1
|
Su GM, Chu LW, Chien CC, Liao PS, Chiu YC, Chang CH, Chu TH, Li CH, Wu CS, Wang JF, Cheng YS, Chang CH, Cheng CP. Tomato NADPH oxidase SlWfi1 interacts with the effector protein RipBJ of Ralstonia solanacearum to mediate host defence. PLANT, CELL & ENVIRONMENT 2024; 47:5007-5020. [PMID: 39132878 DOI: 10.1111/pce.15086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Reactive oxygen species (ROS) play a crucial role in regulating numerous functions in organisms. Among the key regulators of ROS production are NADPH oxidases, primarily referred to as respiratory burst oxidase homologues (RBOHs). However, our understanding of whether and how pathogens directly target RBOHs has been limited. In this study, we revealed that the effector protein RipBJ, originating from the phytopathogenic bacterium Ralstonia solanacearum, was present in low- to medium-virulence strains but absent in high-virulence strains. Functional genetic assays demonstrated that the expression of ripBJ led to a reduction in bacterial infection. In the plant, RipBJ expression triggered plant cell death and the accumulation of H2O2, while also enhancing host defence against R. solanacearum by modulating multiple defence signalling pathways. Through protein interaction and functional studies, we demonstrated that RipBJ was associated with the plant's plasma membrane and interacted with the tomato RBOH known as SlWfi1, which contributed positively to RipBJ's effects on plants. Importantly, SlWfi1 expression was induced during the early stages following R. solanacearum infection and played a key role in defence against this bacterium. This research uncovers the plant RBOH as an interacting target of a pathogen's effector, providing valuable insights into the mechanisms of plant defence.
Collapse
Affiliation(s)
- Guan-Ming Su
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Li-Wen Chu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chih-Cheng Chien
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Pei-Shan Liao
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Chuan Chiu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chi-Hsin Chang
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Tai-Hsiang Chu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chien-Hui Li
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chien-Sheng Wu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jaw-Fen Wang
- Bacteriology Unit, AVRDC-The World Vegetable Center, Tainan, Taiwan
| | - Yi-Sheng Cheng
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chuan-Hsin Chang
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chiu-Ping Cheng
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
- Global Agriculture Technology and Genomic Science Master Program, International College, National Taiwan University, Taipei, Taiwan
- Master Program for Plant Medicine, College of Bio-Resources & Agriculture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Fu Y, Hu Y, Yang J, Liao D, Liu P, Wen C, Yun T. Identification of Powdery Mildew Resistance-Related Genes in Butternut Squash ( Cucurbita moschata). Int J Mol Sci 2024; 25:10896. [PMID: 39456677 PMCID: PMC11507584 DOI: 10.3390/ijms252010896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Powdery mildew infection is a significant challenge in butternut squash (Cucurbita moschata) production during winter in Hainan, China. The tropical climate of Hainan promotes powdery mildew infection, resulting in substantial yield losses. By utilizing transcriptome and genome sequencing data, SNPs and potential genes associated with powdery mildew resistance in butternut squash were identified. The analysis of differentially expressed genes (DEGs) following powdery mildew infection revealed several genes involved in resistance, with particular focus on a resistance (R) gene cluster that may be linked to the observed resistance. Two MLO genes in clade V from Cucurbita moschata may not be directly associated with resistance in the two genotypes studied. These findings are expected to contribute to the development of genetic tools for improving powdery mildew resistance in Cucurbita crops, thereby reducing yield losses and enhancing the sustainability of butternut squash production in Hainan and other regions.
Collapse
Affiliation(s)
- Yiqian Fu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Y.F.)
- National Engineering Research Center for Vegetables (NERCV), State Key Laboratory of Vegetable Biobreeding, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanping Hu
- Vegetable Research Institute, Hainan Academy of Agricultural Sciences, Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, Haikou 571100, China; (Y.H.)
| | - Jingjing Yang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Y.F.)
- National Engineering Research Center for Vegetables (NERCV), State Key Laboratory of Vegetable Biobreeding, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Daolong Liao
- Vegetable Research Institute, Hainan Academy of Agricultural Sciences, Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, Haikou 571100, China; (Y.H.)
| | - Pangyuan Liu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Y.F.)
