1
|
Helmann JD. Metals in Motion: Understanding Labile Metal Pools in Bacteria. Biochemistry 2025; 64:329-345. [PMID: 39755956 PMCID: PMC11755726 DOI: 10.1021/acs.biochem.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025]
Abstract
Metal ions are essential for all life. In microbial cells, potassium (K+) is the most abundant cation and plays a key role in maintaining osmotic balance. Magnesium (Mg2+) is the dominant divalent cation and is required for nucleic acid structure and as an enzyme cofactor. Microbes typically require the transition metals manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn), although the precise set of metal ions needed to sustain life is variable. Intracellular metal pools can be conceptualized as a chemically complex mixture of rapidly exchanging (labile) ions, complemented by those reservoirs that exchange slowly relative to cell metabolism (sequestered). Labile metal pools are buffered by transient interactions with anionic metabolites and macromolecules, with the ribosome playing a major role. Sequestered metal pools include many metalloproteins, cofactors, and storage depots, with some pools redeployed upon metal depletion. Here, I review the size, composition, and dynamics of intracellular metal pools and highlight the major gaps in understanding.
Collapse
Affiliation(s)
- John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, United States
| |
Collapse
|
2
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
3
|
Ferrara KM, Gupta KR, Pi H. Bacterial Organelles in Iron Physiology. Mol Microbiol 2024; 122:914-928. [PMID: 39545931 DOI: 10.1111/mmi.15330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Bacteria were once thought to be simple organisms, lacking the membrane-bound organelles found in eukaryotic cells. However, recent advancements in microscopy have changed this view, revealing a diverse array of organelles within bacterial cells. These organelles, surrounded by lipid bilayers, protein-lipid monolayers, or proteinaceous shells, play crucial roles in facilitating biochemical reactions and protecting cells from harmful byproducts. Unlike eukaryotic organelles, which are universally present, bacterial organelles are species-specific and induced only under certain conditions. This review focuses on the bacterial organelles that contain iron, an essential micronutrient for all life forms but potentially toxic when present in excess. To date, three types of iron-related bacterial organelles have been identified: two membrane-bound organelles, magnetosomes and ferrosomes, and one protein-enclosed organelle, the encapsulated ferritin-like proteins. This article provides an updated overview of the genetics, biogenesis, and physiological functions of these organelles. Furthermore, we discuss how bacteria utilize these specialized structures to adapt, grow, and survive under various environmental conditions.
Collapse
Affiliation(s)
- Kristina M Ferrara
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kuldeepkumar R Gupta
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hualiang Pi
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Kandari D, Joshi H. PerR: A Peroxide Sensor Eliciting Metal Ion-dependent Regulation in Various Bacteria. Mol Biotechnol 2024:10.1007/s12033-024-01266-8. [PMID: 39294512 DOI: 10.1007/s12033-024-01266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Bacteria have to thrive in difficult conditions wherein their competitors generate partially reduced forms of oxygen, like hydrogen peroxide and superoxides. These oxidative stress molecules can also arise from within via the autoxidation of redox enzymes. To adapt to such conditions, bacteria express detox enzymes as well as repair proteins. Transcription factors regulate these defenses, and PerR is one of them. PerR is a Fur family transcriptional regulator that senses peroxide stress. Metal-bound PerR (either Mn2+ or Fe2+) can repress transcription of its regulon, but only the Fe2+-bound form of PerR can sense H2O2. This review describes different aspects of PerR and its varied roles, specifically in bacterial pathogens. Despite having roles beyond sensing peroxides, it is an underrated regulator that needs to be explored more deeply in pathogens.
Collapse
Affiliation(s)
- Divya Kandari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
- Division of Experimental Medicine, University of California, San Francisco, CA, 94107, USA.
| |
Collapse
|
5
|
Peng W, Xu Y, Yin Y, Xie J, Ma R, Song G, Zhang Z, Quan Q, Jiang Q, Li M, Li B. Biological characteristics of manganese transporter MntP in Klebsiella pneumoniae. mSphere 2024; 9:e0037724. [PMID: 38888334 PMCID: PMC11288033 DOI: 10.1128/msphere.00377-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Klebsiella pneumoniae is an important opportunistic pathogen that causes a variety of infections. It is critical for bacteria to maintain metal homeostasis during infection. By using an isogenic mntP deletion mutant of K. pneumoniae strain NTUH-K2044, we found that MntP was a manganese efflux pump. Manganese increased the tolerance to oxidative stress, and oxidative stress could increase the intracellular manganese concentration. In oxidative stress, the mntP deletion mutant exhibited significantly higher sensitivity to manganese. Furthermore, iron could increase the tolerance of the mntP deletion mutant to manganese. Inductively coupled plasma mass spectrometry analysis revealed that the mntP deletion mutant had higher intracellular manganese and iron concentrations than wild-type and complementary strains. These findings suggested that iron could increase manganese tolerance in K. pneumoniae. This work elucidated the role of MntP in manganese detoxification and Mn/Fe homeostasis in K. pneumoniae.IMPORTANCEMetal homeostasis plays an important role during the process of bacterial infection. Herein, we revealed that MntP was involved in intracellular manganese homeostasis. Manganese promoted resistance to oxidative stress in Klebsiella pneumoniae. Furthermore, we demonstrated that the mntP deletion mutant exhibited significantly lower survival under manganese and H2O2 conditions. Oxidative stress increased the intracellular manganese content of the mntP deletion mutant. MntP played a critical role in maintaining intracellular manganese and iron concentrations. MntP contributed to manganese detoxification and Mn/Fe homeostasis in K. pneumoniae.
Collapse
Affiliation(s)
- Wei Peng
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yafei Xu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yilin Yin
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jichen Xie
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Renhui Ma
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Guoyuan Song
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhiqiang Zhang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qiuhang Quan
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qinggen Jiang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Moran Li
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Bei Li
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
6
|
Sachla AJ, Soni V, Piñeros M, Luo Y, Im JJ, Rhee KY, Helmann JD. The Bacillus subtilis yqgC-sodA operon protects magnesium-dependent enzymes by supporting manganese efflux. J Bacteriol 2024; 206:e0005224. [PMID: 38819154 PMCID: PMC11332163 DOI: 10.1128/jb.00052-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
Microbes encounter a myriad of stresses during their life cycle. Dysregulation of metal ion homeostasis is increasingly recognized as a key factor in host-microbe interactions. Bacterial metal ion homeostasis is tightly regulated by dedicated metalloregulators that control uptake, sequestration, trafficking, and efflux. Here, we demonstrate that deletion of the Bacillus subtilis yqgC-sodA (YS) complex operon, but not deletion of the individual genes, causes hypersensitivity to manganese (Mn). YqgC is an integral membrane protein of unknown function, and SodA is a Mn-dependent superoxide dismutase (MnSOD). The YS strain has reduced expression of two Mn efflux proteins, MneP and MneS, consistent with the observed Mn sensitivity. The YS strain accumulated high levels of Mn, had increased reactive radical species (RRS), and had broad metabolic alterations that can be partially explained by the inhibition of Mg-dependent enzymes. Although the YS operon deletion strain and an efflux-deficient mneP mneS double mutant both accumulate Mn and have similar metabolic perturbations, they also display phenotypic differences. Several mutations that suppressed Mn intoxication of the mneP mneS efflux mutant did not benefit the YS mutant. Further, Mn intoxication in the YS mutant, but not the mneP mneS strain, was alleviated by expression of Mg-dependent, chorismate-utilizing enzymes of the menaquinone, siderophore, and tryptophan (MST) family. Therefore, despite their phenotypic similarities, the Mn sensitivity in the mneP mneS and the YS deletion mutants results from distinct enzymatic vulnerabilities.IMPORTANCEBacteria require multiple trace metal ions for survival. Metal homeostasis relies on the tightly regulated expression of metal uptake, storage, and efflux proteins. Metal intoxication occurs when metal homeostasis is perturbed and often results from enzyme mis-metalation. In Bacillus subtilis, Mn-dependent superoxide dismutase (MnSOD) is the most abundant Mn-containing protein and is important for oxidative stress resistance. Here, we report novel roles for MnSOD and a co-regulated membrane protein, YqgC, in Mn homeostasis. Loss of both MnSOD and YqgC (but not the individual proteins) prevents the efficient expression of Mn efflux proteins and leads to a large-scale perturbation of the metabolome due to inhibition of Mg-dependent enzymes, including key chorismate-utilizing MST (menaquinone, siderophore, and tryptophan) family enzymes.
Collapse
Affiliation(s)
- Ankita J. Sachla
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Miguel Piñeros
- School of Integrative Plant Sciences, Plant Biology Section, Cornell University, Ithaca, New York, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, New York, USA
| | - Yuanchan Luo
- Department of Microbiology, Cornell University, Ithaca, New York, USA
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Janice J. Im
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Kyu Y. Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
7
|
Pal S, Yuvaraj R, Krishnan H, Venkatraman B, Abraham J, Gopinathan A. Unraveling radiation resistance strategies in two bacterial strains from the high background radiation area of Chavara-Neendakara: A comprehensive whole genome analysis. PLoS One 2024; 19:e0304810. [PMID: 38857267 PMCID: PMC11164402 DOI: 10.1371/journal.pone.0304810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/18/2024] [Indexed: 06/12/2024] Open
Abstract
This paper reports the results of gamma irradiation experiments and whole genome sequencing (WGS) performed on vegetative cells of two radiation resistant bacterial strains, Metabacillus halosaccharovorans (VITHBRA001) and Bacillus paralicheniformis (VITHBRA024) (D10 values 2.32 kGy and 1.42 kGy, respectively), inhabiting the top-ranking high background radiation area (HBRA) of Chavara-Neendakara placer deposit (Kerala, India). The present investigation has been carried out in the context that information on strategies of bacteria having mid-range resistance for gamma radiation is inadequate. WGS, annotation, COG and KEGG analyses and manual curation of genes helped us address the possible pathways involved in the major domains of radiation resistance, involving recombination repair, base excision repair, nucleotide excision repair and mismatch repair, and the antioxidant genes, which the candidate could activate to survive under ionizing radiation. Additionally, with the help of these data, we could compare the candidate strains with that of the extremely radiation resistant model bacterium Deinococccus radiodurans, so as to find the commonalities existing in their strategies of resistance on the one hand, and also the rationale behind the difference in D10, on the other. Genomic analysis of VITHBRA001 and VITHBRA024 has further helped us ascertain the difference in capability of radiation resistance between the two strains. Significantly, the genes such as uvsE (NER), frnE (protein protection), ppk1 and ppx (non-enzymatic metabolite production) and those for carotenoid biosynthesis, are endogenous to VITHBRA001, but absent in VITHBRA024, which could explain the former's better radiation resistance. Further, this is the first-time study performed on any bacterial population inhabiting an HBRA. This study also brings forward the two species whose radiation resistance has not been reported thus far, and add to the knowledge on radiation resistant capabilities of the phylum Firmicutes which are abundantly observed in extreme environment.
Collapse
Affiliation(s)
- Sowptika Pal
- Molecular Endocrinology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ramani Yuvaraj
- Radiological and Environmental Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Hari Krishnan
- Radiological and Environmental Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Balasubramanian Venkatraman
- Radiological and Environmental Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Jayanthi Abraham
- Microbial Biotechnology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anilkumar Gopinathan
- Molecular Endocrinology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
8
|
Liu M, Wang M, Huang M, Gao Q, Zhu D, Wang M, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Tian B, Sun D, Cheng A. Iron efflux by IetA enhances β-lactam aztreonam resistance and is linked to oxidative stress through cellular respiration in Riemerella anatipestifer. J Antimicrob Chemother 2024; 79:1385-1396. [PMID: 38629469 DOI: 10.1093/jac/dkae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/20/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Riemerella anatipestifer encodes an iron acquisition system, but whether it encodes the iron efflux pump and its role in antibiotic resistance are largely unknown. OBJECTIVES To screen and identify an iron efflux gene in R. anatipestifer and determine whether and how the iron efflux gene is involved in antibiotic resistance. METHODS In this study, gene knockout, streptonigrin susceptibility assay and inductively coupled plasma mass spectrometry were used to screen for the iron efflux gene ietA. The MIC measurements, scanning electron microscopy and reactive oxygen species (ROS) detection were used to verify the role of IetA in aztreonam resistance and its mechanism. Mortality and colonization assay were used to investigate the role of IetA in virulence. RESULTS The deletion mutant ΔietA showed heightened susceptibility to streptonigrin, and prominent intracellular iron accumulation was observed in ΔfurΔietA under excess iron conditions. Additionally, ΔietA exhibited increased sensitivity to H2O2-produced oxidative stress. Under aerobic conditions with abundant iron, ΔietA displayed increased susceptibility to the β-lactam antibiotic aztreonam due to heightened ROS production. However, the killing efficacy of aztreonam was diminished in both WT and ΔietA under anaerobic or iron restriction conditions. Further experiments demonstrated that the efficiency of aztreonam against ΔietA was dependent on respiratory complexes Ⅰ and Ⅱ. Finally, in a duckling model, ΔietA had reduced virulence compared with the WT. CONCLUSION Iron efflux is critical to alleviate oxidative stress damage and β-lactam aztreonam killing in R. anatipestifer, which is linked by cellular respiration.
