1
|
Ibañez-Nolla J, Nolla-Salas M. Multifocal candidiasis can be considered a form of invasive candidiasis in critically non-neutropenic patients. Int J Infect Dis 2024; 147:107171. [PMID: 39025202 DOI: 10.1016/j.ijid.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Candida infections can be serious in intensive care unit (ICU) patients, as Candida is an organism that specially colonizes the digestive system. In immunocompromised patients, treatment is protocolized, but in non-neutropenic patients, it is not well established. On the other hand, the treatment of this type of infection is not absent of adverse effects. The prevalence of fungal infections, especially candidiasis, and its mortality in the ICU is high, mainly due to the lack of diagnosis and absence of treatment criteria, because they are often detected in the disseminated candidiasis phase, such as candidemia. One of the indicators of the progression of the disease is the presence of Candida in more than two different foci, named Candida multifocality, within the concept of invasive candidiasis. In fact, the invasive fungal diseases in adult patients i intensive care unit (FUNDICU) project was created to optimize the management of candidiasis. The management of candidiasis in ICU patients first requires the identification of patients at high risk of candidiasis, which must be performed based on the evidence of immune dysregulation, higher severity index (acute physiologic assessment and chronic health evaluation and multiple organ dysfunction syndrome), long ICU stays or other factors such as mechanical ventilation or us of broad-spectrum antibiotics. To increase detection and dispense the appropriate antifungal at an early stage, it is necessary to include the concept of multifocality in invasive candidiasis with screening of different foci. Antifungal treatment reduces mortality both overall and attributable to Candida. Detecting a high invasive candidiasis risk is a patient safety concept and should be treated as such. Identifying patients (critically non-neutropenic adult patients with severe multiple organ dysfunction syndrome and the first isolation of Candida spp. in a study sample of possible secondary infection) and demonstrating invasive candidiasis (multifocal or disseminated) require urgent initiation of antifungal treatment to minimize mortality attributable to invasive candidiasis in the ICU and eliminate mortality rates above 50%.
Collapse
|
2
|
Trápaga MR, Poester VR, Basso RP, Blan BDS, Munhoz LS, Pasqualotto AC, Werner TDF, Figurelli ML, Stevens DA, von Groll A, Xavier MO. Aspergillosis in Critically Ill Patients with and Without COVID-19 in a Tertiary Hospital in Southern Brazil. Mycopathologia 2024; 189:48. [PMID: 38847987 DOI: 10.1007/s11046-024-00862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024]
Abstract
The impact of invasive pulmonary aspergillosis (IPA) on non-neutropenic critically ill patients in intensive care units (ICU) has been demonstrated in recent decades. Furthermore, after the start of the COVID-19 pandemic, COVID-19 associated with pulmonary aspergillosis (CAPA) has become a major concern in ICUs. However, epidemiological data from different regions are scarce. We evaluated the prevalence and clinical-epidemiological data of IPA in patients with COVID-19 requiring mechanical ventilation (MV) in the ICU ("severe COVID-19") and non-COVID ICU patients in MV of a tertiary hospital in the southern region of Brazil. Eighty-seven patients admitted between June 2020 and August 2022 were included; 31 with severe COVID-19. For the diagnosis of IPA or CAPA, algorithms including host factors and mycological criteria (positive culture for Aspergillus spp., immunoassay for galactomannan detection, and/or qPCR) were utilized. The overall incidence of IPA and CAPA in our ICU was 73 cases/1000 ICU hospitalizations. Aspergillosis occurred in 13% (4/31) of the COVID-19 patients, and in 16% (9/56) of the critically ill patients without COVID-19, with mortality rates of 75% (3/4) and 67% (6/9), respectively. Our results highlight the need for physicians enrolled in ICU care to be aware of aspergillosis and for more access of the patients to sensitive and robust diagnostic tests by biomarkers detection.
Collapse
Affiliation(s)
- Mariana Rodrigues Trápaga
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Vanice Rodrigues Poester
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Rossana Patrícia Basso
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Hospital Universitário Dr. Miguel Riet Correa Jr., Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Bianca Dos Santos Blan
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Lívia Silveira Munhoz
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Alessandro C Pasqualotto
- Laboratório de Biologia Molecular, Santa Casa de Misericórdia, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Talita da Fontoura Werner
- Hospital Universitário Dr. Miguel Riet Correa Jr., Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Maria Letícia Figurelli
- Hospital Universitário Dr. Miguel Riet Correa Jr., Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA, USA
| | - Andrea von Groll
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Melissa Orzechowski Xavier
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
| |
Collapse
|
3
|
Hoenigl M, Enoch DA, Wichmann D, Wyncoll D, Cortegiani A. Exploring European Consensus About the Remaining Treatment Challenges and Subsequent Opportunities to Improve the Management of Invasive Fungal Infection (IFI) in the Intensive Care Unit. Mycopathologia 2024; 189:41. [PMID: 38704761 PMCID: PMC11070387 DOI: 10.1007/s11046-024-00852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND The global prevalence of invasive fungal infections (IFI) is increasing, particularly within Intensive Care Units (ICU), where Candida spp. and Aspergillus spp. represent the most important pathogens. Diagnosis and management of IFIs becomes progressively challenging, with increasing antifungal resistance and the emergence of rare fungal species. Through a consensus survey focused on assessing current views on how IFI should be managed, the aim of this project was to identify challenges around diagnosing and managing IFIs in the ICU. The current status in different countries and perceived challenges to date amongst a multidisciplinary cohort of healthcare professionals involved in the care of IFI in the ICU was assessed. METHODS Using a modified Delphi approach, an expert panel developed 44 Likert-scale statements across 6 key domains concerning patient screening and minimal standards for diagnosis of IFIs in ICU; initiation and termination of antifungal treatments and how to minimise their side effects and insights for future research on this topic. These were used to develop an online survey which was distributed on a convenience sampling basis utilising the subscriber list held by an independent provider (M3 Global). This survey was distributed to intensivists, infectious disease specialists, microbiologists and antimicrobial/ICU pharmacists within the UK, Germany, Spain, France and Italy. The threshold for consensus was set at 75%. RESULTS A total of 335 responses were received during the five-month collection period. From these, 29/44 (66%) statements attained very high agreement (≥ 90%), 11/44 (25%) high agreement (< 90% and ≥ 75%), and 4/44 (9%) did not meet threshold for consensus (< 75%). CONCLUSION The results outline the need for physicians to be aware of the local incidence of IFI and the associated rate of azole resistance in their ICUs. Where high clinical suspicion exists, treatment should start immediately and prior to receiving the results from any diagnostic test. Beta-D-glucan testing should be available to all ICU centres, with results available within 48 h to inform the cessation of empirical antifungal therapy. These consensus statements and proposed measures may guide future areas for further research to optimise the management of IFIs in the ICU.
Collapse
Affiliation(s)
- Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
- ECMM Excellence Center for Medical Mycology, Translational Medical Mycology Research Unit, Medical University of Graz, Graz, Austria.
| | - David A Enoch
- Clinical Microbiology & Public Health Laboratory, UK Health Security Agency, Cambridge University Hospital NHS Foundation Trust, Addenbrookes Hospital, Cambridge, UK
| | - Dominic Wichmann
- Department of Intensive Care Medicine, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| | - Duncan Wyncoll
- Department of Intensive Care, Guy's and St Thomas' Hospital, London, UK
| | - Andrea Cortegiani
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
- Department of Anesthesia Intensive Care and Emergency, University Hospital Policlinico 'Paolo Giaccone, Palermo, Italy
| |
Collapse
|
4
|
Akinosoglou K, Rigopoulos EA, Papageorgiou D, Schinas G, Polyzou E, Dimopoulou E, Gogos C, Dimopoulos G. Amphotericin B in the Era of New Antifungals: Where Will It Stand? J Fungi (Basel) 2024; 10:278. [PMID: 38667949 PMCID: PMC11051097 DOI: 10.3390/jof10040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Amphotericin B (AmB) has long stood as a cornerstone in the treatment of invasive fungal infections (IFIs), especially among immunocompromised patients. However, the landscape of antifungal therapy is evolving. New antifungal agents, boasting novel mechanisms of action and better safety profiles, are entering the scene, presenting alternatives to AmB's traditional dominance. This shift, prompted by an increase in the incidence of IFIs, the growing demographic of immunocompromised individuals, and changing patterns of fungal resistance, underscores the continuous need for effective treatments. Despite these challenges, AmB's broad efficacy and low resistance rates maintain its essential status in antifungal therapy. Innovations in AmB formulations, such as lipid complexes and liposomal delivery systems, have significantly mitigated its notorious nephrotoxicity and infusion-related reactions, thereby enhancing its clinical utility. Moreover, AmB's efficacy in treating severe and rare fungal infections and its pivotal role as prophylaxis in high-risk settings highlight its value and ongoing relevance. This review examines AmB's standing amidst the ever-changing antifungal landscape, focusing on its enduring significance in current clinical practice and exploring its potential future therapeutic adaptations.
Collapse
Affiliation(s)
- Karolina Akinosoglou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| | | | - Despoina Papageorgiou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - Georgios Schinas
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - Eleni Polyzou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | | | - Charalambos Gogos
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - George Dimopoulos
- 3rd Department of Critical Care, Evgenidio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
5
|
Bassetti M, Giacobbe DR, Agvald-Ohman C, Akova M, Alastruey-Izquierdo A, Arikan-Akdagli S, Azoulay E, Blot S, Cornely OA, Cuenca-Estrella M, de Lange DW, De Rosa FG, De Waele JJ, Dimopoulos G, Garnacho-Montero J, Hoenigl M, Kanj SS, Koehler P, Kullberg BJ, Lamoth F, Lass-Flörl C, Maertens J, Martin-Loeches I, Muñoz P, Poulakou G, Rello J, Sanguinetti M, Taccone FS, Timsit JF, Torres A, Vazquez JA, Wauters J, Asperges E, Cortegiani A, Grecchi C, Karaiskos I, Le Bihan C, Mercier T, Mortensen KL, Peghin M, Rebuffi C, Tejada S, Vena A, Zuccaro V, Scudeller L, Calandra T. Invasive Fungal Diseases in Adult Patients in Intensive Care Unit (FUNDICU): 2024 consensus definitions from ESGCIP, EFISG, ESICM, ECMM, MSGERC, ISAC, and ISHAM. Intensive Care Med 2024; 50:502-515. [PMID: 38512399 PMCID: PMC11018656 DOI: 10.1007/s00134-024-07341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE The aim of this document was to develop standardized research definitions of invasive fungal diseases (IFD) in non-neutropenic, adult patients without classical host factors for IFD, admitted to intensive care units (ICUs). METHODS After a systematic assessment of the diagnostic performance for IFD in the target population of already existing definitions and laboratory tests, consensus definitions were developed by a panel of experts using the RAND/UCLA appropriateness method. RESULTS Standardized research definitions were developed for proven invasive candidiasis, probable deep-seated candidiasis, proven invasive aspergillosis, probable invasive pulmonary aspergillosis, and probable tracheobronchial aspergillosis. The limited evidence on the performance of existing definitions and laboratory tests for the diagnosis of IFD other than candidiasis and aspergillosis precluded the development of dedicated definitions, at least pending further data. The standardized definitions provided in the present document are aimed to speed-up the design, and increase the feasibility, of future comparative research studies.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy.
