1
|
Garcia-Cordero I, Anastassiadis C, Khoja A, Morales-Rivero A, Thapa S, Vasilevskaya A, Davenport C, Sumra V, Couto B, Multani N, Taghdiri F, Anor C, Misquitta K, Vandevrede L, Heuer H, Tang-Wai D, Dickerson B, Pantelyat A, Litvan I, Boeve B, Rojas JC, Ljubenkov P, Huey E, Fox S, Kovacs GG, Boxer A, Lang A, Tartaglia MC. Evaluating the Effect of Alzheimer's Disease-Related Biomarker Change in Corticobasal Syndrome and Progressive Supranuclear Palsy. Ann Neurol 2024; 96:99-109. [PMID: 38578117 PMCID: PMC11249787 DOI: 10.1002/ana.26930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVES To evaluate the effect of Alzheimer's disease (AD) -related biomarker change on clinical features, brain atrophy and functional connectivity of patients with corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP). METHODS Data from patients with a clinical diagnosis of CBS, PSP, and AD and healthy controls were obtained from the 4-R-Tauopathy Neuroimaging Initiative 1 and 2, the Alzheimer's Disease Neuroimaging Initiative, and a local cohort from the Toronto Western Hospital. Patients with CBS and PSP were divided into AD-positive (CBS/PSP-AD) and AD-negative (CBS/PSP-noAD) groups based on fluid biomarkers and amyloid PET scans. Cognitive, motor, and depression scores; AD fluid biomarkers (cerebrospinal p-tau, t-tau, and amyloid-beta, and plasma ptau-217); and neuroimaging data (amyloid PET, MRI and fMRI) were collected. Clinical features, whole-brain gray matter volume and functional networks connectivity were compared across groups. RESULTS Data were analyzed from 87 CBS/PSP-noAD and 23 CBS/PSP-AD, 18 AD, and 30 healthy controls. CBS/PSP-noAD showed worse performance in comparison to CBS/PSP-AD in the PSPRS [mean(SD): 34.8(15.8) vs 23.3(11.6)] and the UPDRS scores [mean(SD): 34.2(17.0) vs 21.8(13.3)]. CBS/PSP-AD demonstrated atrophy in AD signature areas and brainstem, while CBS/PSP-noAD patients displayed atrophy in frontal and temporal areas, globus pallidus, and brainstem compared to healthy controls. The default mode network showed greatest disconnection in CBS/PSP-AD compared with CBS/PSP-no AD and controls. The thalamic network connectivity was most affected in CBS/PSP-noAD. INTERPRETATION AD biomarker positivity may modulate the clinical presentation of CBS/PSP, with evidence of distinctive structural and functional brain changes associated with the AD pathology/co-pathology. ANN NEUROL 2024;96:99-109.
Collapse
Affiliation(s)
- Indira Garcia-Cordero
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Chloe Anastassiadis
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Abeer Khoja
- University Health Network Memory Clinic, Toronto, Ontario, Canada
- Neurology division, Medical Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alonso Morales-Rivero
- University Health Network Memory Clinic, Toronto, Ontario, Canada
- ABC Medical Center, Mexico City, Mexico
| | - Simrika Thapa
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Anna Vasilevskaya
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Carly Davenport
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Vishaal Sumra
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Blas Couto
- Rossy PSP Program, University Health Network and the University of Toronto, Toronto, Ontario, Canada
- The Edmond J. Safra Program in Parkinson’s Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
- Institute of Cognitive and Translational Neuroscience (INCyT-INECO-CONICET), Favaloro University Hospital, Buenos Aires, Argentina
| | - Namita Multani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Foad Taghdiri
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Cassandra Anor
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Karen Misquitta
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Lawren Vandevrede
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Hilary Heuer
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - David Tang-Wai
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Bradford Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Irene Litvan
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Bradley Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Julio C. Rojas
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Peter Ljubenkov
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Edward Huey
- Department of Psychiatry and Human Behavior, Brown University, Providence, Rhode Island, USA
| | - Susan Fox
- Rossy PSP Program, University Health Network and the University of Toronto, Toronto, Ontario, Canada
- The Edmond J. Safra Program in Parkinson’s Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
| | - Gabor G. Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Rossy PSP Program, University Health Network and the University of Toronto, Toronto, Ontario, Canada
- The Edmond J. Safra Program in Parkinson’s Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Adam Boxer
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Anthony Lang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Rossy PSP Program, University Health Network and the University of Toronto, Toronto, Ontario, Canada
- The Edmond J. Safra Program in Parkinson’s Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - M. Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- University Health Network Memory Clinic, Toronto, Ontario, Canada
- Rossy PSP Program, University Health Network and the University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | | |
Collapse
|
2
|
Sekar A, Panouillères MTN, Kaski D. Detecting Abnormal Eye Movements in Patients with Neurodegenerative Diseases - Current Insights. Eye Brain 2024; 16:3-16. [PMID: 38617403 PMCID: PMC11015840 DOI: 10.2147/eb.s384769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/23/2024] [Indexed: 04/16/2024] Open
Abstract
This review delineates the ocular motor disturbances across a spectrum of neurodegenerative disorders, including Alzheimer's Disease (AD) and related disorders (ADRD), Parkinson's Disease (PD), atypical parkinsonism, and others, leveraging advancements in eye-tracking technology for enhanced diagnostic precision. We delve into the different classes of eye movements, their clinical assessment, and specific abnormalities manifesting in these diseases, highlighting the nuanced differences and shared patterns. For instance, AD and ADRD are characterized by increased saccadic latencies and instability in fixation, while PD features saccadic hypometria and mild smooth pursuit impairments. Atypical parkinsonism, notably Progressive Supranuclear Palsy (PSP) and Corticobasal Syndrome (CBS), presents with distinct ocular motor signatures such as vertical supranuclear gaze palsy and saccadic apraxia, respectively. Our review underscores the diagnostic value of eye movement analysis in differentiating between these disorders and also posits the existence of underlying common pathological mechanisms. We discuss how eye movements have potential as biomarkers for neurodegenerative diseases but also some of the existing limitations.
Collapse
Affiliation(s)
- Akila Sekar
- SENSE Research Unit, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Muriel T N Panouillères
- NeuroClues, Ottignies-Louvain-la-Neuve, Belgium
- CIAMS, Université Paris-Saclay, Orsay, France
| | - Diego Kaski
- SENSE Research Unit, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
3
|
Palleis C, Franzmeier N, Weidinger E, Bernhardt AM, Katzdobler S, Wall S, Ferschmann C, Harris S, Schmitt J, Schuster S, Gnörich J, Finze A, Biechele G, Lindner S, Albert NL, Bartenstein P, Sabri O, Barthel H, Rupprecht R, Nuscher B, Stephens AW, Rauchmann BS, Perneczky R, Haass C, Brendel M, Levin J, