India
- ICAR - Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Jham Lal
- Department of Aquaculture, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Tripura (West), 799210, India
| | - Debojit Dekari
- Department of Aquatic Health and Environment, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Tripura (West), 799210, India
| | - Ng Chinglembi Devi
- Department of Aquaculture, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Tripura (West), 799210, India
- Department of Aquaculture, Dr. M.G.R Fisheries College and Research Institute, Thiruvallur District, Ponneri, 601 204, Tamil Nadu, India
| |
Collapse
|
21
|
Li WJ, Chen PP, Sui LY, Sun SC. Temporal genetic variation mediated by climate change-induced salinity decline, a study on Artemia (Crustacea: Anostraca) from Kyêbxang Co, a high altitude salt lake on the Qinghai-Tibet Plateau. Gene 2024; 902:148160. [PMID: 38219874 DOI: 10.1016/j.gene.2024.148160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
The Qinghai-Tibet Plateau is one of the areas the richest in salt lakes and Artemia sites. As a result of climate warming and wetting, the areas of salt lakes on the plateau have been increasing, and the salinities have decreased considerably since 1990s. However, the impact of salinity change on the genetic diversity of Artemia is still unknown. Kyêbxang Co is the highest (4620 m above sea level) salt lake currently with commercial harvesting of Artemia resting eggs in the world, and harbors the largest Artemia population on the plateau. Its salinity had dropped from ∼67 ppt in 1998 to ∼39 ppt in 2019. Using 13 microsatellite markers and the mitochondrial cytochrome oxidase submit I (COI) gene, we analyzed the temporal changes of genetic diversity, effective population size and genetic structure of this Artemia population based on samples collected in 1998, 2007 and 2019. Our results revealed a steady decline of genetic diversity and significant genetic differentiation among the sampling years, which may be a consequence of genetic drift and the selection of decreased salinity. A decline of effective population size was also detected, which may be relative to the fluctuation in census population size, skewed sex ratio, and selection of the declined salinity. In 2007 and 2019, the Artemia population showed an excess of heterozygosity and significant deviation from Hardy-Weinberg Equilibrium (p < 0.001), which may be associated with the heterozygote advantage under low salinity. To comprehensively understand the impact of climate warming and wetting on Artemia populations on the plateau, further investigation with broad and intensive sampling are needed.
Collapse
Affiliation(s)
- Wen-Jie Li
- Fisheries College, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266000, China
| | - Pan-Pan Chen
- Fisheries College, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266000, China
| | - Li-Ying Sui
- Asian Regional Artemia Reference Center, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shi-Chun Sun
- Fisheries College, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266000, China.
| |
Collapse
|
22
|
Gose MA, Humble E, Brownlow A, Wall D, Rogan E, Sigurðsson GM, Kiszka JJ, Thøstesen CB, IJsseldijk LL, Ten Doeschate M, Davison NJ, Øien N, Deaville R, Siebert U, Ogden R. Population genomics of the white-beaked dolphin (Lagenorhynchus albirostris): Implications for conservation amid climate-driven range shifts. Heredity (Edinb) 2024; 132:192-201. [PMID: 38302666 PMCID: PMC10997624 DOI: 10.1038/s41437-024-00672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Climate change is rapidly affecting species distributions across the globe, particularly in the North Atlantic. For highly mobile and elusive cetaceans, the genetic data needed to understand population dynamics are often scarce. Cold-water obligate species such as the white-beaked dolphin (Lagenorhynchus albirostris) face pressures from habitat shifts due to rising sea surface temperatures in addition to other direct anthropogenic threats. Unravelling the genetic connectivity between white-beaked dolphins across their range is needed to understand the extent to which climate change and anthropogenic pressures may impact species-wide genetic diversity and identify ways to protect remaining habitat. We address this by performing a population genomic assessment of white-beaked dolphins using samples from much of their contemporary range. We show that the species displays significant population structure across the North Atlantic at multiple scales. Analysis of contemporary migration rates suggests a remarkably high connectivity between populations in the western North Atlantic, Iceland and the Barents Sea, while two regional populations in the North Sea and adjacent UK and Irish waters are highly differentiated from all other clades. Our results have important implications for the conservation of white-beaked dolphins by providing guidance for the delineation of more appropriate management units and highlighting the risk that local extirpation may have on species-wide genetic diversity. In a broader context, this study highlights the importance of understanding genetic structure of all species threatened with climate change-driven range shifts to assess the risk of loss of species-wide genetic diversity.
Collapse
Affiliation(s)
- Marc-Alexander Gose
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, UK.
| | - Emily Humble
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew Brownlow
- Scottish Marine Animal Stranding Scheme, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, UK
| | - Dave Wall
- Irish Whale and Dolphin Group (IWDG), Kilrush, Ireland
| | - Emer Rogan
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | | | - Jeremy J Kiszka
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | | | - Lonneke L IJsseldijk
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Mariel Ten Doeschate
- Scottish Marine Animal Stranding Scheme, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, UK
| | - Nicholas J Davison
- Scottish Marine Animal Stranding Scheme, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, UK
| | - Nils Øien
- Institute of Marine Research (IMR), Bergen, Norway
| | - Rob Deaville
- Institute of Zoology, Zoological Society of London, London, UK
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Rob Ogden
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
23
|
Ruggiero MV, Buffoli M, Wolf KKE, D'Alelio D, Di Tuccio V, Lombardi E, Manfellotto F, Vitale L, Margiotta F, Sarno D, John U, Ferrante MI, Montresor M. Multiannual patterns of genetic structure and mating type ratios highlight the complex bloom dynamics of a marine planktonic diatom. Sci Rep 2024; 14:6028. [PMID: 38472358 DOI: 10.1038/s41598-024-56292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Understanding the genetic structure of populations and the processes responsible for its spatial and temporal dynamics is vital for assessing species' adaptability and survival in changing environments. We investigate the genetic fingerprinting of blooming populations of the marine diatom Pseudo-nitzschia multistriata in the Gulf of Naples (Mediterranean Sea) from 2008 to 2020. Strains were genotyped using microsatellite fingerprinting and natural samples were also analysed with Microsatellite Pool-seq Barcoding based on Illumina sequencing of microsatellite loci. Both approaches revealed a clonal expansion event in 2013 and a more stable genetic structure during 2017-2020 compared to previous years. The identification of a mating type (MT) determination gene allowed to assign MT to strains isolated over the years. MTs were generally at equilibrium with two notable exceptions, including the clonal bloom of 2013. The populations exhibited linkage equilibrium in most blooms, indicating that sexual reproduction leads to genetic homogenization. Our findings show that P. multistriata blooms exhibit a dynamic genetic and demographic composition over time, most probably determined by deeper-layer cell inocula. Occasional clonal expansions and MT imbalances can potentially affect the persistence and ecological success of planktonic diatoms.
Collapse
Affiliation(s)
| | - Marina Buffoli
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Klara K E Wolf
- Institut für Marine Ökosystem- und Fischereiwissenschaften, Universität Hamburg, Hamburg, Germany
- Limnological Institute, Environmental Genomics, University of Konstanz, Konstanz, Germany
| | - Domenico D'Alelio
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Viviana Di Tuccio
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Ernestina Lombardi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Francesco Manfellotto
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Laura Vitale
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Francesca Margiotta
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Diana Sarno
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Uwe John
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
| | - Maria Immacolata Ferrante
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- Oceanography Section, National Institute of Oceanography and Applied Geophysics, Trieste, Italy
| | - Marina Montresor
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
24
|
Ren Y, Zhang L, Yang X, Lin H, Sang Y, Feng L, Liu J, Kang M. Cryptic divergences and repeated hybridizations within the endangered "living fossil" dove tree ( Davidia involucrata) revealed by whole genome resequencing. PLANT DIVERSITY 2024; 46:169-180. [PMID: 38807904 PMCID: PMC11128880 DOI: 10.1016/j.pld.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 05/30/2024]
Abstract
The identification and understanding of cryptic intraspecific evolutionary units (lineages) are crucial for planning effective conservation strategies aimed at preserving genetic diversity in endangered species. However, the factors driving the evolution and maintenance of these intraspecific lineages in most endangered species remain poorly understood. In this study, we conducted resequencing of 77 individuals from 22 natural populations of Davidia involucrata, a "living fossil" dove tree endemic to central and southwest China. Our analysis revealed the presence of three distinct local lineages within this endangered species, which emerged approximately 3.09 and 0.32 million years ago. These divergence events align well with the geographic and climatic oscillations that occurred across the distributional range. Additionally, we observed frequent hybridization events between the three lineages, resulting in the formation of hybrid populations in their adjacent as well as disjunct regions. These hybridizations likely arose from climate-driven population expansion and/or long-distance gene flow. Furthermore, we identified numerous environment-correlated gene variants across the total and many other genes that exhibited signals of positive evolution during the maintenance of two major local lineages. Our findings shed light on the highly dynamic evolution underlying the remarkably similar phenotype of this endangered species. Importantly, these results not only provide guidance for the development of conservation plans but also enhance our understanding of evolutionary past for this and other endangered species with similar histories.