| | - Daniele R Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Christina Agvald-Ohman
- Anaesthesiology and Intensive Care, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Murat Akova
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas-CIBERINFEC, Madrid, Spain
| | - Sevtap Arikan-Akdagli
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Elie Azoulay
- Université de Paris, Paris, France
- Service de Médecine Intensive Et Réanimation, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Stijn Blot
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Oliver A Cornely
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Manuel Cuenca-Estrella
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Dylan W de Lange
- Department of Intensive Care Medicine, University Medical Center, University Utrecht, Utrecht, The Netherlands
| | - Francesco G De Rosa
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Jan J De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - George Dimopoulos
- Department of Critical Care, University Hospital Attikon, Attikon Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
- Translational Mycology Working Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Souha S Kanj
- Division of Infectious Diseases, and Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Philipp Koehler
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Medical Faculty and University Hospital Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Bart J Kullberg
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frédéric Lamoth
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Immunology and Allergy and Center of Human Immunology Lausanne, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James' Hospital, Dublin, Ireland
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- Medicine Department, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Garyphallia Poulakou
- Third Department of Internal Medicine, School of Medicine, Sotiria General Hospital, National and Kapodistrian University, Athens, Greece
| | - Jordi Rello
- Clinical Research/Epidemiology in Pneumonia and Sepsis (CRIPS), Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain
- Clinical Research in the ICU, CHU Nimes, Universite de Nimes-Montpellier, Nimes, France
- Medicine Department, Universitat Internacional de Catalunya (UIC), Sant Cugat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio E Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabio S Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jean-François Timsit
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France
- IAME UMR 1137, Université Paris-Cité, Paris, France
| | - Antoni Torres
- Department of Pneumology, Hospital Clinic of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centres in Respiratory Diseases (CIBERES), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jose A Vazquez
- Department of Medicine/Division of Infectious Disease, Medical College of Georgia/Augusta University, Augusta, GA, USA
| | - Joost Wauters
- Medical Intensive Care Unit, University Hospitals Leuven, Louvain, Belgium
| | - Erika Asperges
- Infectious Diseases Unit, IRCCS San Matteo, Pavia, Italy
| | - Andrea Cortegiani
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
- Department of Anesthesia Intensive Care and Emergency, University Hospital Policlinico Paolo Giaccone, Palermo, Italy
| | - Cecilia Grecchi
- Malattie Infettive, Azienda Socio Sanitaria Territoriale (ASST) di Lodi, Lodi, Italy
| | - Ilias Karaiskos
- 1st Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Clément Le Bihan
- Saint Eloi Department of Anesthesiology and Critical Care Medicine, Montpellier University Health Care Center, Montpellier, France
| | - Toine Mercier
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Louvain, Belgium
- Department of Hematology, University Hospitals Leuven, Louvain, Belgium
| | - Klaus L Mortensen
- Department of Medicine, Regional Hospital West Jutland, Herning, Denmark
| | - Maddalena Peghin
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Chiara Rebuffi
- Scientific Direction, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Sofia Tejada
- Clinical Research/Epidemiology in Pneumonia and Sepsis (CRIPS), Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | | | - Luigia Scudeller
- Research and Innovation Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Thierry Calandra
- Service of Immunology and Allergy and Center of Human Immunology Lausanne, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Azim A, Ahmed A. Diagnosis and management of invasive fungal diseases in non-neutropenic ICU patients, with focus on candidiasis and aspergillosis: a comprehensive review. Front Cell Infect Microbiol 2024; 14:1256158. [PMID: 38505289 PMCID: PMC10948617 DOI: 10.3389/fcimb.2024.1256158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Invasive fungal diseases pose a significant threat to non-neutropenic ICU patients, with Candida and Aspergillus infections being the most common. However, diagnosing these infections in the ICU population remains challenging due to overlapping clinical features, poor sensitivity of blood cultures, and invasive sampling requirements. The classical host criteria for defining invasive fungal disease do not fully apply to ICU patients, leading to missed or delayed diagnoses. Recent advancements have improved our understanding of invasive fungal diseases, leading to revised definitions and diagnostic criteria. However, the diagnostic difficulties in ICU patients remain unresolved, highlighting the need for further research and evidence generation. Invasive candidiasis is the most prevalent form of invasive fungal disease in non-neutropenic ICU patients, presenting as candidemia and deep-seated candidiasis. Diagnosis relies on positive blood cultures or histopathology, while non-culture-based techniques such as beta-D-glucan assay and PCR-based tests show promise. Invasive aspergillosis predominantly manifests as invasive pulmonary aspergillosis in ICU patients, often associated with comorbidities and respiratory deterioration in viral pneumonia. Diagnosis remains challenging due to poor sensitivity of blood cultures and difficulties in performing lung biopsies. Various diagnostic criteria have been proposed, including mycological evidence, clinical/radiological factors and expanded list of host factors. Non-culture-based techniques such as galactomannan assay and PCR-based tests can aid in diagnosis. Antifungal management involves tailored therapy based on guidelines and individual patient factors. The complexity of diagnosing and managing invasive fungal diseases in ICU patients underscore the importance of ongoing research and the need for updated diagnostic criteria and treatment approaches. Invasive fungal disease, Invasive fungal infection, Invasive candidiasis, Invasive aspergillosis, Antifungal drugs.
Collapse
Affiliation(s)
- Afzal Azim
- Department of Critical Care Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI), Lucknow, India
| | - Armin Ahmed
- Department of Critical Care Medicine, King George’s Medical University, Lucknow, India
| |
Collapse
|
7
|
Aerts R, Autier B, Gornicec M, Prattes J, Lagrou K, Gangneux JP, Hoenigl M. Point-of-care testing for viral-associated pulmonary aspergillosis. Expert Rev Mol Diagn 2024; 24:231-243. [PMID: 37688631 DOI: 10.1080/14737159.2023.2257597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023]
Abstract
INTRODUCTION Over the last years, severe respiratory viral infections, particularly those caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the influenza virus, have emerged as risk factor for viral-associated pulmonary aspergillosis (VAPA) among critically ill patients. Delays in diagnosis of VAPA are associated with increased mortality. Point-of-care-tests may play an important role in earlier diagnosis of VAPA and thus improve patient outcomes. AREAS COVERED The following review will give an update on point-of-care tests for VAPA, analyzing performances in respiratory and blood specimens. EXPERT OPINION Point-of-care tests have emerged, and particularly the IMMY Aspergillus galactomannan lateral flow assay (LFA) shows performances comparable to the galactomannan ELISA for diagnosis of VAPA. Notably, nearly all evaluations of POC tests for VAPA have been performed in COVID-19 patients, with very limited data in influenza patients. For early diagnosis of COVID associated pulmonary aspergillosis (CAPA), the LFA has shown promising performances in respiratory samples, particularly in bronchoalveolar lavage fluid, and may thereby help in improving patient outcomes. In contrast, serum LFA testing may not be useful for early diagnosis of disease, except in cases with invasive tracheobronchial aspergillosis.
Collapse
Affiliation(s)
- Robina Aerts
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium
| | - Brice Autier
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes, France
- Centre Hospitalier Universitaire de Rennes, Laboratory of Parasitology and Mycology, European Excellence Center in Medical Mycology (ECMM-EC), National Reference Center on mycology and antifungals (LA-AspC Chronic aspergillosis and A. fumigatus resistance), Rennes, France
| | - Maximilian Gornicec
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Unit, Medical University of Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes, France
- Centre Hospitalier Universitaire de Rennes, Laboratory of Parasitology and Mycology, European Excellence Center in Medical Mycology (ECMM-EC), National Reference Center on mycology and antifungals (LA-AspC Chronic aspergillosis and A. fumigatus resistance), Rennes, France
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Unit, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
8
|
Heylen J, Vanbiervliet Y, Maertens J, Rijnders B, Wauters J. Acute Invasive Pulmonary Aspergillosis: Clinical Presentation and Treatment. Semin Respir Crit Care Med 2024; 45:69-87. [PMID: 38211628 DOI: 10.1055/s-0043-1777769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Among all clinical manifestations of pulmonary aspergillosis, invasive pulmonary aspergillosis (IPA) is the most acute presentation. IPA is caused by Aspergillus hyphae invading the pulmonary tissue, causing either tracheobronchitis and/or bronchopneumonia. The degree of fungal invasion into the respiratory tissue can be seen as a spectrum, going from colonization to deep tissue penetration with angio-invasion, and largely depends on the host's immune status. Patients with prolonged, severe neutropenia and patients with graft-versus-host disease are at particularly high risk. However, IPA also occurs in other groups of immunocompromised and nonimmunocompromised patients, like solid organ transplant recipients or critically ill patients with severe viral disease. While a diagnosis of proven IPA is challenging and often warranted by safety and feasibility, physicians must rely on a combination of clinical, radiological, and mycological features to assess the likelihood for the presence of IPA. Triazoles are the first-choice regimen, and the choice of the drug should be made on an individual basis. Adjunctive therapy such as immunomodulatory treatment should also be taken into account. Despite an improving and evolving diagnostic and therapeutic armamentarium, the burden and mortality of IPA still remains high. This review aims to give a comprehensive and didactic overview of the current knowledge and best practices regarding the epidemiology, clinical presentation, diagnosis, and treatment of acute IPA.
Collapse
Affiliation(s)
- Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Yuri Vanbiervliet
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Haematology, University Hospitals Leuven, Leuven, Belgium
| | - Johan Maertens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Haematology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Rijnders
- Department of Internal Medicine and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Novy E, Roger C, Roberts JA, Cotta MO. Pharmacokinetic and pharmacodynamic considerations for antifungal therapy optimisation in the treatment of intra-abdominal candidiasis. Crit Care 2023; 27:449. [PMID: 37981676 PMCID: PMC10659066 DOI: 10.1186/s13054-023-04742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
Intra-abdominal candidiasis (IAC) is one of the most common of invasive candidiasis observed in critically ill patients. It is associated with high mortality, with up to 50% of deaths attributable to delays in source control and/or the introduction of antifungal therapy. Currently, there is no comprehensive guidance on optimising antifungal dosing in the treatment of IAC among the critically ill. However, this form of abdominal sepsis presents specific pharmacokinetic (PK) alterations and pharmacodynamic (PD) challenges that risk suboptimal antifungal exposure at the site of infection in critically ill patients. This review aims to describe the peculiarities of IAC from both PK and PD perspectives, advocating an individualized approach to antifungal dosing. Additionally, all current PK/PD studies relating to IAC are reviewed in terms of strength and limitations, so that core elements for the basis of future research can be provided.
Collapse
Affiliation(s)
- Emmanuel Novy
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus Herston, Brisbane, QLD, 4029, Australia
- Department of Anaesthesiology, Critical Care and Peri-Operative Medicine, University Hospital of Nancy, Nancy, France
- Université de Lorraine, SIMPA, 54500, Nancy, France
| | - Claire Roger
- Department of Anesthesiology, Critical Care, Pain and Emergency Medicine, Nimes University Hospital, Place du Professeur Robert Debré, 30029, Nîmes Cedex 9, France
- UR UM103 IMAGINE, Univ Montpellier, Montpellier, France
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus Herston, Brisbane, QLD, 4029, Australia.
- Department of Anesthesiology, Critical Care, Pain and Emergency Medicine, Nimes University Hospital, Place du Professeur Robert Debré, 30029, Nîmes Cedex 9, France.
- Department of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia.
| | - Menino Osbert Cotta
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus Herston, Brisbane, QLD, 4029, Australia
| |
Collapse
|
10
|
Impact of revised EORTC/MSGERC 2020 criteria on diagnosis and prognosis of invasive pulmonary aspergillosis in patients with hematological malignancies undergoing bronchoscopy. J Mycol Med 2022; 32:101304. [PMID: 35738036 DOI: 10.1016/j.mycmed.2022.101304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The first consensus definitions for invasive fungal diseases (IFD) were published in 2002. Advances in diagnostic tests and a clear need for improvement in certain areas led to a revision of these definitions in 2008. However, growing data on Aspergillus galactomannan (GM) thresholds and the introduction of new polymerase chain reaction-based diagnostic tests resulted in a further update by EORTC and Mycoses Study Group Education and Research Consortium (MSGERC) in 2020. Compared to the 2008 version, the 2020 EORTC/MSGERC criteria have stricter definitions, especially regarding GM levels, which should lead to improved specificity. Thus, our study aimed to evaluate diagnostic changes, based on GM levels, resulting from these new definitions and ascertain the impact of the new classification on mortality rates. METHOD Patients hospitalized in a single tertiary care center with hematologic malignancies and undergoing bronchoscopy for suspected IPA between April 2004 and December 2019 were included in this retrospective study. RESULTS The study population consisted of 327 patients with 31 patients (nine patients with proven IPA and 22 patients with no IPA) excluded from the study. 194 patients were classified as probable IPA cases according to 2008 EORTC/MSG criteria. However, 53 (27.3%) of these patients were re-classified as possible IPA according to 2020 EORTC/MSGERC criteria, due to novel galactomannan cut-off levels. Compared to re-classified possible IPA patients, those remaining in the probable IPA category experienced a higher incidence of septic shock (34.0% vs 16.9%, p=0.02), and required more non-invasive (12.0% vs 0.0%, p=0.004) and invasive (44.6 vs 24.5%, p=0.01) mechanical ventilation. There was a higher in-hospital mortality rate in probable IPA patients than in the re-classified possible IPA group (42.5% vs 22.6%, p=0.01). Patients reassigned to possible IPA had similar underlying diseases, radiological features and prognosis to patients already classified as possible IPA. Independent risk factors for mortality were classification as probable IPA according to 2020 EORTC/MSGERC criteria, lack of remission from hematologic malignancy, and number of nodules in Thorax CT. CONCLUSION The use of 2020 EORTC/MSGERC criteria resulted in a 27.3% significant reduction in probable IPA diagnoses and created a more homogeneous category of patients with respect to treatment response, prognosis and mortality. Therefore, 2020 EORTC/MSGERC criteria afford more reliable mortality prediction than 2008 EORTC/MSG criteria.
