1
|
Svantesson S, Tondeleir L, Kulju M, Iršėnaitė R, Lindahl BD, Helo T, Larsson KH, Ryberg M. Five new species in Piloderma (Atheliales, Basidiomycota) and epitypification of P. byssinum. Fungal Biol 2025; 129:101531. [PMID: 40023522 DOI: 10.1016/j.funbio.2024.101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/21/2024] [Accepted: 12/29/2024] [Indexed: 03/04/2025]
Abstract
Piloderma constitutes a small genus of soft, corticioid, ectomycorrhizal, widely distributed and mostly very common species. Microscopically, its members have traditionally been recognised by their simple-septate hyphae and by their small, thick-walled, colourless to pale yellow spores. We describe five new species from northern Europe based on molecular and morphological data: P. frondosum sp. nov., P. fugax sp. nov., P. lamprolithum sp. nov., P. luminosum sp. nov. and P. mirabile sp. nov. All the new species, except P. luminosum seem to be more or less rare. Piloderma fugax has a strong preference for old-growth forest - a lifestyle seemingly deviating from the rest of the genus. Piloderma mirabile is a sister species to P. sphaerosporum and the first known species with clamped hyphae. Piloderma lamprolithum is closely related to P. exiguum and distinguished by its large encrusting crystals. Piloderma luminosum is very closely related to, and morphologically semicryptic with, P. byssinum. To clarify its distinction from P. byssinum, an epitype is designated for the latter. Piloderma frondosum also belongs to the P. byssinum cluster and is distinguished by its association to broadleaved trees. An updated key to all Piloderma species is provided.
Collapse
Affiliation(s)
- Sten Svantesson
- Uppsala University, Department of Organismal Biology, Systematic Biology, Norbyv. 18D, 752 36, Uppsala, Sweden; Gothenburg Global Biodiversity Centre, P.O. Box 462, 405 30, Göteborg, Sweden.
| | - Lowie Tondeleir
- Ghent University, Department of Biology, Research group Mycology, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Matti Kulju
- Biodiversity Unit, P.O. Box 3000, FI-90014, University of Oulu, Finland
| | - Reda Iršėnaitė
- Nature Research Centre, Laboratory of Mycology, Žaliųjų Ežerų Str. 47, LT-12200, Vilnius, Lithuania
| | - Björn D Lindahl
- Swedish University of Agricultural Sciences, Department of Soil and Environment, Box 7014, 750 07, Uppsala, Sweden
| | - Teppo Helo
- Center for Economic Development, Transport and the Environment, ELY Center for Kainuu, P.O. Box 115, FI-87101, Kajaani, Finland
| | - Karl-Henrik Larsson
- Gothenburg Global Biodiversity Centre, P.O. Box 462, 405 30, Göteborg, Sweden; Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, 0318, Oslo, Norway
| | - Martin Ryberg
- Uppsala University, Department of Organismal Biology, Systematic Biology, Norbyv. 18D, 752 36, Uppsala, Sweden
| |
Collapse
|
2
|
Chen X, Yu WJ, Bau T, Matheny PB, Horak E, Liu Y, Qin LW, Tang LP, Ge YP, Liu TZ, Fan YG. Contributions to the Inocybe umbratica-paludinella ( Agaricales) Group in China: Taxonomy, Species Diversity, and Molecular Phylogeny. J Fungi (Basel) 2024; 10:893. [PMID: 39728389 DOI: 10.3390/jof10120893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/29/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Inocybe is the largest genus in the family Inocybaceae, with approximately 1000 species worldwide. Basic data on the species diversity, geographic distribution, and the infrageneric framework of Inocybe are still incomplete because of the intricate nature of this genus, which includes numerous unrecognized taxa that exist around the world. A multigene phylogeny of the I. umbratica-paludinella group, initially designated as the "I. angustifolia subgroup", was conducted using the ITS-28S-rpb2 nucleotide datasets. The seven species, I. alabamensis, I. angustifolia, I. argenteolutea, I. olivaceonigra, I. paludinella, I. subangustifolia, and I. umbratica, were confirmed as members of this species group. At the genus level, the I. umbratica-paludinella group is a sister to the lineage of the unifying I. castanea and an undescribed species. Inocybe sect. Umbraticae sect. nov. was proposed to accommodate species in the I. umbratica-paludinella group and the I. castanea lineage. This section now comprises eight documented species and nine new species from China, as described in this paper. Additionally, new geographical distributions of I. angustifolia and I. castanea in China are reported. The nine new species and I. angustifolia, I. castanea, I. olivaceonigra, and I. umbratica are described in detail and illustrated herein with color plates based on Chinese materials. A global key to 17 species in the section Umbraticae is provided. The results of the current study provide a more detailed basis for the accurate identification of species in the I. umbratica-paludinella group and a better understanding of their phylogenetic placement.
Collapse
Affiliation(s)
- Xin Chen
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Wen-Jie Yu
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Tolgor Bau
- Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - P Brandon Matheny
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Egon Horak
- Independent Researcher, Schlossfeld 17, AT-6020 Innsbruck, Austria
| | - Yu Liu
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China
| | - Li-Wu Qin
- Jilin Provincial Joint Key Laboratory of Changbai Mountain Biocoenosis and Biodiversity, Changbai Mountain Academy of Sciences, Antu 133613, China
| | - Li-Ping Tang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Yu-Peng Ge
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China
| | - Tie-Zhi Liu
- College of Chemistry and Life Sciences, Chifeng University, Chifeng 024000, China
| | - Yu-Guang Fan
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
3
|
Yi Y, Yin S. Seasonal Variations of Sediment Fungal Community of a Shallow Lake in North China. Microorganisms 2024; 12:2127. [PMID: 39597517 PMCID: PMC11596378 DOI: 10.3390/microorganisms12112127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024] Open
Abstract
Fungi play important roles in the process of material cycling and energy transfers in aquatic ecosystems. Yet, little is known about the fungal community in lake sediment. In this study, sediment samples from five habitat types in Baiyangdian Lake (BYD Lake) were collected across three seasons. High-throughput sequencing techniques were used to determine the compositions of fungal communities. Fungi are highly diverse in the sediment of BYD Lake, although some important fungi have not been accurately identified. The fungal diversity was highest in winter and lowest in summer, while there was no significant difference in species richness among sampling sites. The compositions of fungal community differed among seasons and habitats. Physicochemical properties of sediments were measured and the influence of the environmental factors on fungal communities were analyzed. Temperature, P, N, and heavy metals explained 48.98% of the variations of fungal communities across three seasons. Human activities have affected the species and biomass of fungi to some extent. Temperature is the most influential factor and negatively correlated to fungal diversity. Nutrients in different forms have different effects on shaping the fungal community. The effect of heavy metals is relatively low.