- National Engineering Research Center for Vegetables (NERCV), State Key Laboratory of Vegetable Biobreeding, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Y.F.)
- National Engineering Research Center for Vegetables (NERCV), State Key Laboratory of Vegetable Biobreeding, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Tianhai Yun
- Vegetable Research Institute, Hainan Academy of Agricultural Sciences, Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, Haikou 571100, China; (Y.H.)
| |
Collapse
|
3
|
Frampton RA, Shuey LS, David CC, Pringle GM, Kalamorz F, Pegg GS, Chagné D, Smith GR. Analysis of Plant and Fungal Transcripts from Resistant and Susceptible Phenotypes of Leptospermum scoparium Challenged by Austropuccinia psidii. PHYTOPATHOLOGY 2024; 114:2121-2130. [PMID: 38875168 DOI: 10.1094/phyto-04-24-0138-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Austropuccinia psidii is the causal pathogen of myrtle rust disease of Myrtaceae. To gain understanding of the initial infection process, gene expression in germinating A. psidii urediniospores and in Leptospermum scoparium-inoculated leaves were investigated via analyses of RNA sequencing samples taken 24 and 48 h postinoculation (hpi). Principal component analyses of transformed transcript count data revealed differential gene expression between the uninoculated L. scoparium control plants that correlated with the three plant leaf resistance phenotypes (immunity, hypersensitive response, and susceptibility). Gene expression in the immune resistant plants did not significantly change in response to fungal inoculation, whereas susceptible plants showed differential expression of genes in response to fungal challenge. A putative disease resistance gene, jg24539.t1, was identified in the L. scoparium hypersensitive response phenotype family. Expression of this gene may be associated with the phenotype and could be important for further understanding the plant hypersensitive response to A. psidii challenge. Differential expression of pathogen genes was found between samples taken 24 and 48 hpi, but there were no significant differences in pathogen gene expression that were associated with the three different plant leaf resistance phenotypes. There was a significant decrease in the abundance of fungal transcripts encoding three putative effectors and a putative carbohydrate-active enzyme between 24 and 48 hpi, suggesting that the encoded proteins are important during the initial phase of infection. These transcripts, or their translated proteins, may be potential targets to impede the early phases of fungal infection by this wide-host-range obligate biotrophic basidiomycete.
Collapse
Affiliation(s)
- Rebekah A Frampton
- The New Zealand Institute for Plant and Food Research Limited, Lincoln 7608, New Zealand
| | - Louise S Shuey
- The Queensland Department of Agriculture and Fisheries, Brisbane, Queensland 4001, Australia
| | - Charles C David
- The New Zealand Institute for Plant and Food Research Limited, Lincoln 7608, New Zealand
| | - Georgia M Pringle
- The New Zealand Institute for Plant and Food Research Limited, Lincoln 7608, New Zealand
| | - Falk Kalamorz
- The New Zealand Institute for Plant and Food Research Limited, Lincoln 7608, New Zealand
| | - Geoff S Pegg
- The Queensland Department of Agriculture and Fisheries, Brisbane, Queensland 4001, Australia
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Grant R Smith
- The New Zealand Institute for Plant and Food Research Limited, Lincoln 7608, New Zealand
| |
Collapse
|
4
|
Avasthi S, Gautam AK, Niranjan M, Verma RK, Karunarathna SC, Kumar A, Suwannarach N. Insights into Diversity, Distribution, and Systematics of Rust Genus Puccinia. J Fungi (Basel) 2023; 9:639. [PMID: 37367575 DOI: 10.3390/jof9060639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Puccinia, which comprises 4000 species, is the largest genus of rust fungi and one of the destructive plant pathogenic rust genera that are reported to infect both agricultural and nonagricultural plants with severe illnesses. The presence of bi-celled teliospores is one of the major features of these rust fungi that differentiated them from Uromyces, which is another largest genus of rust fungi. In the present study, an overview of the current knowledge on the general taxonomy and ecology of the rust genus Puccinia is presented. The status of the molecular identification of this genus along with updated species numbers and their current statuses in the 21st century are also presented, in addition to their threats to both agricultural and nonagricultural plants. Furthermore, a phylogenetic analysis based on ITS and LSU DNA sequence data available in GenBank and the published literature was performed to examine the intergeneric relationships of Puccinia. The obtained results revealed the worldwide distribution of Puccinia. Compared with other nations, a reasonable increase in research publications over the current century was demonstrated in Asian countries. The plant families Asteraceae and Poaceae were observed as the most infected in the 21st century. The phylogenetic studies of the LSU and ITS sequence data revealed the polyphyletic nature of Puccinia. In addition, the presences of too short, too lengthy, and incomplete sequences in the NCBI database demonstrate the need for extensive DNA-based analyses for a better understanding of the taxonomic placement of Puccinia.
Collapse
Affiliation(s)
- Shubhi Avasthi
- School of Studies in Botany, Jiwaji University, Gwalior 474011, India
| | - Ajay Kumar Gautam
- School of Agriculture, Abhilashi University, Mandi 175028, India
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India
| | - Mekala Niranjan
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Itanagar 791112, India
- Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet 605014, India
| | - Rajnish Kumar Verma
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana 141004, India
| | - Samantha C Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- National Institute of Fundamental Studies (NIFS), Hantana Road, Kandy 20000, Sri Lanka
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Modelling climatic suitability for myrtle rust with a widespread host species. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Smith GR, Ganley BJ, Chagné D, Nadarajan J, Pathirana RN, Ryan J, Arnst EA, Sutherland R, Soewarto J, Houliston G, Marsh AT, Koot E, Carnegie AJ, Menzies T, Lee DJ, Shuey LS, Pegg GS. Resistance of New Zealand Provenance Leptospermum scoparium, Kunzea robusta, Kunzea linearis, and Metrosideros excelsa to Austropuccinia psidii. PLANT DISEASE 2020; 104:1771-1780. [PMID: 32272027 DOI: 10.1094/pdis-11-19-2302-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Resistance to the pandemic strain of Austropuccinia psidii was identified in New Zealand provenance Leptospermum scoparium, Kunzea robusta, and K. linearis plants. Only 1 Metrosideros excelsa-resistant plant was found (of the 570 tested) and no resistant plants of either Lophomyrtus bullata or L. obcordata were found. Three types of resistance were identified in Leptospermum scoparium. The first two, a putative immune response and a hypersensitive response, are leaf resistance mechanisms found in other myrtaceous species while on the lateral and main stems a putative immune stem resistance was also observed. Both leaf and stem infection were found on K. robusta and K. linearis plants as well as branch tip dieback that developed on almost 50% of the plants. L. scoparium, K. robusta, and K. linearis are the first myrtaceous species where consistent infection of stems has been observed in artificial inoculation trials. This new finding and the first observation of significant branch tip dieback of plants of the two Kunzea spp. resulted in the development of two new myrtle rust disease severity assessment scales. Significant seed family and provenance effects were found in L. scoparium, K. robusta, and K. linearis: some families produced significantly more plants with leaf, stem, and (in Kunzea spp.) branch tip dieback resistance, and provenances provided different percentages of resistant families and plants. The distribution of the disease symptoms on plants from the same seed family, and between plants from different seed families, suggested that the leaf, stem, and branch tip dieback resistances were the result of independent disease resistance mechanisms.