Collapse
|
11
|
Bassetti M, Zuccaro V, Asperges E, Scudeller L, Giacobbe DR. Performance of existing definitions and tests for the diagnosis of invasive aspergillosis in critically ill, non-neutropenic, adult patients: An update including COVID-19 data. J Infect 2022; 85:573-607. [PMID: 35934138 PMCID: PMC9352413 DOI: 10.1016/j.jinf.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences, University of Genoa, Genoa, Italy; Clinica Malattie Infettive, Ospedale Policlinico San Martino - IRCCS, L.go R. Benzi 10, Genoa 16132, Italy
| | | | - Erika Asperges
- Infectious Diseases Unit, IRCCS San Matteo, Pavia, Italy
| | - Luigia Scudeller
- Research and Innovation Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences, University of Genoa, Genoa, Italy; Clinica Malattie Infettive, Ospedale Policlinico San Martino - IRCCS, L.go R. Benzi 10, Genoa 16132, Italy.
| |
Collapse
|
12
|
Sharma K, Kujur R, Sharma S, Kumar N, Ray MK. COVID-19-associated Pulmonary Aspergillosis: A Case Series. Indian J Crit Care Med 2022; 26:1039-1041. [PMID: 36213710 PMCID: PMC9492747 DOI: 10.5005/jp-journals-10071-24314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background With the development of coronavirus disease-2019 (COVID-19) pandemic, there is also increased risk of multiple secondary infections either disease- or drug-related. It includes many bacterial as well as invasive fungal infections. Patients and methods There was suspicion of invasive pulmonary aspergillosis (IPA) infection in COVID-19 patients who were critically ill and had acute respiratory distress syndrome (ARDS). We did radiological evaluation and galactomannan assay in these patients. Result We have diagnosed COVID-19-associated pulmonary aspergillosis (CAPA) in these patients and started antifungal treatment with voriconazole in all of these COVID-19 patients. Conclusion It is very important to report such cases, so that healthcare professionals and authorities related to healthcare will be aware of and may also prepare for the increasing burden of this complication. We describe a case series of CAPA infection. How to cite this article Sharma K, Kujur R, Sharma S, Kumar N, Ray MK. COVID-19-associated Pulmonary Aspergillosis: A Case Series. Indian J Crit Care Med 2022;26(9):1039–1041.
Collapse
Affiliation(s)
- Khushboo Sharma
- Department of Anesthesia and Intensive Care, Orchid Medical Centre, Ranchi, Jharkhand, India
- Khushboo Sharma, Department of Anesthesia and Intensive Care, Orchid Medical Centre, Ranchi, Jharkhand, India, Phone: +91 9007892026, e-mail:
| | - Rash Kujur
- Department of Critical Care, Orchid Medical Centre, Ranchi, Jharkhand, India
| | - Saurabh Sharma
- Department of Plastic and Reconstructive Surgery, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Nishith Kumar
- Department of Pulmonary Medicine, Orchid Medical Centre, Ranchi, Jharkhand, India
| | - Manoj Kumar Ray
- Department of Anesthesia and Intensive Care, Orchid Medical Centre, Ranchi, Jharkhand, India
| |
Collapse
|
13
|
Giacobbe DR, Asperges E, Cortegiani A, Grecchi C, Rebuffi C, Zuccaro V, Scudeller L, Bassetti M. Performance of existing clinical scores and laboratory tests for the diagnosis of invasive candidiasis in critically ill, nonneutropenic, adult patients: a systematic review with qualitative evidence synthesis. Mycoses 2022; 65:1073-1111. [PMID: 35938455 DOI: 10.1111/myc.13515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The Fungal Infections Definitions in Intensive Care Unit (ICU) patients (FUNDICU) project aims to provide standard sets of definitions for invasive fungal diseases in critically ill, adult patients. OBJECTIVES To summarize the available evidence on the diagnostic performance of clinical scores and laboratory tests for invasive candidiasis (IC) in nonneutropenic, adult critically ill patients. METHODS A systematic review was performed to evaluate studies assessing the diagnostic performance for IC of clinical scores and/or laboratory tests vs. a reference standard or a reference definition in critically ill, nonneutropenic, adult patients in ICU. RESULTS Clinical scores, despite the heterogeneity of study populations and IC prevalences, constantly showed a high negative predictive value (NPV) and a low positive predictive value (PPV) for the diagnosis of IC in the target population. Fungal antigen-based biomarkers (with most studies assessing serum beta-D-glucan) retained a high NPV similar to that of clinical scores, with a higher PPV, although the latter showed important heterogeneity across studies, possibly reflecting the targeted or untargeted use of these tests in patients with a consistent clinical picture and risk factors for IC. CONCLUSIONS Both clinical scores and laboratory tests showed high NPV for the diagnosis of IC in nonneutropenic critically ill patients. The PPV of laboratory tests varies significantly according to the baseline patients' risk of IC. This qualitative synthesis will provide the FUNDICU panel with baseline evidence to be considered during the development of definitions of IC in critically ill, nonneutropenic adult patients in ICU.
Collapse
Affiliation(s)
- Daniele Roberto Giacobbe
- Department of Health Sciences, University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| | - Erika Asperges
- Infectious Diseases Unit, IRCCS San Matteo, Pavia, Italy
| | - Andrea Cortegiani
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), University of Palermo, Palermo, Italy.,Department of Anesthesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, Palermo, Italy
| | | | - Chiara Rebuffi
- Scientific Direction, IRCCS Istituto Giannina Gaslini, Scientific Direction, Italy
| | | | - Luigia Scudeller
- Research and Innovation Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Bassetti
- Department of Health Sciences, University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| | | |
Collapse
|
14
|
Al-Obaid I, Asadzadeh M, Ahmad S, Alobaid K, Alfouzan W, Bafna R, Emara M, Joseph L. Fatal Breakthrough Candidemia in an Immunocompromised Patient in Kuwait Due to Candida auris Exhibiting Reduced Susceptibility to Echinocandins and Carrying a Novel Mutation in Hotspot-1 of FKS1. J Fungi (Basel) 2022; 8:jof8030267. [PMID: 35330269 PMCID: PMC8953900 DOI: 10.3390/jof8030267] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
Candida auris is an emerging yeast pathogen that has recently caused major outbreaks in healthcare facilities worldwide. Clinical C. auris isolates are usually resistant to fluconazole and readily develop resistance to echinocandins and amphotericin B (AMB) during treatment. We describe here an interesting case of C. auris infection in an immunocompromised patient who had previously received AMB and caspofungin treatment. Subsequently, C. auris was isolated from tracheal (tracheostomy) secretions and twice from urine and all three isolates were susceptible to AMB and micafungin. The patient received a combination therapy with AMB and caspofungin. Although the C. auris was cleared from the urine, the patient subsequently developed breakthrough candidemia and the bloodstream isolate exhibited a reduced susceptibility to micafungin and also showed the presence of a novel (S639T) mutation in hotspot-1 of FKS1. Interestingly, C. auris from the tracheal (tracheostomy) secretions recovered one and four days later exhibited a reduced susceptibility to micafungin and S639Y and S639T mutations in hotspot-1 of FKS1, respectively. Although the treatment was changed to voriconazole, the patient expired. Our case highlights a novel FKS1 mutation and the problems clinicians are facing to treat invasive C. auris infections due to inherent or developing resistance to multiple antifungal drugs and limited antifungal armamentarium.
Collapse
Affiliation(s)
- Inaam Al-Obaid
- Department of Microbiology, Al-Sabah Hospital, Shuwaikh 70031, Kuwait; (I.A.-O.); (R.B.); (M.E.)
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; (M.A.); (W.A.); (L.J.)
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; (M.A.); (W.A.); (L.J.)
- Correspondence: ; Tel.: +00965-2463-6503
| | - Khaled Alobaid
- Department of Microbiology, Mubarak Al-Kabeer Hospital, Jabriya 46300, Kuwait;
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; (M.A.); (W.A.); (L.J.)
| | - Ritu Bafna
- Department of Microbiology, Al-Sabah Hospital, Shuwaikh 70031, Kuwait; (I.A.-O.); (R.B.); (M.E.)
| | - Maha Emara
- Department of Microbiology, Al-Sabah Hospital, Shuwaikh 70031, Kuwait; (I.A.-O.); (R.B.); (M.E.)
| | - Leena Joseph
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; (M.A.); (W.A.); (L.J.)
| |
Collapse
|
15
|
Zakhem AE, Istambouli R, Jabbour JF, Hindy JR, Gharamti A, Kanj SS. Diagnosis and Management of Invasive Candida Infections in Critically Ill Patients. Semin Respir Crit Care Med 2022; 43:46-59. [PMID: 35172358 DOI: 10.1055/s-0041-1741009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Invasive candidiasis (IC) has become a serious problem in the intensive care unit patients with an attributable mortality rate that can reach up to 51%. Multiple global surveillance studies have shown an increasing incidence of candidemia. Despite their limited sensitivity (21-71%), cultures remain the gold standard for the diagnosis of IC associated with candidemia. Many adjunct laboratory tests exist to support or rule out the diagnosis, each with its indications and limitations, including procalcitonin, 1,3-β-D-glucan, mannan and anti-mannan antibodies, and Candida albicans germ tube antibody. In addition, polymerase chain reaction-based methods could expedite species identification in positive blood cultures, helping in guiding early empirical antifungal therapy. The management of IC in critically ill patients can be classified into prophylactic, preemptive, empiric, and directed/targeted therapy of a documented infection. There is no consensus concerning the benefit of prophylactic therapy in critically ill patients. While early initiation of appropriate therapy in confirmed IC is an important determinant of survival, the selection of candidates and drug of choice for empirical systemic antifungal therapy is more controversial. The choice of antifungal agents is determined by many factors, including the host, the site of infection, the species of the isolated Candida, and its susceptibility profile. Echinocandins are considered initial first-line therapy agents. Due to the conflicting results of the various studies on the benefit of preemptive therapy for critically ill patients and the lack of robust evidence, the Infectious Diseases Society of America (IDSA) omitted this category from its updated guidelines and the European Society of Intensive Care Medicine (ESICM) and the Critically Ill Patients Study Group of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) do not recommend it.
Collapse
Affiliation(s)
- Aline El Zakhem
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rachid Istambouli
- Leeds and York Partnership NHS Foundation Trust, Leeds, United Kingdom
| | - Jean-Francois Jabbour
- Department of Internal Medicine, Saint George Hospital University Medical Center, University of Balamand, Beirut, Lebanon
| | - Joya-Rita Hindy
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Amal Gharamti
- Department of Internal Medicine, Yale School of Medicine, Waterbury Hospital, Waterbury, Connecticut
| | - Souha S Kanj
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
16
|
Chen F, Qasir D, Morris AC. Invasive Pulmonary Aspergillosis in Hospital and Ventilator-Associated Pneumonias. Semin Respir Crit Care Med 2022; 43:234-242. [PMID: 35042260 DOI: 10.1055/s-0041-1739472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pneumonia is the commonest nosocomial infection complicating hospital stay, with both non-ventilated hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) occurring frequently amongst patients in intensive care. Aspergillus is an increasingly recognized pathogen amongst patients with HAP and VAP, and is associated with significantly increased mortality if left untreated.Invasive pulmonary aspergillosis (IPA) was originally identified in patients who had been profoundly immunosuppressed, however, this disease can also occur in patients with relative immunosuppression such as critically ill patients in intensive care unit (ICU). Patients in ICU commonly have several risk factors for IPA, with the inflamed pulmonary environment providing a niche for aspergillus growth.An understanding of the true prevalence of this condition amongst ICU patients, and its specific rate in patients with HAP or VAP is hampered by difficulties in diagnosis. Establishing a definitive diagnosis requires tissue biopsy, which is seldom practical in critically ill patients, so imperfect proxy measures are required. Clinical and radiological findings in ventilated patients are frequently non-specific. The best-established test is galactomannan antigen level in bronchoalveolar lavage fluid, although this must be interpreted in the clinical context as false positive results can occur. Acknowledging these limitations, the best estimates of the prevalence of IPA range from 0.3 to 5% amongst all ICU patients, 12% amongst patients with VAP and 7 to 28% amongst ventilated patients with influenza.Antifungal triazoles including voriconazole are the first-line therapy choice in most cases. Amphotericin has excellent antimold coverage, but a less advantageous side effect profile. Echinocandins are less effective against IPA, but may play a role in rescue therapy, or as an adjuvant to triazole therapy.A high index of suspicion for IPA should be maintained when investigating patients with HAP or VAP, especially when they have specific risk factors or are not responding to appropriate empiric antibacterial therapy.
Collapse
Affiliation(s)
- Fangyue Chen
- JVF Intensive Care Unit, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Danyal Qasir
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Conway Morris
- JVF Intensive Care Unit, Addenbrooke's Hospital, Cambridge, United Kingdom.,Department of Medicine, Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Chang CC, Blyth CC, Chen SCA, Khanina A, Morrissey CO, Roberts JA, Thursky KA, Worth LJ, Slavin MA. Introduction to the updated Australasian consensus guidelines for the management of invasive fungal disease and use of antifungal agents in the haematology/oncology setting, 2021. Intern Med J 2021; 51 Suppl 7:3-17. [PMID: 34937135 DOI: 10.1111/imj.15585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This article introduces the fourth update of the Australian and New Zealand consensus guidelines for the management of invasive fungal disease and use of antifungal agents in the haematology/oncology setting. These guidelines are comprised of nine articles as presented in this special issue of the Internal Medicine Journal. This introductory chapter outlines the rationale for the current update and the steps taken to ensure implementability in local settings. Given that 7 years have passed since the previous iteration of these guidelines, pertinent contextual changes that impacted guideline content and recommendations are discussed, including the evolution of invasive fungal disease (IFD) definitions. We also outline our approach to guideline development, evidence grading, review and feedback. Highlights of the 2021 update are presented, including expanded scope to provide more detailed coverage of common and emerging fungi such as Aspergillus and Candida species, and emerging fungi, and a greater focus on the principles of antifungal stewardship. We also introduce an entirely new chapter dedicated to helping healthcare workers convey important concepts related to IFD, infection prevention and antifungal therapy, to patients.
