1
|
Koussis K, Haase S, Withers-Martinez C, Flynn HR, Kunzelmann S, Christodoulou E, Ibrahim F, Skehel M, Baker DA, Blackman MJ. Activation loop phosphorylation and cGMP saturation of PKG regulate egress of malaria parasites. PLoS Pathog 2024; 20:e1012360. [PMID: 38935780 PMCID: PMC11236177 DOI: 10.1371/journal.ppat.1012360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/10/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The cGMP-dependent protein kinase (PKG) is the sole cGMP sensor in malaria parasites, acting as an essential signalling hub to govern key developmental processes throughout the parasite life cycle. Despite the importance of PKG in the clinically relevant asexual blood stages, many aspects of malarial PKG regulation, including the importance of phosphorylation, remain poorly understood. Here we use genetic and biochemical approaches to show that reduced cGMP binding to cyclic nucleotide binding domain B does not affect in vitro kinase activity but prevents parasite egress. Similarly, we show that phosphorylation of a key threonine residue (T695) in the activation loop is dispensable for kinase activity in vitro but is essential for in vivo PKG function, with loss of T695 phosphorylation leading to aberrant phosphorylation events across the parasite proteome and changes to the substrate specificity of PKG. Our findings indicate that Plasmodium PKG is uniquely regulated to transduce signals crucial for malaria parasite development.
Collapse
Affiliation(s)
- Konstantinos Koussis
- Malaria Biochemistry Laboratory, Francis Crick Institute, London, United Kingdom
| | - Silvia Haase
- Host-Pathogen Interactions in Cryptosporidiosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Helen R. Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Evangelos Christodoulou
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Fairouz Ibrahim
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - David A. Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
2
|
Sassmannshausen J, Bennink S, Distler U, Küchenhoff J, Minns AM, Lindner SE, Burda PC, Tenzer S, Gilberger TW, Pradel G. Comparative proteomics of vesicles essential for the egress of Plasmodium falciparum gametocytes from red blood cells. Mol Microbiol 2024; 121:431-452. [PMID: 37492994 DOI: 10.1111/mmi.15125] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
Transmission of malaria parasites to the mosquito is mediated by sexual precursor cells, the gametocytes. Upon entering the mosquito midgut, the gametocytes egress from the enveloping erythrocyte while passing through gametogenesis. Egress follows an inside-out mode during which the membrane of the parasitophorous vacuole (PV) ruptures prior to the erythrocyte membrane. Membrane rupture requires exocytosis of specialized egress vesicles of the parasites; that is, osmiophilic bodies (OBs) involved in rupturing the PV membrane, and vesicles that harbor the perforin-like protein PPLP2 (here termed P-EVs) required for erythrocyte lysis. While some OB proteins have been identified, like G377 and MDV1/Peg3, the majority of egress vesicle-resident proteins is yet unknown. Here, we used high-resolution imaging and BioID methods to study the two egress vesicle types in Plasmodium falciparum gametocytes. We show that OB exocytosis precedes discharge of the P-EVs and that exocytosis of the P-EVs, but not of the OBs, is calcium sensitive. Both vesicle types exhibit distinct proteomes with the majority of proteins located in the OBs. In addition to known egress-related proteins, we identified novel components of OBs and P-EVs, including vesicle-trafficking proteins. Our data provide insight into the immense molecular machinery required for the inside-out egress of P. falciparum gametocytes.
Collapse
Affiliation(s)
- Juliane Sassmannshausen
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Ute Distler
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Juliane Küchenhoff
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Allen M Minns
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Stefan Tenzer
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Scheiner M, Burda PC, Ingmundson A. Moving on: How malaria parasites exit the liver. Mol Microbiol 2024; 121:328-340. [PMID: 37602900 DOI: 10.1111/mmi.15141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
An essential step in the life cycle of malaria parasites is their egress from hepatocytes, which enables the transition from the asymptomatic liver stage to the pathogenic blood stage of infection. To exit the liver, Plasmodium parasites first disrupt the parasitophorous vacuole membrane that surrounds them during their intracellular replication. Subsequently, parasite-filled structures called merosomes emerge from the infected cell. Shrouded by host plasma membrane, like in a Trojan horse, parasites enter the vasculature undetected by the host immune system and travel to the lung where merosomes rupture, parasites are released, and the blood infection stage begins. This complex, multi-step process must be carefully orchestrated by the parasite and requires extensive manipulation of the infected host cell. This review aims to outline the known signaling pathways that trigger exit, highlight Plasmodium proteins that contribute to the release of liver-stage merozoites, and summarize the accompanying changes to the hepatic host cell.
Collapse
Affiliation(s)
- Mattea Scheiner
- Molecular Parasitology, Humboldt University Berlin, Berlin, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | | |
Collapse
|
4
|
Nebie I, Palacpac NMQ, Bougouma EC, Diarra A, Ouédraogo A, D’Alessio F, Houard S, Tiono AB, Cousens S, Horii T, Sirima SB. Persistence of Anti-SE36 Antibodies Induced by the Malaria Vaccine Candidate BK-SE36/CpG in 5-10-Year-Old Burkinabe Children Naturally Exposed to Malaria. Vaccines (Basel) 2024; 12:166. [PMID: 38400149 PMCID: PMC10892924 DOI: 10.3390/vaccines12020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Information on the dynamics and decline/persistence of antibody titres is important in vaccine development. A recent vaccine trial in malaria-exposed, healthy African adults and children living in a malaria hyperendemic and seasonal area (Ouagadougou, Burkina Faso) was the first study in which BK-SE36/CpG was administered to different age groups. In 5- to 10-year-old children, the risk of malaria infection was markedly lower in the BK-SE36/CpG arm compared to the control arm. We report here data on antibody titres measured in this age-group after the high malaria transmission season of 2021 (three years after the first vaccine dose was administered). At Year 3, 83% of children had detectable anti-SE36 total IgG antibodies. Geometric mean antibody titres and the proportion of children with detectable anti-SE36 antibodies were markedly higher in the BK-SE36/CpG arm than the control (rabies) arm. The information obtained in this study will guide investigators on future vaccine/booster schedules for this promising blood-stage malaria vaccine candidate.
Collapse
Affiliation(s)
- Issa Nebie
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Edith Christiane Bougouma
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Amidou Diarra
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Alphonse Ouédraogo
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Flavia D’Alessio
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany; (F.D.); (S.H.)
| | - Sophie Houard
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany; (F.D.); (S.H.)
| | - Alfred B. Tiono
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Simon Cousens
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK;
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Sodiomon B. Sirima
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| |
Collapse
|
5
|
Takashima E, Otsuki H, Morita M, Ito D, Nagaoka H, Yuguchi T, Hassan I, Tsuboi T. The Need for Novel Asexual Blood-Stage Malaria Vaccine Candidates for Plasmodium falciparum. Biomolecules 2024; 14:100. [PMID: 38254700 PMCID: PMC10813614 DOI: 10.3390/biom14010100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Extensive control efforts have significantly reduced malaria cases and deaths over the past two decades, but in recent years, coupled with the COVID-19 pandemic, success has stalled. The WHO has urged the implementation of a number of interventions, including vaccines. The modestly effective RTS,S/AS01 pre-erythrocytic vaccine has been recommended by the WHO for use in sub-Saharan Africa against Plasmodium falciparum in children residing in moderate to high malaria transmission regions. A second pre-erythrocytic vaccine, R21/Matrix-M, was also recommended by the WHO on 3 October 2023. However, the paucity and limitations of pre-erythrocytic vaccines highlight the need for asexual blood-stage malaria vaccines that prevent disease caused by blood-stage parasites. Few asexual blood-stage vaccine candidates have reached phase 2 clinical development, and the challenges in terms of their efficacy include antigen polymorphisms and low immunogenicity in humans. This review summarizes the history and progress of asexual blood-stage malaria vaccine development, highlighting the need for novel candidate vaccine antigens/molecules.
Collapse
Affiliation(s)
- Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Hitoshi Otsuki
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (H.O.); (D.I.)
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Daisuke Ito
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (H.O.); (D.I.)
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Takaaki Yuguchi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Ifra Hassan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
6
|
Ouédraogo A, Bougouma EC, Palacpac NMQ, Houard S, Nebie I, Sawadogo J, Berges GD, Soulama I, Diarra A, Hien D, Ouedraogo AZ, Konaté AT, Kouanda S, Myoui A, Ezoe S, Ishii KJ, Sato T, D’Alessio F, Leroy O, Tiono AB, Cousens S, Horii T, Sirima SB. Safety and immunogenicity of BK-SE36/CpG malaria vaccine in healthy Burkinabe adults and children: a phase 1b randomised, controlled, double-blinded, age de-escalation trial. Front Immunol 2023; 14:1267372. [PMID: 37908361 PMCID: PMC10613650 DOI: 10.3389/fimmu.2023.1267372] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Background BK-SE36/CpG is a recombinant blood-stage malaria vaccine candidate based on the N-terminal Plasmodium falciparum serine repeat antigen5 (SE36), adsorbed to aluminium hydroxide gel and reconstituted, prior to administration, with synthetic oligodeoxynucleotides bearing CpG motifs. In healthy Japanese adult males, BK-SE36/CpG was well tolerated. This study assessed its safety and immunogenicity in healthy malaria-exposed African adults and children. Methods A double-blind, randomised, controlled, age de-escalating clinical trial was conducted in an urban area of Ouagadougou, Burkina Faso. Healthy participants (n=135) aged 21-45 years (Cohort 1), 5-10 years (Cohort 2) and 12-24 months (Cohort 3) were randomised to receive three vaccine doses (Day 0, 28 and 112) of BK-SE36/CpG or rabies vaccine by intramuscular injection. Results One hundred thirty-four of 135 (99.2%) subjects received all three scheduled vaccine doses. Vaccinations were well tolerated with no related Grade 3 (severe) adverse events (AEs). Pain/limitation of limb movement, headache in adults and fever in younger children (all mild to moderate in intensity) were the most frequently observed local and systemic AEs. Eighty-three of BK-SE36/CpG (91%) recipients and 37 of control subjects (84%) had Grade 1/2 events within 28 days post vaccination. Events considered by the investigator to be vaccine related were experienced by 38% and 14% of subjects in BK-SE36/CpG and control arms, respectively. Throughout the trial, six Grade 3 events (in 4 subjects), not related to vaccination, were recorded in the BK-SE36/CpG arm: 5 events (in 3 subjects) within 28 days of vaccination. All serious adverse events (SAEs) (n=5) were due to severe malaria (52-226 days post vaccination) and not related to vaccination. In all cohorts, BK-SE36/CpG arm had higher antibody titres after Dose 3 than after Dose 2. Younger cohorts had stronger immune responses (12-24-month-old > 5-10 years-old > 21-45 years-old). Sera predominantly reacted to peptides that lie in intrinsically unstructured regions of SE36. In the control arm, there were no marked fold changes in antibody titres and participants' sera reacted poorly to all peptides spanning SE36. Conclusion BK-SE36/CpG was well-tolerated and immunogenic. These results pave the way for further proof-of-concept studies to demonstrate vaccine efficacy. Clinical trial registration https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=1921, PACTR201701001921166.