Collapse
Affiliation(s)
- Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengying Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mi Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qun Gao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sai Mao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Eren E, Watts NR, Montecinos F, Wingfield PT. Encapsulated Ferritin-like Proteins: A Structural Perspective. Biomolecules 2024; 14:624. [PMID: 38927029 PMCID: PMC11202242 DOI: 10.3390/biom14060624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Encapsulins are self-assembling nano-compartments that naturally occur in bacteria and archaea. These nano-compartments encapsulate cargo proteins that bind to the shell's interior through specific recognition sequences and perform various metabolic processes. Encapsulation enables organisms to perform chemical reactions without exposing the rest of the cell to potentially harmful substances while shielding cargo molecules from degradation and other adverse effects of the surrounding environment. One particular type of cargo protein, the ferritin-like protein (FLP), is the focus of this review. Encapsulated FLPs are members of the ferritin-like protein superfamily, and they play a crucial role in converting ferrous iron (Fe+2) to ferric iron (Fe+3), which is then stored inside the encapsulin in mineralized form. As such, FLPs regulate iron homeostasis and protect organisms against oxidative stress. Recent studies have demonstrated that FLPs have tremendous potential as biosensors and bioreactors because of their ability to catalyze the oxidation of ferrous iron with high specificity and efficiency. Moreover, they have been investigated as potential targets for therapeutic intervention in cancer drug development and bacterial pathogenesis. Further research will likely lead to new insights and applications for these remarkable proteins in biomedicine and biotechnology.
Collapse
Affiliation(s)
| | | | | | - Paul T. Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Sachla AJ, Soni V, Piñeros M, Luo Y, Im JJ, Rhee KY, Helmann JD. The Bacillus subtilis yqgC-sodA operon protects magnesium-dependent enzymes by supporting manganese efflux. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580342. [PMID: 38405924 PMCID: PMC10888875 DOI: 10.1101/2024.02.14.580342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Microbes encounter a myriad of stresses during their life cycle. Dysregulation of metal ion homeostasis is increasingly recognized as a key factor in host-microbe interactions. Bacterial metal ion homeostasis is tightly regulated by dedicated metalloregulators that control uptake, sequestration, trafficking, and efflux. Here, we demonstrate that deletion of the Bacillus subtilis yqgC-sodA (YS) complex operon, but not deletion of the individual genes, causes hypersensitivity to manganese (Mn). YqgC is an integral membrane protein of unknown function and SodA is a Mn-dependent superoxide dismutase (MnSOD). The YS strain has reduced expression of two Mn efflux proteins, MneP and MneS, consistent with the observed Mn sensitivity. The YS strain accumulated high levels of Mn, had increased reactive radical species (RRS), and had broad metabolic alterations that can be partially explained by the inhibition of Mg-dependent enzymes. Although the YS operon deletion strain and an efflux-deficient mneP mneS double mutant both accumulate Mn and have similar metabolic perturbations they also display phenotypic differences. Several mutations that suppressed Mn intoxication of the mneP mneS efflux mutant did not benefit the YS mutant. Further, Mn intoxication in the YS mutant, but not the mneP mneS strain, was alleviated by expression of Mg-dependent, chorismate-utilizing enzymes of the menaquinone, siderophore, and tryptophan (MST) family. Therefore, despite their phenotypic similarities, the Mn sensitivity in the mneP mneS and the yqgC-sodA deletion mutants results from distinct enzymatic vulnerabilities.
Collapse
Affiliation(s)
- Ankita J. Sachla
- Cornell University, Department of Microbiology, Ithaca, NY, 14853-8101, USA
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Miguel Piñeros
- School of Integrative Plant Sciences, Plant Biology Section, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | - Yuanchan Luo
- Cornell University, Department of Microbiology, Ithaca, NY, 14853-8101, USA
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Janice J. Im
- Cornell University, Department of Microbiology, Ithaca, NY, 14853-8101, USA
| | - Kyu Y. Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - John D. Helmann
- Cornell University, Department of Microbiology, Ithaca, NY, 14853-8101, USA
| |
Collapse
|
11
|
Zheng C, Zhai Y, Qiu J, Wang M, Xu Z, Chen X, Zhou X, Jiao X. ZntA maintains zinc and cadmium homeostasis and promotes oxidative stress resistance and virulence in Vibrio parahaemolyticus. Gut Microbes 2024; 16:2327377. [PMID: 38466137 PMCID: PMC10936601 DOI: 10.1080/19490976.2024.2327377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
Although metals are essential for life, they are toxic to bacteria in excessive amounts. Therefore, the maintenance of metal homeostasis is critical for bacterial physiology and pathogenesis. Vibrio parahaemolyticus is a significant food-borne pathogen that mainly causes acute gastroenteritis in humans and acute hepatopancreatic necrosis disease in shrimp. Herein, we report that ZntA functions as a zinc (Zn) and cadmium (Cd) homeostasis mechanism and contributes to oxidative stress resistance and virulence in V. parahaemolyticus. zntA is remarkably induced by Zn, copper, cobalt, nickel (Ni), and Cd, while ZntA promotes V. parahaemolyticus growth under excess Zn/Ni and Cd conditions via maintaining Zn and Cd homeostasis, respectively. The growth of ΔzntA was inhibited under iron (Fe)-restricted conditions, and the inhibition was associated with Zn homeostasis disturbance. Ferrous iron supplementation improved the growth of ΔzntA under excess Zn, Ni or Cd conditions. The resistance of ΔzntA to H2O2-induced oxidative stress also decreased, and its virulence was attenuated in zebrafish models. Quantitative real-time PCR, mutagenesis, and β-galactosidase activity assays revealed that ZntR positively regulates zntA expression by binding to its promoter. Collectively, the ZntR-regulated ZntA is crucial for Zn and Cd homeostasis and contributes to oxidative stress resistance and virulence in V. parahaemolyticus.
Collapse
Affiliation(s)
- Chengkun Zheng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yimeng Zhai
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Jun Qiu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Mengxian Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaohui Zhou
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Zhang F, O’Brian MR. The divalent metal ion exporter IhpABC is required to maintain iron homeostasis under low to moderate environmental iron conditions in the bacterium Bradyrhizobium japonicum. Mol Microbiol 2024; 121:85-97. [PMID: 38038163 PMCID: PMC10841971 DOI: 10.1111/mmi.15198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Bacterial iron export mitigates high iron stress, but a role for it under lower iron conditions has not been established. MbfA is the high iron stress exporter in Bradyrhizobium japonicum. Here, we identify the ihpABC genes in a selection for secondary site mutations that suppress the poor growth phenotype of feoAB mutants defective in iron acquisition. IhpABC belongs to the RND tripartite efflux pump family. High iron conditions that derepress the mbfA gene partially rescued the growth of an ihpC mutant but reverted the feoB ihpC mutant to the feoB growth phenotype. The ihpA mutant grown under low iron conditions accumulated higher levels of iron compared to the wild type, and it displayed aberrant iron-responsive gene expression. The mbfA mutant was more sensitive than the wild type to H2 O2 , but the ihpA mutant was not sensitive. The ihpA mutant accumulated more Zn, Co and Cd than was found in the wild type, and growth of the mutant was more sensitive to inhibition by ZnCl2 , CoCl2 and CdCl2 . The findings suggest that IhpABC is a divalent metal ion exporter that helps maintain iron homeostasis under low to moderate environmental iron levels. Thus, iron export is not limited to managing high iron stress.
Collapse
Affiliation(s)
- Fengyue Zhang
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Suite 4102, Buffalo, New York 14203 USA
| | - Mark R. O’Brian
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Suite 4102, Buffalo, New York 14203 USA
| |
Collapse
|
13
|
Palmgren M. P-type ATPases: Many more enigmas left to solve. J Biol Chem 2023; 299:105352. [PMID: 37838176 PMCID: PMC10654040 DOI: 10.1016/j.jbc.2023.105352] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023] Open
Abstract
P-type ATPases constitute a large ancient super-family of primary active pumps that have diverse substrate specificities ranging from H+ to phospholipids. The significance of these enzymes in biology cannot be overstated. They are structurally related, and their catalytic cycles alternate between high- and low-affinity conformations that are induced by phosphorylation and dephosphorylation of a conserved aspartate residue. In the year 1988, all P-type sequences available by then were analyzed and five major families, P1 to P5, were identified. Since then, a large body of knowledge has accumulated concerning the structure, function, and physiological roles of members of these families, but only one additional family, P6 ATPases, has been identified. However, much is still left to be learned. For each family a few remaining enigmas are presented, with the intention that they will stimulate interest in continued research in the field. The review is by no way comprehensive and merely presents personal views with a focus on evolution.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
14
|
Zelaya-Molina LX, Guerra-Camacho JE, Ortiz-Alvarez JM, Vigueras-Cortés JM, Villa-Tanaca L, Hernández-Rodríguez C. Plant growth-promoting and heavy metal-resistant Priestia and Bacillus strains associated with pioneer plants from mine tailings. Arch Microbiol 2023; 205:318. [PMID: 37615783 DOI: 10.1007/s00203-023-03650-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/26/2023] [Accepted: 08/06/2023] [Indexed: 08/25/2023]
Abstract
Open mine tailings dams are extreme artificial environments containing sizeable potentially toxic elements (PTEs), including heavy metals (HMs), transition metals, and metalloids. Furthermore, these tailings have nutritional deficiencies, including assimilable phosphorus sources, organic carbon, and combined nitrogen, preventing plant colonization. Bacteria, that colonize these environments, have mechanisms to tolerate the selective pressures of PTEs. In this work, several Priestia megaterium (formerly Bacillus megaterium), Bacillus mojavensis, and Bacillus subtilis strains were isolated from bulk tailings, anthills, rhizosphere, and endosphere of pioneer plants from abandoned mine tailings in Zacatecas, Mexico. Bacillus spp. tolerated moderate HMs concentrations, produced siderophores and indole-3-acetic acid (IAA), solubilized phosphates, and reduced acetylene in the presence of HMs. The strains harbored different PIB-type ATPase genes encoding for efflux pumps and Cation Diffusion Facilitator (CDF) genes. Moreover, nifH and nifD nitrogenase genes were detected in P. megaterium and B. mojavensis genomic DNA. They showed similarity with sequences of the beta-Proteobacteria species, which may represent likely horizontal transfer events. These Bacillus species precede the colonization of mine tailings by plants. Their phenotypic and genotypic features could be essential in the natural recovery of the sites by reducing the oxidative stress of HMs, fixing nitrogen, solubilizing phosphate, and accumulating organic carbon. These traits of the strains reflect the adaptations of Bacillus species to the mine tailings environment and could contribute to the success of phytoremediation efforts.