Collapse
Affiliation(s)
- Christina C Chang
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Therapeutic and Vaccine Research Programme, Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Christopher C Blyth
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia.,School of Medicine, University of Western Australia, Perth, Western Australia, Australia.,Department of Paediatric Infectious Diseases, Perth Children's Hospital, Perth, Western Australia, Australia.,Department of Microbiology, PathWest Laboratory Medicine WA, QEII Medical Centre, Perth, Western Australia, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Anna Khanina
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - C Orla Morrissey
- Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jason A Roberts
- The University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Department of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Karin A Thursky
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia.,National Centre for Antimicrobial Stewardship, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Victorian Infectious Diseases Service, The Peter Doherty Institute for Immunity and Infection, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Leon J Worth
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Monica A Slavin
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Immunocompromised Host Infection Service, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | | |
Collapse
|
18
|
Douglas AP, Smibert OC, Bajel A, Halliday CL, Lavee O, McMullan B, Yong MK, Hal SJ, Chen SC. Consensus guidelines for the diagnosis and management of invasive aspergillosis, 2021. Intern Med J 2021; 51 Suppl 7:143-176. [DOI: 10.1111/imj.15591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Abby P. Douglas
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Infectious Diseases Austin Health Melbourne Victoria Australia
| | - Olivia. C. Smibert
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Infectious Diseases Austin Health Melbourne Victoria Australia
| | - Ashish Bajel
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- Department of Clinical Haematology Peter MacCallum Cancer Centre and The Royal Melbourne Hospital Melbourne Victoria Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital Sydney New South Wales Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity The University of Sydney Sydney New South Wales Australia
| | - Orly Lavee
- Department of Haematology St Vincent's Hospital Sydney New South Wales Australia
| | - Brendan McMullan
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Immunology and Infectious Diseases Sydney Children's Hospital Sydney New South Wales Australia
- School of Women's and Children's Health University of New South Wales Sydney New South Wales Australia
| | - Michelle K. Yong
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Victorian Infectious Diseases Service Royal Melbourne Hospital Melbourne Victoria Australia
| | - Sebastiaan J. Hal
- Sydney Medical School University of Sydney Sydney New South Wales Australia
- Department of Microbiology and Infectious Diseases Royal Prince Alfred Hospital Sydney New South Wales Australia
| | - Sharon C.‐A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital Sydney New South Wales Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity The University of Sydney Sydney New South Wales Australia
- Sydney Medical School University of Sydney Sydney New South Wales Australia
| | | |
Collapse
|
19
|
Klein J, Rello J, Dimopoulos G, Bulpa P, Blot K, Vogelaers D, Blot S. Invasive pulmonary aspergillosis in solid-organ transplant patients in the intensive care unit. Transpl Infect Dis 2021; 24:e13746. [PMID: 34843161 DOI: 10.1111/tid.13746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/01/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Solid-organ transplantation (SOT) is a well-known risk factor for invasive pulmonary aspergillosis (IPA). We report on the epidemiology and outcome of SOT patients with IPA in an intensive care unit (ICU) setting. METHODS This is a secondary study based on a subset of SOT patients from a prospective observational multicenter cohort (the AspICU project) including ICU patients with at least one Aspergillus spp. positive culture. Cases were classified as proven, probable, or putative IPA, or as Aspergillus-colonized. Mortality was reported at 12 weeks. RESULTS The study included 52 SOT patients (of which 18 lung, 17 liver, 12 kidney, and five heart transplants). Sixteen patients had proven IPA, 28 were categorized as putative IPA (of which only five reached a probable IPA diagnosis according to the European Organization for Research and Treatment of Cancer/Mycosis Study Group and Research Consortium criteria), and eight as Aspergillus-colonization. Among patients with IPA, 20 (45.5%) developed IPA during their ICU stay following transplantation whereas 24 patients (54.5%) had a medical ICU admission. Regarding medical imaging, nearly all IPA cases presented with non-specific findings as only nine demonstrated robust findings suggestive for invasive fungal disease. Overall, severity of the disease was reflected by a high prevalence of underlying conditions and acute organ derangements. Mortality among patients with IPA was 68%. Lung transplantation was associated with better survival (50%). CONCLUSION IPA in SOT patients in the ICU develops in the presence of overall high severity of the disease. It rarely presents with suggestive medical imaging thereby hampering diagnosis. IPA in ICU patients with SOT carries a grim prognosis.
Collapse
Affiliation(s)
- Joachim Klein
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jordi Rello
- Clinical Research/Epidemiology in Pneumonia and Sepsis, Vall d'Hebron Institute of Research, Barcelona, Spain.,Clinical Research, CHRU Nimes, Nimes, France
| | - George Dimopoulos
- Department of Critical Care, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Pierre Bulpa
- Department of Intensive Care Unit, Mont-Godinne University Hospital, CHU UCL Namur, Namur, Belgium
| | - Koen Blot
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - Dirk Vogelaers
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Department of General Internal Medicine and Infectious Diseases, AZ Delta, Roeselare, Belgium
| | - Stijn Blot
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Burns, Trauma and Critical Care Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
20
|
COVID-19-Associated Invasive Pulmonary Aspergillosis in the Intensive Care Unit: A Case Series in a Portuguese Hospital. J Fungi (Basel) 2021; 7:jof7100881. [PMID: 34682302 PMCID: PMC8538920 DOI: 10.3390/jof7100881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
Invasive pulmonary aspergillosis (IPA) has become a recognizable complication in coronavirus disease 2019 (COVID-19) patients admitted to intensive care units (ICUs). Alveolar damage in the context of acute respiratory distress syndrome (ARDS) appears to be the culprit in facilitating fungal invasion in COVID-19 patients, leading to a COVID-19-associated pulmonary aspergillosis (CAPA) phenomenon. From November 2020 to 15 February 2021, 248 COVID-19 patients were admitted to our ICUs, of whom ten patients (4% incidence) were classified as either probable (six) or possible (four) CAPA cases. Seven patients had positive cultural results: Aspergillus fumigatus sensu stricto (five), A. terreus sensu stricto (one), and A. welwitschiae (one). Five patients had positive bronchoalveolar lavage (BAL) and galactomannan (GM), and two patients had both positive cultural and GM criteria. All but two patients received voriconazole. Mortality rate was 30%. Strict interpretation of classic IPA definition would have resulted in eight overlooked CAPA cases. Broader diagnostic criteria are essential in this context, even though differentiation between Aspergillus colonization and invasive disease might be more challenging. Herein, we aim to raise awareness of CAPA in view of its potential detrimental outcome, emphasizing the relevance of a low threshold for screening and early antifungal treatment in ARDS patients.
Collapse
|
21
|
Jenks JD, Nam HH, Hoenigl M. Invasive aspergillosis in critically ill patients: Review of definitions and diagnostic approaches. Mycoses 2021; 64:1002-1014. [PMID: 33760284 PMCID: PMC9792640 DOI: 10.1111/myc.13274] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/30/2022]
Abstract
Invasive aspergillosis (IA) is an increasingly recognised phenomenon in critically ill patients in the intensive care unit, including in patients with severe influenza and severe coronavirus disease 2019 (COVID-19) infection. To date, there are no consensus criteria on how to define IA in the ICU population, although several criteria are used, including the AspICU criteria and new consensus criteria to categorise COVID-19-associated pulmonary aspergillosis (CAPA). In this review, we describe the epidemiology of IA in critically ill patients, most common definitions used to define IA in this population, and most common clinical specimens obtained for establishing a mycological diagnosis of IA in the critically ill. We also review the most common diagnostic tests used to diagnose IA in this population, and lastly discuss the most common clinical presentation and imaging findings of IA in the critically ill and discuss areas of further needed investigation.
Collapse
Affiliation(s)
- Jeffrey D. Jenks
- Division of General Internal Medicine, Department of Medicine, University of California San Diego, San Diego, CA, USA,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA, USA,Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, USA
| | - Hannah H. Nam
- Division of Infectious Diseases, Department of Medicine, University of California Irvine, Orange, CA, USA
| | - Martin Hoenigl
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA, USA,Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, USA,Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
22
|
Edun B, Tidswell MA. Putative invasive pulmonary aspergillosis in apparently immunocompetent patients within medical wards and intensive care units. Intern Emerg Med 2021; 16:1429-1431. [PMID: 33999388 PMCID: PMC8127461 DOI: 10.1007/s11739-021-02757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/03/2022]
Affiliation(s)
- Babatunde Edun
- Pulmonary and Critical Care Division, Baystate Medical Center, Springfield, MA, 01199, USA
| | - Mark Alan Tidswell
- Pulmonary and Critical Care Division, Baystate Medical Center, Springfield, MA, 01199, USA.
| |
Collapse
|
23
|
Kallee S, Scharf C, Schroeder I, Paal M, Vogeser M, Irlbeck M, Zander J, Zoller M, Jung J, Kneidinger N, Schneider C, Michel S, Liebchen U. Comparing posaconazole and itraconazole for antifungal prophylaxis in critically ill lung transplant recipients: Efficacy and plasma concentrations. Transpl Infect Dis 2021; 23:e13675. [PMID: 34166573 DOI: 10.1111/tid.13675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/19/2021] [Accepted: 05/30/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Posaconazole and itraconazole are commonly used for systemic antifungal prophylaxis after lung transplantation. The aim of this study on critically ill lung transplant recipients was to assess the rate of adequate plasma concentrations and the frequency of fungal-induced transitions from antifungal prophylaxis to therapy after the administration of either posaconazole or itraconazole for systemic prophylaxis. METHODS Critically ill lung transplant recipients with postoperative posaconazole or itraconazole prophylaxis and therapeutic drug monitoring from February 2016 to November 2019 were retrospectively included in the study. Positive fungal cultures or Aspergillus antigen tests resulting in a transition from antifungal prophylaxis to therapy were analyzed from the first day of prophylaxis until 7 days after the last sample for each patient. Adequate plasma concentrations were defined as ≥500 µg/L for itraconazole and ≥700 µg/L for posaconazole. RESULTS Two hundred seventy-five samples from 73 patients were included in the analysis. Overall, 60% of the posaconazole and 55% of the itraconazole concentrations were subtherapeutic. Administration of posaconazole suspension resulted significantly (P < .01) more often in subtherapeutic concentrations than tablets (68% vs 10%). Patients treated with posaconazole showed less positive fungal records resulting in a transition from prophylaxis to therapy than patients treated with itraconazole (10% vs 33%, P-value: .029). The detection of a fungal pathogen was not associated with the measured plasma concentrations or the achievement of the target concentrations. CONCLUSION Our findings suggest that posaconazole should be used instead of itraconazole for systemic prophylaxis in critically ill lung transplant recipients.
Collapse
Affiliation(s)
- Simon Kallee
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Christina Scharf
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Ines Schroeder
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Michael Paal
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Michael Vogeser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Michael Irlbeck
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Michael Zoller
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Jette Jung
- Max-von-Pettenkofer-Institute Munich, Ludwig Maximilian University, Munich, Germany
| | - Nikolaus Kneidinger
- Department of Internal Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Christian Schneider
- Department of Thoracic Surgery, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sebastian Michel
- Department of Cardiac Surgery, University Hospital LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Uwe Liebchen
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
24
|
Bassetti M, Azoulay E, Kullberg BJ, Ruhnke M, Shoham S, Vazquez J, Giacobbe DR, Calandra T. EORTC/MSGERC Definitions of Invasive Fungal Diseases: Summary of Activities of the Intensive Care Unit Working Group. Clin Infect Dis 2021; 72:S121-S127. [PMID: 33709127 DOI: 10.1093/cid/ciaa1751] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The EORTC/MSGERC recently revised and updated the consensus definitions of invasive fungal disease (IFD). These definitions primarily focus on patients with cancer and stem cell or solid-organ transplant patients. They may therefore not be suitable for intensive care unit (ICU) patients. More in detail, while the definition of proven IFD applies to a broad range of hosts, the categories of probable and possible IFD were primarily designed for classical immunocompromised hosts and may therefore not be ideal for other populations. Moreover, the scope of the possible category of IFD has been diminished in the recently revised definitions for classically immunocompromised hosts. Diagnosis of IFD in the ICU presents many challenges, which are different for invasive candidiasis and for invasive aspergillosis. The aim of this article is to review progresses made in recent years and difficulties remaining in the development of definitions applicable in the ICU setting.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, Ospedale Policlinico San Martino-IRCCS, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Elie Azoulay
- Medical ICU, APHP, Saint-Louis Hospital, Paris, France.,Université de Paris, Paris, France
| | - Bart-Jan Kullberg
- Department of Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Markus Ruhnke
- Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Helios Klinikum Aue, Aue, Germany
| | - Shmuel Shoham
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jose Vazquez
- Department of Medicine, Division of Infectious Diseases, Medical College of Georgia/Augusta University, Augusta, Georgia, USA
| | | | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Baddley JW. COVID-19 Associated Pulmonary Aspergillosis: Do We Have the CAPAcity to Improve Outcomes? Clin Infect Dis 2021; 74:92-94. [PMID: 33754152 PMCID: PMC8083609 DOI: 10.1093/cid/ciab259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- John W Baddley
- University of Maryland School of Medicine and Baltimore VA Medical Center, Baltimore, MD
| |
Collapse
|
26
|
Budin S, Salmanton-García J, Koehler P, Stemler J, Cornely OA, Mellinghoff SC. Validation of the EQUAL Aspergillosis Score by analysing guideline-adherent management of invasive pulmonary aspergillosis. J Antimicrob Chemother 2021; 76:1070-1077. [PMID: 33394007 DOI: 10.1093/jac/dkaa518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES To investigate the diagnosis and treatment standards at the University Hospital of Cologne, Germany, by applying the EQUAL Aspergillosis Score to invasive pulmonary aspergillosis (IPA) patients. METHODS The charts of 103 patients with probable or proven IPA at the University Hospital of Cologne were reviewed and the score retrospectively applied to all patients. RESULTS Patients were stratified into two groups according to the underlying disease: a haematology group (n = 76, 73.8%) and a non-haematology group (n = 27, 26.2%). While the haematology group attained 67.8% of achievable score points (median: 15; IQR: 13-18; range: 8-25), the non-haematology group reached 48.4% (median: 12 points; IQR: 9-14; range: 4-18) (P < 0.001). Regarding diagnostics, haematological patients achieved 81.3% of achievable points (median: 7; IQR: 8-10; range: 3-13) and non-haematological 56.3% (median: 7; IQR: 5-9; range: 3-11). Concerning treatment, haematological patients gained 86.3% (median: 5; IQR: 5-5; range: 0-5) and non-haematological 68.1% (median: 5; IQR: 0-5; range: 0-5) of achievable points. Among the haematological patients with versus those without mould-active prophylaxis, 90 day mortality was 46.0% and 59.3% (P = 0.004), respectively. Guideline adherent management of IPA was observed in 31.1% of cases (39.5% in haematological patients and 7.4% in non-haematological). CONCLUSIONS The EQUAL Aspergillosis Score is more suitable for evaluation of management of haematological patients compared with those without such underlying disease. In both groups there was no correlation between score points and survival. Larger prospective studies may be suitable to correlate outcome and score. A revision of the score should be considered based on the data presented.