Collapse
Affiliation(s)
| | | | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Sophie Houard
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Issa Nebie
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Jean Sawadogo
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | | | - Issiaka Soulama
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Denise Hien
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | | | - Amadou T. Konaté
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Seni Kouanda
- Institut de Recherche en Sciences de la Santé, Ouagadougou, Burkina Faso
| | - Akira Myoui
- Medical Center for Translational Research, Osaka University Hospital, Suita, Japan
| | - Sachiko Ezoe
- Medical Center for Translational Research, Osaka University Hospital, Suita, Japan
- Department of Space Infection Control, Graduate School of Medicine, Division of Health Sciences, Osaka University, Osaka, Japan
| | - Ken J. Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
- Laboratory of Vaccine Science, Immunology Frontier Research Center, Osaka University, Suita, Japan
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takanobu Sato
- Research and Development Division, Nobelpharma Co., Ltd., Tokyo, Japan
| | - Flavia D’Alessio
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Odile Leroy
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Alfred B. Tiono
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Simon Cousens
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | |
Collapse
|
7
|
Rajneesh, Tiwari R, Singh VK, Kumar A, Gupta RP, Singh AK, Gautam V, Kumar R. Advancements and Challenges in Developing Malaria Vaccines: Targeting Multiple Stages of the Parasite Life Cycle. ACS Infect Dis 2023; 9:1795-1814. [PMID: 37708228 DOI: 10.1021/acsinfecdis.3c00332] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Malaria, caused by Plasmodium species, remains a major global health concern, causing millions of deaths annually. While the introduction of the RTS,S vaccine has shown promise, there is a pressing need for more effective vaccines due to the emergence of drug-resistant parasites and insecticide-resistant vectors. However, the complex life cycle and genetic diversity of the parasite, technical obstacles, limited funding, and the impact of the 2019 pandemic have hindered progress in malaria vaccine development. This review focuses on advancements in malaria vaccine development, particularly the ongoing clinical trials targeting antigens from different stages of the Plasmodium life cycle. Additionally, we discuss the rationale, strategies, and challenges associated with vaccine design, aiming to enhance the immune response and protective efficacy of vaccine candidates. A cost-effective and multistage vaccine could hold the key to controlling and eradicating malaria.
Collapse
Affiliation(s)
- Rajneesh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Tiwari
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vishal K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rohit P Gupta
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- Department of Applied Microbiology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Akhilesh K Singh
- Faculty of Dental Science, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
8
|
Sheokand PK, Yamaryo-Botté Y, Narwal M, Arnold CS, Thakur V, Islam MM, Banday MM, Asad M, Botté CY, Mohmmed A. A Plasmodium falciparum lysophospholipase regulates host fatty acid flux via parasite lipid storage to enable controlled asexual schizogony. Cell Rep 2023; 42:112251. [PMID: 37015228 DOI: 10.1016/j.celrep.2023.112251] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/04/2022] [Accepted: 02/24/2023] [Indexed: 04/05/2023] Open
Abstract
Phospholipid metabolism is crucial for membrane biogenesis and homeostasis of Plasmodium falciparum. To generate such phospholipids, the parasite extensively scavenges, recycles, and reassembles host lipids. P. falciparum possesses an unusually large number of lysophospholipases, whose roles and importance remain to be elucidated. Here, we functionally characterize one P. falciparum lysophospholipase, PfLPL3, to reveal its key role in parasite propagation during asexual blood stages. PfLPL3 displays a dynamic localization throughout asexual stages, mainly localizing in the host-parasite interface. Inducible knockdown of PfLPL3 disrupts parasite development from trophozoites to schizont, inducing a drastic reduction in merozoite progenies. Detailed lipidomic analyses show that PfLPL3 generates fatty acids from scavenged host lipids to generate neutral lipids. These are then timely mobilized to allow schizogony and merozoite formation. We then identify inhibitors of PfLPL3 from Medicine for Malaria Venture (MMV) with potent antimalarial activity, which could also serve as pertinent chemical tools to study parasite lipid synthesis.
Collapse
Affiliation(s)
- Pradeep Kumar Sheokand
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Monika Narwal
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Christophe-Sébastien Arnold
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Vandana Thakur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Md Muzahidul Islam
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Mudassir M Banday
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Mohd Asad
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Cyrille Y Botté
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France.
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India.
| |
Collapse
|
9
|
Levray YS, Bana B, Tarr SJ, McLaughlin EJ, Rossi-Smith P, Waltho A, Charlton GH, Chiozzi RZ, Straton CR, Thalassinos K, Osborne AR. Formation of ER-lumenal intermediates during export of Plasmodium proteins containing transmembrane-like hydrophobic sequences. PLoS Pathog 2023; 19:e1011281. [PMID: 37000891 PMCID: PMC10096305 DOI: 10.1371/journal.ppat.1011281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/12/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
During the blood stage of a malaria infection, malaria parasites export both soluble and membrane proteins into the erythrocytes in which they reside. Exported proteins are trafficked via the parasite endoplasmic reticulum and secretory pathway, before being exported across the parasitophorous vacuole membrane into the erythrocyte. Transport across the parasitophorous vacuole membrane requires protein unfolding, and in the case of membrane proteins, extraction from the parasite plasma membrane. We show that trafficking of the exported Plasmodium protein, Pf332, differs from that of canonical eukaryotic soluble-secreted and transmembrane proteins. Pf332 is initially ER-targeted by an internal hydrophobic sequence that unlike a signal peptide, is not proteolytically removed, and unlike a transmembrane segment, does not span the ER membrane. Rather, both termini of the hydrophobic sequence enter the ER-lumen and the ER-lumenal species is a productive intermediate for protein export. Furthermore, we show in intact cells, that two other exported membrane proteins, SBP1 and MAHRP2, assume a lumenal topology within the parasite secretory pathway. Although the addition of a C-terminal ER-retention sequence, recognised by the lumenal domain of the KDEL receptor, does not completely block export of SBP1 and MAHRP2, it does enhance their retention in the parasite ER. This indicates that a sub-population of each protein adopts an ER-lumenal state that is an intermediate in the export process. Overall, this suggests that although many exported proteins traverse the parasite secretory pathway as typical soluble or membrane proteins, some exported proteins that are ER-targeted by a transmembrane segment-like, internal, non-cleaved hydrophobic segment, do not integrate into the ER membrane, and form an ER-lumenal species that is a productive export intermediate. This represents a novel means, not seen in typical membrane proteins found in model systems, by which exported transmembrane-like proteins can be targeted and trafficked within the lumen of the secretory pathway.
Collapse
|
10
|
Arisue N, Palacpac NMQ, Ntege EH, Yeka A, Balikagala B, Kanoi BN, Bougouma EC, Tiono AB, Nebie I, Diarra A, Houard S, D’Alessio F, Leroy O, Sirima SB, Egwang TG, Horii T. African-specific polymorphisms in Plasmodium falciparum serine repeat antigen 5 in Uganda and Burkina Faso clinical samples do not interfere with antibody response to BK-SE36 vaccination. Front Cell Infect Microbiol 2022; 12:1058081. [PMID: 36590593 PMCID: PMC9802637 DOI: 10.3389/fcimb.2022.1058081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
BK-SE36, based on Plasmodium falciparum serine repeat antigen 5 (SERA5), is a blood-stage malaria vaccine candidate currently being evaluated in clinical trials. Phase 1 trials in Uganda and Burkina Faso have demonstrated promising safety and immunogenicity profiles. However, the genetic diversity of sera5 in Africa and the role of allele/variant-specific immunity remain a major concern. Here, sequence analyses were done on 226 strains collected from the two clinical trial/follow-up studies and 88 strains from two cross-sectional studies in Africa. Compared to other highly polymorphic vaccine candidate antigens, polymorphisms in sera5 were largely confined to the repeat regions of the gene. Results also confirmed a SERA5 consensus sequence with African-specific polymorphisms. Mismatches with the vaccine-type SE36 (BK-SE36) in the octamer repeat, serine repeat, and flanking regions, and single-nucleotide polymorphisms in non-repeat regions could compromise vaccine response and efficacy. However, the haplotype diversity of SERA5 was similar between vaccinated and control participants. There was no marked bias or difference in the patterns of distribution of the SE36 haplotype and no statistically significant genetic differentiation among parasites infecting BK-SE36 vaccinees and controls. Results indicate that BK-SE36 does not elicit an allele-specific immune response.
Collapse
Affiliation(s)
- Nobuko Arisue
- Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan,Section of Global Health, Division of Public Health, Department of Hygiene and Public Health, Tokyo Women’s Medical University, Tokyo, Japan,*Correspondence: Nobuko Arisue, ; Nirianne Marie Q. Palacpac,
| | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan,*Correspondence: Nobuko Arisue, ; Nirianne Marie Q. Palacpac,
| | - Edward H. Ntege
- Department of Plastic and Reconstructive Surgery, University of the Ryukyus, Graduate School of Medicine and Hospital, Okinawa, Japan
| | - Adoke Yeka
- Makerere University School of Public Health, Kampala, Uganda
| | - Betty Balikagala
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Bernard N. Kanoi
- Centre for Malaria Elimination (CME) and Centre for Research in Infectious Diseases (CRID), Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Edith Christiane Bougouma
- Public Health Department, Institut National de Santé Publique/Centre National de Recherche et de Formation sur le Paludisme (INSP/CNRFP), Ouagadougou, Burkina Faso,Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Alfred B. Tiono
- Public Health Department, Institut National de Santé Publique/Centre National de Recherche et de Formation sur le Paludisme (INSP/CNRFP), Ouagadougou, Burkina Faso,Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Issa Nebie
- Public Health Department, Institut National de Santé Publique/Centre National de Recherche et de Formation sur le Paludisme (INSP/CNRFP), Ouagadougou, Burkina Faso,Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Public Health Department, Institut National de Santé Publique/Centre National de Recherche et de Formation sur le Paludisme (INSP/CNRFP), Ouagadougou, Burkina Faso,Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Sophie Houard
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Flavia D’Alessio
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Odile Leroy
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany,Sorekara-x consultant, Paris, France
| | - Sodiomon B. Sirima
- Public Health Department, Institut National de Santé Publique/Centre National de Recherche et de Formation sur le Paludisme (INSP/CNRFP), Ouagadougou, Burkina Faso,Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | | | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
11
|
Czapinska H, Bochtler M. The Nϵ-Rule for Serine, but Not Cysteine Catalytic Triads. Angew Chem Int Ed Engl 2022; 61:e202206945. [PMID: 35983934 PMCID: PMC9825947 DOI: 10.1002/anie.202206945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 01/11/2023]
Abstract
Catalytic triads, composed of a serine or cysteine nucleophile, a histidine, and a third triad residue (typically Asp/Glu/Asn), are common in enzyme active sites and catalyze a wide variety of chemical reactions. Two types of triads can be distinguished: We refer to them as Nδ- or Nϵ-configured, depending on whether the histidine imidazole Nδ or Nϵ atom is close to the nucleophile Oγ/Sγ. In this study, we have analyzed triad configuration. In structural triads, the more stable Nδ-configuration predominates. For catalytic triads, the configuration depends on the nucleophile. When it is a cysteine residue, both configuration types occur, depending on the family. However, when the nucleophile is a serine residue, the less stable Nϵ-configuration is almost exclusively found. We posit that the energetically less favored conformation is selected for in serine triads to facilitate the otherwise difficult proton transfer from the nucleophile to the histidine residue.
Collapse
Affiliation(s)
- Honorata Czapinska
- International Institute of Molecular and Cell BiologyTrojdena 402-109WarsawPoland
| | - Matthias Bochtler
- International Institute of Molecular and Cell BiologyTrojdena 402-109WarsawPoland,Institute of Biochemistry and Biophysics of the Polish Academy of SciencesPawinskiego 5a02-106WarsawPoland
| |
Collapse
|
12
|
Abstract
Human malaria, caused by infection with Plasmodium parasites, remains one of the most important global public health problems, with the World Health Organization reporting more than 240 million cases and 600,000 deaths annually as of 2020 (World malaria report 2021). Our understanding of the biology of these parasites is critical for development of effective therapeutics and prophylactics, including both antimalarials and vaccines. Plasmodium is a protozoan organism that is intracellular for most of its life cycle. However, to complete its complex life cycle and to allow for both amplification and transmission, the parasite must egress out of the host cell in a highly regulated manner. This review discusses the major pathways and proteins involved in the egress events during the Plasmodium life cycle-merozoite and gametocyte egress out of red blood cells, sporozoite egress out of the oocyst, and merozoite egress out of the hepatocyte. The similarities, as well as the differences, between the various egress pathways of the parasite highlight both novel cell biology and potential therapeutic targets to arrest its life cycle.
Collapse
Affiliation(s)
- Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine; and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
13
|
The Nε‐Rule for Serine, but Not Cysteine Catalytic Triads. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Tan MSY, Koussis K, Withers‐Martinez C, Howell SA, Thomas JA, Hackett F, Knuepfer E, Shen M, Hall MD, Snijders AP, Blackman MJ. Autocatalytic activation of a malarial egress protease is druggable and requires a protein cofactor. EMBO J 2021; 40:e107226. [PMID: 33932049 PMCID: PMC8167364 DOI: 10.15252/embj.2020107226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Malaria parasite egress from host erythrocytes (RBCs) is regulated by discharge of a parasite serine protease called SUB1 into the parasitophorous vacuole (PV). There, SUB1 activates a PV-resident cysteine protease called SERA6, enabling host RBC rupture through SERA6-mediated degradation of the RBC cytoskeleton protein β-spectrin. Here, we show that the activation of Plasmodium falciparum SERA6 involves a second, autocatalytic step that is triggered by SUB1 cleavage. Unexpectedly, autoproteolytic maturation of SERA6 requires interaction in multimolecular complexes with a distinct PV-located protein cofactor, MSA180, that is itself a SUB1 substrate. Genetic ablation of MSA180 mimics SERA6 disruption, producing a fatal block in β-spectrin cleavage and RBC rupture. Drug-like inhibitors of SERA6 autoprocessing similarly prevent β-spectrin cleavage and egress in both P. falciparum and the emerging zoonotic pathogen P. knowlesi. Our results elucidate the egress pathway and identify SERA6 as a target for a new class of antimalarial drugs designed to prevent disease progression.
Collapse
Affiliation(s)
- Michele S Y Tan
- Malaria Biochemistry LaboratoryThe Francis Crick InstituteLondonUK
| | | | | | - Steven A Howell
- Protein Analysis and Proteomics PlatformThe Francis Crick InstituteLondonUK
| | - James A Thomas
- Faculty of Infectious and Tropical DiseasesLondon School of Hygiene & Tropical MedicineLondonUK
| | - Fiona Hackett
- Malaria Biochemistry LaboratoryThe Francis Crick InstituteLondonUK
| | - Ellen Knuepfer
- Department of Pathobiology and Population SciencesRoyal Veterinary CollegeHertfordshireUK
| | - Min Shen
- National Center for Advancing Translational Sciences (NCATS)National Institutes of HealthRockvilleMDUSA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences (NCATS)National Institutes of HealthRockvilleMDUSA
| | | | - Michael J Blackman
- Malaria Biochemistry LaboratoryThe Francis Crick InstituteLondonUK
- Faculty of Infectious and Tropical DiseasesLondon School of Hygiene & Tropical MedicineLondonUK
| |
Collapse
|
15
|
Arisue N, Chagaluka G, Palacpac NMQ, Johnston WT, Mutalima N, Peprah S, Bhatia K, Borgstein E, Liomba GN, Kamiza S, Mkandawire N, Mitambo C, Goedert JJ, Molyneux EM, Newton R, Horii T, Mbulaiteye SM. Assessment of Mixed Plasmodium falciparum sera5 Infection in Endemic Burkitt Lymphoma: A Case-Control Study in Malawi. Cancers (Basel) 2021; 13:1692. [PMID: 33918470 PMCID: PMC8038222 DOI: 10.3390/cancers13071692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Endemic Burkitt lymphoma (eBL) is the most common childhood cancer in Africa and is linked to Plasmodium falciparum (Pf) malaria infection, one of the most common and deadly childhood infections in Africa; however, the role of Pf genetic diversity is unclear. A potential role of Pf genetic diversity in eBL has been suggested by a correlation of age-specific patterns of eBL with the complexity of Pf infection in Ghana, Uganda, and Tanzania, as well as a finding of significantly higher Pf genetic diversity, based on a sensitive molecular barcode assay, in eBL cases than matched controls in Malawi. We examined this hypothesis by measuring diversity in Pf-serine repeat antigen-5 (Pfsera5), an antigenic target of blood-stage immunity to malaria, among 200 eBL cases and 140 controls, all Pf polymerase chain reaction (PCR)-positive, in Malawi. METHODS We performed Pfsera5 PCR and sequencing (~3.3 kb over exons II-IV) to determine single or mixed PfSERA5 infection status. The patterns of Pfsera5 PCR positivity, mixed infection, sequence variants, and haplotypes among eBL cases, controls, and combined/pooled were analyzed using frequency tables. The association of mixed Pfsera5 infection with eBL was evaluated using logistic regression, controlling for age, sex, and previously measured Pf genetic diversity. RESULTS Pfsera5 PCR was positive in 108 eBL cases and 70 controls. Mixed PfSERA5 infection was detected in 41.7% of eBL cases versus 24.3% of controls; the odds ratio (OR) was 2.18, and the 95% confidence interval (CI) was 1.12-4.26, which remained significant in adjusted results (adjusted odds ratio [aOR] of 2.40, 95% CI of 1.11-5.17). A total of 29 nucleotide variations and 96 haplotypes were identified, but these were unrelated to eBL. CONCLUSIONS Our results increase the evidence supporting the hypothesis that infection with mixed Pf infection is increased with eBL and suggest that measuring Pf genetic diversity may provide new insights into the role of Pf infection in eBL.
Collapse
Affiliation(s)
- Nobuko Arisue
- Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - George Chagaluka
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (N.M.Q.P.); (T.H.)
| | - W. Thomas Johnston
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK; (W.T.J.); (N.M.); (R.N.)
| | - Nora Mutalima
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK; (W.T.J.); (N.M.); (R.N.)
- Cancer Epidemiology Unit, University of Oxford, Oxford OX3 7LF, UK
| | - Sally Peprah
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| | - Kishor Bhatia
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| | - Eric Borgstein
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - George N. Liomba
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Steve Kamiza
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Nyengo Mkandawire
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Collins Mitambo
- National Health Sciences Research Committee, Research Department, Ministry of Health, P.O. Box 30377, Capital City, Lilongwe 3, Malawi;
| | - James J. Goedert
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| | - Elizabeth M. Molyneux
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi; (G.C.); (E.B.); (G.N.L.); (S.K.); (N.M.); (E.M.M.)
| | - Robert Newton
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK; (W.T.J.); (N.M.); (R.N.)
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (N.M.Q.P.); (T.H.)
| | - Sam M. Mbulaiteye
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.P.); (K.B.); (J.J.G.)
| |
Collapse
|
16
|
Abstract
All intracellular pathogens must escape (egress) from the confines of their host cell to disseminate and proliferate. The malaria parasite only replicates in an intracellular vacuole or in a cyst, and must undergo egress at four distinct phases during its complex life cycle, each time disrupting, in a highly regulated manner, the membranes or cyst wall that entrap the parasites. This Cell Science at a Glance article and accompanying poster summarises our current knowledge of the morphological features of egress across the Plasmodium life cycle, the molecular mechanisms that govern the process, and how researchers are working to exploit this knowledge to develop much-needed new approaches to malaria control. ![]()
Collapse
Affiliation(s)
- Michele S Y Tan
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, UK .,Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
17
|
Nofal SD, Patel A, Blackman MJ, Flueck C, Baker DA. Plasmodium falciparum Guanylyl Cyclase-Alpha and the Activity of Its Appended P4-ATPase Domain Are Essential for cGMP Synthesis and Blood-Stage Egress. mBio 2021; 12:e02694-20. [PMID: 33500341 PMCID: PMC7858053 DOI: 10.1128/mbio.02694-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Guanylyl cyclases (GCs) synthesize cyclic GMP (cGMP) and, together with cyclic nucleotide phosphodiesterases, are responsible for regulating levels of this intracellular messenger which mediates myriad functions across eukaryotes. In malaria parasites (Plasmodium spp), as well as their apicomplexan and ciliate relatives, GCs are associated with a P4-ATPase-like domain in a unique bifunctional configuration. P4-ATPases generate membrane bilayer lipid asymmetry by translocating phospholipids from the outer to the inner leaflet. Here, we investigate the role of Plasmodium falciparum guanylyl cyclase alpha (GCα) and its associated P4-ATPase module, showing that asexual blood-stage parasites lacking both the cyclase and P4-ATPase domains are unable to egress from host erythrocytes. GCα-null parasites cannot synthesize cGMP or mobilize calcium, a cGMP-dependent protein kinase (PKG)-driven requirement for egress. Using chemical complementation with a cGMP analogue and point mutagenesis of a crucial conserved residue within the P4-ATPase domain, we show that P4-ATPase activity is upstream of and linked to cGMP synthesis. Collectively, our results demonstrate that GCα is a critical regulator of PKG and that its associated P4-ATPase domain plays a primary role in generating cGMP for merozoite egress.IMPORTANCE The clinical manifestations of malaria arise due to successive rounds of replication of Plasmodium parasites within red blood cells. Once mature, daughter merozoites are released from infected erythrocytes to invade new cells in a tightly regulated process termed egress. Previous studies have shown that the activation of cyclic GMP (cGMP) signaling is critical for initiating egress. Here, we demonstrate that GCα, a unique bifunctional enzyme, is the sole enzyme responsible for cGMP production during the asexual blood stages of Plasmodium falciparum and is required for the cellular events leading up to merozoite egress. We further demonstrate that in addition to the GC domain, the appended ATPase-like domain of GCα is also involved in cGMP production. Our results highlight the critical role of GCα in cGMP signaling required for orchestrating malaria parasite egress.
Collapse
Affiliation(s)
- Stephanie D Nofal
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Avnish Patel
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael J Blackman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Christian Flueck
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
18
|
Collins CR, Hackett F, Howell SA, Snijders AP, Russell MRG, Collinson LM, Blackman MJ. The malaria parasite sheddase SUB2 governs host red blood cell membrane sealing at invasion. eLife 2020; 9:e61121. [PMID: 33287958 PMCID: PMC7723409 DOI: 10.7554/elife.61121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 12/26/2022] Open
Abstract
Red blood cell (RBC) invasion by malaria merozoites involves formation of a parasitophorous vacuole into which the parasite moves. The vacuole membrane seals and pinches off behind the parasite through an unknown mechanism, enclosing the parasite within the RBC. During invasion, several parasite surface proteins are shed by a membrane-bound protease called SUB2. Here we show that genetic depletion of SUB2 abolishes shedding of a range of parasite proteins, identifying previously unrecognized SUB2 substrates. Interaction of SUB2-null merozoites with RBCs leads to either abortive invasion with rapid RBC lysis, or successful entry but developmental arrest. Selective failure to shed the most abundant SUB2 substrate, MSP1, reduces intracellular replication, whilst conditional ablation of the substrate AMA1 produces host RBC lysis. We conclude that SUB2 activity is critical for host RBC membrane sealing following parasite internalisation and for correct functioning of merozoite surface proteins.