Collapse
Affiliation(s)
- Yujun Yi
- State Key Laboratory of Water Environmental Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
- Ministry of Education Key Laboratory of Water and Sediment Science, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Senlu Yin
- State Key Laboratory of Water Environmental Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Truong C, Gabbarini LA, Moretto A, Escobar JM, Smith ME. Ectomycorrhizal fungi and the nitrogen economy of Nothofagus in southern Patagonia. Ecol Evol 2024; 14:e70299. [PMID: 39355103 PMCID: PMC11439510 DOI: 10.1002/ece3.70299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 10/03/2024] Open
Abstract
Subantarctic Nothofagus forests are the southernmost forests in the world, with negligible atmospheric nitrogen (N) deposition. Most paradigms about the role of ectomycorrhizal (ECM) fungi in N cycling and plant N uptake at high latitudes have been tested in boreal coniferous forests, while in the southern hemisphere, ECM hosts are primarily angiosperms. Using ITS1 meta-barcoding, we characterized ECM and saprotrophic fungal communities in evergreen and deciduous Nothofagus forests forming monodominant and mixed stands in the archipelago of Tierra del Fuego (Chile and Argentina). We assessed the N economy of Nothofagus by correlating host species with fungal relative abundances, edaphic variables, net N mineralization, microbial biomass N and the activity of eight extracellular soil enzymes activities. The N economy of deciduous N. pumilio forests was strikingly similar to boreal coniferous forests, with the lowest inorganic N availability and net N mineralization, in correlation to higher relative abundances of ECM fungi with enzymatic capacity for organic N mobilization (genus Cortinarius). In contrast, the N economy of evergreen N. betuloides forests was predominantly inorganic and correlated with ECM lineages from the family Clavulinaceae, in acidic soils with poor drainage. Grassy understory vegetation in deciduous N. antarctica forests likely promoted saprotrophic fungi (i.e., genus Mortierella) in correlation with higher activities of carbon-degrading enzymes. Differences between Nothofagus hosts did not persist in mixed forests, illustrating the range of soil fertility of these ECM angiosperms and the underlying effects of soil and climate on Nothofagus distribution and N cycling in southern Patagonia.
Collapse
Affiliation(s)
- Camille Truong
- Royal Botanic Gardens Victoria Melbourne Victoria Australia
| | - Luciano A Gabbarini
- Departamento de Ciencia y Tecnología, Centro de Bioquímica y Microbiología de Suelos Universidad Nacional de Quilmes Bernal Argentina
| | - Alicia Moretto
- Universidad Nacional de Tierra del Fuego, Instituto de Ciencias Polares, Recursos Naturales y Ambiente Ushuaia Argentina
- Centro Austral de Investigaciones Científicas (CONICET) Ushuaia Argentina
| | - Julio M Escobar
- Centro Austral de Investigaciones Científicas (CONICET) Ushuaia Argentina
| | - Matthew E Smith
- Department of Plant Pathology University of Florida Gainesville Florida USA
| |
Collapse
|
5
|
Pena R, Tibbett M. Mycorrhizal symbiosis and the nitrogen nutrition of forest trees. Appl Microbiol Biotechnol 2024; 108:461. [PMID: 39249589 PMCID: PMC11384646 DOI: 10.1007/s00253-024-13298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Terrestrial plants form primarily mutualistic symbiosis with mycorrhizal fungi based on a compatible exchange of solutes between plant and fungal partners. A key attribute of this symbiosis is the acquisition of soil nutrients by the fungus for the benefit of the plant in exchange for a carbon supply to the fungus. The interaction can range from mutualistic to parasitic depending on environmental and physiological contexts. This review considers current knowledge of the functionality of ectomycorrhizal (EM) symbiosis in the mobilisation and acquisition of soil nitrogen (N) in northern hemisphere forest ecosystems, highlighting the functional diversity of the fungi and the variation of symbiotic benefits, including the dynamics of N transfer to the plant. It provides an overview of recent advances in understanding 'mycorrhizal decomposition' for N release from organic or mineral-organic forms. Additionally, it emphasises the taxon-specific traits of EM fungi in soil N uptake. While the effects of EM communities on tree N are likely consistent across different communities regardless of species composition, the sink activities of various fungal taxa for tree carbon and N resources drive the dynamic continuum of mutualistic interactions. We posit that ectomycorrhizas contribute in a species-specific but complementary manner to benefit tree N nutrition. Therefore, alterations in diversity may impact fungal-plant resource exchange and, ultimately, the role of ectomycorrhizas in tree N nutrition. Understanding the dynamics of EM functions along the mutualism-parasitism continuum in forest ecosystems is essential for the effective management of ecosystem restoration and resilience amidst climate change. KEY POINTS: • Mycorrhizal symbiosis spans a continuum from invested to appropriated benefits. • Ectomycorrhizal fungal communities exhibit a high functional diversity. • Tree nitrogen nutrition benefits from the diversity of ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Rodica Pena
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK.
- Department of Silviculture, Transilvania University of Brasov, Brasov, Romania.
| | - Mark Tibbett
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
6
|
F K, L B, M EM, M R B, N F, R B, F B, A DS, C D, M N F, G G, M J G, M L, A L, W L M, A N, A S, G S, E I V, K V, L V, B Z, L A, D D, M B. "Ectomycorrhizal exploration type" could be a functional trait explaining the spatial distribution of tree symbiotic fungi as a function of forest humus forms. MYCORRHIZA 2024; 34:203-216. [PMID: 38700516 DOI: 10.1007/s00572-024-01146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/15/2024] [Indexed: 06/12/2024]
Abstract
In European forests, most tree species form symbioses with ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) fungi. The EM fungi are classified into different morphological types based on the development and structure of their extraradical mycelium. These structures could be root extensions that help trees to acquire nutrients. However, the relationship between these morphological traits and functions involved in soil nutrient foraging is still under debate.We described the composition of mycorrhizal fungal communities under 23 tree species in a wide range of climates and humus forms in Europe and investigated the exploratory types of EM fungi. We assessed the response of this tree extended phenotype to humus forms, as an indicator of the functioning and quality of forest soils. We found a significant relationship between the relative proportion of the two broad categories of EM exploration types (short- or long-distance) and the humus form, showing a greater proportion of long-distance types in the least dynamic soils. As past land-use and host tree species are significant factors structuring fungal communities, we showed this relationship was modulated by host trait (gymnosperms versus angiosperms), soil depth and past land use (farmland or forest).We propose that this potential functional trait of EM fungi be used in future studies to improve predictive models of forest soil functioning and tree adaptation to environmental nutrient conditions.
Collapse
Affiliation(s)
- Khalfallah F
- Université de Lorraine, INRAE, IAM, Nancy, F-54000, France
- INRAE, BEF, Nancy, F-54000, France
| | - Bon L
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France
| | - El Mazlouzi M
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France
- IEES, Université Paris Est Créteil, CNRS, INRAE, IRD, Créteil, 94010, 94010, France
| | - Bakker M R
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France
| | - Fanin N
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France
| | - Bellanger R
- INRAE, Site de la Villa Thuret, Antibes, 1353 UEVT, 06600, France
| | - Bernier F
- INRAE, Domaine de l'Hermitage, Cestas Pierroton, 0570 UEFP, 33610, France
| | - De Schrijver A
- Departement Biowetenschappen en Industriële Technologie, AgroFoodNature HOGENT, Melle, 9090, Belgium
| | - Ducatillon C
- INRAE, Site de la Villa Thuret, Antibes, 1353 UEVT, 06600, France
| | - Fotelli M N
- Forest Research Institute Hellenic Agricultural Organization Dimitra, Vassilika, Thessaloniki, 57006, Greece
| | - Gateble G
- INRAE, Site de la Villa Thuret, Antibes, 1353 UEVT, 06600, France
| | - Gundale M J
- Department of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences, Umeå, 901-83, Sweden
| | - Larsson M
- Department of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences, Umeå, 901-83, Sweden
| | - Legout A
- INRAE, BEF, Nancy, F-54000, France
| | - Mason W L
- Forest Research, Northern Research Station, Roslin, Midlothian, EH25 9SY, Scotland, UK
| | - Nordin A
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, 901-83, Sweden
| | - Smolander A
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki, 00790, Finland
| | - Spyroglou G
- Forest Research Institute Hellenic Agricultural Organization Dimitra, Vassilika, Thessaloniki, 57006, Greece
| | - Vanguelova E I
- Forest Research, Alice Holt, Alice Holt Lodge, Farnham, GU10 4LH, UK
| | - Verheyen K
- Forest & Nature Lab, Ghent University, Gontrode, Melle, 9090, Belgium
| | - Vesterdal L
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, 1958, Denmark
| | - Zeller B
- INRAE, BEF, Nancy, F-54000, France
| | - Augusto L
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France.