Collapse
Affiliation(s)
- Yumeng Ren
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Lushui Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xuchen Yang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hao Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yupeng Sang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Landi Feng
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jianquan Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Minghui Kang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
25
|
de Moraes KF, Lima MGM, Gonçalves GSR, Cerqueira PV, Santos MPD. The future of endemic and threatened birds of the Amazon in the face of global climate change. Ecol Evol 2024; 14:e11097. [PMID: 38500858 PMCID: PMC10945313 DOI: 10.1002/ece3.11097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
The anthropogenic impacts on the environment, including deforestation and the escalating emissions of greenhouse gases, have significantly contributed to global climate change that can lead to alterations in ecosystems. In this context, protected areas (PAs) are pillars for biodiversity conservation by being able, for example, to maintain the viability of populations of endangered species. On the other hand, the species range shifts do not follow the limits of PAs, jeopardizing the conservation of these species. Furthermore, the effectiveness of PAs is consistently undermined by impacts stemming from land use, hunting activities, and illegal exploitation, both within the designated areas and in their adjacent zones. The objectives of this study are to quantify the impacts of climate change on the distribution of threatened and endemic birds of the Amazon biome, evaluate the effectiveness of PAs in protecting the richness of threatened birds, and analyze the representativeness of species within PAs. We found with our results that climate suitability loss is above 80 for 65% of taxa in the optimistic scenario and above 93% in the pessimistic scenario. The results show that PAs are not effective in protecting the richness of Amazonian birds, just as they are ineffective in protecting most of the taxa studied when analyzed individually Although some taxa are presented as "Protected," in future scenarios these taxa may suffer major shrinkages in their distributions and consequently present population unviability. The loss of climatically suitable areas and the effectiveness of PAs can directly influence the loss of ecosystem services, fundamental to maintaining the balance of biodiversity. Therefore, our study paves the way for conservation actions aimed at these taxa so that they can mitigate current and future extinctions due to climate change.
Collapse
Affiliation(s)
- Kauê Felippe de Moraes
- Conservation Biogeography and Macroecology Laboratory – BIOMACROFederal University of ParáBelémBrazil
- Graduate Program in ZoologyFederal University of ParáBelémBrazil
| | | | | | - Pablo Vieira Cerqueira
- Conservation Biogeography and Macroecology Laboratory – BIOMACROFederal University of ParáBelémBrazil
| | - Marcos Pérsio Dantas Santos
- Conservation Biogeography and Macroecology Laboratory – BIOMACROFederal University of ParáBelémBrazil
- Graduate Program in ZoologyFederal University of ParáBelémBrazil
| |
Collapse
|
26
|
Bitter MC, Berardi S, Oken H, Huynh A, Schmidt P, Petrov DA. Continuously fluctuating selection reveals extreme granularity and parallelism of adaptive tracking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.16.562586. [PMID: 37904939 PMCID: PMC10614893 DOI: 10.1101/2023.10.16.562586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Temporally fluctuating environmental conditions are a ubiquitous feature of natural habitats. Yet, how finely natural populations adaptively track fluctuating selection pressures via shifts in standing genetic variation is unknown. We generated high-frequency, genome-wide allele frequency data from a genetically diverse population of Drosophila melanogaster in extensively replicated field mesocosms from late June to mid-December, a period of ∼12 generations. Adaptation throughout the fundamental ecological phases of population expansion, peak density, and collapse was underpinned by extremely rapid, parallel changes in genomic variation across replicates. Yet, the dominant direction of selection fluctuated repeatedly, even within each of these ecological phases. Comparing patterns of allele frequency change to an independent dataset procured from the same experimental system demonstrated that the targets of selection are predictable across years. In concert, our results reveal fitness-relevance of standing variation that is likely to be masked by inference approaches based on static population sampling, or insufficiently resolved time-series data. We propose such fine-scaled temporally fluctuating selection may be an important force maintaining functional genetic variation in natural populations and an important stochastic force affecting levels of standing genetic variation genome-wide.
Collapse
|
27
|
Bu F, Yue X, Sun S, Jin Y, Li L, Li X, Zhang R, Shang Z, Yan H, Zhang H, Yuan S, Wu X, Fu H. Would future climate warming cause zoonotic diseases to spread over long distances? PeerJ 2024; 12:e16811. [PMID: 38406275 PMCID: PMC10893869 DOI: 10.7717/peerj.16811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024] Open
Abstract
Dipus sagitta is a major rodent found in arid environments and desert areas. They feed on plant seeds, young branches and some small insects, and have hibernating habits. Peak Dipus sagitta numbers impact the construction of the plant community in the environment, but also have a human impact as these rodents carry a variety of parasitic fleas capable of spreading serious diseases to humans. Based on 216 present distribution records of Dipus sagitta and seven environmental variables, this article simulates the potential distribution of Dipus sagitta during the Last Glacial Maximum, the mid-Holocene, the present and the future (2070s, RCP4.5, RCP8.5). This study also analyzes the geographic changes of the population distribution and evaluates the importance of climate factors by integrating contribution rate, replacement importance value and the jackknife test using the MaxEnt model. In this study, we opted to assess the predictive capabilities of our model using the receiver operating characteristic (ROC) and partial receiver operating characteristic (pROC) metrics. The findings indicate that the AUC value exceeds 0.9 and the AUC ratio is greater than 1, indicating superior predictive performance by the model. The results showed that the main climatic factors affecting the distribution of the three-toed jerboa were precipitation in the coldest quarter, temperature seasonality (standard deviation), and mean annual temperature. Under the two warming scenarios of the mid-Holocene and the future, there were differences in the changes in the distribution area of the three-toed jerboa. During the mid-Holocene, the suitable distribution area of the three-toed jerboa expanded, with a 93.91% increase in the rate of change compared to the Last Glacial Maximum. The size of the three-toed jerboa's habitat decreases under both future climate scenarios. Compared to the current period, under the RCP4.5 emission scenario, the change rate is -2.96%, and under the RCP8.5 emission scenario, the change rate is -7.41%. This indicates a trend of contraction in the south and expansion in the north. It is important to assess changes in the geographic population of Dipus sagitta due to climate change to formulate population control strategies of these harmful rodents and to prevent and control the long-distance transmission of zoonotic diseases.
Collapse
Affiliation(s)
- Fan Bu
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia, Hohhot, China
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiuxian Yue
- Inner Mongolia Autonomous Region Forestry and Grassland Monitoring Planning Institute, Hohhot, China
| | - Shanshan Sun
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia, Hohhot, China
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yongling Jin
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia, Hohhot, China
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Linlin Li
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia, Hohhot, China
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Xin Li
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia, Hohhot, China
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Rong Zhang
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia, Hohhot, China
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhenghaoni Shang
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia, Hohhot, China
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Haiwen Yan
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia, Hohhot, China
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Haoting Zhang
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia, Hohhot, China
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Shuai Yuan
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia, Hohhot, China
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaodong Wu
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia, Hohhot, China
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Heping Fu
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot, China
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Inner Mongolia, Hohhot, China
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
28
|
Shao L, Qiao P, Wang J, Peng Y, Wang Y, Dong W, Li J. Comparative analysis of jujube and sour jujube gave insight into their difference in genetic diversity and suitable habitat. Front Genet 2024; 15:1322285. [PMID: 38380425 PMCID: PMC10878421 DOI: 10.3389/fgene.2024.1322285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Jujube (Ziziphus jujuba var. jujuba Mill.) and sour jujube (Z. jujuba var. spinosa (Bunge) Hu ex H.F.Chow.) are economically, nutritionally, and ecologically significant members of the Rhamnaceae family. Despite their importance, insufficient research on their genetics and habitats has impeded effective conservation and utilization. To address this knowledge gap, we conducted plastome sequencing, integrated distribution data from China, and assessed genetic diversity and suitable habitat. The plastomes of both species exhibited high conservation and low genetic diversity. A new-found 23 bp species-specific Indel in the petL-petG enabled us to develop a rapid Indel-based identification marker for species discrimination. Phylogenetic analysis and dating illuminated their genetic relationship, showing speciation occurred 6.9 million years ago, in a period of dramatic global temperature fluctuations. Substantial variations in suitable climatic conditions were observed, with the mean temperature of the coldest quarter as the primary factor influencing distributions (-3.16°C-12.73°C for jujube and -5.79°C to 4.11°C for sour jujube, suitability exceeding 0.6). Consequently, distinct conservation strategies are warranted due to differences in suitable habitats, with jujube having a broader distribution and sour jujube concentrated in Northern China. In conclusion, disparate habitats and climatic factors necessitate tailored conservation approaches. Comparing genetic diversity and developing rapid species-specific primers will further enhance the sustainable utilization of these valuable species.