Collapse
Affiliation(s)
- Christine R Collins
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Steven A Howell
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Matthew RG Russell
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Faculty of Infectious Diseases, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
19
|
Smith NA, Clarke OB, Lee M, Hodder AN, Smith BJ. Structure of the Plasmodium falciparum PfSERA5 pseudo-zymogen. Protein Sci 2020; 29:2245-2258. [PMID: 32955133 PMCID: PMC7586913 DOI: 10.1002/pro.3956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/30/2022]
Abstract
PfSERA5, a significantly abundant protein present within the parasitophorous vacuole (PV) and essential for normal growth during the blood-stage life cycle of the malaria parasite Plasmodium falciparum, displays structural similarity to many other cysteine proteases. However, PfSERA5 does not exhibit any detectable protease activity and therefore the role of the PfSERA5 papain-like domain (PfSERA5E), thought to remain bound to its cognate prodomain, remains unknown. In this study, we present a revised structure of the central PfSERA5E domain at a resolution of 1.2 Å, and the first structure of the "zymogen" of this papain-like domain including its cognate prodomain (PfSERA5PE) to 2.2 Å resolution. PfSERA5PE is somewhat structurally similar to that of other known proenzymes, retaining the conserved overall folding and orientation of the prodomain through, and occluding, the archetypal papain-like catalytic triad "active-site" cleft, in the same reverse direction as conventional prodomains. Our findings are congruent with previously identified structures of PfSERA5E and of similar "zymogens" and provide a foundation for further investigation into the function of PfSERA5.
Collapse
Affiliation(s)
- Nicholas A. Smith
- Department of Chemistry and Physics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoriaAustralia
| | - Oliver B. Clarke
- Department of AnesthesiologyColumbia UniversityNew YorkNew YorkUSA
- Department of Physiology and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
| | - Mihwa Lee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoriaAustralia
| | - Anthony N. Hodder
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
| | - Brian J. Smith
- Department of Chemistry and Physics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoriaAustralia
| |
Collapse
|
20
|
Ezoe S, Palacpac NMQ, Tetsutani K, Yamamoto K, Okada K, Taira M, Nishida S, Hirata H, Ogata A, Yamada T, Yagi M, Edula JR, Oishi Y, Tougan T, Ishii KJ, Myoui A, Horii T. First-in-human randomised trial and follow-up study of Plasmodium falciparum blood-stage malaria vaccine BK-SE36 with CpG-ODN(K3). Vaccine 2020; 38:7246-7257. [PMID: 33012605 DOI: 10.1016/j.vaccine.2020.09.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND BK-SE36 is blood-stage malaria vaccine candidate that is undergoing clinical trials. Here, the safety and immunogenicity of BK-SE36 with a novel adjuvant, CpG-ODN(K3) (thus, BK-SE36/CpG) was assessed in a phase 1a trial in Japan. METHODS An investigator-initiated, randomised, single-blind, placebo-controlled, dose-escalation study was conducted at Osaka University Hospital with 26 healthy malaria naïve Japanese male adults. The trial was conducted in two stages: Stage/Group 1, half-dose (n = 7 for BK-SE36/CpG and n = 3 for control) and Stage/Group 2, full-dose (n = 11 for BK-SE36/CpG and n = 5 for control). There were two intramuscular vaccinations 21 days apart for both half-dose (0.5 ml: 50 µg SE36 + 500 µg aluminum + 500 µg K3) and full-dose (1.0 ml: 100 µg SE36 + 1000 µg aluminum + 1000 µg K3). A one-year follow-up was done to monitor changes in autoimmune markers and vaccine-induced antibody response. RESULTS BK-SE36/CpG was well tolerated. Vaccination site reactions were similar to those observed with BK-SE36. During the trial and follow-up period, no subject had clinical evidence of autoimmune disease. The full-dose group had significantly higher titres than the half-dose group (Student's t-test, p = 0.002) at 21 days post-second vaccination. Antibody titres remained above baseline values during 12 months of follow-up. The vaccine induced antibody was mostly composed of IgG1 and IgM, and recognised epitopes close to the polyserine region located in the middle of SE36. CONCLUSIONS BK-SE36/CpG has an acceptable safety profile. Use of CpG-ODN(K3) greatly enhanced immunogenicity in malaria naïve Japanese adults when compared to BK-SE36 alone. The utility of BK-SE36/CpG is currently under evaluation in a malaria endemic setting in West Africa. TRIAL REGISTRATION JMACCT Clinical Trial Registry JMA-IIA00109.
Collapse
Affiliation(s)
- Sachiko Ezoe
- Medical Center for Translational Research, Department of Medical Innovation, Osaka University Hospital, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Environmental Space Infection Control, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nirianne Marie Q Palacpac
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kohhei Tetsutani
- Laboratory of Adjuvant Innovation/Mockup Vaccine, Center for Vaccine Adjuvant Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan; Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kouji Yamamoto
- Data Coordinating Center, Department of Medical Innovation, Osaka University Hospital, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiyoshi Okada
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaki Taira
- Medical Center for Translational Research, Department of Medical Innovation, Osaka University Hospital, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsushi Ogata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomomi Yamada
- Data Coordinating Center, Department of Medical Innovation, Osaka University Hospital, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masanori Yagi
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jyotheeswara R Edula
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuko Oishi
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Tougan
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation/Mockup Vaccine, Center for Vaccine Adjuvant Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan; Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Myoui
- Medical Center for Translational Research, Department of Medical Innovation, Osaka University Hospital, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
21
|
Matz JM, Drepper B, Blum TB, van Genderen E, Burrell A, Martin P, Stach T, Collinson LM, Abrahams JP, Matuschewski K, Blackman MJ. A lipocalin mediates unidirectional heme biomineralization in malaria parasites. Proc Natl Acad Sci U S A 2020; 117:16546-16556. [PMID: 32601225 PMCID: PMC7368307 DOI: 10.1073/pnas.2001153117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
During blood-stage development, malaria parasites are challenged with the detoxification of enormous amounts of heme released during the proteolytic catabolism of erythrocytic hemoglobin. They tackle this problem by sequestering heme into bioinert crystals known as hemozoin. The mechanisms underlying this biomineralization process remain enigmatic. Here, we demonstrate that both rodent and human malaria parasite species secrete and internalize a lipocalin-like protein, PV5, to control heme crystallization. Transcriptional deregulation of PV5 in the rodent parasite Plasmodium berghei results in inordinate elongation of hemozoin crystals, while conditional PV5 inactivation in the human malaria agent Plasmodium falciparum causes excessive multidirectional crystal branching. Although hemoglobin processing remains unaffected, PV5-deficient parasites generate less hemozoin. Electron diffraction analysis indicates that despite the distinct changes in crystal morphology, neither the crystalline order nor unit cell of hemozoin are affected by impaired PV5 function. Deregulation of PV5 expression renders P. berghei hypersensitive to the antimalarial drugs artesunate, chloroquine, and atovaquone, resulting in accelerated parasite clearance following drug treatment in vivo. Together, our findings demonstrate the Plasmodium-tailored role of a lipocalin family member in hemozoin formation and underscore the heme biomineralization pathway as an attractive target for therapeutic exploitation.
Collapse
Affiliation(s)
- Joachim M Matz
- Malaria Biochemistry Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom;
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Benjamin Drepper
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Thorsten B Blum
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Eric van Genderen
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Alana Burrell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Peer Martin
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Thomas Stach
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Jan Pieter Abrahams
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4051 Basel, Switzerland
- Institute of Biology, Leiden University, 2311 EZ Leiden, The Netherlands
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, WC1E 7HT London, United Kingdom
| |
Collapse
|
22
|
A malaria parasite subtilisin propeptide-like protein is a potent inhibitor of the egress protease SUB1. Biochem J 2020; 477:525-540. [PMID: 31942933 PMCID: PMC6993865 DOI: 10.1042/bcj20190918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/23/2022]
Abstract
Subtilisin-like serine peptidases (subtilases) play important roles in the life cycle of many organisms, including the protozoan parasites that are the causative agent of malaria, Plasmodium spp. As with other peptidases, subtilase proteolytic activity has to be tightly regulated in order to prevent potentially deleterious uncontrolled protein degradation. Maturation of most subtilases requires the presence of an N-terminal propeptide that facilitates folding of the catalytic domain. Following its proteolytic cleavage, the propeptide acts as a transient, tightly bound inhibitor until its eventual complete removal to generate active protease. Here we report the identification of a stand-alone malaria parasite propeptide-like protein, called SUB1-ProM, encoded by a conserved gene that lies in a highly syntenic locus adjacent to three of the four subtilisin-like genes in the Plasmodium genome. Template-based modelling and ab initio structure prediction showed that the SUB1-ProM core structure is most similar to the X-ray crystal structure of the propeptide of SUB1, an essential parasite subtilase that is discharged into the parasitophorous vacuole (PV) to trigger parasite release (egress) from infected host cells. Recombinant Plasmodium falciparum SUB1-ProM was found to be a fast-binding, potent inhibitor of P. falciparum SUB1, but not of the only other essential blood-stage parasite subtilase, SUB2, or of other proteases examined. Mass-spectrometry and immunofluorescence showed that SUB1-ProM is expressed in the PV of blood stage P. falciparum, where it may act as an endogenous inhibitor to regulate SUB1 activity in the parasite.
Collapse
|
23
|
Arisue N, Palacpac NMQ, Tougan T, Horii T. Characteristic features of the SERA multigene family in the malaria parasite. Parasit Vectors 2020; 13:170. [PMID: 32252804 PMCID: PMC7132891 DOI: 10.1186/s13071-020-04044-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/27/2020] [Indexed: 02/28/2023] Open
Abstract
Serine repeat antigen (SERA) is conserved among species of the genus Plasmodium. Sera genes form a multigene family and are generally tandemly clustered on a single chromosome. Although all Plasmodium species encode multiple sera genes, the number varies between species. Among species, the members share similar sequences and gene organization. SERA possess a central papain-like cysteine protease domain, however, in some members, the active site cysteine residue is substituted with a serine. Recent studies implicate this gene family in a number of aspects in parasite biology and induction of protective immune response. This review summarizes the current understanding on this important gene family in several Plasmodium species. The Plasmodium falciparum (Pf)-sera family, for example, consists of nine gene members. Unlike other multigene families in Plasmodium species, Pf-sera genes do not exhibit antigenic variation. Pf-sera5 nucleotide diversity is also low. Moreover, although Pf-sera5 is highly transcribed during the blood stage of malaria infection, and a large amount is released into the host blood following schizont rupture, in malaria endemic countries the sero-positive rates for Pf-SERA5 are low, likely due to Pf-SERA5 binding of host proteins to avoid immune recognition. As an antigen, the N-terminal 47 kDa domain of Pf-SERA5 is a promising vaccine candidate currently undergoing clinical trials. Pf-SERA5 and Pf-SERA6, as well as P. berghei (Pb)-SERA3, and Pb-SERA5, have been investigated for their roles in parasite egress. Two P. yoelii SERA, which have a serine residue at the protease active center, are implicated in parasite virulence. Overall, these studies provide insight that during the evolution of the Plasmodium parasite, the sera gene family members have increased by gene duplication, and acquired various functions that enable the parasite to survive and successfully maintain infection in the host.![]()
Collapse
Affiliation(s)
- Nobuko Arisue
- Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Nirianne M Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takahiro Tougan
- Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
24
|
Koussis K, Withers-Martinez C, Baker DA, Blackman MJ. Simultaneous multiple allelic replacement in the malaria parasite enables dissection of PKG function. Life Sci Alliance 2020; 3:e201900626. [PMID: 32179592 PMCID: PMC7081069 DOI: 10.26508/lsa.201900626] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/28/2023] Open
Abstract
Over recent years, a plethora of new genetic tools has transformed conditional engineering of the malaria parasite genome, allowing functional dissection of essential genes in the asexual and sexual blood stages that cause pathology or are required for disease transmission, respectively. Important challenges remain, including the desirability to complement conditional mutants with a correctly regulated second gene copy to confirm that observed phenotypes are due solely to loss of gene function and to analyse structure-function relationships. To meet this challenge, here we combine the dimerisable Cre (DiCre) system with the use of multiple lox sites to simultaneously generate multiple recombination events of the same gene. We focused on the Plasmodium falciparum cGMP-dependent protein kinase (PKG), creating in parallel conditional disruption of the gene plus up to two allelic replacements. We use the approach to demonstrate that PKG has no scaffolding or adaptor role in intraerythrocytic development, acting solely at merozoite egress. We also show that a phosphorylation-deficient PKG is functionally incompetent. Our method provides valuable new tools for analysis of gene function in the malaria parasite.