Collapse
Affiliation(s)
- Lily X Zelaya-Molina
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N. Col. Sto. Tomás, C.P. 11340, Ciudad de México, México
- Centro Nacional de Recursos Genéticos-INIFAP, Boulevard de La Biodiversidad 400, Rancho Las Cruces, C.P. 47600, Tepatitlán de Morelos, Jalisco, México
| | - Jairo E Guerra-Camacho
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N. Col. Sto. Tomás, C.P. 11340, Ciudad de México, México
| | - Jossue M Ortiz-Alvarez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N. Col. Sto. Tomás, C.P. 11340, Ciudad de México, México
- Programa "Investigadoras E Investigadores Por México". Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Av. de los Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, C.P. 03940, Ciudad de México, México
| | - Juan M Vigueras-Cortés
- Laboratorio de Prototipos de Agua, Centro Interdisciplinario de Investigación Para El Desarrollo Integral Regional, IPN CIIDIR Durango, Sigma 119, Fracc. 20 de Noviembre II, C.P. 34220, Durango, Durango, México
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N. Col. Sto. Tomás, C.P. 11340, Ciudad de México, México
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N. Col. Sto. Tomás, C.P. 11340, Ciudad de México, México.
| |
Collapse
|
15
|
Mihelj P, Abreu I, Moreyra T, González-Guerrero M, Raimunda D. Functional Characterization of the Co 2+ Transporter AitP in Sinorhizobium meliloti: A New Player in Fe 2+ Homeostasis. Appl Environ Microbiol 2023; 89:e0190122. [PMID: 36853042 PMCID: PMC10057888 DOI: 10.1128/aem.01901-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023] Open
Abstract
Co2+ induces the increase of the labile-Fe pool (LIP) by Fe-S cluster damage, heme synthesis inhibition, and "free" iron import, which affects cell viability. The N2-fixing bacteria, Sinorhizobium meliloti, is a suitable model to determine the roles of Co2+-transporting cation diffusion facilitator exporters (Co-eCDF) in Fe2+ homeostasis because it has a putative member of this subfamily, AitP, and two specific Fe2+-export systems. An insertional mutant of AitP showed Co2+ sensitivity and accumulation, Fe accumulation and hydrogen peroxide sensitivity, but not Fe2+ sensitivity, despite AitP being a bona fide low affinity Fe2+ exporter as demonstrated by the kinetic analyses of Fe2+ uptake into everted membrane vesicles. Suggesting concomitant Fe2+-dependent induced stress, Co2+ sensitivity was increased in strains carrying mutations in AitP and Fe2+ exporters which did not correlate with the Co2+ accumulation. Growth in the presence of sublethal Fe2+ and Co2+ concentrations suggested that free Fe-import might contribute to Co2+ toxicity. Supporting this, Co2+ induced transcription of Fe-import system and genes associated with Fe homeostasis. Analyses of total protoporphyrin content indicates Fe-S cluster attack as the major source for LIP. AitP-mediated Fe2+-export is likely counterbalanced via a nonfutile Fe2+-import pathway. Two lines of evidence support this: (i) an increased hemin uptake in the presence of Co2+ was observed in wild-type (WT) versus AitP mutant, and (ii) hemin reversed the Co2+ sensitivity in the AitP mutant. Thus, the simultaneous detoxification mediated by AitP aids cells to orchestrate an Fe-S cluster salvage response, avoiding the increase in the LIP caused by the disassembly of Fe-S clusters or free iron uptake. IMPORTANCE Cross-talk between iron and cobalt has been long recognized in biological systems. This is due to the capacity of cobalt to interfere with proper iron utilization. Cells can detoxify cobalt by exporting mechanisms involving membrane proteins known as exporters. Highlighting the cross-talk, the capacity of several cobalt exporters to also export iron is emerging. Although biologically less important than Fe2+, Co2+ induces toxicity by promoting intracellular Fe release, which ultimately causes additional toxic effects. In this work, we describe how the rhizobia cells solve this perturbation by clearing Fe through a Co2+ exporter, in order to reestablish intracellular Fe levels by importing nonfree Fe, heme. This piggyback-ride type of transport may aid bacterial cells to survive in free-living conditions where high anthropogenic Co2+ content may be encountered.
Collapse
Affiliation(s)
- Paula Mihelj
- Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC-CONICET, UNC, Córdoba, Argentina
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Tomás Moreyra
- Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC-CONICET, UNC, Córdoba, Argentina
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Daniel Raimunda
- Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC-CONICET, UNC, Córdoba, Argentina
| |
Collapse
|
16
|
Mutations in troABCD against Copper Overload in a copA Mutant of Streptococcus suis. Appl Environ Microbiol 2023; 89:e0184122. [PMID: 36475883 PMCID: PMC9888204 DOI: 10.1128/aem.01841-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Streptococcus suis is a major swine pathogen that is increasingly recognized as a porcine zoonotic pathogen that threatens the health of both pigs and humans. Metal homeostasis plays a critical role during the process of bacterial infection. In this study, RNA sequencing was used to identify potential candidate genes involved in the maintenance of intracellular copper homeostasis. CopA was identified as the primary copper exporter in S. suis. The copA deletion mutant strain was found to be more sensitive to copper and accumulated more intracellular copper than the wild-type (WT) parent strain. In addition, adding manganese increased the ability of S. suis to resist copper, and the manganese transporter, TroABCD, was involved in tolerance to copper. The copA deletion mutant strain accumulated less copper when supplemented with manganese. Furthermore, when cultured with copper, the double deletion mutant (ΔcopAΔtroA) exhibited improved growth compared to the copA deletion mutant strain. In addition, the double deletion mutant (ΔcopAΔtroA) accumulated less copper than the copA deletion mutant strain. These data were consistent with a model wherein defective TroABCD resulted in decreased cellular copper accumulation and protected the strain against copper poisoning. IMPORTANCE Metal homeostasis plays a critical role during the process of bacterial infection. We identified three important potential candidate genes involved in maintenance of intracellular copper homeostasis. CopA was demonstrated to be the main copper exporter in Streptococcus suis, and manganese increased the tolerance of S. suis to copper. The double deletion mutant (ΔcopAΔtroA) improved growth ability over the copA deletion mutant strain in the presence of high concentrations of copper and accumulated less copper. These findings are consistent with a model wherein defective TroABCD resulted in decreased cellular accumulation of copper and protected the strain against copper poisoning.
Collapse
|
17
|
Steingard CH, Pinochet-Barros A, Wendel BM, Helmann JD. Iron homeostasis in Bacillus subtilis relies on three differentially expressed efflux systems. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001289. [PMID: 36748638 PMCID: PMC9993123 DOI: 10.1099/mic.0.001289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In Bacillus subtilis, iron homeostasis is maintained by the ferric uptake regulator (Fur) and manganese homeostasis relies on the manganese transport regulator (MntR). Both Fur and MntR function as bi-functional metalloregulators that repress import and activate metal ion efflux systems. The ferrous iron efflux ATPase, PfeT, is derepressed by hydrogen peroxide (H2O2) as sensed by PerR and induced by iron as sensed by Fur. Mutants lacking PfeT are sensitive to iron intoxication. Here, we show that mntR mutants are also iron-sensitive, largely due to decreased expression of the MntR-activated MneP and MneS cation diffusion facilitator (CDF) proteins previously defined for their role in Mn2+ export. The ability of MneP and MneS to export iron is apparent even when their expression is not induced by Mn2+. Our results demonstrate that PfeT, MneP and MneS each contribute to iron homeostasis, and a triple mutant lacking all three is more iron-sensitive than any single mutant. We further show that sensitivity to H2O2 does not correlate with iron sensitivity. For example, an mntR mutant is H2O2-sensitive due to elevated Mn(II) that increases PerR-mediated repression of peroxide resistance genes, and this repression is antagonized by elevated Fe2+ in an mntR pfeT mutant. Thus, H2O2-sensitivity reflects the relative levels of Mn2+ and Fe2+ as sensed by the PerR regulatory protein. These results underscore the complex interplay between manganese, iron and oxidative stress in B. subtilis.
Collapse
Affiliation(s)
- Caroline H Steingard
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | - Azul Pinochet-Barros
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | - Brian M Wendel
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| |
Collapse
|
18
|
Zhao Y, Kong M, Yang J, Zhao X, Shi Y, Zhai Y, Qiu J, Zheng C. The DmeRF System Is Involved in Maintaining Cobalt Homeostasis in Vibrio parahaemolyticus. Int J Mol Sci 2022; 24:ijms24010414. [PMID: 36613858 PMCID: PMC9820535 DOI: 10.3390/ijms24010414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Although cobalt (Co) is indispensable for life, it is toxic to cells when accumulated in excess. The DmeRF system is a well-characterized metal-response system that contributes to Co and nickel resistance in certain bacterial species. The Vibrio parahaemolyticus RIMD 2210633 genome also harbors a dmeRF operon that encodes a multiple antibiotic resistance regulator family transcriptional regulator and a cation diffusion facilitator family protein. Quantitative real-time PCR, growth curves analysis, inductively coupled plasma-mass spectrometry, β-galactosidase activity assays, electrophoretic mobility shift assays, and a mouse infection experiment were performed to characterize the function of the DmeRF system in V. parahaemolyticus. Zinc, copper, and Co significantly increase dmeF expression, with Co inducing the greatest increase. DmeF promotes V. parahaemolyticus growth under high-Co conditions. Additionally, increased accumulation of cellular Co in the ΔdmeF mutant indicates that DmeF is potentially involved in Co efflux. Moreover, DmeR represses the dmeRF operon by binding directly to its promoter in the absence of Co. Finally, the DmeRF system was not required for V. parahaemolyticus virulence in mice. Collectively, our data indicate that the DmeRF system is involved in maintaining Co homeostasis in V. parahaemolyticus and DmeR functioning as a repressor of the operon.
Collapse
Affiliation(s)
- Yuxuan Zhao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of MOE, Yangzhou University, Yangzhou 225009, China
| | - Mengyao Kong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of MOE, Yangzhou University, Yangzhou 225009, China
| | - Jiaxue Yang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of MOE, Yangzhou University, Yangzhou 225009, China
| | - Xiaoxian Zhao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of MOE, Yangzhou University, Yangzhou 225009, China
| | - Yiran Shi
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of MOE, Yangzhou University, Yangzhou 225009, China
| | - Yimeng Zhai
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of MOE, Yangzhou University, Yangzhou 225009, China
| | - Jun Qiu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of MOE, Yangzhou University, Yangzhou 225009, China
| | - Chengkun Zheng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of MOE, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
19
|
Xu J, Cotruvo JA. Reconsidering the czcD (NiCo) Riboswitch as an Iron Riboswitch. ACS BIO & MED CHEM AU 2022; 2:376-385. [PMID: 35996475 PMCID: PMC9389577 DOI: 10.1021/acsbiomedchemau.1c00069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Recent work has proposed
a new mechanism of bacterial iron regulation:
riboswitches that undergo a conformational change in response to FeII. The czcD (NiCo) riboswitch was initially
proposed to be specific for NiII and CoII, but
we recently showed via a czcD-based fluorescent sensor
that FeII is also a plausible physiological ligand for
this riboswitch class. Here, we provide direct evidence that this
riboswitch class responds to FeII. Isothermal titration
calorimetry studies of the native czcD riboswitches
from three organisms show no response to MnII, a weak response
to ZnII, and similar dissociation constants (∼1
μM) and conformational responses for FeII, CoII, and NiII. Only the iron response is in the physiological
concentration regime; the riboswitches’ responses to CoII, NiII, and ZnII require 103-, 105-, and 106-fold higher “free”
metal ion concentrations, respectively, than the typical availability
of those metal ions in cells. By contrast, the “Sensei”
RNA, recently claimed to be an iron-specific riboswitch, exhibits
no response to FeII. Our results demonstrate that iron
responsiveness is a conserved property of czcD riboswitches
and clarify that this is the only family of iron-responsive riboswitch
identified to date, setting the stage for characterization of their
physiological function.