Collapse
Affiliation(s)
- Lingzhi Shao
- School of Biology and Food Science, Hebei Normal University for Nationalities, Chengde, China
| | - Ping Qiao
- Dexing Research and Training Center of Chinese Medical Sciences, China Academy of Chinese Medical Sciences, Dexing, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyi Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfang Peng
- School of Biology and Food Science, Hebei Normal University for Nationalities, Chengde, China
| | - Yiheng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenpan Dong
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jie Li
- School of Biology and Food Science, Hebei Normal University for Nationalities, Chengde, China
| |
Collapse
|
29
|
Pallarés S, Garoffolo D, Rodríguez B, Sánchez-Fernández D. Role of climatic variability in shaping intraspecific variation of thermal tolerance in Mediterranean water beetles. INSECT SCIENCE 2024; 31:285-298. [PMID: 37370260 DOI: 10.1111/1744-7917.13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
The climatic variability hypothesis (CVH) predicts that organisms in more thermally variable environments have wider thermal breadths and higher thermal plasticity than those from more stable environments. However, due to evolutionary trade-offs, taxa with greater absolute thermal limits may have little plasticity of such limits (trade-off hypothesis). The CVH assumes that climatic variability is the ultimate driver of thermal tolerance variation across latitudinal and altitudinal gradients, but average temperature also varies along such gradients. We explored intraspecific variation of thermal tolerance in three typical Mediterranean saline water beetles (families Hydrophilidae and Dytiscidae). For each species, we compared two populations where the species coexist, with similar annual mean temperature but contrasting thermal variability (continental vs. coastal population). We estimated thermal limits of adults from each population, previously acclimated at 17, 20, or 25 °C. We found species-specific patterns but overall, our results agree with the CVH regarding thermal ranges, which were wider in the continental (more variable) population. In the two hydrophilid species, this came at the cost of losing plasticity of the upper thermal limit in this population, supporting the trade-off hypothesis, but not in the dytiscid one. Our results support the role of local adaptation to thermal variability and trade-offs between basal tolerance and physiological plasticity in shaping thermal tolerance in aquatic ectotherms, but also suggest that intraspecific variation of thermal tolerance does not fit a general pattern among aquatic insects. Overlooking such intraspecific variation could lead to inaccurate predictions of the vulnerability of aquatic insects to global warming.
Collapse
Affiliation(s)
- Susana Pallarés
- Department of Zoology, University of Seville, Seville, Spain
| | - David Garoffolo
- Faculty of Biology, Department of Ecology and Hydrology, University of Murcia, Campus Espinardo, Murcia, Spain
| | - Belén Rodríguez
- Faculty of Biology, Department of Ecology and Hydrology, University of Murcia, Campus Espinardo, Murcia, Spain
| | - David Sánchez-Fernández
- Faculty of Biology, Department of Ecology and Hydrology, University of Murcia, Campus Espinardo, Murcia, Spain
| |
Collapse
|
30
|
Litmer AR, Beaupre SJ. Thermal sensitivity of digestion in Sceloporus consobrinus, with comments on geographic variation. J Therm Biol 2024; 120:103808. [PMID: 38387224 DOI: 10.1016/j.jtherbio.2024.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Individual variation in energetics, environment, and genetics can influence population-level processes. However, it is often assumed that locally measured thermal and bioenergetic responses apply among broadly related species. Even closely related taxa may differ in the thermal sensitivity of performance, which in turn influences population persistence, population vital rates, and the ability to respond to environmental changes. The objectives of this project were to quantify the thermal sensitivity of digestive physiology in an Sceloporus lizards, to compare closely related, but geographically distinct, populations. Sceloporus lizards are a model organism, as they are known to exhibit thermally dependent physiologies and are geographically widespread. Digestive passage time, food consumption, fecal and urate production, metabolizable energy intake (MEI), and assimilated energy (AE) were compared for Sceloporus consobrinus in Arkansas and S. undulatus in South Carolina and New Jersey. Published data were acquired for NJ and SC lizards, while original data were collected for S. consobrinus. Comparisons of digestion among populations were made at 30 °C, 33 °C, or 36 °C. Results suggest that digestive physiology differs among populations, with S. consobrinus being more efficient at warmer temperatures. In contrast, NJ and SC lizards had quicker passage times and lower fecal and urate production at 30 °C in comparison to AR. The results of the current study exemplify how closely related organisms can differ in thermal sensitivity of performance. Such data are important for understanding how individual-level processes can vary in response to climate, with implications for understanding variation in physiological traits across the range of Sceloporus lizards.
Collapse
Affiliation(s)
- Allison R Litmer
- University of Arkansas, Department of Biological Sciences, 650 W. Dickson Street, Fayetteville, AR, 72701, USA.
| | - Steven J Beaupre
- University of Arkansas, Department of Biological Sciences, 650 W. Dickson Street, Fayetteville, AR, 72701, USA
| |
Collapse
|
31
|
Suzuki H, Takenaka M, Tojo K. Evolutionary history of a cold-adapted limnephilid caddisfly: Effects of climate change and topography on genetic structure. Mol Phylogenet Evol 2024; 191:107967. [PMID: 38000705 DOI: 10.1016/j.ympev.2023.107967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
The distribution of organisms is influenced by complex factors such as the phylogenetic evolutionary histories of species, the physiological and ecological characteristics of organisms, climate, and geographical and geohistorical features. In this study, we focused on a caddisfly, Asynarchus sachalinensis (Trichoptera: Limnephilidae), which has adapted to cold habitats. From phylogeographic analyses based on the mitochondrial DNA (mtDNA) cytochrome c oxidase subunit I (COI) and 16S rRNA regions and the nuclear DNA (nDNA) 18S rRNA, 28S rRNA, carbamoyl-phosphate synthetase (CAD), elongation factor-1 alpha (EF1-α), and RNA polymerase II (POLII) regions, two distinct genetic clades were detected. Clade I was shown to be widely distributed from Sakhalin to Honshu, whereas Clade II was only distributed within Honshu. The distributions of these clades overlapped in Honshu. The habitats were located at relatively lower altitudes for Clade I and higher altitudes for Clade II. The divergence time of these clades was estimated to be during the Pleistocene, indicating that repeated climatic changes facilitated distributional shifts. Haplotype network and demographic analyses based on the mtDNA COI region showed contrasting genetic structures in the two clades. It was indicated that the population sizes of Clade I had expanded rapidly in a recent period, whereas Clade II had maintained stable population sizes. The habitats of Clade II were typically isolated and scattered at high altitudes, resulting in restricted migration and dispersal because of their discontinuous "Sky Island" habitats. The habitats of Clade I were located at relatively low altitudes, and it was assumed that the populations were continuous, which resulted in a higher frequency of migration and dispersal between populations. Thus, differences in the spatial scale of the adapted habitats of each clade may have resulted in different patterns of population connectivity and fragmentation associated with repeated climatic changes during the Pleistocene. Our study provided new insight into the distributional patterns of cold-adapted aquatic insects in the Japanese Archipelago. Furthermore, the distributional shifts predicted by ecological niche modeling under future climatic change conditions were different for each clade. Therefore, different principles are required in the assessment of each clade to predict temporal changes in their distributions.