Collapse
Affiliation(s)
- Grant R Smith
- The New Zealand Institute for Plant and Food Research Limited, Lincoln 7608, New Zealand
| | - Beccy J Ganley
- The New Zealand Institute for Plant and Food Research Limited, Te Puke 3182, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Jayanthi Nadarajan
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Ranjith N Pathirana
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Julie Ryan
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Elise A Arnst
- Manaaki Whenua Landcare Research, Lincoln 7608, New Zealand
| | | | | | - Gary Houliston
- Manaaki Whenua Landcare Research, Lincoln 7608, New Zealand
| | - Alby T Marsh
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Emily Koot
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Angus J Carnegie
- Forest Science, Department of Primary Industries-Forestry, Parramatta, NSW 2150 Australia
| | - Tracey Menzies
- The Queensland Department of Agriculture and Fisheries, Brisbane, Queensland 4001, Australia
| | - David J Lee
- The University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Louise S Shuey
- The Queensland Department of Agriculture and Fisheries, Brisbane, Queensland 4001, Australia
| | - Geoff S Pegg
- The Queensland Department of Agriculture and Fisheries, Brisbane, Queensland 4001, Australia
| |
Collapse
|
7
|
Bartholomé J, Brachi B, Marçais B, Mougou-Hamdane A, Bodénès C, Plomion C, Robin C, Desprez-Loustau ML. The genetics of exapted resistance to two exotic pathogens in pedunculate oak. THE NEW PHYTOLOGIST 2020; 226:1088-1103. [PMID: 31711257 DOI: 10.1111/nph.16319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/05/2019] [Indexed: 05/16/2023]
Abstract
Exotic pathogens cause severe damage in natural populations in the absence of coevolutionary dynamics with their hosts. However, some resistance to such pathogens may occur in naive populations. The objective of this study was to investigate the genetics of this so-called 'exapted' resistance to two pathogens of Asian origin (Erysiphe alphitoides and Phytophthora cinnamomi) in European oak. Host-pathogen compatibility was assessed by recording infection success and pathogen growth in a full-sib family of Quercus robur under controlled and natural conditions. Two high-resolution genetic maps anchored on the reference genome were used to study the genetic architecture of resistance and to identify positional candidate genes. Two genomic regions, each containing six strong and stable quantitative trait loci (QTLs) accounting for 12-19% of the phenotypic variation, were mainly associated with E. alphitoides infection. Candidate genes, especially genes encoding receptor-like-kinases and galactinol synthases, were identified in these regions. The three QTLs associated with P. cinnamomi infection did not colocate with QTLs found for E. alphitoides. These findings provide evidence that exapted resistance to E. alphitoides and P. cinnamomi is present in Q. robur and suggest that the underlying molecular mechanisms involve genes encoding proteins with extracellular signaling functions.
Collapse
Affiliation(s)
- Jérôme Bartholomé
- BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, 34398, France
- CIRAD, UMR AGAP, TA A-108 / 03 - Avenue Agropolis, Montpellier, 34398, France
| | - Benjamin Brachi
- BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France
| | - Benoit Marçais
- IAM, INRA, Université de Lorraine, Champenoux, Nancy, 54000, France
| | - Amira Mougou-Hamdane
- BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France
- Institut National Agronomique de Tunisie, Université de Carthage, 43 avenue Charles Nicolle Cité el Mahrajène, Tunis, 1082, Tunisia
| | - Catherine Bodénès
- BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France
| | - Christophe Plomion
- BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France
| | - Cécile Robin
- BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France
| | | |
Collapse
|
8
|
Barrett LG, Legros M, Kumaran N, Glassop D, Raghu S, Gardiner DM. Gene drives in plants: opportunities and challenges for weed control and engineered resilience. Proc Biol Sci 2019; 286:20191515. [PMID: 31551052 PMCID: PMC6784734 DOI: 10.1098/rspb.2019.1515] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Plant species, populations and communities are under threat from climate change, invasive pathogens, weeds and habitat fragmentation. Despite considerable research effort invested in genome engineering for crop improvement, the development of genetic tools for the management of wild plant populations has rarely been given detailed consideration. Gene drive systems that allow direct genetic management of plant populations via the spread of fitness-altering genetic modifications could be of great utility. However, despite the rapid development of synthetic tools and their enormous promise, little explicit consideration has been given to their application in plants and, to date, they remain untested. This article considers the potential utility of gene drives for the management of wild plant populations, and examines the factors that might influence the design, spread and efficacy of synthetic drives. To gain insight into optimal ways to design and deploy synthetic drive systems, we investigate the diversity of mechanisms underlying natural gene drives and their dynamics within plant populations and species. We also review potential approaches for engineering gene drives and discuss their potential application to plant genomes. We highlight the importance of considering the impact of plant life-history and genetic architecture on the dynamics of drive, investigate the potential for different types of resistance evolution, and touch on the ethical, regulatory and social challenges ahead.