Collapse
Affiliation(s)
| | | | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
25
|
Ebrahimzadeh Z, Mukherjee A, Crochetière MÈ, Sergerie A, Amiar S, Thompson LA, Gagnon D, Gaumond D, Stahelin RV, Dacks JB, Richard D. A pan-apicomplexan phosphoinositide-binding protein acts in malarial microneme exocytosis. EMBO Rep 2019; 20:e47102. [PMID: 31097469 PMCID: PMC6549027 DOI: 10.15252/embr.201847102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 11/09/2022] Open
Abstract
Invasion of human red blood cells by the malaria parasite Plasmodium falciparum is an essential step in the development of the disease. Consequently, the molecular players involved in host cell invasion represent important targets for inhibitor design and vaccine development. The process of merozoite invasion is a succession of steps underlined by the sequential secretion of the organelles of the apical complex. However, little is known with regard to how their contents are exocytosed. Here, we identify a phosphoinositide-binding protein conserved in apicomplexan parasites and show that it is important for the attachment and subsequent invasion of the erythrocyte by the merozoite. Critically, removing the protein from its site of action by knock sideways preferentially prevents the secretion of certain types of micronemes. Our results therefore provide evidence for a role of phosphoinositide lipids in the malaria invasion process and provide further insight into the secretion of microneme organelle populations, which is potentially applicable to diverse apicomplexan parasites.
Collapse
Affiliation(s)
- Zeinab Ebrahimzadeh
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Angana Mukherjee
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Marie-Ève Crochetière
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Audrey Sergerie
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Souad Amiar
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - L Alexa Thompson
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Dominic Gagnon
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - David Gaumond
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Dave Richard
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| |
Collapse
|
26
|
Patel A, Perrin AJ, Flynn HR, Bisson C, Withers-Martinez C, Treeck M, Flueck C, Nicastro G, Martin SR, Ramos A, Gilberger TW, Snijders AP, Blackman MJ, Baker DA. Cyclic AMP signalling controls key components of malaria parasite host cell invasion machinery. PLoS Biol 2019; 17:e3000264. [PMID: 31075098 PMCID: PMC6530879 DOI: 10.1371/journal.pbio.3000264] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/22/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023] Open
Abstract
Cyclic AMP (cAMP) is an important signalling molecule across evolution, but its role in malaria parasites is poorly understood. We have investigated the role of cAMP in asexual blood stage development of Plasmodium falciparum through conditional disruption of adenylyl cyclase beta (ACβ) and its downstream effector, cAMP-dependent protein kinase (PKA). We show that both production of cAMP and activity of PKA are critical for erythrocyte invasion, whilst key developmental steps that precede invasion still take place in the absence of cAMP-dependent signalling. We also show that another parasite protein with putative cyclic nucleotide binding sites, Plasmodium falciparum EPAC (PfEpac), does not play an essential role in blood stages. We identify and quantify numerous sites, phosphorylation of which is dependent on cAMP signalling, and we provide mechanistic insight as to how cAMP-dependent phosphorylation of the cytoplasmic domain of the essential invasion adhesin apical membrane antigen 1 (AMA1) regulates erythrocyte invasion.
Collapse
Affiliation(s)
- Avnish Patel
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Abigail J. Perrin
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Helen R. Flynn
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Claudine Bisson
- Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | | | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Christian Flueck
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Stephen R. Martin
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andres Ramos
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Tim W. Gilberger
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ambrosius P. Snijders
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Michael J. Blackman
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David A. Baker
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
27
|
Mishra M, Singh V, Singh S. Structural Insights Into Key Plasmodium Proteases as Therapeutic Drug Targets. Front Microbiol 2019; 10:394. [PMID: 30891019 PMCID: PMC6411711 DOI: 10.3389/fmicb.2019.00394] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/14/2019] [Indexed: 11/13/2022] Open
Abstract
Malaria, caused by protozoan of genus Plasmodium, remains one of the highest mortality infectious diseases. Malaria parasites have a complex life cycle, easily adapt to their host’s immune system and have evolved with an arsenal of unique proteases which play crucial roles in proliferation and survival within the host cells. Owing to the existing knowledge of enzymatic mechanisms, 3D structures and active sites of proteases, they have been proven to be opportune for target based drug development. Here, we discuss in depth the crucial roles of essential proteases in Plasmodium life cycle and particularly focus on highlighting the atypical “structural signatures” of key parasite proteases which have been exploited for drug development. These features, on one hand aid parasites pathogenicity while on the other hand could be effective in designing targeted and very specific inhibitors for counteracting them. We conclude that Plasmodium proteases are suitable as multistage targets for designing novel drugs with new modes of action to combat malaria.
Collapse
Affiliation(s)
- Manasi Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, India
| | - Vigyasa Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, India.,Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
28
|
Flueck C, Drought LG, Jones A, Patel A, Perrin AJ, Walker EM, Nofal SD, Snijders AP, Blackman MJ, Baker DA. Phosphodiesterase beta is the master regulator of cAMP signalling during malaria parasite invasion. PLoS Biol 2019; 17:e3000154. [PMID: 30794532 PMCID: PMC6402698 DOI: 10.1371/journal.pbio.3000154] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 03/06/2019] [Accepted: 02/05/2019] [Indexed: 12/29/2022] Open
Abstract
Cyclic nucleotide signalling is a major regulator of malaria parasite differentiation. Phosphodiesterase (PDE) enzymes are known to control cyclic GMP (cGMP) levels in the parasite, but the mechanisms by which cyclic AMP (cAMP) is regulated remain enigmatic. Here, we demonstrate that Plasmodium falciparum phosphodiesterase β (PDEβ) hydrolyses both cAMP and cGMP and is essential for blood stage viability. Conditional gene disruption causes a profound reduction in invasion of erythrocytes and rapid death of those merozoites that invade. We show that this dual phenotype results from elevated cAMP levels and hyperactivation of the cAMP-dependent protein kinase (PKA). Phosphoproteomic analysis of PDEβ-null parasites reveals a >2-fold increase in phosphorylation at over 200 phosphosites, more than half of which conform to a PKA substrate consensus sequence. We conclude that PDEβ plays a critical role in governing correct temporal activation of PKA required for erythrocyte invasion, whilst suppressing untimely PKA activation during early intra-erythrocytic development.
Collapse
Affiliation(s)
- Christian Flueck
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Laura G. Drought
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Andrew Jones
- Protein Analysis and Proteomics Laboratory, the Francis Crick Institute, London, United Kingdom
| | - Avnish Patel
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Abigail J. Perrin
- Malaria Biochemistry Laboratory, the Francis Crick Institute, London, United Kingdom
| | - Eloise M. Walker
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Stephanie D. Nofal
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ambrosius P. Snijders
- Protein Analysis and Proteomics Laboratory, the Francis Crick Institute, London, United Kingdom
| | - Michael J. Blackman
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, the Francis Crick Institute, London, United Kingdom
| | - David A. Baker
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
29
|
Boonyalai N, Collins CR, Hackett F, Withers-Martinez C, Blackman MJ. Essentiality of Plasmodium falciparum plasmepsin V. PLoS One 2018; 13:e0207621. [PMID: 30517136 PMCID: PMC6281190 DOI: 10.1371/journal.pone.0207621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/02/2018] [Indexed: 11/19/2022] Open
Abstract
The malaria parasite replicates within erythrocytes. The pathogenesis of clinical malaria is in large part due to the capacity of the parasite to remodel its host cell. To do this, intraerythrocytic stages of Plasmodium falciparum export more than 300 proteins that dramatically alter the morphology of the infected erythrocyte as well as its mechanical and adhesive properties. P. falciparum plasmepsin V (PfPMV) is an aspartic protease that processes proteins for export into the host erythrocyte and is thought to play a key role in parasite virulence and survival. However, although standard techniques for gene disruption as well as conditional protein knockdown have been previously attempted with the pfpmv gene, complete gene removal or knockdown was not achieved so direct genetic proof that PMV is an essential protein has not been established. Here we have used a conditional gene excision approach combining CRISPR-Cas9 gene editing and DiCre-mediated recombination to functionally inactivate the pfpmv gene. The resulting mutant parasites displayed a severe growth defect. Detailed phenotypic analysis showed that development of the mutant parasites was arrested early in the ring-to-trophozoite transition in the erythrocytic cycle following gene excision. Our findings are the first to elucidate the effects of PMV gene disruption, showing that it is essential for parasite viability in asexual blood stages. The mutant parasites can now be used as a platform to further dissect the Plasmodium protein export pathway.
Collapse
Affiliation(s)
- Nonlawat Boonyalai
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand
- * E-mail: (NB), ; (MJB)
| | - Christine R. Collins
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Michael J. Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail: (NB), ; (MJB)
| |
Collapse
|
30
|
Flieger A, Frischknecht F, Häcker G, Hornef MW, Pradel G. Pathways of host cell exit by intracellular pathogens. MICROBIAL CELL 2018; 5:525-544. [PMID: 30533418 PMCID: PMC6282021 DOI: 10.15698/mic2018.12.659] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Host cell exit is a critical step in the life-cycle of intracellular pathogens, intimately linked to barrier penetration, tissue dissemination, inflammation, and pathogen transmission. Like cell invasion and intracellular survival, host cell exit represents a well-regulated program that has evolved during host-pathogen co-evolution and that relies on the dynamic and intricate interplay between multiple host and microbial factors. Three distinct pathways of host cell exit have been identified that are employed by three different taxa of intracellular pathogens, bacteria, fungi and protozoa, namely (i) the initiation of programmed cell death, (ii) the active breaching of host cellderived membranes, and (iii) the induced membrane-dependent exit without host cell lysis. Strikingly, an increasing number of studies show that the majority of intracellular pathogens utilize more than one of these strategies, dependent on life-cycle stage, environmental factors and/or host cell type. This review summarizes the diverse exit strategies of intracellular-living bacterial, fungal and protozoan pathogens and discusses the convergently evolved commonalities as well as system-specific variations thereof. Key microbial molecules involved in host cell exit are highlighted and discussed as potential targets for future interventional approaches.