Collapse
Affiliation(s)
- Hirohisa Suzuki
- Division of Mountain and Environmental Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan
| | - Masaki Takenaka
- Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan; Institute of Mountain Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan
| | - Koji Tojo
- Division of Mountain and Environmental Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan; Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan; Institute of Mountain Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan.
| |
Collapse
|
32
|
Singh S, Singh R, Priyadarsini S, Ola AL. Genomics empowering conservation action and improvement of celery in the face of climate change. PLANTA 2024; 259:42. [PMID: 38270699 DOI: 10.1007/s00425-023-04321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/23/2023] [Indexed: 01/26/2024]
Abstract
MAIN CONCLUSION Integration of genomic approaches like whole genome sequencing, functional genomics, evolutionary genomics, and CRISPR/Cas9-based genome editing has accelerated the improvement of crop plants including leafy vegetables like celery in the face of climate change. The anthropogenic climate change is a real peril to the existence of life forms on our planet, including human and plant life. Climate change is predicted to be a significant threat to biodiversity and food security in the coming decades and is rapidly transforming global farming systems. To avoid the ghastly future in the face of climate change, the elucidation of shifts in the geographical range of plant species, species adaptation, and evolution is necessary for plant scientists to develop climate-resilient strategies. In the post-genomics era, the increasing availability of genomic resources and integration of multifaceted genomics elements is empowering biodiversity conservation action, restoration efforts, and identification of genomic regions adaptive to climate change. Genomics has accelerated the true characterization of crop wild relatives, genomic variations, and the development of climate-resilient varieties to ensure food security for 10 billion people by 2050. In this review, we have summarized the applications of multifaceted genomic tools, like conservation genomics, whole genome sequencing, functional genomics, genome editing, pangenomics, in the conservation and adaptation of plant species with a focus on celery, an aromatic and medicinal Apiaceae vegetable. We focus on how conservation scientists can utilize genomics and genomic data in conservation and improvement.
Collapse
Affiliation(s)
- Saurabh Singh
- Department of Vegetable Science, Rani Lakshmi Bai Central Agricultural University, Jhansi, UP, 284003, India.
| | - Rajender Singh
- Division of Crop Improvement and Seed Technology, ICAR-Central Potato Research Institute (CPRI), Shimla, India
| | - Srija Priyadarsini
- Institute of Agricultural Sciences, SOA (Deemed to be University), Bhubaneswar, 751029, India
| | - Arjun Lal Ola
- Department of Vegetable Science, Rani Lakshmi Bai Central Agricultural University, Jhansi, UP, 284003, India
| |
Collapse
|
33
|
Abecasis D, Ogden R, Winkler AC, Gandra M, Khallahi B, Diallo M, Cabrera-Castro R, Weiller Y, Erzini K, Afonso P, Assis J. Multidisciplinary estimates of connectivity and population structure suggest the use of multiple units for the conservation and management of meagre, Argyrosomus regius. Sci Rep 2024; 14:873. [PMID: 38195638 PMCID: PMC10776566 DOI: 10.1038/s41598-023-50869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
Information on population structure and connectivity of targeted species is key for proper implementation of spatial conservation measures. We used a combination of genomics, biophysical modelling, and biotelemetry to infer the population structure and connectivity of Atlantic meagre, an important fisheries resource throughout its distribution. Genetic samples from previously identified Atlantic spawning locations (Gironde, Tejo, Guadalquivir, Banc d'Arguin) and two additional regions (Algarve and Senegal) were analysed using genome-wide SNP-genotyping and mitochondrial DNA analyses. Biophysical models were conducted to investigate larval dispersal and connectivity from the known Atlantic spawning locations. Additionally, thirteen fish were double-tagged with biotelemetry transmitters off the Algarve (Portugal) to assess movement patterns and connectivity of adult individuals. This multidisciplinary approach provided a robust overview of meagre population structure and connectivity in the Atlantic. Nuclear SNP-genotyping showed a clear differentiation between the European and African populations, with significant isolation of the few known Atlantic spawning sites. The limited level of connectivity between these subpopulations is potentially driven by adults, capable of wide-ranging movements and connecting sites 500 km apart, as evidenced by tagging studies, whilst larval dispersal inferred by modelling is much more limited (average of 52 km; 95% of connectivity events up to 174 km). Our results show sufficient evidence of population structure, particularly between Africa and Europe but also within Europe, for the meagre to be managed as separate stocks. Additionally, considering the low degree of larvae connectivity, the implementation of marine protected areas in key spawning sites could be crucial towards species sustainability.
Collapse
Affiliation(s)
- D Abecasis
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139, Faro, Portugal.
| | - R Ogden
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - A C Winkler
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139, Faro, Portugal
| | - M Gandra
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139, Faro, Portugal
| | - B Khallahi
- Institut Mauritanien de Recherches Océanographiques et des Pêches (IMROP), BP 22, Nouadhibou, Cansado, Mauritania
| | - M Diallo
- Conservation and Research of West African Aquatic Mammals (COREWAM), Dakar, Senegal
| | - R Cabrera-Castro
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz. Campus de Excelencia Internacional del Mar (CEIMAR), Avda. República Saharaui, s/n, Puerto Real, 11510, Cádiz, Spain
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEIMAR), Avda. República Saharaui, S/N, Puerto Real, 11510, Cádiz, Spain
| | - Y Weiller
- Parc naturel marin de l'estuaire de La Gironde et de la mer des Pertuis, OFB, 17320, Marennes, France
| | - K Erzini
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139, Faro, Portugal
| | - P Afonso
- Ocean Sciences Institute (Okeanos), University of the Azores, 9901-862, Horta, Portugal
- Institute of Marine Research (IMAR), 9901-862, Horta, Portugal
| | - J Assis
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139, Faro, Portugal
- Faculty of Bioscience and Aquaculture, Nord Universitet, Bodø, Norway
| |
Collapse
|
34
|
Sanna D, Azzena I, Locci C, Ankon P, Kružić P, Manfrin C, Pallavicini A, Ciriaco S, Segarich M, Batistini E, Scarpa F, Casu M. Reconstructing the Evolutionary History of Pinna nobilis: New Genetic Signals from the Past of a Species on the Brink of Extinction. Animals (Basel) 2023; 14:114. [PMID: 38200845 PMCID: PMC10778441 DOI: 10.3390/ani14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Pinna nobilis, commonly known as the noble pen shell, is a marine bivalve endemic to the Mediterranean Sea. Unfortunately, due to a multifactorial disease that began affecting its populations in 2016, the species is currently facing the threat of extinction. To gain insights into the evolutionary history of P. nobilis before the mass mortality event (MME), and to obtain a comprehensive understanding of how evolutionary processes led to the adaptation of the species into the Mediterranean Sea, phylogenetic and phylogeographic analyses were carried out. The dataset analysed includes 469 sequences of COI gene fragment both from GenBank and the present study (100). The analysis performed evidenced that P. nobilis diverged about 2.5 mya, after the entrance of its ancestor into the Mediterranean Sea following the Zanclean flood (5.33 mya). Moreover, our results suggest that the starting point of colonisation was the central part of the western Mediterranean basin, with the eastern basin being populated subsequently. From a conservational viewpoint, these results provide important hints for present and future restocking plans, helping to reconstruct the pre-existing genetic variability in sites where the species became extinct.
Collapse
Affiliation(s)
- Daria Sanna
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (I.A.); (C.L.); (F.S.)
| | - Ilenia Azzena
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (I.A.); (C.L.); (F.S.)
| | - Chiara Locci
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (I.A.); (C.L.); (F.S.)
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Pavel Ankon
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (P.A.); (P.K.)
| | - Petar Kružić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (P.A.); (P.K.)
| | - Chiara Manfrin
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127 Trieste, Italy; (C.M.); (A.P.)
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127 Trieste, Italy; (C.M.); (A.P.)
| | - Saul Ciriaco
- WWF AMP Miramare, Via Beirut 2/4, 34151 Trieste, Italy;
- Shoreline Soc. Coop., AREA Science Park, Padriciano 99, 34149 Trieste, Italy; (M.S.); (E.B.)
| | - Marco Segarich
- Shoreline Soc. Coop., AREA Science Park, Padriciano 99, 34149 Trieste, Italy; (M.S.); (E.B.)
| | - Edoardo Batistini
- Shoreline Soc. Coop., AREA Science Park, Padriciano 99, 34149 Trieste, Italy; (M.S.); (E.B.)
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (I.A.); (C.L.); (F.S.)