Collapse
Affiliation(s)
- Jiansong Xu
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joseph A. Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
20
|
Luo Y, Chen L, Lu Z, Zhang W, Liu W, Chen Y, Wang X, Du W, Luo J, Wu H. Genome sequencing of biocontrol strain Bacillus amyloliquefaciens Bam1 and further analysis of its heavy metal resistance mechanism. BIORESOUR BIOPROCESS 2022; 9:74. [PMID: 38647608 PMCID: PMC10991351 DOI: 10.1186/s40643-022-00563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) or Biocontrol strains inevitably encounter heavy metal excess stress during the product's processing and application. Bacillus amyloliquefaciens Bam1 was a potential biocontrol strain with strong heavy metal resistant ability. To understand its heavy metal resistance mechanism, the complete genome of Bam1 had been sequenced, and the comparative genomic analysis of Bam1 and FZB42, an industrialized PGPR and biocontrol strain with relatively lower heavy metal tolerance, was conducted. The comparative genomic analysis of Bam1 and the other nine B. amyloliquefaciens strains as well as one Bacillus velezensis (genetically and physiologically very close to B. amyloliquefaciens) was also performed. Our results showed that the complete genome size of Bam1 was 3.95 Mb, 4219 coding sequences were predicted, and it possessed the highest number of unique genes among the eleven analyzed strains. Nine genes related to heavy metal resistance were detected within the twelve DNA islands of Bam1, while only two of them were detected within the seventeen DNA islands of FZB42. When compared with B. amyloliquefaciens type strain DSM7, Bam1 lacked contig L, whereas FZB42 lacked contig D and I, as well as just possessed contig B with a very small size. Our results could also deduce that Bam1 promoted its essential heavy metal resistance mainly by decreasing the import and increasing the export of heavy metals with the corresponding homeostasis systems, which are regulated by different metalloregulators. While Bam1 promoted its non-essential heavy metal resistance mainly by the activation of some specific or non-specific exporters responding to different heavy metals. The variation of the genes related to heavy metal resistance and the other differences of the genomes, including the different number and arrangement of contigs, as well as the number of the heavy metal resistant genes in Prophages and Genomic islands, led to the significant different resistance of Bam1 and FZB42 to heavy metals.
Collapse
Affiliation(s)
- Yuanchan Luo
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Lei Chen
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai, 201103, China
| | - Zhibo Lu
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weijian Zhang
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wentong Liu
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuwei Chen
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xinran Wang
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wei Du
- Agricultural Technology Extension Station of Ningxia, 2, West Shanghai Road, Yinchuan, 750001, China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai, 201103, China.
| | - Hui Wu
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
- Key Laboratory of Bio-Based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
21
|
Xu J, Cotruvo JA. Iron-responsive riboswitches. Curr Opin Chem Biol 2022; 68:102135. [PMID: 35427920 PMCID: PMC9133107 DOI: 10.1016/j.cbpa.2022.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
Abstract
All cells must manage deficiency, sufficiency, and excess of essential metal ions. Although iron has been one of most important metals in biology for billions of years, the mechanisms by which bacteria cope with high intracellular iron concentrations are only recently coming into focus. Recent work has suggested that an RNA riboswitch (czcD or "NiCo"), originally thought to respond specifically to CoII and NiII excess, is more likely a selective regulator of FeII levels in important human gut bacteria and pathogens. We discuss the challenges and controversies encountered in the characterization of iron-responsive riboswitches, and we suggest a physiological role in responding to iron overload, perhaps during anaerobiosis. Finally, we place these riboswitches in the context of the better understood mechanisms of protein-based metal ion regulation, proposing that riboswitch-mediated mechanisms may be particularly important in regulating transport of the weakest-binding biological divalent metal ions, MgII, MnII, and FeII.
Collapse
Affiliation(s)
- Jiansong Xu
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph A Cotruvo
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
22
|
Grant CR, Amor M, Trujillo HA, Krishnapura S, Iavarone AT, Komeili A. Distinct gene clusters drive formation of ferrosome organelles in bacteria. Nature 2022; 606:160-164. [PMID: 35585231 PMCID: PMC10906721 DOI: 10.1038/s41586-022-04741-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/07/2022] [Indexed: 12/20/2022]
Abstract
Cellular iron homeostasis is vital and maintained through tight regulation of iron import, efflux, storage and detoxification1-3. The most common modes of iron storage use proteinaceous compartments, such as ferritins and related proteins4,5. Although lipid-bounded iron compartments have also been described, the basis for their formation and function remains unknown6,7. Here we focus on one such compartment, herein named the 'ferrosome', that was previously observed in the anaerobic bacterium Desulfovibrio magneticus6. Using a proteomic approach, we identify three ferrosome-associated (Fez) proteins that are responsible for forming ferrosomes in D. magneticus. Fez proteins are encoded in a putative operon and include FezB, a P1B-6-ATPase found in phylogenetically and metabolically diverse species of bacteria and archaea. We show that two other bacterial species, Rhodopseudomonas palustris and Shewanella putrefaciens, make ferrosomes through the action of their six-gene fez operon. Additionally, we find that fez operons are sufficient for ferrosome formation in foreign hosts. Using S. putrefaciens as a model, we show that ferrosomes probably have a role in the anaerobic adaptation to iron starvation. Overall, this work establishes ferrosomes as a new class of iron storage organelles and sets the stage for studying their formation and structure in diverse microorganisms.
Collapse
Affiliation(s)
- Carly R Grant
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Matthieu Amor
- Aix-Marseille Université, CEA, CNRS, BIAM, Saint-Paul-lez-Durance, France
| | - Hector A Trujillo
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Sunaya Krishnapura
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, CA, USA
| | - Arash Komeili
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
23
|
Zheng C, Qiu J, Zhao X, Yu S, Wang H, Wan M, Wei M, Jiao X. The AdcR-regulated AdcA and AdcAII contribute additively to zinc acquisition and virulence in Streptococcus suis. Vet Microbiol 2022; 269:109418. [PMID: 35430524 DOI: 10.1016/j.vetmic.2022.109418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/10/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022]
Abstract
Metals are necessary elements for bacteria. Typically, vertebrate hosts restrict invading bacterial pathogens from accessing metals. Therefore, bacteria have evolved high-affinity metal importers to acquire metals. Streptococcus suis is a major swine pathogen and an emerging zoonotic agent that endangers the swine industry and human health worldwide. Herein, we aimed to identify the zinc acquisition systems in S. suis and evaluate their roles in bacterial virulence. Bioinformatic analyses revealed that S. suis encodes homologues of AdcA and AdcAII, two well-characterised Zn-binding lipoproteins in certain streptococci. Quantitative reverse transcription PCR (qRT-PCR) analysis revealed that the expressions of adcA and adcAII were significantly upregulated in response to Zn limitation, with a higher expression level of adcAII than adcA. Gene deletion mutants and complementation strains were constructed; their growth characteristics under Zn-deficient and Zn-replete conditions indicated that AdcA and AdcAII have overlapping functionality in Zn acquisition. A mouse infection model was used to evaluate the roles of AdcA and AdcAII in S. suis virulence. Mice infected with the double mutant ΔadcAΔadcAII exhibited a significantly higher survival rate, decreased bacterial burden, and lower production of inflammatory cytokines compared to those infected with the wild type (WT) strain. Furthermore, ΔadcAΔadcAII showed reduced competitiveness in infection establishment compared with the WT strain. RNA sequencing, qRT-PCR, and electrophoretic mobility shift assays revealed that AdcR negatively regulates the expressions of adcA and adcAII. Collectively, our results demonstrated that AdcA and AdcAII, which are negatively regulated by AdcR, contribute additively to zinc acquisition and virulence in S. suis.
Collapse
Affiliation(s)
- Chengkun Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Jun Qiu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaoxian Zhao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Sijia Yu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Hong Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Mengyan Wan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Man Wei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| |
Collapse
|
24
|
Deol R, Louis A, Glazer HL, Hosseinion W, Bagley A, Chandrangsu P. Poly-Gamma-Glutamic Acid Secretion Protects Bacillus subtilis from Zinc and Copper Intoxication. Microbiol Spectr 2022; 10:e0132921. [PMID: 35311566 PMCID: PMC9045300 DOI: 10.1128/spectrum.01329-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
Zinc and copper are essential micronutrients that serve as a cofactors for numerous enzymes. However, when present at elevated concentrations, zinc and copper are highly toxic to bacteria. To combat the effects of zinc and copper excess, bacteria have evolved a wide array of defense mechanisms. Here, we show that the Gram-positive soil bacterium, Bacillus subtilis, produces the extracellular polymeric substance, poly-gamma-glutamate (γ-PGA) as a protective mechanism in response to zinc and copper excess. Furthermore, we provide evidence that zinc and copper dependent γ-PGA production is independent of the DegS-DegQ two-component regulatory system and likely occurs at a posttranscriptional level through the small protein, PgsE. These data provide new insight into bacterial metal resistance mechanisms and contribute to our understanding of the regulation of bacterial γ-PGA biosynthesis. IMPORTANCE Zinc and copper are potent antimicrobial compounds. As such, bacteria have evolved a diverse range of tools to prevent metal intoxication. Here, we show that the Gram-positive model organism, Bacillus subtilis, produces poly-gamma-glutamic acid (γ-PGA) as a protective mechanism against zinc and copper intoxication and that zinc and copper dependent γ-PGA production occurs by a yet undefined mechanism independent of known γ-PGA regulation pathways.
Collapse
Affiliation(s)
- Reina Deol
- Keck Science Department, Scripps College, Claremont, California, USA
| | - Ashweetha Louis
- Keck Science Department, Scripps College, Claremont, California, USA
| | - Harper Lee Glazer
- Keck Science Department, Scripps College, Claremont, California, USA
| | | | - Anna Bagley
- Keck Science Department, Scripps College, Claremont, California, USA
| | - Pete Chandrangsu
- Keck Science Department, Scripps College, Claremont, California, USA
- Keck Science Department, Pitzer College, Claremont, California, USA
- Keck Science Department, Claremont McKenna College, Claremont, California, USA
| |
Collapse
|
25
|
Wendel BM, Pi H, Krüger L, Herzberg C, Stülke J, Helmann JD. A Central Role for Magnesium Homeostasis during Adaptation to Osmotic Stress. mBio 2022; 13:e0009222. [PMID: 35164567 PMCID: PMC8844918 DOI: 10.1128/mbio.00092-22] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
Osmotic stress is a significant physical challenge for free-living cells. Cells from all three domains of life maintain viability during osmotic stress by tightly regulating the major cellular osmolyte potassium (K+) and by import or synthesis of compatible solutes. It has been widely established that in response to high salt stress, many bacteria transiently accumulate high levels of K+, leading to bacteriostasis, with growth resuming only when compatible solutes accumulate and K+ levels are restored to biocompatible levels. Using Bacillus subtilis as a model system, we provide evidence that K+ fluxes perturb Mg2+ homeostasis: import of K+ upon osmotic upshift is correlated with Mg2+ efflux, and Mg2+ reimport is critical for adaptation. The transient growth inhibition resulting from hyperosmotic stress is coincident with loss of Mg2+ and a decrease in protein translation. Conversely, the reimport of Mg2+ is a limiting factor during resumption of growth. Furthermore, we show the essential signaling dinucleotide cyclic di-AMP fluctuates dynamically in coordination with Mg2+ and K+ levels, consistent with the proposal that cyclic di-AMP orchestrates the cellular response to osmotic stress. IMPORTANCE Environments with high concentrations of salt or other solutes impose an osmotic stress on cells, ultimately limiting viability by dehydration of the cytosol. A very common cellular response to high osmolarity is to immediately import high levels of potassium ion (K+), which helps prevent dehydration and allows time for the import or synthesis of biocompatible solutes that allow a resumption of growth. Here, using Bacillus subtilis as a model, we demonstrate that concomitant with K+ import there is a large reduction in intracellular magnesium (Mg2+) mediated by specific efflux pumps. Further, it is the reimport of Mg2+ that is rate-limiting for the resumption of growth. These coordinated fluxes of K+ and Mg2+ are orchestrated by cyclic-di-AMP, an essential second messenger in Firmicutes. These findings amend the conventional model for osmoadaptation and reveal that Mg2+ limitation is the proximal cause of the bacteriostasis that precedes resumption of growth.
Collapse
Affiliation(s)
- Brian M. Wendel
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Hualiang Pi
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Larissa Krüger
- Department of General Microbiology, GZMB, Georg August University, Göttingen, Germany
| | - Christina Herzberg
- Department of General Microbiology, GZMB, Georg August University, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg August University, Göttingen, Germany
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
26
|
Brown JB, Lee MA, Smith AT. Ins and Outs: Recent Advancements in Membrane Protein-Mediated Prokaryotic Ferrous Iron Transport. Biochemistry 2021; 60:3277-3291. [PMID: 34670078 DOI: 10.1021/acs.biochem.1c00586] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Iron is an essential nutrient for virtually every living organism, especially pathogenic prokaryotes. Despite its importance, however, both the acquisition and the export of this element require dedicated pathways that are dependent on oxidation state. Due to its solubility and kinetic lability, reduced ferrous iron (Fe2+) is useful to bacteria for import, chaperoning, and efflux. Once imported, ferrous iron may be loaded into apo and nascent enzymes and even sequestered into storage proteins under certain conditions. However, excess labile ferrous iron can impart toxicity as it may spuriously catalyze Fenton chemistry, thereby generating reactive oxygen species and leading to cellular damage. In response, it is becoming increasingly evident that bacteria have evolved Fe2+ efflux pumps to deal with conditions of ferrous iron excess and to prevent intracellular oxidative stress. In this work, we highlight recent structural and mechanistic advancements in our understanding of prokaryotic ferrous iron import and export systems, with a focus on the connection of these essential transport systems to pathogenesis. Given the connection of these pathways to the virulence of many increasingly antibiotic resistant bacterial strains, a greater understanding of the mechanistic details of ferrous iron cycling in pathogens could illuminate new pathways for future therapeutic developments.