| | | | - Buée M
- Université de Lorraine, INRAE, IAM, Nancy, F-54000, France.
| |
Collapse
|
7
|
McPolin MC, Kranabetter JM, Philpott TJ, Hawkins BJ. Sporocarp nutrition of ectomycorrhizal fungi indicates an important role for endemic species in a high productivity temperate rainforest. THE NEW PHYTOLOGIST 2024; 242:1603-1613. [PMID: 37771241 DOI: 10.1111/nph.19280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Endemic species of ectomycorrhizal fungi (EMF) are found throughout many biomes, but it is unclear whether their localized distribution is dictated by habitat filtering or geographical barriers to dispersal. We examined community composition (via long-read metabarcoding) and differences in sporocarp nutrition between endemic and cosmopolitan EMF species across perhumid temperate rainforests of British Columbia, characterized by soils with high nitrogen (N) supply alongside low phosphorus (P) and cation availability. Endemic EMF species, representing almost half of the community, had significantly greater sporocarp N (24% higher), potassium (+16%), and magnesium (+17%) concentrations than cosmopolitan species. Sporocarp P concentrations were comparatively low and did not differ by fungal range. However, sporocarp N% and P% were well correlated, supporting evidence for linkages in N and P acquisition. Endemics were more likely to occur on Tsuga heterophylla (a disjunct host genus) than Picea sitchensis (a circumpolar genus). The Inocybaceae and Thelephoraceae families had high proportions of endemic taxa, while species in Cortinariaceae were largely cosmopolitan, indicating some niche conservatism among genera. We conclude that superior adaptive traits in relation to perhumid soils were skewed toward the endemic community, underscoring the potentially important contribution of these localized fungi to rainforest nutrition and productivity.
Collapse
Affiliation(s)
- M Claire McPolin
- Centre for Forest Biology, University of Victoria, PO Box 3020, STN CSC, Victoria, BC, V8W 3N5, Canada
| | - J Marty Kranabetter
- British Columbia Ministry of Forests, PO Box 9536, Stn Prov Govt, Victoria, BC, V8W 9C4, Canada
| | - Tim J Philpott
- British Columbia Ministry of Forests, 200-640 Borland St., Williams Lake, BC, V2G 4T1, Canada
| | - Barbara J Hawkins
- Centre for Forest Biology, University of Victoria, PO Box 3020, STN CSC, Victoria, BC, V8W 3N5, Canada
| |
Collapse
|
8
|
Kranabetter JM, Robbins S, Hawkins BJ. Host population effects on ectomycorrhizal fungi vary between low and high phosphorus soils of temperate rainforests. MYCORRHIZA 2023; 33:199-209. [PMID: 36947254 DOI: 10.1007/s00572-023-01109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/13/2023] [Indexed: 06/08/2023]
Abstract
Geographic distinctions in the affinity of tree populations for select ectomycorrhizal fungi (EMF) may occur where strong edaphic pressures act on fungal communities and their hosts. We examine this premise for Pseudotsuga menziesii var. menziesii of southwest British Columbia, using ten native seedlots collected from a range of mean annual precipitation (MAP), as a proxy for podzolization extent and phosphorus (P) deficiencies, and evaluated in contrasting low P and high P soils. After two growing seasons, seedling biomass in the high P soil dwarfed that of the low P soil, and better growth rates under high P were detected for populations from very dry and very wet origins. EMF communities on the high P soil displayed more symmetry among host populations than the low P soil (average community dissimilarity of 0.20% vs. 0.39%, respectively). Seedling foliar P% differed slightly but significantly in relation to MAP of origin. EMF species richness varied significantly among host populations but independently of climatic parameters. There were significant shifts in EMF species abundance related to seedlot MAP, particularly on the low P soil where nonlinear relationships were found for Wilcoxina mikolae, Hyaloscypha finlandica, and Rhizopogon villosulus. Despite efforts to enhance colonization by native fungi, the predominance of ruderal EMF species hindered a realistic evaluation of local adaptation among host-fungi populations. Nevertheless, the shifting affinity in taxa abundance and wider community disparity on low P soil reflected the potential for a consequential host genetic effect related to geographical patterns in P availability across temperate rainforests.
Collapse
Affiliation(s)
- J M Kranabetter
- British Columbia Ministry of Forests, P.O. Box 9536, Stn Prov Govt, Victoria, B.C., Canada, V8W 9C4.
| | - S Robbins
- Centre for Forest Biology, University of Victoria, P.O. Box 3020, STN CSC, Victoria, B.C., Canada, V8W 3N5
| | - B J Hawkins
- Centre for Forest Biology, University of Victoria, P.O. Box 3020, STN CSC, Victoria, B.C., Canada, V8W 3N5
| |
Collapse
|
9
|
Khokon AM, Janz D, Polle A. Ectomycorrhizal diversity, taxon-specific traits and root N uptake in temperate beech forests. THE NEW PHYTOLOGIST 2023. [PMID: 37229659 DOI: 10.1111/nph.18978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Roots of forest trees are colonized by a diverse spectrum of ectomycorrhizal (EM) fungal species differing in their nitrogen (N) acquisition abilities. Here, we hypothesized that root N gain is the result of EM fungal diversity or related to taxon-specific traits for N uptake. To test our hypotheses, we traced 15 N enrichment in fine roots, coarse roots and taxon-specific ectomycorrhizas in temperate beech forests in two regions and three seasons, feeding 1 mM NH4 NO3 labelled with either 15 NH4 + or 15 NO3 - . We morphotyped > 45 000 vital root tips and identified 51 of 53 detected EM species by sequencing. EM root tips exhibited strong, fungal taxon-specific variation in 15 N enrichment with higher NH4 + than NO3 - enrichment. The translocation of N into the upper parts of the root system increased with increasing EM fungal diversity. Across the growth season, influential EM species predicting root N gain were not identified, probably due to high temporal dynamics of the species composition of EM assemblages. Our results support that root N acquisition is related to EM fungal community-level traits and highlight the importance of EM diversity for tree N nutrition.