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| |
Collapse
|
35
|
Karuno AP, Mi X, Chen Y, Zou DH, Gao W, Zhang BL, Xu W, Jin JQ, Shen WJ, Huang S, Zhou WW, Che J. Impacts of climate change on herpetofauna diversity in the Qinghai-Tibetan Plateau. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14155. [PMID: 37551770 DOI: 10.1111/cobi.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 08/09/2023]
Abstract
Although numerous studies on the impacts of climate change on biodiversity have been published, only a handful are focused on the intraspecific level or consider population-level models (separate models per population). We endeavored to fill this knowledge gap relative to the Qinghai-Tibetan plateau (QTP) by combining species distribution modeling (SDMs) with population genetics (i.e., population-level models) and phylogenetic methods (i.e., phylogenetic tree reconstruction and phylogenetic diversity analyses). We applied our models to 11 endemic and widely distributed herpetofauna species inhabiting high elevations in the QTP. We aimed to determine the influence of environmental heterogeneity on species' responses to climate change, the magnitude of climate-change impacts on intraspecific diversity, and the relationship between species range loss and intraspecific diversity losses under 2 shared socioeconomic pathways (SSP245 and SSP585) and 3 future periods (2050s, 2070s, and 2090s). The effects of global climatic change were more pronounced at the intraspecific level (22% of haplotypes lost and 36% of populations lost) than the morphospecies level in the SSP585 climate change scenario. Maintenance of genetic diversity was in general determined by a combination of factors including range changes, species genetic structure, and the part of the range predicted to be lost. This is owing to the fact that the loss and survival of populations were observed in species irrespective of the predicted range changes (contraction or expansion). In the southeast (mountainous regions), climate change had less of an effect on range size (>100% in 3 species) than in central and northern QTP plateau regions (range size <100% in all species). This may be attributed to environmental heterogeneity, which provided pockets of suitable climate in the southeast, whereas ecosystems in the north and central regions were homogeneous. Generally, our results imply that mountainous regions with high environmental heterogeneity and high genetic diversity may buffer the adverse impacts of climate change on species distribution and intraspecific diversity. Therefore, genetic structure and characteristics of the ecosystem may be crucial for conservation under climate change.
Collapse
Affiliation(s)
- Alex Plimo Karuno
- State Key Laboratory of Genetic Resources and Evolution & Yunnan key laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P. R. China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, P. R. China
| | - Xue Mi
- State Key Laboratory of Genetic Resources and Evolution & Yunnan key laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P. R. China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, P. R. China
| | - Youhua Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
| | - Da-Hu Zou
- State Key Laboratory of Genetic Resources and Evolution & Yunnan key laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P. R. China
- Research Center for Ecology, College of Science, Tibet University, Lhasa, P. R. China
| | - Wei Gao
- State Key Laboratory of Genetic Resources and Evolution & Yunnan key laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P. R. China
| | - Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan key laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P. R. China
| | - Wei Xu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan key laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P. R. China
| | - Jie-Qiong Jin
- State Key Laboratory of Genetic Resources and Evolution & Yunnan key laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P. R. China
| | - Wen-Jing Shen
- State Key Laboratory of Genetic Resources and Evolution & Yunnan key laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P. R. China
| | - Song Huang
- College of Life Sciences, Anhui Normal University, Wuhu, P. R. China
| | - Wei-Wei Zhou
- State Key Laboratory of Genetic Resources and Evolution & Yunnan key laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P. R. China
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, P. R. China
| | - Jing Che
- State Key Laboratory of Genetic Resources and Evolution & Yunnan key laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P. R. China
| |
Collapse
|
36
|
Peng L, Hua W, Chen Y, Wang W, Xue Z. Comparative analysis of the population diversity of black rockfish (Sebastes schlegelii) in northern China. Mol Biol Rep 2023; 50:10015-10024. [PMID: 37902911 DOI: 10.1007/s11033-023-08821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 11/01/2023]
Abstract
The nearshore marine fish known as black rockfish (Sebastes schlegelii) is found in the Yellow Sea, Bohai Sea, and East China Sea. The population structure and genetic diversity of S. schlegelii are vulnerable to the effects of artificial stocking, environmental pollution, overfishing, and climate change, so relevant studies are urgently needed. This study used comparative mtDNA loop (D-loop) analysis to examine the genetic diversity and natural population structure of 98 individuals from the northern Chinese cities of Qingdao, Jinzhou, and Dalian. A total of 22 haplotypes were identified in the three groups of samples, with the most common haplotypes being Hap-2, Hap-3, Hap-4, Hap-5, and Hap-6. The results of genetic diversity based on the D-LOOP sequence showed that the genetic diversity of S. schlegelii in the study area showed high Hd and low π type, indicating that the genetic diversity of S. schlegelii was low. Analyses of molecular variance (AMOVA) showed that the percentage of among population variation was - 0.29%, and the percentage of within population variation was 100.29%, indicating that the genetic variation was mainly from within the population. Between the three locations, the genetic differentiation index (Fst) was - 0.0113 ~ 0.0061, and there was no genetic differentiation among the populations. The results of gene flow (Nm) coefficients showed that the average Nm among the three populations was infinite (Nm = inf > > 4) and the three populations formed a stochastic unit. The results of the neutrality test (Tajima's D, Fu's Fs) and the frequency of nucleotide mismatch distribution demonstrated that the three geographic populations of S. schlegelii did not undergo a large population expansion in recent history. Based on the above conclusions, the S. schlegelii as a whole should be protected in situ.
Collapse
Affiliation(s)
- Lei Peng
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China
- College of Aquatic and Life Science, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China
| | - Wenyuan Hua
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China
- College of Aquatic and Life Science, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China
| | - Yan Chen
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China
- College of Aquatic and Life Science, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China.
- College of Aquatic and Life Science, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China.
| | - Zhuang Xue
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China.
- College of Aquatic and Life Science, Dalian Ocean University, No. 52 Heishijiao Street, Dalian, 116023, China.
| |
Collapse
|
37
|
Nordstrom SW, Hufbauer RA, Olazcuaga L, Durkee LF, Melbourne BA. How density dependence, genetic erosion and the extinction vortex impact evolutionary rescue. Proc Biol Sci 2023; 290:20231228. [PMID: 37989246 PMCID: PMC10688442 DOI: 10.1098/rspb.2023.1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
Following severe environmental change that reduces mean population fitness below replacement, populations must adapt to avoid eventual extinction, a process called evolutionary rescue. Models of evolutionary rescue demonstrate that initial size, genetic variation and degree of maladaptation influence population fates. However, many models feature populations that grow without negative density dependence or with constant genetic diversity despite precipitous population decline, assumptions likely to be violated in conservation settings. We examined the simultaneous influences of density-dependent growth and erosion of genetic diversity on populations adapting to novel environmental change using stochastic, individual-based simulations. Density dependence decreased the probability of rescue and increased the probability of extinction, especially in large and initially well-adapted populations that previously have been predicted to be at low risk. Increased extinction occurred shortly following environmental change, as populations under density dependence experienced more rapid decline and reached smaller sizes. Populations that experienced evolutionary rescue lost genetic diversity through drift and adaptation, particularly under density dependence. Populations that declined to extinction entered an extinction vortex, where small size increased drift, loss of genetic diversity and the fixation of maladaptive alleles, hindered adaptation and kept populations at small densities where they were vulnerable to extinction via demographic stochasticity.
Collapse
Affiliation(s)
- Scott W. Nordstrom
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Ruth A. Hufbauer
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
| | - Laure Olazcuaga
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Lily F. Durkee
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
| | - Brett A. Melbourne
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
| |
Collapse
|
38
|
Wu R, Qi J, Li W, Wang L, Shen Y, Liu J, Teng Y, Roos C, Li M. Landscape genomics analysis provides insights into future climate change-driven risk in rhesus macaque. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165746. [PMID: 37495138 DOI: 10.1016/j.scitotenv.2023.165746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/01/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Climate change significantly affects the suitability of wildlife habitats. Thus, understanding how animals adapt ecologically and genetically to climate change is important for targeted species protection. Rhesus macaques (Macaca mulatta) are widely distributed and multi-climatically adapted primates. This study explored how rhesus macaques adapt to climate change by integrating ecological and genetic methods and applying species distribution models (SDMs) and a gradient forest (GF) model. The findings suggested that temperature seasonality primarily affects habitat suitability and indicated that climate change will have a dramatic impact on macaque populations in the future. We also applied genotype-environment association (GEA) analyses and selection signature analyses to identify genes associated with climate change and provide possible explanations for the adaptation of rhesus macaques to climatic environments. The population genomics analyses suggested that the Taihang population has the highest genomic vulnerability with inbreeding and low heterozygosity. Combined with the higher ecological vulnerability, additional conservation strategies are required for this population under higher risk of climate change. Our work measured the impact of climate change and enabled the identification of populations that exhibit high vulnerability to severe climate change. Such information is useful for selecting populations of rhesus macaques as subject of long-term monitoring or evolutionary rescue under future climate change.