Collapse
Affiliation(s)
- Luke G. Barrett
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, Australian Capital Territory, Australia
| | - Mathieu Legros
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, Australian Capital Territory, Australia
| | | | - Donna Glassop
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - S. Raghu
- CSIRO Health and Biosecurity, Brisbane, Queensland, Australia
| | - Donald M. Gardiner
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
9
|
Ahrens CW, Mazanec RA, Paap T, Ruthrof KX, Challis A, Hardy G, Byrne M, Tissue DT, Rymer PD. Adaptive variation for growth and resistance to a novel pathogen along climatic gradients in a foundation tree. Evol Appl 2019; 12:1178-1190. [PMID: 31293630 PMCID: PMC6597866 DOI: 10.1111/eva.12796] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/15/2019] [Accepted: 03/27/2019] [Indexed: 12/15/2022] Open
Abstract
Natural ecosystems are under pressure from increasing abiotic and biotic stressors, including climate change and novel pathogens, which are putting species at risk of local extinction, and altering community structure, composition and function. Here, we aim to assess adaptive variation in growth and fungal disease resistance within a foundation tree, Corymbia calophylla to determine local adaptation, trait heritability and genetic constraints in adapting to future environments. Two experimental planting sites were established in regions of contrasting rainfall with seed families from 18 populations capturing a wide range of climate origins (~4,000 individuals at each site). Every individual was measured in 2015 and 2016 for growth (height, basal diameter) and disease resistance to a recently introduced leaf blight pathogen (Quambalaria pitereka). Narrow-sense heritability was estimated along with trait covariation. Trait variation was regressed against climate-of-origin, and multivariate models were used to develop predictive maps of growth and disease resistance. Growth and blight resistance traits differed significantly among populations, and these differences were consistent between experimental sites and sampling years. Growth and blight resistance were heritable, and comparisons between trait differentiation (Q ST) and genetic differentiation (F ST) revealed that population differences in height and blight resistance traits are due to divergent natural selection. Traits were significantly correlated with climate-of-origin, with cool and wet populations showing the highest levels of growth and blight resistance. These results provide evidence that plants have adaptive growth strategies and pathogen defence strategies. Indeed, the presence of standing genetic variation and trait heritability of growth and blight resistance provide capacity to respond to novel, external pressures. The integration of genetic variation into adaptive management strategies, such as assisted gene migration and seed sourcing, may be used to provide greater resilience for natural ecosystems to both biotic and abiotic stressors.
Collapse
Affiliation(s)
- Collin W. Ahrens
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Richard A. Mazanec
- Biodiversity and Conservation Science, Bentley Delivery CentreWestern Australian Department of Biodiversity, Conservation and AttractionsPerthWestern AustraliaAustralia
| | - Trudy Paap
- Centre for Phytophthora Science and Management, School of Veterinary and Life SciencesMurdoch UniversityMurdochWestern AustraliaAustralia
- Present address:
Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
| | - Katinka X. Ruthrof
- Centre for Phytophthora Science and Management, School of Veterinary and Life SciencesMurdoch UniversityMurdochWestern AustraliaAustralia
- Kings Park ScienceDepartment of Biodiversity, Conservation and AttractionsPerthWestern AustraliaAustralia
| | - Anthea Challis
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Giles Hardy
- Centre for Phytophthora Science and Management, School of Veterinary and Life SciencesMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Bentley Delivery CentreWestern Australian Department of Biodiversity, Conservation and AttractionsPerthWestern AustraliaAustralia
| | - David T. Tissue
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Paul D. Rymer
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| |
Collapse
|
10
|
Freeman JS, Hamilton MG, Lee DJ, Pegg GS, Brawner JT, Tilyard PA, Potts BM. Comparison of host susceptibilities to native and exotic pathogens provides evidence for pathogen-imposed selection in forest trees. THE NEW PHYTOLOGIST 2019; 221:2261-2272. [PMID: 30347441 DOI: 10.1111/nph.15557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
The extent to which spatial structuring of host resistance in wild plant populations reflects direct pathogen-imposed selection is a subject of debate. To examine this issue, genetic susceptibilities to an exotic and a coevolved native fungal pathogen were compared using two Australian host tree species. Damage to common host germplasm of Corymbia citriodora ssp. variegata (CCV) and Eucalyptus globulus, caused by recently introduced (Austropuccinia psidii) and native (Quambalaria pitereka and Teratosphaeria sp.) pathogens was evaluated in common-garden experiments. There was significant additive genetic variation within host species for susceptibility to both the exotic and native pathogens. However, susceptibility to A. psidii was not genetically correlated with susceptibility to either native pathogen, providing support for pathogen-specific rather than general mechanisms of resistance. Population differentiation (QST ) for susceptibility to the native pathogens was greater than neutral expectations (molecular FST ), arguing for divergent selection. Coupled with lower native, but not exotic, pathogen susceptibility in host populations from areas climatically more prone to fungal proliferation, these findings suggest that pathogen-imposed selection has contributed directly to a geographic mosaic of host resistance to native pathogens.