Collapse
Affiliation(s)
- Anis Mahmud Khokon
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
- Functional Forest Ecology, Universität Hamburg, Barsbüttel, 22885, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
| |
Collapse
|
10
|
van Galen LG, Orlovich DA, Lord JM, Nilsen AR, Dutoit L, Larcombe MJ. Correlated evolution in an ectomycorrhizal host-symbiont system. THE NEW PHYTOLOGIST 2023; 238:1215-1229. [PMID: 36751898 DOI: 10.1111/nph.18802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Mechanisms of diversification in fungi are relatively poorly known. Many ectomycorrhizal symbionts show preference for particular host genera or families, so host-symbiont selection may be an important driver of fungal diversification in ectomycorrhizal systems. However, whether ectomycorrhizal hosts and symbionts show correlated evolutionary patterns remains untested, and it is unknown whether fungal specialisation also occurs in systems dominated by hosts from the same genus. We use metabarcoding of ectomycorrhizal fungi collected with hyphal ingrowth bags from Nothofagus forests across southern New Zealand to investigate host-symbiont specialisation and correlated evolution. We examine how ectomycorrhizal communities differ between host species and look for patterns of host-symbiont cophylogeny. We found substantial differences in ectomycorrhizal communities associated with different host taxa, particularly between hosts from different subgenera (Lophozonia and Fuscospora), but also between more closely related hosts. Twenty-four per cent of fungal taxa tested showed affiliations to particular hosts, and tests for cophylogeny revealed significant correlations between host relatedness and the fungal phylogeny that extended to substantial evolutionary depth. These results provide new evidence of correlated evolution in ectomycorrhizal systems, indicating that preferences among closely related host species may represent an important evolutionary driver for local lineage diversification in ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Laura G van Galen
- Department of Botany, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - David A Orlovich
- Department of Botany, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Janice M Lord
- Department of Botany, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Andy R Nilsen
- Department of Botany, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Matthew J Larcombe
- Department of Botany, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
11
|
Zhang Y, Wang Q, Xu L, Ma S, Cui D, Zhu K, Feng W. Mixed conifer-broadleaf trees on arbuscular mycorrhizal and ectomycorrhizal communities in rhizosphere soil of different plantation stands in the temperate zone, Northeast China. Front Microbiol 2022; 13:986515. [PMID: 36238594 PMCID: PMC9551461 DOI: 10.3389/fmicb.2022.986515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
In comparison with ectomycorrhizal (EM) tree species, arbuscular mycorrhizal (AM) trees have different litter quality and nitrogen cycle modes, which may affect mycorrhizal colonization and the community composition and diversity. However, available studies addressing the mycorrhizal fungal colonization rate, diversity and community composition in mixed forest stands composed of AM and EM trees are rare. In the present study, we assessed litter quality, soil physicochemical properties and correlated them with mycorrhizal community characteristics in rhizosphere soils of monoculture and mixture plantation stands of AM tree species (Fraxinus mandschurica Rupr.) and EM tree species (Larix gmelinii Rupr., Picea koraiensis Nakai) in Northeast China. We hypothesized that (1) the effect of mixture pattern on mycorrhizal colonization rate and diversity would change with tree species, (2) the effect of mixture pattern on mycorrhizal community composition would be less pronounced in comparison with that of tree species. We found that mixture did not change AMF colonization rate regardless of mixture identity, whereas mixture and tree species exerted significant effects on EMF colonization rate. For AMF community, both M-AS (Fraxinus mandschurica Rupr. and Picea koraiensis Nakai) and M-AL (Fraxinus mandschurica Rupr. and Larix gmelinii Rupr.) mixtures significantly increased Pielou index and Simpson index, whereas only M-AS significantly increased Sobs. For EMF community, mixture significantly affected examined diversity indices except for Chao1. Mixture significantly shifted AMF and EMF community, and the magnitude was tree species dependent. The dominant genera in AMF and EMF communities in plantation stands were Glomus and Tomentella, respectively. The EnvFit analysis showed that the determinant factors of EMF community are soil moisture, pH, nitrate nitrogen content, dissolved organic nitrogen content, soil organic matter content, soil organic carbon/total nitrogen and litter carbon/total nitrogen. In conclusion, mixed conifer-broadleaf trees significantly changed soil physicochemical properties, litter quality as well as mycorrhizal fungi community diversity and composition.
Collapse
|
12
|
Unipartite and bipartite mycorrhizal networks of Abies religiosa forests: Incorporating network theory into applied ecology of conifer species and forest management. ECOLOGICAL COMPLEXITY 2022. [DOI: 10.1016/j.ecocom.2022.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Rivera Pérez CA, Janz D, Schneider D, Daniel R, Polle A. Transcriptional Landscape of Ectomycorrhizal Fungi and Their Host Provides Insight into N Uptake from Forest Soil. mSystems 2022; 7:e0095721. [PMID: 35089084 PMCID: PMC8725588 DOI: 10.1128/msystems.00957-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Mineral nitrogen (N) is a major nutrient showing strong fluctuations in the environment due to anthropogenic activities. The acquisition and translocation of N to forest trees are achieved mainly by highly diverse ectomycorrhizal fungi (EMF) living in symbioses with their host roots. Here, we examined colonized root tips to characterize the entire root-associated fungal community by DNA metabarcoding-Illumina sequencing of the fungal internal transcribed spacer 2 (ITS2) molecular marker and used RNA sequencing to target metabolically active fungi and the plant transcriptome after N application. The study was conducted with beech (Fagus sylvatica L.), a dominant tree species in central Europe, grown in native forest soil. We demonstrate strong enrichment of 15N from nitrate or ammonium in the ectomycorrhizal roots by stable-isotope labeling. The relative abundance of the EMF members in the fungal community was correlated with their transcriptional abundances. The fungal metatranscriptome covered Kyoto Encyclopedia of Genes and Genomes (KEGG) and Eukaryotic Orthologous Groups (KOG) categories similar to those of model fungi and did not reveal significant changes related to N metabolization but revealed species-specific transcription patterns, supporting trait stability. In contrast to the resistance of the fungal metatranscriptome, the transcriptome of the host exhibited dedicated nitrate- or ammonium-responsive changes with the upregulation of transporters and enzymes required for nitrate reduction and a drastic enhancement of glutamine synthetase transcript levels, indicating the channeling of ammonium into the pathway for plant protein biosynthesis. Our results support that naturally assembled fungal communities living in association with the tree roots buffer nutritional signals in their own metabolism but do not shield plants from high environmental N levels. IMPORTANCE Although EMF are well known for their role in supporting tree N nutrition, the molecular mechanisms underlying N flux from the soil solution into the host through the ectomycorrhizal pathway remain widely unknown. Furthermore, ammonium and nitrate availability in the soil solution is subject to frequent oscillations that create a dynamic environment for the tree roots and associated microbes during N acquisition. Therefore, it is important to understand how root-associated mycobiomes and the tree roots handle these fluctuations. We studied the responses of the symbiotic partners by screening their transcriptomes after a sudden environmental flux of nitrate or ammonium. We show that the fungi and the host respond asynchronously, with the fungi displaying resistance to increased nitrate or ammonium and the host dynamically metabolizing the supplied N sources. This study provides insights into the molecular mechanisms of the symbiotic partners operating under N enrichment in a multidimensional symbiotic system.