Collapse
Affiliation(s)
- Janae B Brown
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Mark A Lee
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
27
|
Mishra S, Brady LJ. The Cytoplasmic Domains of Streptococcus mutans Membrane Protein Insertases YidC1 and YidC2 Confer Unique Structural and Functional Attributes to Each Paralog. Front Microbiol 2021; 12:760873. [PMID: 34795653 PMCID: PMC8595059 DOI: 10.3389/fmicb.2021.760873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Integral and membrane-anchored proteins are pivotal to survival and virulence of the dental pathogen, Streptococcus mutans. The bacterial chaperone/insertase, YidC, contributes to membrane protein translocation. Unlike Escherichia coli, most Gram-positive bacteria contain two YidC paralogs. Herein, we evaluated structural features that functionally delineate S. mutans YidC1 and YidC2. Bacterial YidCs contain five transmembrane domains (TMD), two cytoplasmic loops, and a cytoplasmic tail. Because S. mutans YidC1 (SmYidC1) and YidC2 (SmYidC2) cytoplasmic domains (CD) are less well conserved than are TMD, we engineered ectopic expression of the 14 possible YidC1-YidC2 CD domain swap combinations. Growth and stress tolerance of each was compared to control strains ectopically expressing unmodified yidC1 or yidC2. Acid and osmotic stress sensitivity are associated with yidC2 deletion. Sensitivity to excess zinc was further identified as a ΔyidC1 phenotype. Overall, YidC1 tolerated CD substitutions better than YidC2. Preferences toward particular CD combinations suggested potential intramolecular interactions. In silico analysis predicted salt-bridges between C1 and C2 loops of YidC1, and C1 loop and C-terminal tail of YidC2, respectively. Mutation of contributing residues recapitulated ΔyidC1- and ΔyidC2-associated phenotypes. Taken together, this work revealed the importance of cytoplasmic domains in distinct functional attributes of YidC1 and YidC2, and identified key residues involved in interdomain interactions.
Collapse
Affiliation(s)
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
28
|
Zheng C, Wei M, Qiu J, Jia M, Zhou X, Jiao X. TroR Negatively Regulates the TroABCD System and Is Required for Resistance to Metal Toxicity and Virulence in Streptococcus suis. Appl Environ Microbiol 2021; 87:e0137521. [PMID: 34378993 PMCID: PMC8478451 DOI: 10.1128/aem.01375-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is an emerging zoonotic pathogen that causes severe swine and human infections. Metals are essential nutrients for life; however, excess metals are toxic to bacteria. Therefore, maintenance of intracellular metal homeostasis is important for bacterial survival. Here, we characterize a DtxR family metalloregulator, TroR, in S. suis. TroR is located upstream of the troABCD operon, whose expression was found to be significantly downregulated in response to excess manganese (Mn). Deletion of troR resulted in reduced growth when S. suis was cultured in metal-replete medium supplemented with elevated concentrations of zinc (Zn), copper (Cu), or cobalt (Co). Mn supplementation could alleviate the growth defects of the ΔtroR mutant under Zn and Co excess conditions; however, it impaired the growth of the wild-type (WT) and complemented (CΔtroR) strains under Cu excess conditions. The growth of ΔtroR was also inhibited in metal-depleted medium supplemented with elevated concentrations of Mn. Moreover, the ΔtroR mutant accumulated increased levels of intracellular Mn and Co, rather than Zn and Cu. Deletion of troR in S. suis led to significant upregulation of the troABCD operon. Furthermore, troA expression in the WT strain was induced by ferrous iron [Fe(II)] and Co and repressed by Mn and Cu; the repression of troA was mediated by TroR. Finally, TroR is required for S. suis virulence in an intranasal mouse model. Together, these data suggest that TroR is a negative regulator of the TroABCD system and contributes to resistance to metal toxicity and virulence in S. suis. IMPORTANCE Metals are essential nutrients for life; however, the accumulation of excess metals in cells can be toxic to bacteria. In the present study, we identified a metalloregulator, TroR, in Streptococcus suis, which is an emerging zoonotic pathogen. In contrast to the observations in other species that TroR homologs usually contribute to the maintenance of homeostasis of one or two metals, we demonstrated that TroR is required for resistance to the toxicity conferred by multiple metals in S. suis. We also found that deletion of troR resulted in significant upregulation of the troABCD operon, which has been demonstrated to be involved in manganese acquisition in S. suis. Moreover, we demonstrated that TroR is required for the virulence of S. suis in an intranasal mouse model. Collectively, these results suggest that TroR is a negative regulator of the TroABCD system and contributes to resistance to metal toxicity and virulence in S. suis.
Collapse
Affiliation(s)
- Chengkun Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Man Wei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Jun Qiu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Mengdie Jia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaohui Zhou
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, USA
| | - Xinan Jiao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
29
|
Sarasa-Buisan C, Guio J, Broset E, Peleato ML, Fillat MF, Sevilla E. FurC (PerR) from Anabaena sp. PCC7120: a versatile transcriptional regulator engaged in the regulatory network of heterocyst development and nitrogen fixation. Environ Microbiol 2021; 24:566-582. [PMID: 33938105 DOI: 10.1111/1462-2920.15552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
FurC (PerR) from Anabaena sp. PCC7120 was previously described as a key transcriptional regulator involved in setting off the oxidative stress response. In the last years, the cross-talk between oxidative stress, iron homeostasis and nitrogen metabolism is becoming more and more evident. In this work, the transcriptome of a furC-overexpressing strain was compared with that of a wild-type strain under both standard and nitrogen-deficiency conditions. The results showed that the overexpression of furC deregulates genes involved in several categories standing out photosynthesis, iron transport and nitrogen metabolism. The novel FurC-direct targets included some regulatory elements that control heterocyst development (hetZ and asr1734), genes directly involved in the heterocyst envelope formation (devBCA and hepC) and genes which participate in the nitrogen fixation process (nifHDK and nifH2, rbrA rubrerythrin and xisHI excisionase). Likewise, furC overexpression notably impacts the mRNA levels of patA encoding a key protein in the heterocyst pattern formation. The relevance of FurC in these processes is bringing out by the fact that the overexpression of furC impairs heterocyst development and cell growth under nitrogen step-down conditions. In summary, this work reveals a new player in the complex regulatory network of heterocyst formation and nitrogen fixation.
Collapse
Affiliation(s)
- Cristina Sarasa-Buisan
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Jorge Guio
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Esther Broset
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - M Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - María F Fillat
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| |
Collapse
|
30
|
Bradley JM, Svistunenko DA, Wilson MT, Hemmings AM, Moore GR, Le Brun NE. Bacterial iron detoxification at the molecular level. J Biol Chem 2021; 295:17602-17623. [PMID: 33454001 PMCID: PMC7762939 DOI: 10.1074/jbc.rev120.007746] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/07/2020] [Indexed: 01/18/2023] Open
Abstract
Iron is an essential micronutrient, and, in the case of bacteria, its availability is commonly a growth-limiting factor. However, correct functioning of cells requires that the labile pool of chelatable "free" iron be tightly regulated. Correct metalation of proteins requiring iron as a cofactor demands that such a readily accessible source of iron exist, but overaccumulation results in an oxidative burden that, if unchecked, would lead to cell death. The toxicity of iron stems from its potential to catalyze formation of reactive oxygen species that, in addition to causing damage to biological molecules, can also lead to the formation of reactive nitrogen species. To avoid iron-mediated oxidative stress, bacteria utilize iron-dependent global regulators to sense the iron status of the cell and regulate the expression of proteins involved in the acquisition, storage, and efflux of iron accordingly. Here, we survey the current understanding of the structure and mechanism of the important members of each of these classes of protein. Diversity in the details of iron homeostasis mechanisms reflect the differing nutritional stresses resulting from the wide variety of ecological niches that bacteria inhabit. However, in this review, we seek to highlight the similarities of iron homeostasis between different bacteria, while acknowledging important variations. In this way, we hope to illustrate how bacteria have evolved common approaches to overcome the dual problems of the insolubility and potential toxicity of iron.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| | | | - Michael T Wilson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Andrew M Hemmings
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom; Centre for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
31
|
Ewunkem AJ, Rodgers L, Campbell D, Staley C, Subedi K, Boyd S, Graves JL. Experimental Evolution of Magnetite Nanoparticle Resistance in Escherichia coli. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:790. [PMID: 33808798 PMCID: PMC8003623 DOI: 10.3390/nano11030790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023]
Abstract
Both ionic and nanoparticle iron have been proposed as materials to control multidrug-resistant (MDR) bacteria. However, the potential bacteria to evolve resistance to nanoparticle bacteria remains unexplored. To this end, experimental evolution was utilized to produce five magnetite nanoparticle-resistant (FeNP1-5) populations of Escherichia coli. The control populations were not exposed to magnetite nanoparticles. The 24-h growth of these replicates was evaluated in the presence of increasing concentrations magnetite NPs as well as other ionic metals (gallium III, iron II, iron III, and silver I) and antibiotics (ampicillin, chloramphenicol, rifampicin, sulfanilamide, and tetracycline). Scanning electron microscopy was utilized to determine cell size and shape in response to magnetite nanoparticle selection. Whole genome sequencing was carried out to determine if any genomic changes resulted from magnetite nanoparticle resistance. After 25 days of selection, magnetite resistance was evident in the FeNP treatment. The FeNP populations also showed a highly significantly (p < 0.0001) greater 24-h growth as measured by optical density in metals (Fe (II), Fe (III), Ga (III), Ag, and Cu II) as well as antibiotics (ampicillin, chloramphenicol, rifampicin, sulfanilamide, and tetracycline). The FeNP-resistant populations also showed a significantly greater cell length compared to controls (p < 0.001). Genomic analysis of FeNP identified both polymorphisms and hard selective sweeps in the RNA polymerase genes rpoA, rpoB, and rpoC. Collectively, our results show that E. coli can rapidly evolve resistance to magnetite nanoparticles and that this result is correlated resistances to other metals and antibiotics. There were also changes in cell morphology resulting from adaptation to magnetite NPs. Thus, the various applications of magnetite nanoparticles could result in unanticipated changes in resistance to both metal and antibiotics.
Collapse
Affiliation(s)
- Akamu J. Ewunkem
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC 27401, USA;
| | - LaShunta Rodgers
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA;
| | - Daisha Campbell
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Constance Staley
- Department of Chemistry, Bennett College, Greensboro, NC 27401, USA;
| | - Kiran Subedi
- College of Agricultural and Environmental Sciences (CAES), North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Sada Boyd
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA;
| | - Joseph L. Graves
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
32
|
Sevilla E, Bes MT, Peleato ML, Fillat MF. Fur-like proteins: Beyond the ferric uptake regulator (Fur) paralog. Arch Biochem Biophys 2021; 701:108770. [PMID: 33524404 DOI: 10.1016/j.abb.2021.108770] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
Proteins belonging to the FUR (ferric uptake regulator) family are the cornerstone of metalloregulation in most prokaryotes. Although numerous reviews have been devoted to these proteins, these reports are mainly focused on the Fur paralog that gives name to the family. In the last years, the increasing knowledge on the other, less ubiquitous members of this family has evidenced their importance in bacterial metabolism. As the Fur paralog, the major regulator of iron homeostasis, Zur, Irr, BosR and PerR are tightly related to stress defenses and host-pathogen interaction being in many cases essential for virulence. Furthermore, the Nur and Mur paralogs largely contribute to control nickel and manganese homeostasis, which are cofactors of pivotal proteins for host colonization and bacterial redox homeostasis. The present review highlights the main features of FUR proteins that differ to the canonical Fur paralog either in the coregulatory metal, such as Zur, Nur and Mur, or in the action mechanism to control target genes, such as PerR, Irr and BosR.