Collapse
Affiliation(s)
- Sofia Budin
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Centre for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Jon Salmanton-García
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Centre for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Centre for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Jannik Stemler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Centre for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Centre for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Sibylle C Mellinghoff
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Centre for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
27
|
Giacobbe DR, Cortegiani A, Karaiskos I, Mercier T, Tejada S, Peghin M, Grecchi C, Rebuffi C, Asperges E, Zuccaro V, Scudeller L, Bassetti M. Performance of Existing Definitions and Tests for the Diagnosis of Invasive Fungal Diseases other than Invasive Candidiasis and Invasive Aspergillosis in Critically Ill, Adult Patients: A Systematic Review with Qualitative Evidence Synthesis. J Fungi (Basel) 2021; 7:jof7030176. [PMID: 33670864 PMCID: PMC7997529 DOI: 10.3390/jof7030176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
The Fungal Infections Definitions in Intensive Care Unit (ICU) patients (FUNDICU) project aims to provide standard sets of definitions for invasive fungal diseases (IFDs) in critically ill, adult patients, including invasive aspergillosis (IA), invasive candidiasis (IC), Pneumocystis jirovecii pneumonia (PJP), and other non-IA, non-IC IFDs. The first step of the project was the conduction of separated systematic reviews of the characteristics and applicability to critically ill, adult patients outside classical populations at risk (hematology patients, solid organ transplant recipients) of available definitions and diagnostic tests for IFDs. We report here the results of two systematic reviews exploring the performance of available definitions and tests, for PJP and for other non-IA, non-IC IFDs. Starting from 2585 and 4584 records for PJP and other IFDs, respectively, 89 and 61 studies were deemed as eligible for full-text evaluation. However, only two studies for PJP and no studies for other IFDs met the FUNDICU protocol criteria for inclusion in qualitative synthesis. Currently, there is no sufficient solid data for directly evaluating the performance of existing definitions and laboratory tests for the diagnosis of PJP and other non-IA, non-IC IFDs in critically ill adult patients outside classical populations at risk.
Collapse
Affiliation(s)
- Daniele R. Giacobbe
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy;
- Clinica Malattie Infettive, Ospedale Policlinico San Martino–IRCCS, 16132 Genoa, Italy
- Correspondence: ; Tel.: +39-01-0555-4652
| | - Andrea Cortegiani
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), University of Palermo, 90127 Palermo, Italy;
- Department of Anaesthesia Intensive Care and Emergency, Policlinico Paolo Giaccone, 90127 Palermo, Italy
| | | | - Toine Mercier
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
- Department of Hematology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Sofia Tejada
- Clinical Research/Epidemiology in Pneumonia & Sepsis (CRIPS), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Maddalena Peghin
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, 33100 Udine, Italy;
| | - Cecilia Grecchi
- Infectious Diseases Unit, IRCCS San Matteo, 27100 Pavia, Italy; (C.G.); (E.A.); (V.Z.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Chiara Rebuffi
- Scientific Direction, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Erika Asperges
- Infectious Diseases Unit, IRCCS San Matteo, 27100 Pavia, Italy; (C.G.); (E.A.); (V.Z.)
| | - Valentina Zuccaro
- Infectious Diseases Unit, IRCCS San Matteo, 27100 Pavia, Italy; (C.G.); (E.A.); (V.Z.)
| | - Luigia Scudeller
- Scientific Direction, Clinical Epidemiology and Biostatistics IRCCS, Ca’ Granda Ospedale Maggiore Policlinico di Milano Foundation, 20122 Milan, Italy;
| | - Matteo Bassetti
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy;
- Clinica Malattie Infettive, Ospedale Policlinico San Martino–IRCCS, 16132 Genoa, Italy
| | | |
Collapse
|
28
|
Scharf C, Zoller M, Liebchen U. [What is new … in the treatment of invasive mycosis: COVID-19-associated pulmonary aspergillosis]. Anaesthesist 2021; 70:432-433. [PMID: 33635372 PMCID: PMC7908936 DOI: 10.1007/s00101-021-00931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Christina Scharf
- Klinik für Anästhesiologie, LMU Klinikum, Marchioninistraße 15, 81377, München, Deutschland.
| | - Michael Zoller
- Klinik für Anästhesiologie, LMU Klinikum, Marchioninistraße 15, 81377, München, Deutschland
| | - Uwe Liebchen
- Klinik für Anästhesiologie, LMU Klinikum, Marchioninistraße 15, 81377, München, Deutschland
| |
Collapse
|
29
|
The Extent of Aspergillosis in Critically Ill Patients With Severe Influenza Pneumonia: A Multicenter Cohort Study. Crit Care Med 2021; 49:934-942. [PMID: 33591000 DOI: 10.1097/ccm.0000000000004861] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To determine the frequency and prognosis of invasive pulmonary aspergillosis in critically ill patients with severe influenza pneumonia. DESIGN Retrospective multicenter cohort study. SETTING Five French ICUs. PATIENTS Patients with influenza admitted to ICU between 2009 and 2018. MEASUREMENTS AND MAIN RESULTS Of the 524 patients admitted for severe influenza diagnosed with a positive airway reverse-transcriptase polymerase chain reaction test, 450 (86%) required mechanical ventilation. A lower respiratory tract sample yielded with Aspergillus (Asp+) in 28 patients (5.3%). Ten patients (1.9%) were diagnosed with putative or proven invasive pulmonary aspergillosis, based on the validated AspICU algorithm. A multivariate model was built to identify independent risk factors for Aspergillus-positive pulmonary culture. Factors independently associated with Aspergillus-positive culture were liver cirrhosis (odds ratio = 6.7 [2.1-19.4]; p < 0.01), hematologic malignancy (odds ratio = 3.3 [1.2-8.5]; p = 0.02), Influenza A(H1N1)pdm09 subtype (odds ratio = 3.9 [1.6-9.1]; p < 0.01), and vasopressor requirement (odds ratio = 4.1 [1.6-12.7]; p < 0.01). In-hospital mortality of Asp+ patients was 36% versus 21% in patients without Aspergillus-positive pulmonary culture (p = 0.09). CONCLUSIONS In this large retrospective multicenter cohort of critically ill patients, putative invasive pulmonary aspergillosis according to AspICU algorithm was a relatively rare complication of influenza. Patients at higher risk of Aspergillus pulmonary colonization included those with liver cirrhosis, hematologic malignancy, H1N1pdm09 influenza A virus, and requiring vasopressors. Our results provide additional data on the controversial association between severe influenza and invasive pulmonary aspergillosis. Reaching a consensual definition of invasive pulmonary aspergillosis becomes mandatory and confers further prospective research.
Collapse
|
30
|
Zurl C, Prattes J, Zollner-Schwetz I, Valentin T, Rabensteiner J, Wunsch S, Hoenigl M, Krause R. T2Candida magnetic resonance in patients with invasive candidiasis: Strengths and limitations. Med Mycol 2021; 58:632-638. [PMID: 31613367 DOI: 10.1093/mmy/myz101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022] Open
Abstract
T2Candida enables detection of five Candida species in whole blood within approximately 5 hours. Routinely drawn EDTA blood samples were prospectively stored and tested with T2Candida in patients with invasive candidiasis identified by routine index blood or sterile site cultures. T2Candida was compared to diagnostic blood and sterile site cultures and also performed with samples obtained prior and after collection of index cultures. T2Candida was evaluated with 133 samples of 32 patients with candidemia and 22 patients with deep-seated invasive candidiasis. In the candidemic group 28/32 (87.5%) patients had at least one positive T2Candida result at any time point. A total of 17/25 (68%) candidemic patients had a positive T2Candida sample that was drawn concurrently to the index blood culture. In the per patient analysis 17/18 (94.4%) candidemic patients with matched T2Candida samples and peripheral blood cultures at any timepoint had a positive T2Candida test. T2Candida revealed discordant Candida species identification in two candidemic patients. Six of 22 (27.3%) deep-seated IC patients had a positive T2Candida result. Despite advanced time-to-results the clinical value of T2Candida in diagnosing candidemia seems to be limited by missing blood culture positive cases. Positivity rates of T2Candida increased when serial T2Candida samples were tested. In patients with suspected deep-seated invasive candidiasis T2Candida might act as a blood based adjunct to sterile site cultures.
Collapse
Affiliation(s)
- Christoph Zurl
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Juergen Prattes
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Ines Zollner-Schwetz
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Thomas Valentin
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Jasmin Rabensteiner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
| | - Stefanie Wunsch
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Martin Hoenigl
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, California, United States
| | - Robert Krause
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
31
|
Dupont D, Menotti J, Turc J, Miossec C, Wallet F, Richard JC, Argaud L, Paulus S, Wallon M, Ader F, Persat F. Pulmonary aspergillosis in critically ill patients with Coronavirus Disease 2019 (COVID-19). Med Mycol 2021; 59:110-114. [PMID: 32914189 PMCID: PMC7499748 DOI: 10.1093/mmy/myaa078] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023] Open
Abstract
Occurrence of putative invasive pulmonary aspergillosis was screened in 153 consecutive adult intensive care unit (ICU) patients with respiratory samples addressed for mycological diagnosis during a 6-week period at the emergence of coronavirus disease 2019 (COVID-19) pandemic. Positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR) was observed for 106 patients (69.3%). Nineteen of them (17.9%) with positive Aspergillus results were considered as having putative invasive pulmonary aspergillosis. These observations underline the risk of pulmonary aspergillosis in COVID-19 patients, even in patients not previously known to be immunosuppressed, advocating active search for Aspergillus infection and prompt antifungal treatment. Standardized surveillance protocols and updated definitions for ICU putative invasive pulmonary aspergillosis are needed. Lay Abstract Adult ICU patients with respiratory samples addressed for mycological diagnosis were screened during the emergence of COVID-19 pandemic. Positive SARS-CoV-2 PCR was observed for 106 patients, nineteen of them (17.9%) having aspergillosis. This underlines the risk of aspergillosis in COVID-19 patients.
Collapse
Affiliation(s)
- Damien Dupont
- Institut des Agents Infectieux, Parasitologie et Mycologie Médicale, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, F-69004, France.,Physiologie intégrée du système d'éveil, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR 5292, Faculté de Médecine, Université Claude Bernard Lyon 1, Bron, F-69500, France
| | - Jean Menotti
- Institut des Agents Infectieux, Parasitologie et Mycologie Médicale, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, F-69004, France.,EA7426 PI3 - Inflammation and Immunity of the Respiratory Epithelium, Université Claude Bernard Lyon 1, Pierre-Bénite, F-69495, France
| | - Jean Turc
- Service de Réanimation Chirurgicale et Anesthésiologie, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, F-69437, France
| | - Charline Miossec
- Institut des Agents Infectieux, Parasitologie et Mycologie Médicale, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, F-69004, France
| | - Florent Wallet
- Service de Réanimation Médicale, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, F-69495, France.,Laboratoire des Pathogènes Emergents, Fondation Mérieux, Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Lyon, F-69007, France
| | - Jean-Christophe Richard
- Service de Médecine Intensive Réanimation et Surveillance Continue Médicale, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, F-69004, France
| | - Laurent Argaud
- Service de Médecine Intensive-Réanimation, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, F-69437, France
| | - Sylvie Paulus
- Service d'Anesthésie-Réanimation du Pôle Est, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, F-69500, France
| | - Martine Wallon
- Institut des Agents Infectieux, Parasitologie et Mycologie Médicale, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, F-69004, France.,Physiologie intégrée du système d'éveil, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR 5292, Faculté de Médecine, Université Claude Bernard Lyon 1, Bron, F-69500, France
| | - Florence Ader
- Service de Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, F-69004, France
| | - Florence Persat
- Institut des Agents Infectieux, Parasitologie et Mycologie Médicale, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, F-69004, France.,EA7426 PI3 - Inflammation and Immunity of the Respiratory Epithelium, Université Claude Bernard Lyon 1, Pierre-Bénite, F-69495, France
| |
Collapse
|
32
|
Adequate duration of therapy in severe fungal infections. Curr Opin Crit Care 2021; 26:466-472. [PMID: 32773617 DOI: 10.1097/mcc.0000000000000758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To highlight recent findings on the adequate duration of antifungal therapy in patients with invasive fungal disease (IFD). RECENT FINDINGS Plenty of published data available suggest that there is no additional clinical benefit at a certain point after initiation of antifungal treatment in patients with confirmed IFD. Moreover, the prolonged antifungal exposure can be associated with an increased risk of side effects and toxicity as well as striking risk for developing antifungal resistance or rising unnecessary healthcare costs. Recent data suggest that, in the presence of an adequate initial antifungal therapy and adequate source control of the infection, new stratified approaches integrating clinical judgment, biomarkers and microbiological eradication, should be considered as an alternative to the 'one-size-fits-all' treatment duration currently used worldwide. SUMMARY The optimal duration of antifungal therapy is still an unresolved issue that depends by many key elements including the host; the pathogen and its microbiological eradication, the adequateness of initial antifungal therapy and the promptness of source control of the infection. In general, many patients with invasive candidiasis can be treated with a 2 weeks course of antifungal therapy. Longer antifungal course (6 weeks or more) is generally required for patients with invasive aspergilosis.
Collapse
|
33
|
Specificity Influences in (1→3)-β-d-Glucan-Supported Diagnosis of Invasive Fungal Disease. J Fungi (Basel) 2020; 7:jof7010014. [PMID: 33383818 PMCID: PMC7824349 DOI: 10.3390/jof7010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
(1→3)-β-glucan (BDG) testing as an adjunct in the diagnosis of invasive fungal disease (IFD) has been in use for nearly three decades. While BDG has a very high negative predictive value in this setting, diagnostic false positives may occur, limiting specificity and positive predictive value. Although results may be diagnostically false positive, they are analytically correct, due to the presence of BDG in the circulation. This review surveys the non-IFD causes of elevated circulating BDG. These are in the main, iatrogenic patient contamination through the use of BDG-containing medical devices and parenterally-delivered materials as well as translocation of intestinal luminal BDG due to mucosal barrier injury. Additionally, infection with Nocardia sp. may also contribute to elevated circulating BDG. Knowledge of the factors which may contribute to such non-IFD-related test results can improve the planning and interpretation of BDG assays and permit investigational strategies, such as serial sampling and BDG clearance evaluation, to assess the likelihood of contamination and improve patient care.
Collapse
|
34
|
Bassetti M, Kollef MH, Timsit JF. Bacterial and fungal superinfections in critically ill patients with COVID-19. Intensive Care Med 2020; 46:2071-2074. [PMID: 32902729 PMCID: PMC7479998 DOI: 10.1007/s00134-020-06219-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Matteo Bassetti
- Clinica Malattie Infettive, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132, Genoa, Italy.
- Department of Health Sciences, University of Genoa, Genoa, Italy.
| | - Marin H Kollef
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jean-Francois Timsit
- Medical and Infectious Diseases Intensive Care Unit, Bichat-Claude Bernard University Hospital, Paris, France
- INSERM IAME, U1137, Team DesCID, Paris, France
| |
Collapse
|
35
|
Scharmann U, Verhasselt HL, Kirchhoff L, Buer J, Rath PM, Steinmann J, Ziegler K. Evaluation of two lateral flow assays in BAL fluids for the detection of invasive pulmonary aspergillosis: A retrospective two-centre study. Mycoses 2020; 63:1362-1367. [PMID: 32885514 DOI: 10.1111/myc.13176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Commonly, the application of radiological and clinical criteria and the determination of galactomannan (GM) in respiratory samples are used as a diagnostic tool for the detection of invasive pulmonary aspergillosis (IPA). MATERIALS/METHODS In this study, two lateral flow assays, OLM Aspergillus lateral flow device (LFD) and IMMY sōna Aspergillus Galactomannan lateral flow assay (LFA), were evaluated at two tertiary hospitals in Germany. A total of 200 bronchoalveolar lavage (BAL) samples from patients with suspicion of IPA were analysed retrospectively. LFD and LFA were evaluated against four different criteria: Blot, EORTC/MSG, Schauwvlieghe and extended Blot criteria and additionally against GM. RESULTS The evaluation of four algorithms for the diagnosis of IPA showed that there exist good diagnostic tools to rule out an IPA even before results of Aspergillus culture are available. Sensitivities and negative predictive values are generally higher for the LFA than for the LFD in all four criteria. Specificity and positive predictive values varied depending on the classification criteria. The total agreement between the GM and the LFA cube reader (cut-off = 1) was 84%. The correlation between the GM and LFA was calculated with r = 0.8. CONCLUSION The here presented data indicate that a negative LFA result in BAL fluid can reliable rule out an IPA in a heterogeneous group of ICU patients based on the original Blot criteria. LFA seems to be a promising immunochromatographic test exhibiting a good agreement with positive GM values.
Collapse
Affiliation(s)
- Ulrike Scharmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hedda Luise Verhasselt
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Nuremberg, Germany
| | - Katharina Ziegler
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
36
|
Jenks JD, Hoenigl M. Point-of-care diagnostics for invasive aspergillosis: nearing the finish line. Expert Rev Mol Diagn 2020; 20:1009-1017. [PMID: 32902359 DOI: 10.1080/14737159.2020.1820864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The spectrum of disease caused by Aspergillus spp. is dependent on the immune system of the host, with invasive aspergillosis (IA) its most severe manifestation. Early and reliable diagnosis of Aspergillus disease is important to decrease associated morbidity and mortality from IA. AREAS COVERED The following review searched Pub Med for literature published since 2007 and will give an update on the current point-of-care diagnostic strategies for the diagnosis of IA, discuss needed areas of improvement for these tests, and future directions. EXPERT OPINION Several new diagnostic tests for IA - including point-of-care tests - are now available to complement conventional galactomannan (GM) testing. In particular, the Aspergillus-specific Lateral Flow Device (LFD) test and the sōna Aspergillus GM Lateral Flow Assay (LFA) are promising for the diagnosis of IA in patients with hematologic malignancy, although further evaluation in the non-hematology setting is needed. In addition, a true point-of-care test, particularly for easily obtained specimens like serum or urine that can be done at the bedside or in the Clinic in a matter of minutes is needed, such as the lateral flow dipstick test, which is under current evaluation. Lastly, improved diagnostic algorithms to diagnose IA in non-neutropenic patients is needed.
Collapse
Affiliation(s)
- Jeffrey D Jenks
- Division of General Internal Medicine, Department of Medicine, University of California San Diego , La Jolla, CA, USA.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego , La Jolla, CA, USA.,Clinical and Translational Fungal - Working Group, University of California San Diego , La Jolla, CA, USA
| | - Martin Hoenigl
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego , La Jolla, CA, USA.,Clinical and Translational Fungal - Working Group, University of California San Diego , La Jolla, CA, USA.,Division of Pulmonology and Section of Infectious Diseases, Medical University of Graz , Graz, Austria
| |
Collapse
|
37
|
Donnelly JP, Chen SC, Kauffman CA, Steinbach WJ, Baddley JW, Verweij PE, Clancy CJ, Wingard JR, Lockhart SR, Groll AH, Sorrell TC, Bassetti M, Akan H, Alexander BD, Andes D, Azoulay E, Bialek R, Bradsher RW, Bretagne S, Calandra T, Caliendo AM, Castagnola E, Cruciani M, Cuenca-Estrella M, Decker CF, Desai SR, Fisher B, Harrison T, Heussel CP, Jensen HE, Kibbler CC, Kontoyiannis DP, Kullberg BJ, Lagrou K, Lamoth F, Lehrnbecher T, Loeffler J, Lortholary O, Maertens J, Marchetti O, Marr KA, Masur H, Meis JF, Morrisey CO, Nucci M, Ostrosky-Zeichner L, Pagano L, Patterson TF, Perfect JR, Racil Z, Roilides E, Ruhnke M, Prokop CS, Shoham S, Slavin MA, Stevens DA, Thompson GR, Vazquez JA, Viscoli C, Walsh TJ, Warris A, Wheat LJ, White PL, Zaoutis TE, Pappas PG. Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis 2020; 71:1367-1376. [PMID: 31802125 PMCID: PMC7486838 DOI: 10.1093/cid/ciz1008] [Citation(s) in RCA: 1488] [Impact Index Per Article: 372.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Invasive fungal diseases (IFDs) remain important causes of morbidity and mortality. The consensus definitions of the Infectious Diseases Group of the European Organization for Research and Treatment of Cancer and the Mycoses Study Group have been of immense value to researchers who conduct clinical trials of antifungals, assess diagnostic tests, and undertake epidemiologic studies. However, their utility has not extended beyond patients with cancer or recipients of stem cell or solid organ transplants. With newer diagnostic techniques available, it was clear that an update of these definitions was essential. METHODS To achieve this, 10 working groups looked closely at imaging, laboratory diagnosis, and special populations at risk of IFD. A final version of the manuscript was agreed upon after the groups' findings were presented at a scientific symposium and after a 3-month period for public comment. There were several rounds of discussion before a final version of the manuscript was approved. RESULTS There is no change in the classifications of "proven," "probable," and "possible" IFD, although the definition of "probable" has been expanded and the scope of the category "possible" has been diminished. The category of proven IFD can apply to any patient, regardless of whether the patient is immunocompromised. The probable and possible categories are proposed for immunocompromised patients only, except for endemic mycoses. CONCLUSIONS These updated definitions of IFDs should prove applicable in clinical, diagnostic, and epidemiologic research of a broader range of patients at high-risk.