Collapse
Affiliation(s)
- Jules S Freeman
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, 7001, Tas, Australia
| | - Matthew G Hamilton
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, 7001, Tas, Australia
| | - David J Lee
- Forest Industries Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, 4558, Qld, Australia
| | - Geoff S Pegg
- Department of Agriculture, Fisheries and Forestry, Ecosciences Precinct, GPO Box 267, Brisbane, 4001, Qld, Australia
| | - Jeremy T Brawner
- Forest Industries Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, 4558, Qld, Australia
| | - Paul A Tilyard
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, 7001, Tas, Australia
| | - Brad M Potts
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, 7001, Tas, Australia
| |
Collapse
|
11
|
Hsieh JF, Chuah A, Patel HR, Sandhu KS, Foley WJ, Külheim C. Transcriptome Profiling of Melaleuca quinquenervia Challenged by Myrtle Rust Reveals Differences in Defense Responses Among Resistant Individuals. PHYTOPATHOLOGY 2018; 108:495-509. [PMID: 29135360 DOI: 10.1094/phyto-09-17-0307-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plants have developed complex defense mechanisms to protect themselves against pathogens. A wide-host-range fungus, Austropuccinia psidii, which has caused severe damage to ecosystems and plantations worldwide, is a major threat to Australian ecosystems dominated by members of the family Myrtaceae. In particular, the east coast wetland foundation tree species Melaleuca quinquenervia, appears to be variably susceptible to this pathogen. Understanding the molecular basis of host resistance would enable better management of this rust disease. We identified resistant and susceptible individuals of M. quinquenervia and explored their differential gene expression in order to discover the molecular basis of resistance against A. psidii. Rust screening of germplasm showed a varying degree of response, with fully resistant to highly susceptible individuals. We used transcriptome profiling in samples collected before and at 5 days postinoculation (dpi). Differential gene expression analysis showed that numerous defense-related genes were induced in susceptible plants at 5 dpi. Mapping reads against the A. psidii genome showed that only susceptible plants contained fungal-derived transcripts. Resistant plants exhibited an overexpression of candidate A. psidii resistance-related genes such as receptor-like kinases, nucleotide-binding site leucine-rich repeat proteins, glutathione S-transferases, WRKY transcriptional regulators, and pathogenesis-related proteins. We identified large differences in the expression of defense-related genes among resistant individuals.
Collapse
Affiliation(s)
- Ji-Fan Hsieh
- First, fifth, and sixth authors: Research School of Biology, The Australian National University, 116 Daley Road, Canberra 2601, ACT, Australia; second and third authors: The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra 2601, ACT, Australia; and fourth author: Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty 2570, NSW, Australia
| | - Aaron Chuah
- First, fifth, and sixth authors: Research School of Biology, The Australian National University, 116 Daley Road, Canberra 2601, ACT, Australia; second and third authors: The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra 2601, ACT, Australia; and fourth author: Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty 2570, NSW, Australia
| | - Hardip R Patel
- First, fifth, and sixth authors: Research School of Biology, The Australian National University, 116 Daley Road, Canberra 2601, ACT, Australia; second and third authors: The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra 2601, ACT, Australia; and fourth author: Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty 2570, NSW, Australia
| | - Karanjeet S Sandhu
- First, fifth, and sixth authors: Research School of Biology, The Australian National University, 116 Daley Road, Canberra 2601, ACT, Australia; second and third authors: The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra 2601, ACT, Australia; and fourth author: Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty 2570, NSW, Australia
| | - William J Foley
- First, fifth, and sixth authors: Research School of Biology, The Australian National University, 116 Daley Road, Canberra 2601, ACT, Australia; second and third authors: The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra 2601, ACT, Australia; and fourth author: Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty 2570, NSW, Australia
| | - Carsten Külheim
- First, fifth, and sixth authors: Research School of Biology, The Australian National University, 116 Daley Road, Canberra 2601, ACT, Australia; second and third authors: The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra 2601, ACT, Australia; and fourth author: Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty 2570, NSW, Australia
| |
Collapse
|