Collapse
Affiliation(s)
- Ruifeng Wu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiwei Qi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenbo Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Shen
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawen Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Teng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
39
|
Tang B, Roberts SM, Clark JS, Gelfand AE. Mechanistic modeling of climate effects on redistribution and population growth in a community of fish species. GLOBAL CHANGE BIOLOGY 2023; 29:6399-6414. [PMID: 37789712 DOI: 10.1111/gcb.16963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Understanding community responses to climate is critical for anticipating the future impacts of global change. However, despite increased research efforts in this field, models that explicitly include important biological mechanisms are lacking. Quantifying the potential impacts of climate change on species is complicated by the fact that the effects of climate variation may manifest at several points in the biological process. To this end, we extend a dynamic mechanistic model that combines population dynamics, such as species interactions, with species redistribution by allowing climate to affect both processes. We examine their relative contributions in an application to the changing biomass of a community of eight species in the Gulf of Maine using over 30 years of fisheries data from the Northeast Fishery Science Center. Our model suggests that the mechanisms driving biomass trends vary across space, time, and species. Phase space plots demonstrate that failing to account for the dynamic nature of the environmental and biologic system can yield theoretical estimates of population abundances that are not observed in empirical data. The stock assessments used by fisheries managers to set fishing targets and allocate quotas often ignore environmental effects. At the same time, research examining the effects of climate change on fish has largely focused on redistribution. Frameworks that combine multiple biological reactions to climate change are particularly necessary for marine researchers. This work is just one approach to modeling the complexity of natural systems and highlights the need to incorporate multiple and possibly interacting biological processes in future models.
Collapse
Affiliation(s)
- Becky Tang
- Department of Mathematics and Statistics, Middlebury College, Middlebury, Vermont, USA
- Department of Statistical Science, Duke University, Durham, North Carolina, USA
| | - Sarah M Roberts
- Department of Earth, Marine, and Environmental Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James S Clark
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Alan E Gelfand
- Department of Statistical Science, Duke University, Durham, North Carolina, USA
| |
Collapse
|
40
|
Guillardín L, MacKay JJ. Comparing DNA isolation methods for forest trees: quality, plastic footprint, and time-efficiency. PLANT METHODS 2023; 19:111. [PMID: 37858169 PMCID: PMC10588216 DOI: 10.1186/s13007-023-01086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Genetic and genomic studies are seeing an increase in sample sizes together with a wider range of species investigated in response to environmental change concerns. In turn, these changes may come with challenges including the time and difficulty to isolate nucleic acids (DNA or RNA), the sequencing cost and environmental impacts of the growing amount of plastic waste generated in the process. Pseudotsuga menziesii var. menziesii (Mirbel) Franco (PM), Tsuga heterophylla (Raf.) Sarg. (TH) and Thuja plicata Donn ex D.Don (TP) are conifer species found in diverse woodlands both as natives and naturalized exotics. Our study was carried out whilst investigating their genetics to understand their population structure and potential for adaptation. RESULTS In the present study, we compared two different DNA isolation methods, i.e., spin-column DNeasy plant mini kit (QIAGEN), and temperature-driven enzymatic cocktail Plant DNA Extraction (MicroGEM). The quantity of recovered DNA and the quality of DNA were assessed along with the plastic footprint and time needed for three tree species. Both methods were optimised and proven to provide enough DNA for each studied species. The yield of DNA for each method depended on the species: QIAGEN showed higher yield in P. menziesii and T. heterophylla, while T. plicata recovered similar amount of DNA for both methods. The DNA quality was investigated using DNA barcoding techniques by confirming species identity and species discrimination. No difference was detected in the PCR amplification of the two barcoding loci, (rbcL and trnH-psbA), and the recovered sequences between DNA isolation methods. Measurement of the plastic use and the processing time per sample indicated that MicroGEM had a 52.64% lower plastic footprint and was 51.8% faster than QIAGEN. CONCLUSIONS QIAGEN gave higher yields in two of the species although both methods showed similar quality results across all species. However, MicroGEM was clearly advantageous to decrease the plastic footprint and improve the time efficiency. Overall, MicroGEM recovers sufficient and reliable DNA to perform common downstream analyses such as PCR and sequencing. Our findings illustrate the benefits of research and efforts towards developing more sustainable methods and techniques to reduce the environmental footprint of molecular analyses.
Collapse
Affiliation(s)
- Laura Guillardín
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, United Kingdom.
| | - John J MacKay
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, United Kingdom
| |
Collapse
|
41
|
Shu M, Moran EV. Identifying genetic variation associated with environmental gradients and drought-tolerance phenotypes in ponderosa pine. Ecol Evol 2023; 13:e10620. [PMID: 37841219 PMCID: PMC10576020 DOI: 10.1002/ece3.10620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
As climate changes, understanding the genetic basis of local adaptation in plants becomes an ever more pressing issue. Combining genotype-environment association (GEA) with genotype-phenotype association (GPA) analysis has an exciting potential to uncover the genetic basis of environmental responses. We use these approaches to identify genetic variants linked to local adaptation to drought in Pinus ponderosa. Over 4 million Single Nucleotide Polymorphisms (SNPs) were identified using 223 individuals from across the Sierra Nevada of California. 927,740 (22.3%) SNPs were retained after filtering for proximity to genes and used in our association analyses. We found 1374 associated with five major climate variables, with the largest number (1151) associated with April 1st snowpack. We also conducted a greenhouse study with various drought-tolerance traits measured in first-year seedlings of a subset of the genotyped trees grown in the greenhouse. 796 SNPs were associated with control-condition trait values, while 1149 were associated with responsiveness of these traits to drought. While no individual SNPs were associated with both the environmental variables and the measured traits, several annotated genes were associated with both, particularly those involved in cell wall formation, biotic and abiotic stress responses, and ubiquitination. However, the functions of many of the associated genes have not yet been determined due to the lack of gene annotation information for conifers. Future studies are needed to assess the developmental roles and ecological significance of these unknown genes.
Collapse
Affiliation(s)
- Mengjun Shu
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| | - Emily V. Moran
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| |
Collapse
|
42
|
Palomba M, Marchiori E, Tedesco P, Fioravanti M, Marcer F, Gustinelli A, Aco-Alburqueque R, Belli B, Canestrelli D, Santoro M, Cipriani P, Mattiucci S. An update and ecological perspective on certain sentinel helminth endoparasites within the Mediterranean Sea. Parasitology 2023; 150:1139-1157. [PMID: 37942726 PMCID: PMC10941224 DOI: 10.1017/s0031182023000951] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 11/10/2023]
Abstract
The Mediterranean Sea is recognized as a marine biodiversity hotspot. This enclosed basin is facing several anthropogenic-driven threats, such as seawater warming, pollution, overfishing, bycatch, intense maritime transport and invasion by alien species. The present review focuses on the diversity and ecology of specific marine trophically transmitted helminth endoparasites (TTHs) of the Mediterranean ecosystems, aiming to elucidate their potential effectiveness as ‘sentinels’ of anthropogenic disturbances in the marine environment. The chosen TTHs comprise cestodes and nematodes sharing complex life cycles, involving organisms from coastal and marine mid/upper-trophic levels as definitive hosts. Anthropogenic disturbances directly impacting the free-living stages of the parasites and their host population demographies can significantly alter the distribution, infection levels and intraspecific genetic variability of these TTHs. Estimating these parameters in TTHs can provide valuable information to assess the stability of marine trophic food webs. Changes in the distribution of particular TTHs species can also serve as indicators of sea temperature variations in the Mediterranean Sea, as well as the bioaccumulation of pollutants. The contribution of the chosen TTHs to monitor anthropogenic-driven changes in the Mediterranean Sea, using their measurable attributes at both spatial and temporal scales, is proposed.