Collapse
Affiliation(s)
- Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - M Teresa Bes
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - M Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - María F Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
33
|
Thomas MD, Ewunkem AJ, Boyd S, Williams DK, Moore A, Rhinehardt KL, Van Beveren E, Yang B, Tapia A, Han J, Harrison SH, Graves JL. Too much of a good thing: Adaption to iron (II) intoxication in Escherichia coli. EVOLUTION MEDICINE AND PUBLIC HEALTH 2021; 9:53-67. [PMID: 33717488 PMCID: PMC7937436 DOI: 10.1093/emph/eoaa051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/30/2020] [Indexed: 12/22/2022]
Abstract
Background There has been an increased usage of metallic antimicrobial materials to control pathogenic and multi-drug resistant bacteria. Yet, there is a corresponding need to know if this usage leads to genetic adaptations that could produce more harmful strains. Methodology Experimental evolution was used to adapt Escherichia coli K-12 MG1655 to excess iron (II) with subsequent genomic analysis. Phenotypic assays and gene expression studies were conducted to demonstrate pleiotropic effects associated with this adaptation and to elucidate potential cellular responses. Results After 200 days of adaptation, populations cultured in excess iron (II), showed a significant increase in 24-h optical densities compared to controls. Furthermore, these populations showed increased resistance toward other metals [iron (III) and gallium (III)] and to traditional antibiotics (bacitracin, rifampin, chloramphenicol and sulfanilamide). Genomic analysis identified selective sweeps in three genes; fecA, ptsP and ilvG unique to the iron (II) resistant populations, and gene expression studies demonstrated that their cellular response may be to downregulate genes involved in iron transport (cirA and fecA) while increasing the oxidative stress response (oxyR, soxS and soxR) prior to FeSO4 exposure. Conclusions and implications Together, this indicates that the selected populations can quickly adapt to stressful levels of iron (II). This study is unique in that it demonstrates that E. coli can adapt to environments that contain excess levels of an essential micronutrient while also demonstrating the genomic foundations of the response and the pleiotropic consequences. The fact that adaptation to excess iron also causes increases in general antibiotic resistance is a serious concern. Lay summary: The evolution of iron resistance in E. coli leads to multi-drug and general metal resistance through the acquisition of mutations in three genes (fecA, ptsP and ilvG) while also initiating cellular defenses as part of their normal growth process.
Collapse
Affiliation(s)
- Misty D Thomas
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Akamu J Ewunkem
- BEACON, Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| | - Sada Boyd
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University and UNC Greensboro, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA
| | - Danielle K Williams
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Adiya Moore
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Kristen L Rhinehardt
- Computational Data Science and Engineering, North Carolina Agricultural and Technical State University, 1601 E. Market Street, Greensboro, NC 27411, USA
| | - Emma Van Beveren
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University and UNC Greensboro, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA
| | - Bobi Yang
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University and UNC Greensboro, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA
| | - Anna Tapia
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University and UNC Greensboro, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA
| | - Jian Han
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Scott H Harrison
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Joseph L Graves
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| |
Collapse
|
34
|
Futo M, Opašić L, Koska S, Čorak N, Široki T, Ravikumar V, Thorsell A, Lenuzzi M, Kifer D, Domazet-Lošo M, Vlahoviček K, Mijakovic I, Domazet-Lošo T. Embryo-Like Features in Developing Bacillus subtilis Biofilms. Mol Biol Evol 2021; 38:31-47. [PMID: 32871001 PMCID: PMC7783165 DOI: 10.1093/molbev/msaa217] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Correspondence between evolution and development has been discussed for more than two centuries. Recent work reveals that phylogeny-ontogeny correlations are indeed present in developmental transcriptomes of eukaryotic clades with complex multicellularity. Nevertheless, it has been largely ignored that the pervasive presence of phylogeny-ontogeny correlations is a hallmark of development in eukaryotes. This perspective opens a possibility to look for similar parallelisms in biological settings where developmental logic and multicellular complexity are more obscure. For instance, it has been increasingly recognized that multicellular behavior underlies biofilm formation in bacteria. However, it remains unclear whether bacterial biofilm growth shares some basic principles with development in complex eukaryotes. Here we show that the ontogeny of growing Bacillus subtilis biofilms recapitulates phylogeny at the expression level. Using time-resolved transcriptome and proteome profiles, we found that biofilm ontogeny correlates with the evolutionary measures, in a way that evolutionary younger and more diverged genes were increasingly expressed toward later timepoints of biofilm growth. Molecular and morphological signatures also revealed that biofilm growth is highly regulated and organized into discrete ontogenetic stages, analogous to those of eukaryotic embryos. Together, this suggests that biofilm formation in Bacillus is a bona fide developmental process comparable to organismal development in animals, plants, and fungi. Given that most cells on Earth reside in the form of biofilms and that biofilms represent the oldest known fossils, we anticipate that the widely adopted vision of the first life as a single-cell and free-living organism needs rethinking.
Collapse
Affiliation(s)
- Momir Futo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Luka Opašić
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Department for Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Sara Koska
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nina Čorak
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tin Široki
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Vaishnavi Ravikumar
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Annika Thorsell
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maša Lenuzzi
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Mirjana Domazet-Lošo
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Kristian Vlahoviček
- Bioinformatics Group, Division of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
- School of Biosciences, University of Skövde, Skövde, Sweden
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Catholic University of Croatia, Zagreb, Croatia
| |
Collapse
|
35
|
Osman D, Cooke A, Young TR, Deery E, Robinson NJ, Warren MJ. The requirement for cobalt in vitamin B 12: A paradigm for protein metalation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118896. [PMID: 33096143 PMCID: PMC7689651 DOI: 10.1016/j.bbamcr.2020.118896] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Vitamin B12, cobalamin, is a cobalt-containing ring-contracted modified tetrapyrrole that represents one of the most complex small molecules made by nature. In prokaryotes it is utilised as a cofactor, coenzyme, light sensor and gene regulator yet has a restricted role in assisting only two enzymes within specific eukaryotes including mammals. This deployment disparity is reflected in another unique attribute of vitamin B12 in that its biosynthesis is limited to only certain prokaryotes, with synthesisers pivotal in establishing mutualistic microbial communities. The core component of cobalamin is the corrin macrocycle that acts as the main ligand for the cobalt. Within this review we investigate why cobalt is paired specifically with the corrin ring, how cobalt is inserted during the biosynthetic process, how cobalt is made available within the cell and explore the cellular control of cobalt and cobalamin levels. The partitioning of cobalt for cobalamin biosynthesis exemplifies how cells assist metalation.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Anastasia Cooke
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Tessa R Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Nigel J Robinson
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
36
|
Roberts CS, Muralidharan S, Ni F, Mitra B. Structural Role of the First Four Transmembrane Helices in ZntA, a P 1B-Type ATPase from Escherichia coli. Biochemistry 2020; 59:4488-4498. [PMID: 33190490 DOI: 10.1021/acs.biochem.0c00770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ZntA from Escherichia coli confers resistance to toxic concentrations of Pb2+, Zn2+, and Cd2+. It is a member of the P1B-ATPase transporter superfamily, which includes the human Cu+-transporting proteins ATP7A and ATP7B. P1B-type ATPases typically have a hydrophilic N-terminal metal-binding domain and eight transmembrane helices. A splice variant of ATP7B was reported, which has 100-fold higher night-specific expression in the pineal gland; it lacks the entire N-terminal domain and the first four transmembrane helices. Here, we report our findings with Δ231-ZntA, a similar truncation we created in ZntA. Δ231-ZntA has no in vivo and greatly reduced in vitro activity. It binds one metal ion per dimer at the transmembrane site, with a 15-19000-fold higher binding affinity, indicating highly significant changes in the dimer structure of Δ231-ZntA relative to that of ZntA. Cd2+ has the highest affinity for Δ231-ZntA, in contrast to ZntA, which has the highest affinity for Pb2+. Site-specific mutagenesis of the metal-binding residues, 392Cys, 394Cys, and 714Asp, showed that there is considerable flexibility at the metal-binding site, with any two of these three residues able to bind Zn2+ and Pb2+ unlike in ZntA. However, Cd2+ binds to only 392Cys and 714Asp, with 394Cys not involved in Cd2+ binding. Three-dimensional homology models show that there is a dramatic difference between the ZntA and Δ231-ZntA dimer structures, which help to explain these observations. Therefore, the first four transmembrane helices in ZntA and P1B-type ATPases play an important role in maintaining the correct dimer structure.
Collapse
Affiliation(s)
- Cameron S Roberts
- Department of Biochemistry, Microbiology and Immunology, School of Medicine, Wayne State University Detroit, Michigan 48201, United States
| | - Sandhya Muralidharan
- Department of Biochemistry, Microbiology and Immunology, School of Medicine, Wayne State University Detroit, Michigan 48201, United States
| | - Fei Ni
- Department of Biochemistry, Microbiology and Immunology, School of Medicine, Wayne State University Detroit, Michigan 48201, United States
| | - Bharati Mitra
- Department of Biochemistry, Microbiology and Immunology, School of Medicine, Wayne State University Detroit, Michigan 48201, United States
| |
Collapse
|
37
|
Al-Tameemi H, Beavers WN, Norambuena J, Skaar EP, Boyd JM. Staphylococcus aureus lacking a functional MntABC manganese import system has increased resistance to copper. Mol Microbiol 2020; 115:554-573. [PMID: 33034093 DOI: 10.1111/mmi.14623] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
S. aureus USA300 isolates utilize the copBL and copAZ gene products to prevent Cu intoxication. We created and examined a ΔcopAZ ΔcopBL mutant strain (cop-). The cop- strain was sensitive to Cu and accumulated intracellular Cu. We screened a transposon (Tn) mutant library in the cop- background and isolated strains with Tn insertions in the mntABC operon that permitted growth in the presence of Cu. The mutations were in mntA and they were recessive. Under the growth conditions utilized, MntABC functioned in manganese (Mn) import. When cultured with Cu, strains containing a mntA::Tn accumulated less Cu than the parent strain. Mn(II) supplementation improved growth when cop- was cultured with Cu and this phenotype was dependent upon the presence of MntR, which is a repressor of mntABC transcription. A ΔmntR strain had an increased Cu load and decreased growth in the presence of Cu, which was abrogated by the introduction of mntA::Tn. Over-expression of mntABC increased cellular Cu load and sensitivity to Cu. The presence of a mntA::Tn mutation protected iron-sulfur (FeS) enzymes from inactivation by Cu. The data presented are consistent with a model wherein defective MntABC results in decreased cellular Cu accumulation and protection to FeS enzymes from Cu poisoning.
Collapse
Affiliation(s)
- Hassan Al-Tameemi
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - William N Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
38
|
Zhang Y, Sen S, Giedroc DP. Iron Acquisition by Bacterial Pathogens: Beyond Tris-Catecholate Complexes. Chembiochem 2020; 21:1955-1967. [PMID: 32180318 PMCID: PMC7367709 DOI: 10.1002/cbic.201900778] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/06/2020] [Indexed: 12/11/2022]
Abstract
Sequestration of the essential nutrient iron from bacterial invaders that colonize the vertebrate host is a central feature of nutritional immunity and the "fight over transition metals" at the host-pathogen interface. The iron quota for many bacterial pathogens is large, as iron enzymes often make up a significant share of the metalloproteome. Iron enzymes play critical roles in respiration, energy metabolism, and other cellular processes by catalyzing a wide range of oxidation-reduction, electron transfer, and oxygen activation reactions. In this Concept article, we discuss recent insights into the diverse ways that bacterial pathogens acquire this essential nutrient, beyond the well-characterized tris-catecholate FeIII complexes, in competition and cooperation with significant host efforts to cripple these processes. We also discuss pathogen strategies to adapt their metabolism to less-than-optimal iron concentrations, and briefly speculate on what might be an integrated adaptive response to the concurrent limitation of both iron and zinc in the infected host.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Sambuddha Sen
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7102, USA
| |
Collapse
|
39
|
Abstract
Iron is essential for nearly every organism, and mismanagement of its intracellular concentrations (either deficiency or excess) contributes to diminished virulence in human pathogens, necessitating intricate metalloregulatory mechanisms. To date, although several metal-responsive riboswitches have been identified in bacteria, none has been shown to respond to FeII. The czcD riboswitch, present in numerous human gut microbiota and pathogens, was recently shown to respond to NiII and CoII but thought not to respond to FeII, on the basis of aerobic, in vitro assays; its function in vivo is not well understood. We constructed a fluorescent sensor using this riboswitch fused to the RNA aptamer, Spinach2. When assayed anaerobically, the resulting sensor responds in vitro to FeII, as well as to MnII, CoII, NiII, and ZnII, but only in the cases of FeII and MnII do the apparent Kd values (0.4 and 11 μM, respectively) fall within the range of labile metal concentrations maintained by known metalloregulators. We also show that the sensor-which is, to the best of our knowledge, the first reversible genetically encoded fluorescent sensor for FeII-responds to iron in Escherichia coli cells. Finally, we demonstrate that the putative metal exporters directly downstream of two czcD riboswitches efficiently rescue iron toxicity in a heterologous expression system. Together, our results indicate that iron merits consideration as a plausible physiological ligand for czcD riboswitches, although a response to general metal stress cannot be ruled out at present.