Collapse
Affiliation(s)
- Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | | | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Biology II, RWTH Aachen University, Germany
| |
Collapse
|
31
|
Armistead JS, Jennison C, O'Neill MT, Lopaticki S, Liehl P, Hanson KK, Annoura T, Rajasekaran P, Erickson SM, Tonkin CJ, Khan SM, Mota MM, Boddey JA. Plasmodium falciparum
subtilisin-like ookinete protein SOPT plays an important and conserved role during ookinete infection of the Anopheles stephensi
midgut. Mol Microbiol 2018; 109:458-473. [DOI: 10.1111/mmi.13993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Jennifer S. Armistead
- The Walter and Eliza Hall Institute of Medical Research; Parkville 3052 Australia
- Department of Medical Biology; The University of Melbourne; Parkville 3052 Australia
| | - Charlie Jennison
- The Walter and Eliza Hall Institute of Medical Research; Parkville 3052 Australia
- Department of Medical Biology; The University of Melbourne; Parkville 3052 Australia
| | - Matthew T. O'Neill
- The Walter and Eliza Hall Institute of Medical Research; Parkville 3052 Australia
| | - Sash Lopaticki
- The Walter and Eliza Hall Institute of Medical Research; Parkville 3052 Australia
| | - Peter Liehl
- Instituto de Medicina Molecular, Faculdade de Medicina; Universidade de Lisboa; 1649-028 Lisbon Portugal
| | - Kirsten K. Hanson
- Instituto de Medicina Molecular, Faculdade de Medicina; Universidade de Lisboa; 1649-028 Lisbon Portugal
| | - Takeshi Annoura
- Leiden Malaria Research Group, Parasitology; Leiden University Medical Centre; 2333ZA Leiden the Netherlands
| | - Pravin Rajasekaran
- The Walter and Eliza Hall Institute of Medical Research; Parkville 3052 Australia
- Department of Medical Biology; The University of Melbourne; Parkville 3052 Australia
| | - Sara M. Erickson
- The Walter and Eliza Hall Institute of Medical Research; Parkville 3052 Australia
- Department of Medical Biology; The University of Melbourne; Parkville 3052 Australia
| | - Christopher J. Tonkin
- The Walter and Eliza Hall Institute of Medical Research; Parkville 3052 Australia
- Department of Medical Biology; The University of Melbourne; Parkville 3052 Australia
| | - Shahid M. Khan
- Leiden Malaria Research Group, Parasitology; Leiden University Medical Centre; 2333ZA Leiden the Netherlands
| | - Maria M. Mota
- Instituto de Medicina Molecular, Faculdade de Medicina; Universidade de Lisboa; 1649-028 Lisbon Portugal
| | - Justin A. Boddey
- The Walter and Eliza Hall Institute of Medical Research; Parkville 3052 Australia
- Department of Medical Biology; The University of Melbourne; Parkville 3052 Australia
| |
Collapse
|
32
|
Abstract
Apicomplexa are obligate intracellular parasites that actively invade, replicate within, and egress from host cells. The parasite actinomyosin-based molecular motor complex (often referred to as the glideosome) is considered an important mediator of parasite motility and virulence. Mature intracellular parasites often become motile just prior to egress from their host cells, and in some genera, this motility is important for successful egress as well as for subsequent invasion of new host cells. To determine whether actinomyosin-based motility is important in the red blood cell egress and invasion activities of the malaria parasite, we have used a conditional genetic approach to delete GAP45, a primary component of the glideosome, in asexual blood stages of Plasmodium falciparum Our results confirm the essential nature of GAP45 for invasion but show that P. falciparum does not require a functional motor complex to undergo egress from the red blood cell. Malarial egress therefore differs fundamentally from induced egress in the related apicomplexan Toxoplasma gondiiIMPORTANCE Clinical malaria results from cycles of replication of single-celled parasites of the genus Plasmodium in red blood cells. Intracellular parasite replication is followed by a highly regulated, protease-dependent process called egress, in which rupture of the bounding membranes allows explosive release of daughter merozoites which rapidly invade fresh red cells. A parasite actinomyosin-based molecular motor (the glideosome) has been proposed to provide the mechanical force to drive invasion. Studies of the related parasite Toxoplasma gondii have shown that induced egress requires parasite motility, mediated by a functional glideosome. However, whether the glideosome has a similar essential role in egress of malaria merozoites from red blood cells is unknown. Here, we show that although a functional glideosome is required for red blood cell invasion by Plasmodium falciparum merozoites, it is not required for egress. These findings place further emphasis on the key role of the protease cascade in malarial egress.
Collapse
|
33
|
Herman LS, Fornace K, Phelan J, Grigg MJ, Anstey NM, William T, Moon RW, Blackman MJ, Drakeley CJ, Tetteh KKA. Identification and validation of a novel panel of Plasmodium knowlesi biomarkers of serological exposure. PLoS Negl Trop Dis 2018; 12:e0006457. [PMID: 29902183 PMCID: PMC6001954 DOI: 10.1371/journal.pntd.0006457] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Plasmodium knowlesi is the most common cause of malaria in Malaysian Borneo, with reporting limited to clinical cases presenting to health facilities and scarce data on the true extent of transmission. Serological estimations of transmission have been used with other malaria species to garner information about epidemiological patterns. However, there are a distinct lack of suitable serosurveillance tools for this neglected disease. METHODOLOGY/PRINCIPAL FINDINGS Using in silico tools, we designed and expressed four novel P. knowlesi protein products to address the distinct lack of suitable serosurveillance tools: PkSERA3 antigens 1 and 2, PkSSP2/TRAP and PkTSERA2 antigen 1. Antibody prevalence to these antigens was determined by ELISA for three time-points post-treatment from a hospital-based clinical treatment trial in Sabah, East Malaysia (n = 97 individuals; 241 total samples for all time points). Higher responses were observed for the PkSERA3 antigen 2 (67%, 65/97) across all time-points (day 0: 36.9% 34/92; day 7: 63.8% 46/72; day 28: 58.4% 45/77) with significant differences between the clinical cases and controls (n = 55, mean plus 3 SD) (day 0 p<0.0001; day 7 p<0.0001; day 28 p<0.0001). Using boosted regression trees, we developed models to classify P. knowlesi exposure (cross-validated AUC 88.9%; IQR 86.1-91.3%) and identified the most predictive antibody responses. CONCLUSIONS/SIGNIFICANCE The PkSERA3 antigen 2 had the highest relative variable importance in all models. Further validation of these antigens is underway to determine the specificity of these tools in the context of multi-species infections at the population level.
Collapse
Affiliation(s)
- Lou S. Herman
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kimberly Fornace
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jody Phelan
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew J. Grigg
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Nicholas M. Anstey
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
- Jesselton Medical Centre, Kota Kinabalu, Sabah, Malaysia
| | - Robert W. Moon
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael J. Blackman
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Chris J. Drakeley
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kevin K. A. Tetteh
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
34
|
Arend P. Position of human blood group O(H) and phenotype-determining enzymes in growth and infectious disease. Ann N Y Acad Sci 2018; 1425:5-18. [PMID: 29754430 PMCID: PMC7676429 DOI: 10.1111/nyas.13694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
The human ABO(H) blood group phenotypes arise from the evolutionarily oldest genetic system found in primate populations. While the blood group antigen A is considered the ancestral primordial structure, under the selective pressure of life‐threatening diseases blood group O(H) came to dominate as the most frequently occurring blood group worldwide. Non‐O(H) phenotypes demonstrate impaired formation of adaptive and innate immunoglobulin specificities due to clonal selection and phenotype formation in plasma proteins. Compared with individuals with blood group O(H), blood group A individuals not only have a significantly higher risk of developing certain types of cancer but also exhibit high susceptibility to malaria tropica or infection by Plasmodium falciparum. The phenotype‐determining blood group A glycotransferase(s), which affect the levels of anti‐A/Tn cross‐reactive immunoglobulins in phenotypic glycosidic accommodation, might also mediate adhesion and entry of the parasite to host cells via trans‐species O‐GalNAc glycosylation of abundantly expressed serine residues that arise throughout the parasite's life cycle, while excluding the possibility of antibody formation against the resulting hybrid Tn antigen. In contrast, human blood group O(H), lacking this enzyme, is indicated to confer a survival advantage regarding the overall risk of developing cancer, and individuals with this blood group rarely develop life‐threatening infections involving evolutionarily selective malaria strains.
Collapse
Affiliation(s)
- Peter Arend
- Department of Medicine, Philipps University Marburg, Marburg/Lahn, Germany. Gastroenterology Research Laboratory, College of Medicine, University of Iowa, Iowa City, Iowa. Research Laboratories, Chemie Grünenthal GmbH, Aachen, Germany
| |
Collapse
|
35
|
Iyer GR, Singh S, Kaur I, Agarwal S, Siddiqui MA, Bansal A, Kumar G, Saini E, Paul G, Mohmmed A, Chitnis CE, Malhotra P. Calcium-dependent phosphorylation of Plasmodium falciparum serine repeat antigen 5 triggers merozoite egress. J Biol Chem 2018; 293:9736-9746. [PMID: 29716996 DOI: 10.1074/jbc.ra117.001540] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/13/2018] [Indexed: 01/13/2023] Open
Abstract
The human malaria parasite Plasmodium falciparum proliferates in red blood cells following repeated cycles of invasion, multiplication, and egress. P. falciparum serine repeat antigen 5 (PfSERA5), a putative serine protease, plays an important role in merozoite egress. However, regulation of its activity leading to merozoite egress is poorly understood. In this study, we show that PfSERA5 undergoes phosphorylation prior to merozoite egress. Immunoprecipitation of parasite lysates using anti-PfSERA5 serum followed by MS analysis identified calcium-dependent protein kinase 1 (PfCDPK1) as an interacting kinase. Association of PfSERA5 with PfCDPK1 was corroborated by co-sedimentation, co-immunoprecipitation, and co-immunolocalization analyses. Interestingly, PfCDPK1 phosphorylated PfSERA5 in vitro in the presence of Ca2+ and enhanced its proteolytic activity. A PfCDPK1 inhibitor, purfalcamine, blocked the phosphorylation and activation of PfSERA5 both in vitroas well as in schizonts, which, in turn, blocked merozoite egress. Together, these results suggest that phosphorylation of PfSERA5 by PfCDPK1 following a rise in cytosolic Ca2+ levels activates its proteolytic activity to trigger merozoite egress.
Collapse
Affiliation(s)
- Gayatri R Iyer
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| | - Shailja Singh
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and.,the Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 rue du Doctor Roux, 75015 Paris, France
| | - Inderjeet Kaur
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| | - Shalini Agarwal
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| | - Mansoor A Siddiqui
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| | - Abhisheka Bansal
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| | - Gautam Kumar
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| | - Ekta Saini
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| | - Gourab Paul
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| | - Asif Mohmmed
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| | - Chetan E Chitnis
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and .,the Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 rue du Doctor Roux, 75015 Paris, France
| | - Pawan Malhotra
- From the Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India and
| |
Collapse
|
36
|
Hallée S, Counihan NA, Matthews K, Koning‐Ward TF, Richard D. The malaria parasite
Plasmodium falciparum
Sortilin is essential for merozoite formation and apical complex biogenesis. Cell Microbiol 2018; 20:e12844. [DOI: 10.1111/cmi.12844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/22/2018] [Accepted: 03/17/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Stéphanie Hallée
- Centre de recherche en infectiologieCHU de Québec‐Université Laval Quebec City QC Canada
| | | | - Kathryn Matthews
- School of MedicineDeakin University Waurn Ponds 3216 VIC Australia
| | | | - Dave Richard
- Centre de recherche en infectiologieCHU de Québec‐Université Laval Quebec City QC Canada
| |
Collapse
|
37
|
Hallée S, Thériault C, Gagnon D, Kehrer J, Frischknecht F, Mair GR, Richard D. Identification of a Golgi apparatus protein complex important for the asexual erythrocytic cycle of the malaria parasite Plasmodium falciparum. Cell Microbiol 2018; 20:e12843. [PMID: 29579782 DOI: 10.1111/cmi.12843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/01/2022]
Abstract
Compared with other eukaryotic cell types, malaria parasites appear to possess a more rudimentary Golgi apparatus being composed of dispersed, unstacked cis and trans-cisternae. Despite playing a central role in the secretory pathway of the parasite, few Plasmodium Golgi resident proteins have been characterised. We had previously identified a new Golgi resident protein of unknown function, which we had named Golgi Protein 1, and now show that it forms a complex with a previously uncharacterised transmembrane protein (Golgi Protein 2, GP2). The Golgi Protein complex localises to the cis-Golgi throughout the erythrocytic cycle and potentially also during the mosquito stages. Analysis of parasite strains where GP1 expression is conditionally repressed and/or the GP2 gene is inactivated reveals that though the Golgi protein complex is not essential at any stage of the parasite life cycle, it is important for optimal asexual development in the blood stages.