Collapse
Affiliation(s)
- Marialetizia Palomba
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy
| | - Erica Marchiori
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padua, Italy
| | - Perla Tedesco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Marialetizia Fioravanti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Federica Marcer
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padua, Italy
| | - Andrea Gustinelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Renato Aco-Alburqueque
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Beatrice Belli
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
| | - Daniele Canestrelli
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy
| | - Mario Santoro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo Cipriani
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
- Section of Contaminants and Biohazards, Institute of Marine Research (IMR), Nordnes, Bergen, Norway
| | - Simonetta Mattiucci
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
43
|
Klingler KB, Nichols LB, Hekkala ER, Stewart JAE, Peacock MM. Life on the edge-a changing genetic landscape within an iconic American pika metapopulation over the last half century. PeerJ 2023; 11:e15962. [PMID: 37790628 PMCID: PMC10542391 DOI: 10.7717/peerj.15962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/03/2023] [Indexed: 10/05/2023] Open
Abstract
Declines and extirpations of American pika (Ochotona princeps) populations at historically occupied sites started being documented in the literature during the early 2000s. Commensurate with global climate change, many of these losses at peripheral and lower elevation sites have been associated with changes in ambient air temperature and precipitation regimes. Here, we report on a decline in available genetic resources for an iconic American pika metapopulation, located at the southwestern edge of the species distribution in the Bodie Hills of eastern California, USA. Composed of highly fragmented habitat created by hard rock mining, the ore dumps at this site were likely colonized by pikas around the end of the 19th century from nearby natural talus outcrops. Genetic data extracted from both contemporary samples and archived natural history collections allowed us to track population and patch-level genetic diversity for Bodie pikas across three distinct sampling points during the last half- century (1948-1949, 1988-1991, 2013-2015). Reductions in within-population allelic diversity and expected heterozygosity were observed across the full time period. More extensive sampling of extant patches during the 1988-1991 and 2013-2015 periods revealed an increase in population structure and a reduction in effective population size. Furthermore, census records from the last 51 years as well as archived museum samples collected in 1947 from a nearby pika population in the Wassuk range (Nevada, USA) provide further support of the increasing isolation and genetic coalescence occurring in this region. This study highlights the importance of museum samples and long-term monitoring in contextualizing our understanding of population viability.
Collapse
Affiliation(s)
- Kelly B. Klingler
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| | - Lyle B. Nichols
- Department of Life Sciences, Santa Monica College, Santa Monica, California, United States
| | - Evon R. Hekkala
- Department of Biological Sciences, Fordham University, Bronx, New York, United States
| | - Joseph A. E. Stewart
- Department of Plant Sciences, University of California, Davis, Davis, California, United States
| | - Mary M. Peacock
- Department of Biology, University of Nevada, Reno, Reno, Nevada, United States
| |
Collapse
|
44
|
Kato-Noguchi H. The Impact and Invasive Mechanisms of Pueraria montana var. lobata, One of the World's Worst Alien Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:3066. [PMID: 37687313 PMCID: PMC10490251 DOI: 10.3390/plants12173066] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Pueraria montana var. lobata is native to East Asia, and was introduced to many countries due to its potential for multiple uses. This species escaped under the management conditions soon after its introduction, and became a harmful weed species. This species has been listed in the top 100 of the world's worst invasive alien species. P. montana stands expand quickly and threaten the native flora and fauna including microbiota. This species affects the concentration of carbon and nitrogen in soil and aquatic environments, and increases the amount of pollutants in the local atmosphere. Its infestation also causes serious economic losses on forestry and agriculture. Its characteristics of fast growth, thick canopy structure, enormous vegetative reproduction, and adaptative ability to the various environmental conditions may contribute to the invasiveness and naturalization of this species. The characteristics of P. montana regarding their defense functions against their natural enemies and pathogens, and allelopathy may also contribute to the invasiveness of this species. Potential allelochemicals such as xanthoxins, p-coumaric acid, caffeic acid, methyl caffeate and daidzein, and two isoflavones with anti-virus activity were identified in this species. In addition, fewer herbivore insects were found in the introduced ranges. These characteristics of P. montana may be involved in the invasive mechanisms of the species. This is the first review article focusing on the invasive mechanisms of this species.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| |
Collapse
|
45
|
Bender AN, Krause DJ, Goebel ME, Hoffman JI, Lewallen EA, Bonin CA. Genetic diversity and demographic history of the leopard seal: A Southern Ocean top predator. PLoS One 2023; 18:e0284640. [PMID: 37566609 PMCID: PMC10420386 DOI: 10.1371/journal.pone.0284640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 08/13/2023] Open
Abstract
Leopard seals (Hydrurga leptonyx) are top predators that can exert substantial top-down control of their Antarctic prey species. However, population trends and genetic diversity of leopard seals remain understudied, limiting our understanding of their ecological role. We investigated the genetic diversity, effective population size and demographic history of leopard seals to provide fundamental data that contextualizes their predatory influence on Antarctic ecosystems. Ninety leopard seals were sampled from the northern Antarctic Peninsula during the austral summers of 2008-2019 and a 405bp segment of the mitochondrial control region was sequenced for each individual. We uncovered moderate levels of nucleotide (π = 0.013) and haplotype (Hd = 0.96) diversity, and the effective population size was estimated at around 24,000 individuals (NE = 24,376; 95% CI: 16,876-33,126). Consistent with findings from other ice-breeding pinnipeds, Bayesian skyline analysis also revealed evidence for population expansion during the last glacial maximum, suggesting that historical population growth may have been boosted by an increase in the abundance of sea ice. Although leopard seals can be found in warmer, sub-Antarctic locations, the species' core habitat is centered on the Antarctic, making it inherently vulnerable to the loss of sea ice habitat due to climate change. Therefore, detailed assessments of past and present leopard seal population trends are needed to inform policies for Antarctic ecosystems.
Collapse
Affiliation(s)
- Arona N. Bender
- Marine and Environmental Sciences Department, Hampton University, Hampton, VA, United States of America
| | - Douglas J. Krause
- Antarctic Ecosystem Research Division, Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA, United States of America
| | - Michael E. Goebel
- Ecology and Evolutionary Biology Department, University of California, Santa Cruz, Santa Cruz, CA, United States of America
| | - Joseph I. Hoffman
- Department of Animal Behaviour, University of Bielefeld, Bielefeld, Germany
- British Antarctic Survey, Cambridge, United Kingdom
| | - Eric A. Lewallen
- Department of Biological Sciences, Hampton University, Hampton, VA, United States of America
| | - Carolina A. Bonin
- Marine and Environmental Sciences Department, Hampton University, Hampton, VA, United States of America
- Department of Biological Sciences, Hampton University, Hampton, VA, United States of America
| |
Collapse
|
46
|
Starko S, Fifer JE, Claar DC, Davies SW, Cunning R, Baker AC, Baum JK. Marine heatwaves threaten cryptic coral diversity and erode associations among coevolving partners. SCIENCE ADVANCES 2023; 9:eadf0954. [PMID: 37566650 PMCID: PMC10421036 DOI: 10.1126/sciadv.adf0954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/12/2023] [Indexed: 08/13/2023]
Abstract
Climate change-amplified marine heatwaves can drive extensive mortality in foundation species. However, a paucity of longitudinal genomic datasets has impeded understanding of how these rapid selection events alter cryptic genetic structure. Heatwave impacts may be exacerbated in species that engage in obligate symbioses, where the genetics of multiple coevolving taxa may be affected. Here, we tracked the symbiotic associations of reef-building corals for 6 years through a prolonged heatwave, including known survivorship for 79 of 315 colonies. Coral genetics strongly predicted survival of the ubiquitous coral, Porites (massive growth form), with variable survival (15 to 61%) across three morphologically indistinguishable-but genetically distinct-lineages. The heatwave also disrupted strong associations between these coral lineages and their algal symbionts (family Symbiodiniaceae), with symbiotic turnover in some colonies, resulting in reduced specificity across lineages. These results highlight how heatwaves can threaten cryptic genotypes and decouple otherwise tightly coevolved relationships between hosts and symbionts.