Collapse
Affiliation(s)
- Jiansong Xu
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
40
|
Bacillus subtilis Fur Is a Transcriptional Activator for the PerR-Repressed pfeT Gene, Encoding an Iron Efflux Pump. J Bacteriol 2020; 202:JB.00697-19. [PMID: 31988078 DOI: 10.1128/jb.00697-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/23/2020] [Indexed: 12/30/2022] Open
Abstract
The physiological relevance of bacterial iron efflux has only recently been appreciated. The Bacillus subtilis P1B4-type ATPase PfeT (peroxide-induced ferrous efflux transporter) was one of the first iron efflux pumps to be characterized, and cells lacking pfeT accumulate high levels of intracellular iron. The pfeT promoter region has binding sites for both PerR, a peroxide-sensing Fur-family metalloregulator, and the ferric uptake repressor Fur. Both Fur and PerR bind DNA with Fe(II) as a cofactor. While reaction of PerR-Fe(II) with peroxide can account for the induction of pfeT under oxidative stress, binding of Fur-Fe(II) would be expected to lead to repression, which is inconsistent with the known role of PfeT as an iron efflux protein. Here, we show that expression of pfeT is repressed by PerR, as anticipated, and induced by Fur in response to Fe(II). Activation by Fur is mediated both by antagonism of the PerR repressor and by direct transcriptional activation, as confirmed using in vitro transcription assays. A similar mechanism of regulation can explain the iron induction of the Listeria monocytogenes PfeT ortholog and virulence factor, FrvA. Mutational studies support a model in which Fur activation involves regions both upstream and downstream of the pfeT promoter, and Fur and PerR have overlapping recognition of a shared regulatory element in this complex promoter region. This work demonstrates that B. subtilis Fur can function as an iron-dependent activator of transcription.IMPORTANCE Iron homeostasis plays a key role at the host-pathogen interface during the process of infection. Bacterial growth restriction resulting from host-imposed iron starvation (nutritional immunity) highlights the importance of iron import during pathogenesis. Conversely, bacterial iron efflux pumps function as virulence factors in several systems. The requirement for iron efflux in pathogens such as Listeria monocytogenes, Streptococcus pyogenes, and Mycobacterium tuberculosis suggests that both import and efflux are needed for cells to successfully navigate rapidly changing levels of iron availability in the host. Here, we provide insight into how iron efflux genes are controlled, an aspect of bacterial iron homeostasis relevant to infectious disease processes.
Collapse
|
41
|
Dysregulation of Magnesium Transport Protects Bacillus subtilis against Manganese and Cobalt Intoxication. J Bacteriol 2020; 202:JB.00711-19. [PMID: 31964700 DOI: 10.1128/jb.00711-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Transition metals are essential for life but are toxic when in excess. Metal ion intoxication may result from the mismetallation of essential metal-dependent enzymes with a noncognate metal. To begin to identify enzymes and processes that are susceptible to mismetallation, we have selected for strains with increased resistance to Mn(II) and Co(II). In Bacillus subtilis, cells lacking the MntR metalloregulator are exquisitely sensitive to Mn(II) but can easily become resistant by acquiring mutations affecting the MntH Mn(II) importer. Using transposon mutagenesis, and starting with an mntR mntH strain, we recovered mariner insertions that inactivated the mpfA gene encoding a putative Mg(II) efflux system. Loss of MpfA leads to elevated intracellular Mg(II), increased sensitivity to high Mg(II), and reduced Mn(II) sensitivity. Consistently, we also recovered an insertion disrupting the mgtE riboswitch, which normally restricts expression of the major Mg(II) importer. These results suggest that Mn(II) intoxication results from disruption of a Mg(II)-dependent enzyme or process. Mutations that inactivate MpfA were also recovered in a selection for Co(II) resistance beginning with sensitized strains lacking the major Co(II) efflux pump, CzcD. Since both Mn(II) and Co(II) may mismetallate iron-dependent enzymes, we repeated the selections under conditions of iron depletion imposed by expression of the Listeria monocytogenes FrvA iron exporter. Under conditions of iron depletion, a wider variety of suppressor mutations were recovered, but they still point to a central role for Mg(II) in maintaining metal ion homeostasis.IMPORTANCE Cellular metal ion homeostasis is tightly regulated. When metal ion levels are imbalanced, or when one metal is at toxic levels, enzymes may bind to the wrong metal cofactor. Enzyme mismetallation can impair metabolism, lead to new and deleterious reactions, and cause cell death. Beginning with Bacillus subtilis strains genetically sensitized to metal intoxication through loss of efflux or by lowering intracellular iron, we identified mutations that suppress the deleterious effects of excess Mn(II) or Co(II). For both metals, mutations in mpfA, encoding a Mg(II) efflux pump, suppressed toxicity. These mutant strains have elevated intracellular Mg(II), suggesting that Mg(II)-dependent processes are very sensitive to disruption by transition metals.
Collapse
|
42
|
Evolution of Listeria monocytogenes in a Food Processing Plant Involves Limited Single-Nucleotide Substitutions but Considerable Diversification by Gain and Loss of Prophages. Appl Environ Microbiol 2020; 86:AEM.02493-19. [PMID: 31900305 PMCID: PMC7054086 DOI: 10.1128/aem.02493-19] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/20/2019] [Indexed: 12/23/2022] Open
Abstract
Knowledge about the genetic evolution of L. monocytogenes in food processing facilities over multiple years is generally lacking. This information is critical to interpret WGS findings involving food or food-associated isolates. This study suggests that L. monocytogenes that persists in processing facilities may evolve with a low single-nucleotide mutation rate mostly driven by negative (i.e., purifying) selection but with rapid diversification of prophages. Hence, isolation of L. monocytogenes with few single-nucleotide polymorphism (SNP) differences in different locations (e.g., supplier plants and receiving plants) is possible, highlighting the importance of epidemiological and detailed isolate metadata for interpreting WGS data in traceback investigation. Our study also shows how advanced WGS data analyses can be used to support root cause analysis efforts and may, for example, pinpoint the time when a persistence event started (which then potentially could be linked to facility changes, introduction of new equipment, etc.). Whole-genome sequencing (WGS) is becoming the standard method for subtyping Listeria monocytogenes. Interpretation of WGS data for isolates from foods and associated environments is, however, challenging due to a lack of detailed data on Listeria evolution in processing facilities. Here, we used previously collected WGS data for 40 L. monocytogenes isolates obtained from a cold-smoked salmon processing facility between 1998 and 2015 to probe the L. monocytogenes molecular evolution in this facility, combined with phenotypic assessment of selected isolates. Isolates represented three clusters (1, 2, and 3); cluster 3 isolates (n = 32) were obtained over 18 years. The average mutation rate for cluster 3 was estimated as 1.15 × 10−7 changes per nucleotide per year (∼0.35 changes per genome per year); the most recent common ancestors (MRCAs) of subclusters 3a and 3b were estimated to have occurred around 1958 and 1974, respectively, within the age of the facility, suggesting long-term persistence in this facility. Extensive prophage diversity was observed within subclusters 3a and 3b, which have one shared and six unique prophage profiles for each subcluster (with 16 prophage profiles found among all 40 isolates). The plasmid-borne sanitizer tolerance operon bcrABC was found in all cluster 2 and 3 isolates, while the transposon-borne sanitizer tolerance gene qacH was found in one cluster 1 isolate; presence of these genes was correlated with the ability to survive increased concentrations of sanitizers. Selected isolates showed significant variation in the ability to attach to surfaces, with persistent isolates attaching better than transient isolates at 21°C. IMPORTANCE Knowledge about the genetic evolution of L. monocytogenes in food processing facilities over multiple years is generally lacking. This information is critical to interpret WGS findings involving food or food-associated isolates. This study suggests that L. monocytogenes that persists in processing facilities may evolve with a low single-nucleotide mutation rate mostly driven by negative (i.e., purifying) selection but with rapid diversification of prophages. Hence, isolation of L. monocytogenes with few single-nucleotide polymorphism (SNP) differences in different locations (e.g., supplier plants and receiving plants) is possible, highlighting the importance of epidemiological and detailed isolate metadata for interpreting WGS data in traceback investigation. Our study also shows how advanced WGS data analyses can be used to support root cause analysis efforts and may, for example, pinpoint the time when a persistence event started (which then potentially could be linked to facility changes, introduction of new equipment, etc.).
Collapse
|
43
|
Zheng C, Jia M, Gao M, Lu T, Li L, Zhou P. PmtA functions as a ferrous iron and cobalt efflux pump in Streptococcus suis. Emerg Microbes Infect 2020; 8:1254-1264. [PMID: 31469035 PMCID: PMC7012047 DOI: 10.1080/22221751.2019.1660233] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transition metals are nutrients essential for life. However, an excess of metals can be toxic to cells, and host-imposed metal toxicity is an important mechanism for controlling bacterial infection. Accordingly, bacteria have evolved metal efflux systems to maintain metal homeostasis. Here, we established that PmtA functions as a ferrous iron [Fe(II)] and cobalt [Co(II)] efflux pump in Streptococcus suis, an emerging zoonotic pathogen responsible for severe infections in both humans and pigs. pmtA expression is induced by Fe(II), Co(II), and nickel [Ni(II)], whereas PmtA protects S. suis against Fe(II) and ferric iron [Fe(III)]-induced bactericidal effect, as well as Co(II) and zinc [Zn(II)]-induced bacteriostatic effect. In the presence of elevated concentrations of Fe(II) and Co(II), ΔpmtA accumulates high levels of intracellular iron and cobalt, respectively. ΔpmtA is also more sensitive to streptonigrin, a Fe(II)-activated antibiotic. Furthermore, growth defects of ΔpmtA under Fe(II) or Co(II) excess conditions can be alleviated by manganese [Mn(II)] supplementation. Finally, PmtA plays a role in tolerance to H2O2-induced oxidative stress, yet is not involved in the virulence of S. suis in mice. Together, these data demonstrate that S. suis PmtA acts as a Fe(II) and Co(II) efflux pump, and contributes to oxidative stress resistance.
Collapse
Affiliation(s)
- Chengkun Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Mengdie Jia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| | - Miaomiao Gao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| | - Tianyu Lu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| | - Lingzhi Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| | - Pingping Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| |
Collapse
|
44
|
Bennett BD, Gralnick JA. Mechanisms of toxicity by and resistance to ferrous iron in anaerobic systems. Free Radic Biol Med 2019; 140:167-171. [PMID: 31251977 DOI: 10.1016/j.freeradbiomed.2019.06.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 06/13/2019] [Accepted: 06/23/2019] [Indexed: 12/24/2022]
Abstract
Iron is an essential element for nearly all life on Earth, primarily for its value as a redox active cofactor. Iron exists predominantly in two biologically relevant redox states: ferric iron, the oxidized state (Fe3+), and ferrous iron, the reduced state (Fe2+). Fe2+ is well known to facilitate electron transfer reactions that can lead to the generation of reactive oxygen species. Less is known about why iron is toxic to cells in the absence of oxygen, yet this phenomenon is critically important for our understanding of life on early Earth and in iron-rich ecosystems today. In this brief review, we will highlight our current understanding of anaerobic Fe2+ toxicity, focusing on molecular mechanistic studies in several model systems.