Collapse
Affiliation(s)
- Stéphanie Hallée
- Centre de recherche en infectiologie, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Catherine Thériault
- Centre de recherche en infectiologie, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Dominic Gagnon
- Centre de recherche en infectiologie, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Jessica Kehrer
- Integrative Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Gunnar R Mair
- Integrative Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Dave Richard
- Centre de recherche en infectiologie, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
38
|
Pino P, Caldelari R, Mukherjee B, Vahokoski J, Klages N, Maco B, Collins CR, Blackman MJ, Kursula I, Heussler V, Brochet M, Soldati-Favre D. A multistage antimalarial targets the plasmepsins IX and X essential for invasion and egress. Science 2018; 358:522-528. [PMID: 29074775 DOI: 10.1126/science.aaf8675] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022]
Abstract
Regulated exocytosis by secretory organelles is important for malaria parasite invasion and egress. Many parasite effector proteins, including perforins, adhesins, and proteases, are extensively proteolytically processed both pre- and postexocytosis. Here we report the multistage antiplasmodial activity of the aspartic protease inhibitor hydroxyl-ethyl-amine-based scaffold compound 49c. This scaffold inhibits the preexocytosis processing of several secreted rhoptry and microneme proteins by targeting the corresponding maturases plasmepsins IX (PMIX) and X (PMX), respectively. Conditional excision of PMIX revealed its crucial role in invasion, and recombinantly active PMIX and PMX cleave egress and invasion factors in a 49c-sensitive manner.
Collapse
Affiliation(s)
- Paco Pino
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland.
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Budhaditya Mukherjee
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland
| | - Juha Vahokoski
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Natacha Klages
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland
| | - Christine R Collins
- Malaria Biochemistry Laboratory, The Francis Crick Institute, Mill Hill, London NW1 1AT, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, Mill Hill, London NW1 1AT, UK.,Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.,Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland.
| |
Collapse
|
39
|
Nasamu AS, Glushakova S, Russo I, Vaupel B, Oksman A, Kim AS, Fremont DH, Tolia N, Beck JR, Meyers MJ, Niles JC, Zimmerberg J, Goldberg DE. Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion. Science 2018; 358:518-522. [PMID: 29074774 PMCID: PMC5928414 DOI: 10.1126/science.aan1478] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/18/2017] [Indexed: 01/31/2023]
Abstract
Proteases of the malaria parasite Plasmodium falciparum have long been investigated as drug targets. The P. falciparum genome encodes 10 aspartic proteases called plasmepsins, which are involved in diverse cellular processes. Most have been studied extensively but the functions of plasmepsins IX and X (PMIX and PMX) were unknown. Here we show that PMIX is essential for erythrocyte invasion, acting on rhoptry secretory organelle biogenesis. In contrast, PMX is essential for both egress and invasion, controlling maturation of the subtilisin-like serine protease SUB1 in exoneme secretory vesicles. We have identified compounds with potent antimalarial activity targeting PMX, including a compound known to have oral efficacy in a mouse model of malaria.
Collapse
Affiliation(s)
- Armiyaw S Nasamu
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Svetlana Glushakova
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ilaria Russo
- Faculty of Biology, Medicine and Health, Division of Infection Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Barbara Vaupel
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Anna Oksman
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Arthur S Kim
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Niraj Tolia
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Josh R Beck
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Marvin J Meyers
- Center for World Health and Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA. .,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
40
|
Molecular Camouflage of Plasmodium falciparum Merozoites by Binding of Host Vitronectin to P47 Fragment of SERA5. Sci Rep 2018; 8:5052. [PMID: 29567995 PMCID: PMC5864917 DOI: 10.1038/s41598-018-23194-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/07/2018] [Indexed: 12/31/2022] Open
Abstract
The malaria parasite Plasmodium falciparum proliferates in the blood stream where the host immune system is most active. To escape from host immunity, P. falciparum has developed a number of evasion mechanisms. Serine repeat antigen 5 (SERA5) is a blood stage antigen highly expressed at late trophozoite and schizont stages. The P47 N-terminal domain of SERA5, the basis of SE36 antigen of the blood stage vaccine candidate under clinical trials, covers the merozoite surface. Exploring the role of the P47 domain, screening of serum proteins showed that vitronectin (VTN) directly binds to 20 residues in the C-terminal region of SE36. VTN co-localized with P47 domain in the schizont and merozoite stages. Phagocytosis assay using THP-1 cells demonstrated that VTN bound to SE36 prevented engulfment of SE36-beads. In addition, several serum proteins localized on the merozoite surface, suggesting that host proteins camouflage merozoites against host immunity via binding to VTN.
Collapse
|
41
|
Ghosh S, Chisholm SA, Dans M, Lakkavaram A, Kennedy K, Ralph SA, Counihan NA, de Koning-Ward TF. The cysteine protease dipeptidyl aminopeptidase 3 does not contribute to egress of Plasmodium falciparum from host red blood cells. PLoS One 2018; 13:e0193538. [PMID: 29509772 PMCID: PMC5839547 DOI: 10.1371/journal.pone.0193538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/13/2018] [Indexed: 01/27/2023] Open
Abstract
The ability of Plasmodium parasites to egress from their host red blood cell is critical for the amplification of these parasites in the blood. Previous forward chemical genetic approaches have implicated the subtilisin-like protease (SUB1) and the cysteine protease dipeptidyl aminopeptidase 3 (DPAP3) as key players in egress, with the final step of SUB1 maturation thought to be due to the activity of DPAP3. In this study, we have utilized a reverse genetics approach to engineer transgenic Plasmodium falciparum parasites in which dpap3 expression can be conditionally regulated using the glmS ribozyme based RNA-degrading system. We show that DPAP3, which is expressed in schizont stages and merozoites and localizes to organelles distinct from the micronemes, rhoptries and dense granules, is not required for the trafficking of apical proteins or processing of SUB1 substrates, nor for parasite maturation and egress from red blood cells. Thus, our findings argue against a role for DPAP3 in parasite egress and indicate that the phenotypes observed with DPAP3 inhibitors are due to off-target effects.
Collapse
Affiliation(s)
- Sreejoyee Ghosh
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Scott A. Chisholm
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Madeline Dans
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Asha Lakkavaram
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Kit Kennedy
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
42
|
Sherling ES, van Ooij C. Host cell remodeling by pathogens: the exomembrane system in Plasmodium-infected erythrocytes. FEMS Microbiol Rev 2017; 40:701-21. [PMID: 27587718 PMCID: PMC5007283 DOI: 10.1093/femsre/fuw016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
Malaria is caused by infection of erythrocytes by parasites of the genus Plasmodium. To survive inside erythrocytes, these parasites induce sweeping changes within the host cell, one of the most dramatic of which is the formation of multiple membranous compartments, collectively referred to as the exomembrane system. As an uninfected mammalian erythrocyte is devoid of internal membranes, the parasite must be the force and the source behind the formation of these compartments. Even though the first evidence of the presence these of internal compartments was obtained over a century ago, their functions remain mostly unclear, and in some cases completely unknown, and the mechanisms underlying their formation are still mysterious. In this review, we provide an overview of the different parts of the exomembrane system, describing the parasitophorous vacuole, the tubovesicular network, Maurer's clefts, the caveola-vesicle complex, J dots and other mobile compartments, and the small vesicles that have been observed in Plasmodium-infected cells. Finally, we combine the data into a simplified view of the exomembrane system and its relation to the alterations of the host erythrocyte. Plasmodium parasites remodel the host erythrocyte in various ways, including the formation of several membranous compartments, together referred to as the exomembrane system, within the erythrocyte cytosol that together are key to the sweeping changes in the host cell.
Collapse
Affiliation(s)
- Emma S Sherling
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Christiaan van Ooij
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
43
|
Molecular mechanisms that mediate invasion and egress of malaria parasites from red blood cells. Curr Opin Hematol 2017; 24:208-214. [PMID: 28306665 DOI: 10.1097/moh.0000000000000334] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Malaria parasites invade and multiply in diverse host cells during their complex life cycle. Some blood stage parasites transform into male and female gametocytes that are transmitted by female anopheline mosquitoes. The gametocytes are activated in the mosquito midgut to form male and female gametes, which egress from RBCs to mate and form a zygote. Here, we will review our current understanding of the molecular mechanisms that mediate invasion and egress by malaria parasites at different life cycle stages. RECENT FINDINGS A number of key effector molecules such as parasite protein ligands for receptor-engagement during invasion as well as proteases and perforin-like proteins that mediate egress have been identified. Interestingly, these parasite-encoded effectors are located in internal, vesicular organelles and are secreted in a highly regulated manner during invasion and egress. Here, we will review our current understanding of the functional roles of these effectors as well as the signaling pathways that regulate their timely secretion with accurate spatiotemporal coordinates. SUMMARY Understanding the molecular basis of key processes such as host cell invasion and egress by malaria parasites could provide novel targets for development of inhibitors to block parasite growth and transmission.
Collapse
|
44
|
Plasmodium berghei PIMMS2 Promotes Ookinete Invasion of the Anopheles gambiae Mosquito Midgut. Infect Immun 2017; 85:IAI.00139-17. [PMID: 28559405 PMCID: PMC5520436 DOI: 10.1128/iai.00139-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/11/2017] [Indexed: 12/21/2022] Open
Abstract
Mosquito midgut stages of the malaria parasite present an attractive biological system to study host-parasite interactions and develop interventions to block disease transmission. Mosquito infection ensues upon oocyst development that follows ookinete invasion and traversal of the mosquito midgut epithelium. Here, we report the characterization of PIMMS2 (Plasmodium invasion of mosquito midgut screen candidate 2), a Plasmodium berghei protein with structural similarities to subtilisin-like proteins. PIMMS2 orthologs are present in the genomes of all plasmodia and are mapped between the subtilisin-encoding genes SUB1 and SUB3. P. berghei PIMMS2 is specifically expressed in zygotes and ookinetes and is localized on the ookinete surface. Loss of PIMMS2 function through gene disruption by homologous recombination leads to normal development of motile ookinetes that exhibit a severely impaired capacity to traverse the mosquito midgut and transform to oocysts. Genetic complementation of the disrupted locus with a mutated PIMMS2 allele reveals that amino acid residues corresponding to the putative subtilisin-like catalytic triad are important but not essential for protein function. Our data demonstrate that PIMMS2 is a novel ookinete-specific protein that promotes parasite traversal of the mosquito midgut epithelium and establishment of mosquito infection.