Collapse
Affiliation(s)
- Samuel Starko
- Department of Biology, University of Victoria, PO Box 1700 Station CSC, Victoria, British Columbia V8W 2Y2, Canada
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - James E. Fifer
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Danielle C. Claar
- Department of Biology, University of Victoria, PO Box 1700 Station CSC, Victoria, British Columbia V8W 2Y2, Canada
- Washington Department of Natural Resources, Olympia, WA 98504, USA
| | - Sarah W. Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, 1200 South Lake Shore Drive, Chicago, IL 60605, USA
| | - Andrew C. Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Julia K. Baum
- Department of Biology, University of Victoria, PO Box 1700 Station CSC, Victoria, British Columbia V8W 2Y2, Canada
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| |
Collapse
|
47
|
Mata-Guel EO, Soh MCK, Butler CW, Morris RJ, Razgour O, Peh KSH. Impacts of anthropogenic climate change on tropical montane forests: an appraisal of the evidence. Biol Rev Camb Philos Soc 2023; 98:1200-1224. [PMID: 36990691 DOI: 10.1111/brv.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023]
Abstract
In spite of their small global area and restricted distributions, tropical montane forests (TMFs) are biodiversity hotspots and important ecosystem services providers, but are also highly vulnerable to climate change. To protect and preserve these ecosystems better, it is crucial to inform the design and implementation of conservation policies with the best available scientific evidence, and to identify knowledge gaps and future research needs. We conducted a systematic review and an appraisal of evidence quality to assess the impacts of climate change on TMFs. We identified several skews and shortcomings. Experimental study designs with controls and long-term (≥10 years) data sets provide the most reliable evidence, but were rare and gave an incomplete understanding of climate change impacts on TMFs. Most studies were based on predictive modelling approaches, short-term (<10 years) and cross-sectional study designs. Although these methods provide moderate to circumstantial evidence, they can advance our understanding on climate change effects. Current evidence suggests that increasing temperatures and rising cloud levels have caused distributional shifts (mainly upslope) of montane biota, leading to alterations in biodiversity and ecological functions. Neotropical TMFs were the best studied, thus the knowledge derived there can serve as a proxy for climate change responses in under-studied regions elsewhere. Most studies focused on vascular plants, birds, amphibians and insects, with other taxonomic groups poorly represented. Most ecological studies were conducted at species or community levels, with a marked paucity of genetic studies, limiting understanding of the adaptive capacity of TMF biota. We thus highlight the long-term need to widen the methodological, thematic and geographical scope of studies on TMFs under climate change to address these uncertainties. In the short term, however, in-depth research in well-studied regions and advances in computer modelling approaches offer the most reliable sources of information for expeditious conservation action for these threatened forests.
Collapse
Affiliation(s)
- Erik O Mata-Guel
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Malcolm C K Soh
- National Park Boards, 1 Cluny Road, Singapore, 259569, Singapore
| | - Connor W Butler
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Rebecca J Morris
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Orly Razgour
- Biosciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Kelvin S-H Peh
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|
48
|
Wang X, Wang L, Sun Y, Chen J, Liu Q, Dong S. Genetic diversity and conservation of Siberian apricot (Prunus sibirica L.) based on microsatellite markers. Sci Rep 2023; 13:11245. [PMID: 37433853 DOI: 10.1038/s41598-023-37993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023] Open
Abstract
Siberian apricot (Prunus sibirica L.) is a woody tree species of ecological, economic, and social importance. To evaluate the genetic diversity, differentiation, and structure of P. sibirica, we analyzed 176 individuals from 10 natural populations using 14 microsatellite markers. These markers generated 194 alleles in total. The mean number of alleles (13.8571) was higher than the mean number of effective alleles (6.4822). The average expected heterozygosity (0.8292) was higher than the average observed heterozygosity (0.3178). Shannon information index and polymorphism information content were separately 2.0610 and 0.8093, demonstrating the rich genetic diversity of P. sibirica. Analysis of molecular variance revealed that 85% of the genetic variation occurred within populations, with only 15% among them. The genetic differentiation coefficient and gene flow were separately 0.151 and 1.401, indicating a high degree of genetic differentiation. Clustering results showed that a genetic distance coefficient of 0.6 divided the 10 natural populations into two subgroups (subgroups A and B). STRUCTURE and principal coordinate analysis divided the 176 individuals into two subgroups (clusters 1 and 2). Mantel tests revealed that genetic distance was correlated with geographical distance and elevation differences. These findings can contribute to the effective conservation and management of P. sibirica resources.
Collapse
Affiliation(s)
- Xinxin Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang, 110866, Liaoning, China
| | - Li Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang, 110866, Liaoning, China
| | - Yongqiang Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang, 110866, Liaoning, China
| | - Jianhua Chen
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang, 110866, Liaoning, China
| | - Quangang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang, 110866, Liaoning, China
| | - Shengjun Dong
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory for Silviculture of Liaoning Province, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
49
|
Wang Z, Lu G, Gao Y, Yan L, Li M, Hu D, Zhang D. mtDNA CR Evidence Indicates High Genetic Diversity of Captive Forest Musk Deer in Shaanxi Province, China. Animals (Basel) 2023; 13:2191. [PMID: 37443989 DOI: 10.3390/ani13132191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
Forest musk deer (Moschus berezovskii) are endangered ruminants whose adult males secrete musk. China has been breeding forest musk deer artificially since the 1950s in an effort to restore wild populations, with Shaanxi and Sichuan provinces as the two main sites for captive breeding. Genetic diversity is a significant indicator that determines the long-term viability and status of a population, particularly for species at risk of extinction. In this study, we analyzed the current genetic makeup of seven captive forest musk deer populations in the Shaanxi province, using the mitochondrial DNA (mtDNA) control region (CR) as the molecular marker. We sequenced 604 bp of mtDNA CR, with an average content of A+T higher than G+C. We observed 111 variable sites and 39 different haplotypes from 338 sequences. The nucleotide diversity (Pi) and haplotype diversity (Hd) were 0.02887 and 0.908, respectively. Genetic differentiation between these populations was not significant, and the populations might not have experienced rapid growth. By combining our sequences with previous ones, we identified 65 unique haplotypes with 26 rare haplotypes and estimated a total of 90 haplotypes in Shaanxi province captive populations. The Shaanxi province and Sichuan province obtained 88 haplotypes, the haplotypes from the two populations were mixed together, and the two populations showed moderate genetic differentiation. Our findings suggested that captive forest musk deer populations in the Shaanxi province had high genetic diversity, with a rich founder population of about 90 maternal lines. Additionally, managers could develop genetic management plans for forest musk deer based on the haplotype database. Overall, our study will provide insights and guidelines for the conservation of genetic diversity in captive forest musk deer populations in the Shaanxi province.
Collapse
Affiliation(s)
- Zhe Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Guanjie Lu
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Yunyun Gao
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Liping Yan
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Mingzhe Li
- China Wildlife Conservation Association, Beijing 100714, China
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| |
Collapse
|
50
|
Mendoza-Portillo V, García-De León FJ, von der Heyden S. Responses of population structure and genomic diversity to climate change and fishing pressure in a pelagic fish. GLOBAL CHANGE BIOLOGY 2023; 29:4107-4125. [PMID: 37078996 DOI: 10.1111/gcb.16732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/28/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
The responses of marine species to environmental changes and anthropogenic pressures (e.g., fishing) interact with ecological and evolutionary processes that are not well understood. Knowledge of changes in the distribution range and genetic diversity of species and their populations into the future is essential for the conservation and sustainable management of resources. Almaco jack (Seriola rivoliana) is a pelagic fish with high importance to fisheries and aquaculture in the Pacific Ocean. In this study, we assessed contemporary genomic diversity and structure in loci that are putatively under selection (outlier loci) and determined their potential functions. Using a combination of genotype-environment association, spatial distribution models, and demogenetic simulations, we modeled the effects of climate change (under three different RCP scenarios) and fishing pressure on the species' geographic distribution and genomic diversity and structure to 2050 and 2100. Our results show that most of the outlier loci identified were related to biological and metabolic processes that may be associated with temperature and salinity. The contemporary genomic structure showed three populations-two in the Eastern Pacific (Cabo San Lucas and Eastern Pacific) and one in the Central Pacific (Hawaii). Future projections suggest a loss of suitable habitat and potential range contractions for most scenarios, while fishing pressure decreased population connectivity. Our results suggest that future climate change scenarios and fishing pressure will affect the genomic structure and genotypic composition of S. rivoliana and lead to loss of genomic diversity in populations distributed in the eastern-central Pacific Ocean, which could have profound effects on fisheries that depend on this resource.
Collapse
Affiliation(s)
- Verónica Mendoza-Portillo
- Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| | - Francisco J García-De León
- Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| | - Sophie von der Heyden
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
- School of Climate Studies, Stellenbosch University, Matieland, South Africa
| |
Collapse
|