Collapse
Affiliation(s)
- Carmen Alicia Rivera Pérez
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Pellitier PT, Zak DR. Ectomycorrhizal fungal decay traits along a soil nitrogen gradient. THE NEW PHYTOLOGIST 2021; 232:2152-2164. [PMID: 34533216 DOI: 10.1111/nph.17734] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The extent to which ectomycorrhizal (ECM) fungi decay soil organic matter (SOM) has implications for accurately predicting forest ecosystem response to climate change. Investigating the distribution of gene traits associated with SOM decay among ectomycorrhizal fungal communities could improve understanding of SOM dynamics and plant nutrition. We hypothesized that soil inorganic nitrogen (N) availability structures the distribution of ECM fungal genes associated with SOM decay and, specifically, that ECM fungal communities occurring in inorganic N-poor soils have greater SOM decay potential. To test this hypothesis, we paired amplicon and shotgun metagenomic sequencing of 60 ECM fungal communities associating with Quercus rubra along a natural soil inorganic N gradient. Ectomycorrhizal fungal communities occurring in low inorganic N soils were enriched in gene families involved in the decay of lignin, cellulose, and chitin. Ectomycorrhizal fungal community composition was the strongest driver of shifts in metagenomic estimates of fungal decay potential. Our study simultaneously illuminates the identity of key ECM fungal taxa and gene families potentially involved in the decay of SOM, and we link rhizomorphic and medium-distance hyphal morphologies with enhanced SOM decay potential. Coupled shifts in ECM fungal community composition and community-level decay gene frequencies are consistent with outcomes of trait-mediated community assembly processes.
Collapse
Affiliation(s)
- Peter T Pellitier
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Donald R Zak
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
15
|
Pellitier PT, Zak DR, Argiroff WA, Upchurch RA. Coupled Shifts in Ectomycorrhizal Communities and Plant Uptake of Organic Nitrogen Along a Soil Gradient: An Isotopic Perspective. Ecosystems 2021. [DOI: 10.1007/s10021-021-00628-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
McPolin MC, Kranabetter JM. Influence of endemic versus cosmopolitan species on the local assembly of ectomycorrhizal fungal communities. THE NEW PHYTOLOGIST 2021; 229:2395-2399. [PMID: 33091170 DOI: 10.1111/nph.17015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Affiliation(s)
- M Claire McPolin
- Centre for Forest Biology, PO Box 3020, STN CSC, Victoria, BC, V8W 3N5, Canada
| | - J Marty Kranabetter
- British Columbia Ministry of Forests, Lands, Natural Resource Operations and Rural Development, PO Box 9536, Stn Prov Govt, Victoria, BC, V8W 9C4, Canada
| |
Collapse
|
17
|
Meeds JA, Marty Kranabetter J, Zigg I, Dunn D, Miros F, Shipley P, Jones MD. Phosphorus deficiencies invoke optimal allocation of exoenzymes by ectomycorrhizas. ISME JOURNAL 2021; 15:1478-1489. [PMID: 33420298 PMCID: PMC8114911 DOI: 10.1038/s41396-020-00864-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 11/09/2022]
Abstract
Ectomycorrhizal (EM) fungi can acquire phosphorus (P) through the production of extracellular hydrolytic enzymes (exoenzymes), but it is unclear as to the manner and extent native EM fungal communities respond to declining soil P availability. We examined the activity of six exoenzymes (xylosidase, N-acetyl glucosaminidase, β-glucosidase, acid phosphomonoesterase, acid phosphodiesterase [APD], laccase) from EM roots of Pseudotsuga menzesii across a soil podzolization gradient of coastal British Columbia. We found that APD activity increased fourfold in a curvilinear association with declining inorganic P. Exoenzyme activity was not related to organic P content, but at a finer resolution using 31P-NMR, there was a strong positive relationship between APD activity and the ratio of phosphodiesters to orthophosphate of surface organic horizons (forest floors). Substantial increases (two- to fivefold) in most exoenzymes were aligned with declining foliar P concentrations of P. menzesii, but responses were statistically better in relation to foliar nitrogen (N):P ratios. EM fungal species with consistently high production of key exoenzymes were exclusive to Podzol plots. Phosphorus deficiencies in relation to N limitations may provide the best predictor of exoenzyme investment, reflecting an optimal allocation strategy for EM fungi. Resource constraints contribute to species turnover and the assembly of distinct, well-adapted EM fungal communities.
Collapse
Affiliation(s)
- Justin A Meeds
- Biology Department, University of British Columbia, Okanagan Campus 1177 Research Road, Kelowna, BC, V4V 1V7, Canada
| | - J Marty Kranabetter
- British Columbia Ministry of Forests, Lands and Natural Resource Operations, P.O. Box 9536, Stn Prov Govt, Victoria, BC, V8W 9C4, Canada.
| | - Ieva Zigg
- Biology Department, University of British Columbia, Okanagan Campus 1177 Research Road, Kelowna, BC, V4V 1V7, Canada.,Chemistry Department, University of British Columbia, Okanagan Campus 3187 University Way, Kelowna, BC, V4V 1V7, Canada
| | - Dave Dunn
- Natural Resources Canada, Pacific Forestry Centre, 506 Burnside Road West, Victoria, BC, V8Z 1M5, Canada
| | - François Miros
- Chemistry Department, University of British Columbia, Okanagan Campus 3187 University Way, Kelowna, BC, V4V 1V7, Canada
| | - Paul Shipley
- Chemistry Department, University of British Columbia, Okanagan Campus 3187 University Way, Kelowna, BC, V4V 1V7, Canada
| | - Melanie D Jones
- Biology Department, University of British Columbia, Okanagan Campus 1177 Research Road, Kelowna, BC, V4V 1V7, Canada
| |
Collapse
|
18
|
Nguyen DQ, Schneider D, Brinkmann N, Song B, Janz D, Schöning I, Daniel R, Pena R, Polle A. Soil and root nutrient chemistry structure root-associated fungal assemblages in temperate forests. Environ Microbiol 2020; 22:3081-3095. [PMID: 32383336 DOI: 10.1111/1462-2920.15037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Root-associated fungi (RAF) link nutrient fluxes between soil and roots and thus play important roles in ecosystem functioning. To enhance our understanding of the factors that control RAF, we fitted statistical models to explain variation in RAF community structure using data from 150 temperate forest sites covering a broad range of environmental conditions and chemical root traits. We found that variation in RAF communities was related to both root traits (e.g., cations, carbohydrates, NO3 - ) and soil properties (pH, cations, moisture, C/N). The identified drivers were the combined result of distinct response patterns of fungal taxa (determined at the rank of orders) to biotic and abiotic factors. Our results support that RAF community variation is related to evolutionary adaptedness of fungal lineages and consequently, drivers of RAF communities are context-dependent.