Collapse
|
45
|
Collins CR, Hackett F, Atid J, Tan MSY, Blackman MJ. The Plasmodium falciparum pseudoprotease SERA5 regulates the kinetics and efficiency of malaria parasite egress from host erythrocytes. PLoS Pathog 2017; 13:e1006453. [PMID: 28683142 PMCID: PMC5500368 DOI: 10.1371/journal.ppat.1006453] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023] Open
Abstract
Egress of the malaria parasite Plasmodium falciparum from its host red blood cell is a rapid, highly regulated event that is essential for maintenance and completion of the parasite life cycle. Egress is protease-dependent and is temporally associated with extensive proteolytic modification of parasite proteins, including a family of papain-like proteins called SERA that are expressed in the parasite parasitophorous vacuole. Previous work has shown that the most abundant SERA, SERA5, plays an important but non-enzymatic role in asexual blood stages. SERA5 is extensively proteolytically processed by a parasite serine protease called SUB1 as well as an unidentified cysteine protease just prior to egress. However, neither the function of SERA5 nor the role of its processing is known. Here we show that conditional disruption of the SERA5 gene, or of both the SERA5 and related SERA4 genes simultaneously, results in a dramatic egress and replication defect characterised by premature host cell rupture and the failure of daughter merozoites to efficiently disseminate, instead being transiently retained within residual bounding membranes. SERA5 is not required for poration (permeabilization) or vesiculation of the host cell membrane at egress, but the premature rupture phenotype requires the activity of a parasite or host cell cysteine protease. Complementation of SERA5 null parasites by ectopic expression of wild-type SERA5 reversed the egress defect, whereas expression of a SERA5 mutant refractory to processing failed to rescue the phenotype. Our findings implicate SERA5 as an important regulator of the kinetics and efficiency of egress and suggest that proteolytic modification is required for SERA5 function. In addition, our study reveals that efficient egress requires tight control of the timing of membrane rupture. Malaria, a disease that kills hundreds of thousands of people each year, is caused by a single-celled parasite that grows in red blood cells of infected individuals. Following each round of parasite multiplication, the infected red cells are actively ruptured in a process called egress, releasing a new generation of parasites. Egress is essential for progression to clinical disease, but little is known about how it is controlled. In this work we set out to address the function in egress of a Plasmodium falciparum protein called SERA5, an abundant component of the vacuole in which the parasite grows. We show that parasites lacking SERA5 (or lacking both SERA5 and a closely-related protein called SERA4) undergo accelerated but defective egress in which the bounding vacuole and red cell membranes do not rupture properly. This impedes the escape and subsequent replication of the newly-developed parasites. We also show that modification of SERA5 by parasites proteases just prior to egress is important for SERA5 function. Our results show that SERA5 is a ‘negative regulator’ of egress, controlling the speed of the pathway that leads to disruption of the membranes surrounding the intracellular parasite. Our findings increase our understanding of the molecular mechanisms underlying malarial egress and show that efficient egress requires tight control of the timing of membrane rupture.
Collapse
Affiliation(s)
- Christine R. Collins
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jonathan Atid
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michele Ser Ying Tan
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Sherling ES, Knuepfer E, Brzostowski JA, Miller LH, Blackman MJ, van Ooij C. The Plasmodium falciparum rhoptry protein RhopH3 plays essential roles in host cell invasion and nutrient uptake. eLife 2017; 6. [PMID: 28252384 PMCID: PMC5365315 DOI: 10.7554/elife.23239] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 02/26/2017] [Indexed: 11/18/2022] Open
Abstract
Merozoites of the protozoan parasite responsible for the most virulent form of malaria, Plasmodium falciparum, invade erythrocytes. Invasion involves discharge of rhoptries, specialized secretory organelles. Once intracellular, parasites induce increased nutrient uptake by generating new permeability pathways (NPP) including a Plasmodium surface anion channel (PSAC). RhopH1/Clag3, one member of the three-protein RhopH complex, is important for PSAC/NPP activity. However, the roles of the other members of the RhopH complex in PSAC/NPP establishment are unknown and it is unclear whether any of the RhopH proteins play a role in invasion. Here we demonstrate that RhopH3, the smallest component of the complex, is essential for parasite survival. Conditional truncation of RhopH3 substantially reduces invasive capacity. Those mutant parasites that do invade are defective in nutrient import and die. Our results identify a dual role for RhopH3 that links erythrocyte invasion to formation of the PSAC/NPP essential for parasite survival within host erythrocytes. DOI:http://dx.doi.org/10.7554/eLife.23239.001 Malaria is a life-threatening disease that affects millions of people around the world. The parasites that cause malaria have a complex life cycle that involves infecting both mosquitoes and mammals, including humans. In humans, the parasites spend part of their life cycle inside red blood cells, which causes the symptoms of the disease. In order to survive and multiply, malaria parasites need to make the red blood cell more permeable so that it can absorb nutrients from the blood stream and get rid of the toxic waste products they generate. It remains unclear how the parasites do this, but previous research has shown that the parasites produce channel-like proteins that make red blood cells more permeable to nutrients. One of the proteins involved in this process forms part of a complex with two other proteins, called RhopH2 and RhopH3. It is not known what these other two proteins do, and whether they are necessary for creating the new nutrient channels. Sherling et al. studied the RhopH3 protein to see if it is required to make red blood cells more permeable. The experiments used a genetically modified version of the parasite, in which RhopH3 no longer interacted with the two other proteins. The findings show that RhopH3 has two important roles: first, parasites need it to invade the red blood cells, and second, parasites cannot get nutrients into the red blood cell without RhopH3. Most antimalarial drugs work by preventing parasite replication in red blood cells, but parasites are becoming increasingly resistant to these drugs. Understanding which proteins allow parasites to invade and grow within blood cells will further the development of new malaria medication. The next step will be to understand the molecular mechanisms by which RhopH3 promotes invasion and subsequently facilitates nutrient uptake, and will help researchers to explore its potential as a drug target. DOI:http://dx.doi.org/10.7554/eLife.23239.002
Collapse
Affiliation(s)
- Emma S Sherling
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Joseph A Brzostowski
- Laboratory of Immunogenetics Imaging Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Louis H Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Christiaan van Ooij
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
47
|
Patarroyo ME, Alba MP, Rojas-Luna R, Bermudez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. Immunotherapy 2017; 9:131-155. [DOI: 10.2217/imt-2016-0091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A totally effective, antimalarial vaccine must involve sporozoite and merozoite proteins (or their fragments) to ensure complete parasite blocking during critical invasion stages. This Special Report examines proteins involved in critical biological functions for parasite survival and highlights the conserved amino acid sequences of the most important proteins involved in sporozoite invasion of hepatocytes and merozoite invasion of red blood cells. Conserved high activity binding peptides are located in such proteins’ functionally strategic sites, whose functions are related to receptor binding, nutrient and protein transport, enzyme activity and molecule–molecule interactions. They are thus excellent targets for vaccine development as they block proteins binding function involved in invasion and also their biological function.
Collapse
Affiliation(s)
- Manuel E Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
- Universidad Nacional de Colombia, Bogotá DC, Colombia
| | - Martha P Alba
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
- Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
| | - Rocío Rojas-Luna
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
| | - Adriana Bermudez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
- Universidad del Rosario, Bogotá DC, Colombia
| | - Jorge Aza-Conde
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
| |
Collapse
|
48
|
Das S, Hertrich N, Perrin AJ, Withers-Martinez C, Collins CR, Jones ML, Watermeyer JM, Fobes ET, Martin SR, Saibil HR, Wright GJ, Treeck M, Epp C, Blackman MJ. Processing of Plasmodium falciparum Merozoite Surface Protein MSP1 Activates a Spectrin-Binding Function Enabling Parasite Egress from RBCs. Cell Host Microbe 2016; 18:433-44. [PMID: 26468747 PMCID: PMC4608996 DOI: 10.1016/j.chom.2015.09.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 11/09/2022]
Abstract
The malaria parasite Plasmodium falciparum replicates within erythrocytes, producing progeny merozoites that are released from infected cells via a poorly understood process called egress. The most abundant merozoite surface protein, MSP1, is synthesized as a large precursor that undergoes proteolytic maturation by the parasite protease SUB1 just prior to egress. The function of MSP1 and its processing are unknown. Here we show that SUB1-mediated processing of MSP1 is important for parasite viability. Processing modifies the secondary structure of MSP1 and activates its capacity to bind spectrin, a molecular scaffold protein that is the major component of the host erythrocyte cytoskeleton. Parasites expressing an inefficiently processed MSP1 mutant show delayed egress, and merozoites lacking surface-bound MSP1 display a severe egress defect. Our results indicate that interactions between SUB1-processed merozoite surface MSP1 and the spectrin network of the erythrocyte cytoskeleton facilitate host erythrocyte rupture to enable parasite egress. Merozoite surface protein MSP1 processing is important for P. falciparum viability Proteolytic processing activates MSP1’s heparin and spectrin-binding functions The rate of MSP1 processing governs the kinetics of parasite egress Loss of parasite surface MSP1 results in a severe egress defect
Collapse
Affiliation(s)
- Sujaan Das
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, NW7 1AA, UK
| | - Nadine Hertrich
- Department für Infektiologie, Parasitologie, Universitätsklinikum Heidelberg, D-69120 Heidelberg, Germany
| | - Abigail J Perrin
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | | | - Christine R Collins
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, NW7 1AA, UK
| | - Matthew L Jones
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, NW7 1AA, UK
| | - Jean M Watermeyer
- Department of Crystallography, Birkbeck College, London, WC1E 7HX, UK
| | - Elmar T Fobes
- Department für Infektiologie, Parasitologie, Universitätsklinikum Heidelberg, D-69120 Heidelberg, Germany
| | - Stephen R Martin
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, NW7 1AA, UK
| | - Helen R Saibil
- Department of Crystallography, Birkbeck College, London, WC1E 7HX, UK
| | - Gavin J Wright
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Moritz Treeck
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, NW7 1AA, UK
| | - Christian Epp
- Department für Infektiologie, Parasitologie, Universitätsklinikum Heidelberg, D-69120 Heidelberg, Germany
| | - Michael J Blackman
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, NW7 1AA, UK; Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
49
|
Burda PC, Roelli MA, Schaffner M, Khan SM, Janse CJ, Heussler VT. A Plasmodium phospholipase is involved in disruption of the liver stage parasitophorous vacuole membrane. PLoS Pathog 2015; 11:e1004760. [PMID: 25786000 PMCID: PMC4364735 DOI: 10.1371/journal.ppat.1004760] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/22/2015] [Indexed: 11/18/2022] Open
Abstract
The coordinated exit of intracellular pathogens from host cells is a process critical to the success and spread of an infection. While phospholipases have been shown to play important roles in bacteria host cell egress and virulence, their role in the release of intracellular eukaryotic parasites is largely unknown. We examined a malaria parasite protein with phospholipase activity and found it to be involved in hepatocyte egress. In hepatocytes, Plasmodium parasites are surrounded by a parasitophorous vacuole membrane (PVM), which must be disrupted before parasites are released into the blood. However, on a molecular basis, little is known about how the PVM is ruptured. We show that Plasmodium berghei phospholipase, PbPL, localizes to the PVM in infected hepatocytes. We provide evidence that parasites lacking PbPL undergo completely normal liver stage development until merozoites are produced but have a defect in egress from host hepatocytes. To investigate this further, we established a live-cell imaging-based assay, which enabled us to study the temporal dynamics of PVM rupture on a quantitative basis. Using this assay we could show that PbPL-deficient parasites exhibit impaired PVM rupture, resulting in delayed parasite egress. A wild-type phenotype could be re-established by gene complementation, demonstrating the specificity of the PbPL deletion phenotype. In conclusion, we have identified for the first time a Plasmodium phospholipase that is important for PVM rupture and in turn for parasite exit from the infected hepatocyte and therefore established a key role of a parasite phospholipase in egress. Leaving their host cell is a crucial process for intracellular pathogens, allowing successful infection of other cells and thereby spreading of infection. Plasmodium parasites infect hepatocytes and red blood cells, and inside these cells they are contained within a vacuole like many other intracellular pathogens. Before parasites can infect other cells, the surrounding parasitophorous vacuole membrane (PVM) needs to be ruptured. However, little is known about this process on a molecular level and Plasmodium proteins mediating lysis of the PVM during parasite egress have not so far been identified. In this study, we characterize a Plasmodium phospholipase and show that it localizes to the PVM of parasites within hepatocytes. We demonstrate that parasites lacking this protein have a defect in rupture of the PVM and thereby in host cell egress. In conclusion, our study shows for the first time that a phospholipase plays a role in PVM disruption of an intracellular eukaryotic parasite.
Collapse
Affiliation(s)
- Paul-Christian Burda
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School of Cellular Biology, University of Bern, Bern, Switzerland
- * E-mail:
| | | | - Marco Schaffner
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Shahid M. Khan
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J. Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|