Collapse
Affiliation(s)
- B D Bennett
- Pacific Biosciences Research Center, University of Hawai‛i at Mānoa, Honolulu, HI, 96813, USA
| | - J A Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St. Paul, MN, 55108, USA.
| |
Collapse
|
45
|
Rojas-Tapias DF, Helmann JD. Roles and regulation of Spx family transcription factors in Bacillus subtilis and related species. Adv Microb Physiol 2019; 75:279-323. [PMID: 31655740 DOI: 10.1016/bs.ampbs.2019.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacillus subtilis Spx is the prototype for a large family of redox-responsive transcription factors found in many bacteria, most notably those from the phylum Firmicutes. Unusually for a transcription factor, B. subtilis Spx protein modulates gene expression by binding as a monomer to the αCTD domain of RNA polymerase (RNAP), and only interacts with DNA during subsequent promoter engagement. B. subtilis Spx drives the expression of a large regulon in response to proteotoxic conditions, such as heat and disulfide stress, as well as cell wall stress. Here, we review the detailed mechanisms that control the expression, stability, and activity of Spx in response to a variety of stress conditions. We also summarize current knowledge regarding Spx homologs in other Firmicutes, the environmental conditions in which those homologs are activated, and their biological role.
Collapse
Affiliation(s)
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
46
|
Manganese Detoxification by MntE Is Critical for Resistance to Oxidative Stress and Virulence of Staphylococcus aureus. mBio 2019; 10:mBio.02915-18. [PMID: 30808698 PMCID: PMC6391924 DOI: 10.1128/mbio.02915-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Manganese (Mn) is generally viewed as a critical nutrient that is beneficial to pathogenic bacteria due to its function as an enzymatic cofactor and its capability of acting as an antioxidant; yet paradoxically, high concentrations of this transition metal can be toxic. In this work, we demonstrate Staphylococcus aureus utilizes the cation diffusion facilitator (CDF) family protein MntE to alleviate Mn toxicity through efflux of excess Mn. Inactivation of mntE leads to a significant reduction in S. aureus resistance to oxidative stress and S. aureus-mediated mortality within a mouse model of systemic infection. These results highlight the importance of MntE-mediated Mn detoxification in intracellular Mn homeostasis, resistance to oxidative stress, and S. aureus virulence. Therefore, this establishes MntE as a potential target for development of anti-S. aureus therapeutics. Manganese (Mn) is an essential micronutrient critical for the pathogenesis of Staphylococcus aureus, a significant cause of human morbidity and mortality. Paradoxically, excess Mn is toxic; therefore, maintenance of intracellular Mn homeostasis is required for survival. Here we describe a Mn exporter in S. aureus, MntE, which is a member of the cation diffusion facilitator (CDF) protein family and conserved among Gram-positive pathogens. Upregulation of mntE transcription in response to excess Mn is dependent on the presence of MntR, a transcriptional repressor of the mntABC Mn uptake system. Inactivation of mntE or mntR leads to reduced growth in media supplemented with Mn, demonstrating MntE is required for detoxification of excess Mn. Inactivation of mntE results in elevated levels of intracellular Mn, but reduced intracellular iron (Fe) levels, supporting the hypothesis that MntE functions as a Mn efflux pump and Mn efflux influences Fe homeostasis. Strains inactivated for mntE are more sensitive to the oxidants NaOCl and paraquat, indicating Mn homeostasis is critical for resisting oxidative stress. Furthermore, mntE and mntR are required for full virulence of S. aureus during infection, suggesting S. aureus experiences Mn toxicity in vivo. Combined, these data support a model in which MntR controls Mn homeostasis by balancing transcriptional repression of mntABC and induction of mntE, both of which are critical for S. aureus pathogenesis. Thus, Mn efflux contributes to bacterial survival and virulence during infection, establishing MntE as a potential antimicrobial target and expanding our understanding of Mn homeostasis.
Collapse
|
47
|
Abstract
SIGNIFICANCE Iron is required for growth and is often redox active under cytosolic conditions. As a result of its facile redox chemistry, iron homeostasis is intricately involved with oxidative stress. Bacterial adaptation to iron limitation and oxidative stress often involves ferric uptake regulator (Fur) proteins: a diverse set of divalent cation-dependent, DNA-binding proteins that vary widely in both metal selectivity and sensitivity to metal-catalyzed oxidation. Recent Advances: Bacteria contain two Fur family metalloregulators that use ferrous iron (Fe2+) as their cofactor, Fur and PerR. Fur functions to regulate iron homeostasis in response to changes in intracellular levels of Fe2+. PerR also binds Fe2+, which enables metal-catalyzed protein oxidation as a mechanism for sensing hydrogen peroxide (H2O2). CRITICAL ISSUES To effectively regulate iron homeostasis, Fur has an Fe2+ affinity tuned to monitor the labile iron pool of the cell and may be under selective pressure to minimize iron oxidation, which would otherwise lead to an inappropriate increase in iron uptake under oxidative stress conditions. Conversely, Fe2+ is bound more tightly to PerR but exhibits high H2O2 reactivity, which enables a rapid induction of peroxide stress genes. FUTURE DIRECTIONS The features that determine the disparate reactivity of these proteins with oxidants are still poorly understood. A controlled, comparative analysis of the affinities of Fur/PerR proteins for their metal cofactors and their rate of reactivity with H2O2, combined with structure/function analyses, will be needed to define the molecular mechanisms that have facilitated this divergence of function between these two paralogous regulators.
Collapse
Affiliation(s)
| | - John D Helmann
- Department of Microbiology, Cornell University , Ithaca, New York
| |
Collapse
|
48
|
Fan X, Tang J, Nie L, Huang J, Wang G. High-quality-draft genome sequence of the heavy metal resistant and exopolysaccharides producing bacterium Mucilaginibacter pedocola TBZ30 T. Stand Genomic Sci 2018; 13:34. [PMID: 30505390 PMCID: PMC6260751 DOI: 10.1186/s40793-018-0337-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/10/2018] [Indexed: 11/10/2022] Open
Abstract
Mucilaginibacter pedocola TBZ30T (= CCTCC AB 2015301T = KCTC 42833T) is a Gram- negative, rod-shaped, non-motile and non-spore-forming bacterium isolated from a heavy metal contaminated paddy field. It shows resistance to multiple heavy metals and can adsorb/remove Zn2+ and Cd2+ during cultivation. In addition, strain TBZ30T produces exopolysaccharides (EPS). These features make it a great potential to bioremediate heavy metal contamination and biotechnical application. Here we describe the genome sequence and annotation of strain TBZ30T. The genome size is 7,035,113 bp, contains 3132 protein-coding genes (2736 with predicted functions), 50 tRNA encoding genes and 14 rRNA encoding genes. Putative heavy metal resistant genes and EPS associated genes are found in the genome.
Collapse
Affiliation(s)
- Xia Fan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Jingwei Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Li Nie
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Jing Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
49
|
Genome-Wide Characterization of the Fur Regulatory Network Reveals a Link between Catechol Degradation and Bacillibactin Metabolism in Bacillus subtilis. mBio 2018; 9:mBio.01451-18. [PMID: 30377275 PMCID: PMC6212828 DOI: 10.1128/mbio.01451-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many bacteria synthesize high-affinity iron chelators (siderophores). Siderophore-mediated iron acquisition is an efficient and widely utilized strategy for bacteria to meet their cellular iron requirements. One prominent class of siderophores uses catecholate groups to chelate iron. B. subtilis bacillibactin, structurally similar to enterobactin (made by enteric bacteria), is a triscatecholate siderophore that is hydrolyzed to monomeric units after import to release iron. However, the ultimate fates of these catechol compounds and their potential toxicities have not been defined previously. We performed genome-wide identification of Fur binding sites in vivo and uncovered a connection between catechol degradation and bacillibactin metabolism in B. subtilis. Besides its role in the detoxification of environmental catechols, the catechol 2,3-dioxygenase encoded by catDE also protects cells from intoxication by endogenous bacillibactin-derived catechol metabolites under iron-limited conditions. These findings shed light on the degradation pathway and precursor recycling of the catecholate siderophores. The ferric uptake regulator (Fur) is the global iron biosensor in many bacteria. Fur functions as an iron-dependent transcriptional repressor for most of its regulated genes. There are a few examples where holo-Fur activates transcription, either directly or indirectly. Recent studies suggest that apo-Fur might also act as a positive regulator and that, besides iron metabolism, the Fur regulon might encompass other biological processes such as DNA synthesis, energy metabolism, and biofilm formation. Here, we obtained a genomic view of the Fur regulatory network in Bacillus subtilis using chromatin immunoprecipitation sequencing (ChIP-seq). Besides the known Fur target sites, 70 putative DNA binding sites were identified, and the vast majority had higher occupancy under iron-sufficient conditions. Among the new sites detected, a Fur binding site in the promoter region of the catDE operon is of particular interest. This operon, encoding catechol 2,3-dioxygenase, is critical for catechol degradation and is under negative regulation of CatR and YodB. These three repressors (Fur, CatR, and YodB) function cooperatively to regulate the transcription of catDE, with Fur functioning as a sensor of iron limitation and CatR as the major sensor of catechol stress. Genetic analysis suggests that CatDE is involved in metabolism of the catecholate siderophore bacillibactin, particularly when bacillibactin is constitutively produced and accumulates intracellularly, potentially generating endogenous toxic catechol derivatives. This study documents a role for catechol degradation in bacillibactin metabolism and provides evidence that catechol 2,3-dioxygenase can detoxify endogenously produced catechol substrates in addition to its more widely studied role in biodegradation of environmental aromatic compounds and pollutants.
Collapse
|
50
|
Eshelman K, Yao H, Punchi Hewage AND, Deay JJ, Chandler JR, Rivera M. Inhibiting the BfrB:Bfd interaction in Pseudomonas aeruginosa causes irreversible iron accumulation in bacterioferritin and iron deficiency in the bacterial cytosol. Metallomics 2018; 9:646-659. [PMID: 28318006 DOI: 10.1039/c7mt00042a] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iron is an essential nutrient for bacteria but the reactivity of Fe2+ and the insolubility of Fe3+ present significant challenges to bacterial cells. Iron storage proteins contribute to ameliorating these challenges by oxidizing Fe2+ using O2 and H2O2 as electron acceptors, and by compartmentalizing Fe3+. Two types of iron-storage proteins coexist in bacteria, the ferritins (Ftn) and the heme-containing bacterioferritins (Bfr), but the reasons for their coexistence are largely unknown. P. aeruginosa cells harbor two iron storage proteins (FtnA and BfrB), but nothing is known about their relative contributions to iron homeostasis. Prior studies in vitro have shown that iron mobilization from BfrB requires specific interactions with a ferredoxin (Bfd), but the relevance of the BfrB:Bfd interaction to iron homeostasis in P. aeruginosa is unknown. In this work we explore the repercussions of (i) deleting the bfrB gene, and (ii) perturbing the BfrB:Bfd interaction in P. aeruginosa cells by either deleting the bfd gene or by replacing the wild type bfrB gene with a L68A/E81A double mutant allele in the P. aeruginosa chromosome. The effects of the mutations were evaluated by following the accumulation of iron in BfrB, analyzing levels of free and total intracellular iron, and by characterizing the ensuing iron homeostasis dysregulation phenotypes. The results reveal that P. aeruginosa accumulates iron mainly in BfrB, and that the nutrient does not accumulate in FtnA to detectable levels, even after deletion of the bfrB gene. Perturbing the BfrB:Bfd interaction causes irreversible flow of iron into BfrB, which leads to the accumulation of unusable intracellular iron while severely depleting the levels of free intracellular iron, which drives the cells to an acute iron starvation response despite harboring "normal" levels of total intracellular iron. These results are discussed in the context of a dynamic equilibrium between free cytosolic Fe2+ and Fe3+ compartmentalized in BfrB, which functions as a buffer to oppose rapid changes of free cytosolic iron. Finally, we also show that P. aeruginosa cells utilize iron stored in BfrB for growth in iron-limiting conditions, and that the utilization of BfrB-iron requires a functional BfrB:Bfd interaction.
Collapse
Affiliation(s)
- Kate Eshelman
- Department of Chemistry and R. N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Dr, Lawrence, KS 66047, USA.
| | | | | | | | | | | |
Collapse
|