Collapse
Affiliation(s)
- Dung Quang Nguyen
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany.,Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, Duc Thang Ward, Bac Tu Liem District, Hanoi, Vietnam
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Grisebachstraße 8, 37077, Germany
| | - Nicole Brinkmann
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| | - Bin Song
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| | - Ingo Schöning
- Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Grisebachstraße 8, 37077, Germany
| | - Rodica Pena
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| |
Collapse
|
19
|
Guo J, Ling N, Chen Z, Xue C, Li L, Liu L, Gao L, Wang M, Ruan J, Guo S, Vandenkoornhuyse P, Shen Q. Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes. THE NEW PHYTOLOGIST 2020; 226:232-243. [PMID: 31778576 DOI: 10.1111/nph.16345] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/22/2019] [Indexed: 05/14/2023]
Abstract
In the processes controlling ecosystem fertility, fungi are increasingly acknowledged as key drivers. However, our understanding of the rules behind fungal community assembly regarding the effect of soil fertility level remains limited. Using soil samples from typical tea plantations spanning c. 2167 km north-east to south-west across China, we investigated the assemblage complexity and assembly processes of 140 fungal communities along a soil fertility gradient. The community dissimilarities of total fungi and fungal functional guilds increased with increasing soil fertility index dissimilarity. The symbiotrophs were more sensitive to variations in soil fertility compared with pathotrophs and saprotrophs. Fungal networks were larger and showed higher connectivity as well as greater potential for inter-module connection in more fertile soils. Environmental factors had a slightly greater influence on fungal community composition than spatial factors. Species abundance fitted the Zipf-Mandelbrot distribution (niche-based mechanisms), which provided evidence for deterministic-based processes. Overall, the soil fungal communities in tea plantations responded in a deterministic manner to soil fertility, with high fertility correlated with complex fungal community assemblages. This study provides new insights that might contribute to predictions of fungal community complexity.
Collapse
Affiliation(s)
- Junjie Guo
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ning Ling
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- UMR 6553 EcoBio, Universite de Rennes 1, CNRS, campus Beaulieu, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Zhaojie Chen
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Xue
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Li
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lisheng Liu
- Hengyang Red Soil Experimental Station, Chinese Academy of Agricultural Sciences, Hengyang, 421001, China
| | - Limin Gao
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Wang
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianyun Ruan
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Shiwei Guo
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Philippe Vandenkoornhuyse
- UMR 6553 EcoBio, Universite de Rennes 1, CNRS, campus Beaulieu, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
20
|
Defrenne CE, Philpott TJ, Guichon SHA, Roach WJ, Pickles BJ, Simard SW. Shifts in Ectomycorrhizal Fungal Communities and Exploration Types Relate to the Environment and Fine-Root Traits Across Interior Douglas-Fir Forests of Western Canada. FRONTIERS IN PLANT SCIENCE 2019; 10:643. [PMID: 31191571 PMCID: PMC6547044 DOI: 10.3389/fpls.2019.00643] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/29/2019] [Indexed: 05/20/2023]
Abstract
Large-scale studies that examine the responses of ectomycorrhizal fungi across biogeographic gradients are necessary to assess their role in mediating current and predicted future alterations in forest ecosystem processes. We assessed the extent of environmental filtering on interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) ectomycorrhizal fungal communities across regional gradients in precipitation, temperature, and soil fertility in interior Douglas-fir dominated forests of western Canada. We also examined relationships between fine-root traits and mycorrhizal fungal exploration types by combining root and fungal trait measurements with next-generation sequencing. Temperature, precipitation, and soil C:N ratio affected fungal community dissimilarity and exploration type abundance but had no effect on α-diversity. Fungi with rhizomorphs (e.g., Piloderma sp.) or proteolytic abilities (e.g., Cortinarius sp.) dominated communities in warmer and less fertile environments. Ascomycetes (e.g., Cenococcum geophilum) or shorter distance explorers, which potentially cost the plant less C, were favored in colder/drier climates where soils were richer in total nitrogen. Environmental filtering of ectomycorrhizal fungal communities is potentially related to co-evolutionary history between Douglas-fir populations and fungal symbionts, suggesting success of interior Douglas-fir as climate changes may be dependent on maintaining strong associations with local communities of mycorrhizal fungi. No evidence for a link between root and fungal resource foraging strategies was found at the regional scale. This lack of evidence further supports the need for a mycorrhizal symbiosis framework that is independent of root trait frameworks, to aid in understanding belowground plant uptake strategies across environments.
Collapse
Affiliation(s)
- Camille E. Defrenne
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Philpott
- Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Cariboo-Chilcotin Natural Resource District, Williams Lake, BC, Canada
| | - Shannon H. A. Guichon
- Stable Isotope Facility, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - W. Jean Roach
- Skyline Forestry Consultants Ltd., Kamloops, BC, Canada
| | - Brian J. Pickles
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Suzanne W. Simard
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Li F, Kuang Y, Liu N, Ge F. Extracellular polymeric substrates of Chlorella vulgaris F1068 weaken stress of cetyltrimethyl ammonium chloride on ammonium uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:678-684. [PMID: 30684836 DOI: 10.1016/j.scitotenv.2018.12.472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
This study investigated the influences of cetyltrimethyl trimethyl ammonium chloride (CTAC), an emerging pollutant quaternary ammonium compound (QAC) in municipal effluents, on the transfer and uptake of NH4+ by Chlorella vulgaris F1068 cells removed EPS artificially (EPS-R) and coated EPS naturally (EPS-C) under different scenarios (e.g., the presence or absence of CTAC, different photoperiod sequences (light 12 h: dark 12 h or dark 12 h: light 12 h)). The results showed that the removal of EPS increased the transfer and uptake of NH4+ but the presence of EPS caged NH4+ and effectively weakened the stress of CTAC (<0.5 mg/L) on NH4+ uptake. The main mechanism was considered that CTAC in the concentration range from 0.1 to 0.5 mg/L induced an increased amount of polysaccharide and protein in EPS and thus protected algal normal physiological functions (including cell membrane permeability and glutamine synthetase activity) from the damage of CTAC (0.1 to 0.5 mg/L) regardless of the photoperiod sequences. Thereby, the findings of this study provided an insight into the role of algal EPS in transfer and uptake of nutrients under the coexisted toxics for the future algae-based sewage treatment application.
Collapse
Affiliation(s)
- Feng Li
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China
| | - Yangduo Kuang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China
| | - Na Liu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China
| | - Fei Ge
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High Efficiency Purification Technology and its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China.
| |
Collapse
|
22
|
Kranabetter JM, Harman-Denhoed R, Hawkins BJ. Saprotrophic and ectomycorrhizal fungal sporocarp stoichiometry (C : N : P) across temperate rainforests as evidence of shared nutrient constraints among symbionts. THE NEW PHYTOLOGIST 2019; 221:482-492. [PMID: 30084239 DOI: 10.1111/nph.15380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
Quantifying nutritional dynamics of free-living saprotrophs and symbiotic ectomycorrhizal fungi in the field is challenging, but the stoichiometry of fruiting bodies (sporocarps) may be an effective methodology for this purpose. Carbon (C), nitrogen (N) and phosphorus (P) concentrations of soils, foliage and 146 sporocarp collections were analyzed from 14 Pseudotsuga menziesii var. menziesii stands across a podzolization gradient on Vancouver Island (Canada). N and P concentrations were considerably higher in saprotrophic fungi. Fungal N% increased with soil N content at a greater rate for saprotrophs than ectomycorrhizal fungi, while fungal P% of saprotrophs was more constrained. Fungal N : P was more responsive to soil N : P for ectomycorrhizal fungi (homeostatic regulation coefficient 'H' = 2.9) than saprotrophs (H = 5.9), while N : P of ectomycorrhizal fungi and host tree foliage scaled almost identically. Results underscore the role of ectomycorrhizal fungi as nutrient conduits, supporting host trees, whereas saprotrophs maintain a greater degree of nutritional homeostasis. Site nutrient constraints were shared in equal measure between ectomycorrhizal fungi and host trees, particularly for P, suggesting neither partner benefits from enhanced nutrition at the expense of the other. Sporocarp stoichiometry provides new insights into mycorrhizal relationships and illustrates pervasive P deficiencies across temperate rainforests of the Pacific Northwest.