Collapse
Affiliation(s)
| | - Sharon C Chen
- Centre for Infectious Diseases and Microbiology, Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, University of Sydney, Sydney, Australia
| | - Carol A Kauffman
- Division of Infectious Diseases, University of Michigan, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - William J Steinbach
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - John W Baddley
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul E Verweij
- Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | | | - John R Wingard
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology and Oncology University Children’s Hospital, Münster, Germany
| | - Tania C Sorrell
- University of Sydney, Marie Bashir Institute for Infectious Diseases & Biosecurity, University of Sydney School of Medicine Faculty of Medicine and Health, Westmead Institute for Centre for Infectious Diseases and Microbiology, Western Sydney Local Health District, Sydney, Australia
| | - Matteo Bassetti
- Infectious Disease Clinic, Department of Medicine University of Udine and Department of Health Sciences, DISSAL, University of Genoa, Genoa, Italy
| | - Hamdi Akan
- Ankara University, Faculty of Medicine, Cebeci Campus, Hematology Clinical Research Unit, Ankara, Turkey
| | - Barbara D Alexander
- Department of Medicine and Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina, USA
| | - David Andes
- Division of Infectious Diseases, Departments of Medicine, Microbiology and Immunology School of Medicine and Public Health and School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Elie Azoulay
- Médicine Intensive et Réanimation Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Ralf Bialek
- Molecular Diagnostics of Infectious Diseases, Microbiology, LADR Zentrallabor Dr. Kramer & Kollegen, Geesthacht, Germany
| | - Robert W Bradsher
- Division of Infectious Diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Stephane Bretagne
- Institut Pasteur, Molecular Mycology Unit, CNRS UMR2000, Mycology Laboratory, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Angela M Caliendo
- Department of Medicine, Alpert Warren Medical School of Brown University, Providence, Rhode Island, USA
| | - Elio Castagnola
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Mario Cruciani
- Infectious Diseases Unit, G. Fracastoro Hospital, San Bonifacio, Verona, Italy
| | | | - Catherine F Decker
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sujal R Desai
- National Heart & Lung Institute, Imperial College London, the Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Brian Fisher
- Pediatric Infectious Diseases Division at the Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Thomas Harrison
- Centre for Global Health, Institute for Infection and Immunity, St Georges University of London, London, UK
| | - Claus Peter Heussel
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center and Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik Heidelberg, Heidelberg, Germany
| | - Henrik E Jensen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Bart-Jan Kullberg
- Radboud Center for Infectious Diseases and Department of Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation and Department of Laboratory Medicine and National Reference Centre for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine and Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thomas Lehrnbecher
- Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University of Frankfurt, Frankfurt, Germany
| | - Jurgen Loeffler
- Molecular Biology and Infection, Medical Hospital II, WÜ4i, University Hospital Würzburg, Würzburg, Germany
| | - Olivier Lortholary
- Paris University, Necker Pasteur Center for Infectious Diseases and Tropical Medicine, IHU Imagine & Institut Pasteur, Molecular Mycology Unit, CNRS UMR 2000, Paris, France
| | - Johan Maertens
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, K.U. Leuven, Leuven, Belgium
| | - Oscar Marchetti
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kieren A Marr
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School
| | - Henry Masur
- Critical Care Medicine Department NIH-Clinical Center, Bethesda, Maryland, USA
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases and Centre of Expertise in Mycology Radboudumc/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | | | - Marcio Nucci
- Department of Internal Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Livio Pagano
- Istituto di Ematologia, Università Cattolica S. Cuore, Rome, Italy
| | - Thomas F Patterson
- UT Health San Antonio and South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - John R Perfect
- Department of Medicine and Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina, USA
| | - Zdenek Racil
- Department of Internal Medicine–Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Hippokration General Hospital, Thessaloniki, Greece
| | - Marcus Ruhnke
- Department of Hematology & Oncology, Lukas Hospital, Buende, Germany
| | - Cornelia Schaefer Prokop
- Meander Medical Center Amersfoort and Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Center and the National Centre for Infections in Cancer, The University of Melbourne, Melbourne, Victoria, Australia
| | - David A Stevens
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, California
- California Institute for Medical Research, San Jose, California, USA
| | - George R Thompson
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, California, USA
| | - Jose A Vazquez
- Division of Infectious Diseases, Medical College of Georgia/Augusta University, Augusta, Georgia, USA
| | - Claudio Viscoli
- Division of Infectious Disease, University of Genova and San Martino University Hospital, Genova, Italy
| | - Thomas J Walsh
- Weill Cornell Medicine of Cornell University, Departments of Medicine, Pediatrics, Microbiology & Immunology, New York, New York, USA
| | - Adilia Warris
- MRC Centre for Medical Mycology at the University of Aberdeen, Aberdeen, UK
| | | | - P Lewis White
- Public Health Wales Mycology Reference Laboratory, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Theoklis E Zaoutis
- Perelman School of Medicine at the University of Pennsylvania, Children’s Hospital of Philadelphia and Roberts Center for Pediatric Research, Philadelphia, Pennsylvania, USA
| | - Peter G Pappas
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
38
|
Timsit JF, Baleine J, Bernard L, Calvino-Gunther S, Darmon M, Dellamonica J, Desruennes E, Leone M, Lepape A, Leroy O, Lucet JC, Merchaoui Z, Mimoz O, Misset B, Parienti JJ, Quenot JP, Roch A, Schmidt M, Slama M, Souweine B, Zahar JR, Zingg W, Bodet-Contentin L, Maxime V. Expert consensus-based clinical practice guidelines management of intravascular catheters in the intensive care unit. Ann Intensive Care 2020; 10:118. [PMID: 32894389 PMCID: PMC7477021 DOI: 10.1186/s13613-020-00713-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
The French Society of Intensive Care Medicine (SRLF), jointly with the French-Speaking Group of Paediatric Emergency Rooms and Intensive Care Units (GFRUP) and the French-Speaking Association of Paediatric Surgical Intensivists (ADARPEF), worked out guidelines for the management of central venous catheters (CVC), arterial catheters and dialysis catheters in intensive care unit. For adult patients: Using GRADE methodology, 36 recommendations for an improved catheter management were produced by the 22 experts. Recommendations regarding catheter-related infections’ prevention included the preferential use of subclavian central vein (GRADE 1), a one-step skin disinfection(GRADE 1) using 2% chlorhexidine (CHG)-alcohol (GRADE 1), and the implementation of a quality of care improvement program. Antiseptic- or antibiotic-impregnated CVC should likely not be used (GRADE 2, for children and adults). Catheter dressings should likely not be changed before the 7th day, except when the dressing gets detached, soiled or impregnated with blood (GRADE 2− adults). CHG dressings should likely be used (GRADE 2+). For adults and children, ultrasound guidance should be used to reduce mechanical complications in case of internal jugular access (GRADE 1), subclavian access (Grade 2) and femoral venous, arterial radial and femoral access (Expert opinion). For children, an ultrasound-guided supraclavicular approach of the brachiocephalic vein was recommended to reduce the number of attempts for cannulation and mechanical complications. Based on scarce publications on diagnostic and therapeutic strategies and on their experience (expert opinion), the panel proposed definitions, and therapeutic strategies.
Collapse
Affiliation(s)
- Jean-François Timsit
- APHP/Hopital Bichat-Medical and Infectious Diseases ICU (MI2), 46 rue Henri Huchard, 75018, Paris, France.,UMR 1137-IAME Team 5-DeSCID: Decision SCiences in Infectious Diseases, Control and Care Inserm/Université de Paris, Sorbonne Paris Cité, 75018, Paris, France
| | - Julien Baleine
- Department of Neonatal Medicine and Pediatric Intensive Care, Arnaud de Villeneuve University Hospital, 371 Avenue Doyen G Giraud, 34295, Montpellier Cedex 5, France
| | - Louis Bernard
- Infectious Diseases Unit, University Hospital Tours, Nîmes 2 Boulevard, 37000, Tours, France
| | - Silvia Calvino-Gunther
- CHU Grenoble Alpes, Réanimation Médicale Pôle Urgences Médecine Aiguë, 38000, Grenoble, France
| | - Michael Darmon
- Medical ICU, Saint-Louis University Hospital, AP-HP, Paris, France
| | - Jean Dellamonica
- Centre Hospitalier Universitaire de Nice, Médecine Intensive Réanimation, Archet 1, UR2CA Unité de Recherche Clinique Côte d'Azur, Université Cote d'Azur, Nice, France
| | - Eric Desruennes
- Clinique d'anesthésie pédiatrique, Hôpital Jeanne-de-Flandre, avenue Eugène-Avinée, CHU Lille, 59000, Lille, France.,Unité accès vasculaire, Centre Oscar Lambret, 3 rue Frédéric Combemale, 59000, Lille, France
| | - Marc Leone
- Anesthésie Réanimation, Hôpital Nord, 13015, Marseille, France
| | - Alain Lepape
- Service d'Anesthésie et de Réanimation, Hospices Civils de Lyon, Groupement Hospitalier Sud, Lyon, France.,UMR CNRS 5308, Inserm U1111, Laboratoire des Pathogènes Émergents, Centre International de Recherche en Infectiologie, Lyon, France
| | - Olivier Leroy
- Medical ICU, Chatilliez Hospital, Tourcoing, France.,U934/UMR3215, Institut Curie, PSL Research University, 75005, Paris, France
| | - Jean-Christophe Lucet
- AP-HP, Infection Control Unit, Bichat-Claude Bernard University Hospital, 46 rue Henri Huchard, 75877, Paris Cedex, France.,INSERM IAME, U1137, Team DesCID, University of Paris, Paris, France
| | - Zied Merchaoui
- Pediatric Intensive Care, Paris South University Hospitals AP-HP, Le Kremlin Bicêtre, France
| | - Olivier Mimoz
- Services des Urgences Adultes and SAMU 86, Centre Hospitalier Universitaire de Poitiers, 86021, Poitiers, France.,Université de Poitiers, Poitiers, France.,Inserm U1070, Poitiers, France
| | - Benoit Misset
- Department of Intensive Care, Sart-Tilman University Hospital, and University of Liège, Liège, Belgium
| | - Jean-Jacques Parienti
- Department of Biostatistics and Clinical Research and Department of Infectious Diseases, Caen University Hospital, 14000, Caen, France.,EA2656 Groupe de Recherche sur l'Adaptation Microbienne (GRAM 2.0) UNICAEN, CHU Caen Medical School Université Caen Normandie, Caen, France
| | - Jean-Pierre Quenot
- Department of Intensive Care, François Mitterrand University Hospital, Dijon, France.,Lipness Team, INSERM Research Center LNC-UMR1231 and LabExLipSTIC, University of Burgundy, Dijon, France.,INSERM CIC 1432, Clinical Epidemiology, University of Burgundy, Dijon, France
| | - Antoine Roch
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Service des Urgences, 13015, Marseille, France.,Centre d'Etudes et de Recherches sur les Services de Santé et qualité de vie EA 3279, Faculté de médecine, Aix-Marseille Université, 13005, Marseille, France
| | - Matthieu Schmidt
- Assistance Publique-Hôpitaux de Paris (APHP), Pitié-Salpêtrière Hospital, Medical Intensive Care Unit, 75651, Paris, France.,INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Medical Intensive Care Unit, Sorbonne Universités, 75651, Paris Cedex 13, France
| | - Michel Slama
- Medical Intensive Care Unit, CHU Sud Amiens, Amiens, France
| | - Bertrand Souweine
- Medical ICU, Gabriel-Montpied University Hospital, Clermont-Ferrand, France
| | - Jean-Ralph Zahar
- IAME, UMR 1137, Université Paris 13, Sorbonne Paris Cité, Paris, France.,Service de Microbiologie Clinique et Unité de Contrôle et de Prévention Du Risque Infectieux, Groupe Hospitalier Paris Seine Saint-Denis, AP-HP, 125 Rue de Stalingrad, 93000, Bobigny, France
| | - Walter Zingg
- Infection Control Programme and WHO Collaborating Centre on Patient Safety, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Laetitia Bodet-Contentin
- Medical Intensive Care Unit, INSERM CIC 1415, CRICS-TriGGERSep Network, CHRU de Tours and Université de Tours, Tours, France
| | - Virginie Maxime
- Surgical and Medical Intensive Care Unit Hôpital, Raymond Poincaré, 9230, Garches, France.
| |
Collapse
|
39
|
Digestive enzymes of fungal origin as a relevant cause of false positive Aspergillus antigen testing in intensive care unit patients. Infection 2020; 49:241-248. [PMID: 32880845 PMCID: PMC7990814 DOI: 10.1007/s15010-020-01506-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/12/2020] [Indexed: 12/28/2022]
Abstract
Background Galactomannan antigen (GM) testing is widely used in the diagnosis of invasive aspergillosis (IA). Digestive enzymes play an important role in enzyme substitution therapy in exocrine pancreatic insufficiency. As digestive enzymes of fungal origin like Nortase contain enzymes from Aspergillus, a false-positive result of the test might be possible because of cross-reacting antigens of the cell wall of the producing fungi. We, therefore, asked whether the administration of fungal enzymes is a relevant cause of false-positive GM antigen test results. Methods Patients with a positive GM antigen test between January 2016 and April 2020 were included in the evaluation and divided into two groups: group 1—Nortase-therapy, group 2—no Nortase-therapy. In addition, dissolved Nortase samples were analyzed in vitro for GM and β-1,3-D-glucan. For statistical analysis, the chi-squared and Mann‒Whitney U tests were used. Results Sixty-five patients were included in this evaluation (30 patients receiving Nortase and 35 patients not receiving Nortase). The overall false positivity rate of GM testing was 43.1%. Notably, false-positive results were detected significantly more often in the Nortase group (73.3%) than in the control group (17.1%, p < 0.001). While the positive predictive value of GM testing was 0.83 in the control group, there was a dramatic decline to 0.27 in the Nortase group. In vitro analysis proved that the Nortase enzyme preparation was highly positive for the fungal antigens GM and β-1,3-D-glucan. Conclusions Our data demonstrate that the administration of digestive enzymes of fungal origin like Nortase leads to a significantly higher rate of false-positive GM test results compared to that in patients without digestive enzyme treatment.
Collapse
|
40
|
Russo A, Tiseo G, Falcone M, Menichetti F. Pulmonary Aspergillosis: An Evolving Challenge for Diagnosis and Treatment. Infect Dis Ther 2020; 9:511-524. [PMID: 32638227 PMCID: PMC7339098 DOI: 10.1007/s40121-020-00315-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Aspergillus is a mold that may lead to different clinical pictures, from allergic to invasive disease, depending on the patient’s immune status and structural lung diseases. Chronic pulmonary aspergillosis is an infection with a locally invasive presentation, reported especially in patients with chronic pulmonary disease, while aspergilloma is typically found in patients with previously formed cavities in the lungs. Allergic bronchopulmonary aspergillosis is due to a hypersensitivity reaction to Aspergillus antigens and is more frequently described in patients with moderate-severe asthma or cystic fibrosis. Invasive pulmonary aspergillosis mainly occurs in patients with neutropenia or immunodeficiency, but has increasingly been recognized as an emerging disease of non-neutropenic patients. The significance of this infection has dramatically increased in recent years, considering the high number of patients with an impaired immune state associated with the management and treatment of neoplasm, solid or hematological transplantation, autoimmune diseases, and inflammatory conditions. Moreover, prolonged steroid treatment is recognized as an important risk factor, especially for invasive disease. In this setting, critically ill patients admitted to intensive care units and/or with chronic obstructive pulmonary disease could be at higher risk for invasive infection. This review provides an update on the clinical features and risk factors of pulmonary aspergillosis. Current approaches for the diagnosis, management, and treatment of these different forms of pulmonary aspergillosis are discussed.