Collapse
Affiliation(s)
- J Marty Kranabetter
- British Columbia Ministry of Forests, Lands and Natural Resource Operations, PO Box 9536, Stn Prov Govt, Victoria, BC, V8W 9C4, Canada
| | - Rachael Harman-Denhoed
- Centre for Forest Biology, University of Victoria, PO Box 3020, STN CSC, Victoria, BC, V8W 3N5, Canada
| | - Barbara J Hawkins
- Centre for Forest Biology, University of Victoria, PO Box 3020, STN CSC, Victoria, BC, V8W 3N5, Canada
| |
Collapse
|
23
|
Schröter K, Wemheuer B, Pena R, Schöning I, Ehbrecht M, Schall P, Ammer C, Daniel R, Polle A. Assembly processes of trophic guilds in the root mycobiome of temperate forests. Mol Ecol 2018; 28:348-364. [PMID: 30276908 DOI: 10.1111/mec.14887] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 01/09/2023]
Abstract
Root-associated mycobiomes (RAMs) link plant and soil ecological processes, thereby supporting ecosystem functions. Understanding the forces that govern the assembly of RAMs is key to sustainable ecosystem management. Here, we dissected RAMs according to functional guilds and combined phylogenetic and multivariate analyses to distinguish and quantify the forces driving RAM assembly processes. Across large biogeographic scales (>1,000 km) in temperate forests (>100 plots), RAMs were taxonomically highly distinct but composed of a stable trophic structure encompassing symbiotrophic, ectomycorrhizal (55%), saprotrophic (7%), endotrophic (3%) and pathotrophic fungi (<1%). Taxonomic community composition of RAMs is explained by abiotic factors, forest management intensity, dominant tree family (Fagaceae, Pinaceae) and root resource traits. Local RAM assemblies are phylogenetically clustered, indicating stronger habitat filtering on roots in dry, acid soils and in conifer stands than in other forest types. The local assembly of ectomycorrhizal communities is driven by forest management intensity. At larger scales, root resource traits and soil pH shift the assembly process of ectomycorrhizal fungi from deterministic to neutral. Neutral or weak deterministic assembly processes are prevalent in saprotrophic and endophytic guilds. The remarkable consistency of the trophic composition of the RAMs suggests that temperate forests attract fungal assemblages that afford functional resilience under the current range of climatic and edaphic conditions. At local scales, the filtering processes that structure symbiotrophic assemblies can be influenced by forest management and tree selection, but at larger scales, environmental cues and host resource traits are the most prevalent forces.
Collapse
Affiliation(s)
- Kristina Schröter
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Bernd Wemheuer
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Goettingen, Göttingen, Germany.,Centre for Marine Bio-Innovation, School of Biological Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Rodica Pena
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Ingo Schöning
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Martin Ehbrecht
- Silviculture and Forest Ecology of the Temperate Zones, University of Goettingen, Göttingen, Germany
| | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, University of Goettingen, Göttingen, Germany
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Goettingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
24
|
Argüelles-Moyao A, Garibay-Orijel R. Ectomycorrhizal fungal communities in high mountain conifer forests in central Mexico and their potential use in the assisted migration of Abies religiosa. MYCORRHIZA 2018; 28:509-521. [PMID: 29948411 DOI: 10.1007/s00572-018-0841-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Abies religiosa forests in central Mexico are the only overwinter refuge of the monarch butterfly and provide important ecosystem services. These forests have lost 55% of their original area and as a consequence, diversity and biotic interactions in these ecosystems are in risk. The aim of this study was to compare the soil fungal diversity and community structure in the Abies religiosa forests and surrounding Pinus montezumae, Pinus hartwegii, and coniferous mixed forest plant communities to provide data on ecology of mycorrhizal interactions for the assisted migration of A. religiosa. We sampled soil from five coniferous forests, extracted total soil DNA, and sequenced the ITS2 region by Illumina MiSeq. The soil fungi community was integrated by 1746 taxa with a species turnover ranging from 0.280 to 0.461 between sampling sites. In the whole community, the more abundant and frequent species were Russula sp. (aff. olivobrunnea), Mortierella sp.1, and Piloderma sp. (aff. olivacearum). The ectomycorrhizal fungi were the more frequent and abundant functional group. A total of 298 species (84 ectomycorrhizal) was shared in the five conifer forests; these widely distributed species were dominated by Russulaceae and Clavulinaceae. The fungal community composition was significantly influenced by altitude and the lowest species turnover happened between the two A. religiosa forests even though they have different soil types. As Pinus montezumae forests have a higher altitudinal distribution adjacent to A. religiosa and share the largest number of ectomycorrhizal fungi with it, we suggest these forests as a potential habitat for new A. religiosa populations.
Collapse
Affiliation(s)
- Andrés Argüelles-Moyao
- Laboratorio de Sistemática, Ecología y Aprovechamiento de Hongos Ectomicorrízicos, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria. Del. Coyoacán, C.P. 04510, Mexico City, CDMX, Mexico
- Posgrado en Ciencias Biológicas, Edificio B, 1° Piso, Unidad de Posgrado, Circuito de Posgrados, Universidad Nacional Autónoma de México, Ciudad Universitaria, Del. Coyoacán, C.P. 04510, Mexico City, CDMX, Mexico
| | - Roberto Garibay-Orijel
- Laboratorio de Sistemática, Ecología y Aprovechamiento de Hongos Ectomicorrízicos, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria. Del. Coyoacán, C.P. 04510, Mexico City, CDMX, Mexico.
| |
Collapse
|
25
|
Acclimation of Fine Root Systems to Soil Warming: Comparison of an Experimental Setup and a Natural Soil Temperature Gradient. Ecosystems 2018. [DOI: 10.1007/s10021-018-0280-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Rúa MA, Lamit LJ, Gehring C, Antunes PM, Hoeksema JD, Zabinski C, Karst J, Burns C, Woods MJ. Accounting for local adaptation in ectomycorrhizas: a call to track geographical origin of plants, fungi, and soils in experiments. MYCORRHIZA 2018; 28:187-195. [PMID: 29181636 DOI: 10.1007/s00572-017-0811-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Local adaptation, the differential success of genotypes in their native versus foreign environments, can influence ecological and evolutionary processes, yet its importance is difficult to estimate because it has not been widely studied, particularly in the context of interspecific interactions. Interactions between ectomycorrhizal (EM) fungi and their host plants could serve as model system for investigations of local adaptation because they are widespread and affect plant responses to both biotic and abiotic selection pressures. Furthermore, because EM fungi cycle nutrients and mediate energy flow into food webs, their local adaptation may be critical in sustaining ecological function. Despite their ecological importance and an extensive literature on their relationships with plants, the vast majority of experiments on EM symbioses fail to report critical information needed to assess local adaptation: the geographic origin of the plant, fungal inocula, and soil substrate used in the experiment. These omissions limit the utility of such studies and restrict our understanding of EM ecology and evolution. Here, we illustrate the potential importance of local adaptation in EM relationships and call for consistent reporting of the geographic origin of plant, soil, and fungi as an important step towards a better understanding of the ecology and evolution of EM symbioses.
Collapse
Affiliation(s)
- Megan A Rúa
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Louis J Lamit
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Catherine Gehring
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 S. Beaver Street, Flagstaff, AZ, 86011-5640, USA
| | - Pedro M Antunes
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, Ontario, P6A 2G4, Canada
| | - Jason D Hoeksema
- Department of Biology, University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Cathy Zabinski
- Department of Land Resources and Environmental Sciences, Montana State University, 344 Leon Johnson Hall, Bozeman, MT, 59717, USA
| | - Justine Karst
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - Cole Burns
- Department of Biological Sciences, University of Calgary, 284 Biological Sciences, Calgary, Alberta, T2N 1N4, Canada
| | - Michaela J Woods
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| |
Collapse
|
27
|
Kranabetter JM, Berch SM, MacKinnon JA, Ceska O, Dunn DE, Ott PK. Species-area curve and distance-decay relationships indicate habitat thresholds of ectomycorrhizal fungi in an old-growth Pseudotsuga menziesii
landscape. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- J. M. Kranabetter
- British Columbia Ministry of Forests, Lands and Natural Resource Operations; Victoria BC Canada
| | - S. M. Berch
- British Columbia Ministry of Environment; Victoria BC Canada
| | - J. A. MacKinnon
- School of Resource and Environmental Management; Simon Fraser University; Burnaby BC Canada
| | - O. Ceska
- Consulting Mycologist; Victoria BC Canada
| | - D. E. Dunn
- Pacific Forestry Centre; Natural Resources Canada; Victoria BC Canada
| | - P. K. Ott
- British Columbia Ministry of Forests, Lands and Natural Resource Operations; Victoria BC Canada
| |
Collapse
|
28
|
Ostonen I, Truu M, Helmisaari HS, Lukac M, Borken W, Vanguelova E, Godbold DL, Lõhmus K, Zang U, Tedersoo L, Preem JK, Rosenvald K, Aosaar J, Armolaitis K, Frey J, Kabral N, Kukumägi M, Leppälammi-Kujansuu J, Lindroos AJ, Merilä P, Napa Ü, Nöjd P, Parts K, Uri V, Varik M, Truu J. Adaptive root foraging strategies along a boreal-temperate forest gradient. THE NEW PHYTOLOGIST 2017; 215:977-991. [PMID: 28586137 DOI: 10.1111/nph.14643] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/30/2017] [Indexed: 05/05/2023]
Abstract
The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients.
Collapse
Affiliation(s)
- Ivika Ostonen
- Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise, Tartu, 51014, Estonia
| | - Marika Truu
- Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise, Tartu, 51014, Estonia
| | | | - Martin Lukac
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, UK
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Prague, 165 00, Czech Republic
| | - Werner Borken
- Soil Ecology, University of Bayreuth, Dr.-Hans-Frisch-Straße 1-3, D 95448, Bayreuth, Germany
| | - Elena Vanguelova
- Centre for Ecosystem, Society and Biosecurity Forest Research, Farnham, GU10 4LH, UK
| | - Douglas L Godbold
- Institute of Forest Ecology, University of Natural Resources and Life Sciences, BOKU, 1190, Vienna, Austria
- Global Change Research Institute, Ceské Budejovice, 370 05, Czech Republic
| | - Krista Lõhmus
- Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise, Tartu, 51014, Estonia
| | - Ulrich Zang
- Soil Ecology, University of Bayreuth, Dr.-Hans-Frisch-Straße 1-3, D 95448, Bayreuth, Germany
| | - Leho Tedersoo
- Natural History Museum and Botanical Garden, University of Tartu, 14a Ravila, Tartu, 50411, Estonia
| | - Jens-Konrad Preem
- Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise, Tartu, 51014, Estonia
| | - Katrin Rosenvald
- Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise, Tartu, 51014, Estonia
| | - Jürgen Aosaar
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu, 51014, Estonia
| | - Kęstutis Armolaitis
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų str. 1, Kaunas District, LT-53101, Girionys, Lithuania
| | - Jane Frey
- Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise, Tartu, 51014, Estonia
| | - Naima Kabral
- Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise, Tartu, 51014, Estonia
| | - Mai Kukumägi
- Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise, Tartu, 51014, Estonia
| | | | - Antti-Jussi Lindroos
- Natural Resources Institute Finland (Luke), Oulu, 90570, Finland
- Natural Resources Institute Finland (Luke), Helsinki, 00790, Finland
| | - Päivi Merilä
- Natural Resources Institute Finland (Luke), Oulu, 90570, Finland
- Natural Resources Institute Finland (Luke), Helsinki, 00790, Finland
| | - Ülle Napa
- Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise, Tartu, 51014, Estonia
| | - Pekka Nöjd
- Natural Resources Institute Finland (Luke), Luke c/o Aalto yliopisto, PL 16200, 00076, Aalto, Finland
| | - Kaarin Parts
- Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise, Tartu, 51014, Estonia
| | - Veiko Uri
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu, 51014, Estonia
| | - Mats Varik
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu, 51014, Estonia
| | - Jaak Truu
- Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise, Tartu, 51014, Estonia
| |
Collapse
|
29
|
Nicholson BA, Jones MD. Early-successional ectomycorrhizal fungi effectively support extracellular enzyme activities and seedling nitrogen accumulation in mature forests. MYCORRHIZA 2017; 27:247-260. [PMID: 27900594 DOI: 10.1007/s00572-016-0747-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
After stand-replacing disturbance, regenerating conifer seedlings become colonized by different ectomycorrhizal fungi (EMF) than the locally adapted EMF communities present on seedlings in mature forests. We studied whether EMF species that colonized subalpine fir (Abies lasiocarpa) seedlings in clearcuts differed from those that colonized seedlings in adjacent mature forests with respect to mycorrhizoplane extracellular enzyme activities (EEAs) and N status of the seedlings. We tested two alternate hypotheses: (1) that EEAs would differ between the two EMF communities, with higher activities associated with forest-origin communities, and (2) that acclimation to soil environment was considerable enough that EEAs would be determined primarily by the soil type in which the ectomycorrhizas were growing. Naturally colonized fir seedlings were reciprocally transplanted between clearcuts and forests, carrying different EMF communities with them. EEAs were influenced more by destination environment than by EMF community. EEAs were as high in early-successional as in late-successional communities in both destination environments. Buds of clearcut-origin seedlings had the same or higher N contents as forest seedlings after a growing season in either environment. These results indicate that (i) symbiotic EMF and/or their associated microbial communities demonstrate substantial ability to acclimate to new field environments; (ii) the ability to produce organic matter-degrading enzymes is not a trait that necessarily distinguishes early- and late-successional EMF communities in symbiosis; (iii) early-successional EMF are as capable of supporting seedling N accumulation in forest soils as late-successional EMF; and (iv) disturbed ecosystems where early-successional EMF are present should have high resilience for organic matter degradation.
Collapse
Affiliation(s)
- Bailey A Nicholson
- Biology Department, University of British Columbia, Okanagan campus, Sci 385 - 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Melanie D Jones
- Biology Department, University of British Columbia, Okanagan campus, Sci 385 - 1177 Research Road, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|