Collapse
Affiliation(s)
- Alessandro Russo
- Division of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Giusy Tiseo
- Division of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Falcone
- Division of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Menichetti
- Division of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
41
|
Arastehfar A, Carvalho A, van de Veerdonk FL, Jenks JD, Koehler P, Krause R, Cornely OA, S. Perlin D, Lass-Flörl C, Hoenigl M. COVID-19 Associated Pulmonary Aspergillosis (CAPA)-From Immunology to Treatment. J Fungi (Basel) 2020; 6:E91. [PMID: 32599813 PMCID: PMC7346000 DOI: 10.3390/jof6020091] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023] Open
Abstract
Like severe influenza, coronavirus disease-19 (COVID-19) resulting in acute respiratory distress syndrome (ARDS) has emerged as an important disease that predisposes patients to secondary pulmonary aspergillosis, with 35 cases of COVID-19 associated pulmonary aspergillosis (CAPA) published until June 2020. The release of danger-associated molecular patterns during severe COVID-19 results in both pulmonary epithelial damage and inflammatory disease, which are predisposing risk factors for pulmonary aspergillosis. Moreover, collateral effects of host recognition pathways required for the activation of antiviral immunity may, paradoxically, contribute to a highly permissive inflammatory environment that favors fungal pathogenesis. Diagnosis of CAPA remains challenging, mainly because bronchoalveolar lavage fluid galactomannan testing and culture, which represent the most sensitive diagnostic tests for aspergillosis in the ICU, are hindered by the fact that bronchoscopies are rarely performed in COVID-19 patients due to the risk of disease transmission. Similarly, autopsies are rarely performed, which may result in an underestimation of the prevalence of CAPA. Finally, the treatment of CAPA is complicated by drug-drug interactions associated with broad spectrum azoles, renal tropism and damage caused by SARS-CoV-2, which may challenge the use of liposomal amphotericin B, as well as the emergence of azole-resistance. This clinical reality creates an urgency for new antifungal drugs currently in advanced clinical development with more promising pharmacokinetic and pharmacodynamic profiles.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Frank L. van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands;
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, 6525Nijmegen, The Netherlands
| | - Jeffrey D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA 92103, USA;
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA
| | - Philipp Koehler
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (P.K.); (O.A.C.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50937Cologne, Germany
| | - Robert Krause
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Oliver A. Cornely
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (P.K.); (O.A.C.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50937Cologne, Germany
- Zentrum fuer klinische Studien (ZKS) Köln, Clinical Trials Centre Cologne, 50937 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Martin Hoenigl
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| |
Collapse
|
42
|
Bassetti M, Vena A, Pincino R, Briano F, Giacobbe DR. Role of Antifungal Therapy in Complicated Intra-abdominal Infections. Curr Infect Dis Rep 2020. [DOI: 10.1007/s11908-020-00731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
|
44
|
Koehler P, Cornely OA, Böttiger BW, Dusse F, Eichenauer DA, Fuchs F, Hallek M, Jung N, Klein F, Persigehl T, Rybniker J, Kochanek M, Böll B, Shimabukuro-Vornhagen A. COVID-19 associated pulmonary aspergillosis. Mycoses 2020; 63:528-534. [PMID: 32339350 PMCID: PMC7267243 DOI: 10.1111/myc.13096] [Citation(s) in RCA: 383] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Patients with acute respiratory distress syndrome (ARDS) due to viral infection are at risk for secondary complications like invasive aspergillosis. Our study evaluates coronavirus disease 19 (COVID-19) associated invasive aspergillosis at a single centre in Cologne, Germany. METHODS A retrospective chart review of all patients with COVID-19 associated ARDS admitted to the medical or surgical intensive care unit at the University Hospital of Cologne, Cologne, Germany. RESULTS COVID-19 associated invasive pulmonary aspergillosis was found in five of 19 consecutive critically ill patients with moderate to severe ARDS. CONCLUSION Clinicians caring for patients with ARDS due to COVID-19 should consider invasive pulmonary aspergillosis and subject respiratory samples to comprehensive analysis to detect co-infection.
Collapse
Affiliation(s)
- Philipp Koehler
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Oliver A Cornely
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,ZKS Köln, Clinical Trials Centre Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bernd W Böttiger
- Department of Anesthesiology and Intensive Care Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fabian Dusse
- Department of Anesthesiology and Intensive Care Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dennis A Eichenauer
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Frieder Fuchs
- Faculty of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Norma Jung
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Florian Klein
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thorsten Persigehl
- Department of Radiology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matthias Kochanek
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Boris Böll
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | |
Collapse
|
45
|
Bassetti M, Giacobbe DR, Grecchi C, Rebuffi C, Zuccaro V, Scudeller L. Performance of existing definitions and tests for the diagnosis of invasive aspergillosis in critically ill, adult patients: A systematic review with qualitative evidence synthesis. J Infect 2020; 81:131-146. [PMID: 32330523 DOI: 10.1016/j.jinf.2020.03.065] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To summarize the available evidence on the diagnostic performance for invasive aspergillosis (IA) in non-hematological, non-solid organ transplantation critically ill patients of the following: (i) existing definitions of IA (developed either for classical immunocompromised populations or for non-immunocompromised critically ill patients); (ii) laboratory tests; (iii) radiology tests. METHODS A systematic review was performed by evaluating studies assessing the diagnostic performance for IA of a definition/s and/or laboratory/radiology test/s vs. a reference standard (histology) or a reference definition. RESULTS Sufficient data for evaluating the performance of existing definitions and laboratory tests for the diagnosis of IA in critically ill patients is available only for invasive pulmonary aspergillosis. Against histology/autopsy as reference, the AspICU definition showed a promising diagnostic performance but based on small samples and applicable only to patients with positive respiratory cultures. Studies on laboratory tests consistently indicated a better diagnostic performance of bronchoalveolar lavage fluid (BALF) galactomannan (GM) than serum GM, and a suboptimal specificity of BALF and serum (1,3)-β-D-glucan. CONCLUSIONS Evidence stemming from this systematic review will guide the discussion for defining invasive aspergillosis within the FUNDICU project. The project aims to develop a standard set of definitions for invasive fungal diseases in critically ill, adult patients.
Collapse
Affiliation(s)
- M Bassetti
- Department of Health Sciences, University of Genoa, Genoa, Italy; Clinica Malattie Infettive, Ospedale Policlinico San Martino - IRCCS, L.go R. Benzi 10, 16132 Genoa, Italy.
| | - D R Giacobbe
- Department of Health Sciences, University of Genoa, Genoa, Italy; Clinica Malattie Infettive, Ospedale Policlinico San Martino - IRCCS, L.go R. Benzi 10, 16132 Genoa, Italy
| | - C Grecchi
- Infectious Diseases Unit, IRCCS San Matteo, Pavia, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, Italy
| | - C Rebuffi
- Scientific Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - V Zuccaro
- Infectious Diseases Unit, IRCCS San Matteo, Pavia, Italy
| | - L Scudeller
- Scientific Direction, Clinical Epidemiology and Biostatistics, IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano Foundation, Milan, Italy
| | | |
Collapse
|
46
|
Egger M, Jenks JD, Hoenigl M, Prattes J. Blood Aspergillus PCR: The Good, the Bad, and the Ugly. J Fungi (Basel) 2020; 6:jof6010018. [PMID: 32012787 PMCID: PMC7151127 DOI: 10.3390/jof6010018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Invasive Aspergillosis (IA) is one of the most common invasive fungal diseases and is accompanied by high morbidity and mortality. In order to maximize patient outcomes and survival, early and rapid diagnosis has been shown to be pivotal. Hence, diagnostic tools aiding and improving the diagnostic process are ambitiously searched for. In this context, polymerase chain reaction (PCR) may represent a potential candidate. Its additional value and benefits in diagnosis have been demonstrated and are scientifically established. Nevertheless, standardized and widespread usage is sparse because several factors influence diagnostic quality and need to be considered in order to optimize diagnostic performance and outcome. In the following review, the current role of PCR in the diagnosis of IA is explored, with special focus on the strengths and limitations of PCR in different settings.
Collapse
Affiliation(s)
- Matthias Egger
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, 8036 Graz, Austria; (M.E.); (M.H.)
| | - Jeffrey D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA;
- Clinical and Translational Fungal Research Group, University of California San Diego, San Diego, CA 92093, USA
| | - Martin Hoenigl
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, 8036 Graz, Austria; (M.E.); (M.H.)
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA;
- Clinical and Translational Fungal Research Group, University of California San Diego, San Diego, CA 92093, USA
| | - Juergen Prattes
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, 8036 Graz, Austria; (M.E.); (M.H.)
- Correspondence: ; Tel.: +43-316-385-30046
| |
Collapse
|
47
|
Koehler P, Bassetti M, Kochanek M, Shimabukuro-Vornhagen A, Cornely O. Intensive care management of influenza-associated pulmonary aspergillosis. Clin Microbiol Infect 2019; 25:1501-1509. [DOI: 10.1016/j.cmi.2019.04.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/21/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022]
|
48
|
Bassetti M, Eckmann C, Giacobbe DR, Sartelli M, Montravers P. Post-operative abdominal infections: epidemiology, operational definitions, and outcomes. Intensive Care Med 2019; 46:163-172. [PMID: 31701205 DOI: 10.1007/s00134-019-05841-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/23/2019] [Indexed: 12/29/2022]
Abstract
Postoperative abdominal infections are an important and heterogeneous health challenge in intensive care units (ICU) and encompass postoperative infectious processes developing within the abdominal cavity that may be caused by either bacterial or fungal pathogens. In this narrative review, we discuss postoperative bacterial and fungal abdominal infections, covering also multidrug-resistant (MDR) pathogens. We also cover clinically preeminent aspects such as the definition of postoperative abdominal infections, which still remains difficult owing to their heterogeneity in patient characteristics, clinical presentation, ecology and antimicrobial treatment. With regard to treatment, modifiable factors such as source control and antimicrobial therapy play a key role in influencing the prognosis of postoperative abdominal infections, but several conditions may hamper their correct application; thus efforts should necessarily be devoted towards improving their appropriateness and timing. Hot topics regarding the characteristics and management of postoperative abdominal infections are discussed in this narrative review.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences, University of Genoa, Genoa, Italy. .,Clinica Malattie Infettive, Ospedale Policlinico San Martino - IRCCS, L.go R. Benzi 10, 316132, Genoa, Italy.
| | - Christian Eckmann
- Department of General, Visceral and Thoracic Surgery, Klinikum Peine, Academic Hospital of Medical University Hannover, Peine, Germany
| | - Daniele Roberto Giacobbe
- Department of Health Sciences, University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, Ospedale Policlinico San Martino - IRCCS, L.go R. Benzi 10, 316132, Genoa, Italy
| | | | - Philippe Montravers
- Département d'Anesthésie-Réanimation, CHU Bichat-Claude Bernard, HUPNVS, APHP, Paris, France.,Université de Paris, INSERM, UMR 1152, Paris, France
| |
Collapse
|
49
|
|
50
|
Cornely OA, Hoenigl M, Lass-Flörl C, Chen SCA, Kontoyiannis DP, Morrissey CO, Thompson GR. Defining breakthrough invasive fungal infection-Position paper of the mycoses study group education and research consortium and the European Confederation of Medical Mycology. Mycoses 2019; 62:716-729. [PMID: 31254420 PMCID: PMC6692208 DOI: 10.1111/myc.12960] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
Breakthrough invasive fungal infections (IFIs) have emerged as a significant problem in patients receiving systemic antifungals; however, consensus criteria for defining breakthrough IFI are missing. This position paper establishes broadly applicable definitions of breakthrough IFI for clinical research. Representatives of the Mycoses Study Group Education and Research Consortium (MSG-ERC) and the European Confederation of Medical Mycology (ECMM) reviewed the relevant English literature for definitions applied and published through 2018. A draft proposal for definitions was developed and circulated to all members of the two organisations for comment and suggestions. The authors addressed comments received and circulated the updated document for approval. Breakthrough IFI was defined as any IFI occurring during exposure to an antifungal drug, including fungi outside the spectrum of activity of an antifungal. The time of breakthrough IFI was defined as the first attributable clinical sign or symptom, mycological finding or radiological feature. The period defining breakthrough IFI depends on pharmacokinetic properties and extends at least until one dosing interval after drug discontinuation. Persistent IFI describes IFI that is unchanged/stable since treatment initiation with ongoing need for antifungal therapy. It is distinct from refractory IFI, defined as progression of disease and therefore similar to non-response to treatment. Relapsed IFI occurs after treatment and is caused by the same pathogen at the same site, although dissemination can occur. These proposed definitions are intended to support the design of future clinical trials and epidemiological research in clinical mycology, with the ultimate goal of increasing the comparability of clinical trial results.
Collapse
Affiliation(s)
- Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, ECMM Center of Excellence for Medical Mycology, German Centre for Infection Research, Partner Site Bonn-Cologne (DZIF), University of Cologne, Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| | - Martin Hoenigl
- Division of Infectious Diseases, University of California San Diego, San Diego, CA, USA
- Division of Pulmonology and Section of Infectious Diseases, Medical University of Graz, Graz, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Microbiology, ECMM Excellence Center for Medical Mycology, Medical University Innsbruck, Innsbruck, Austria
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology, Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Centre for Infectious Diseases and Microbiology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control, and Employee Health, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - C Orla Morrissey
- Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC, Australia
| | - George R Thompson
- Departments of Medical Microbiology and Immunology and Internal Medicine Division of Infectious Diseases, UC-Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|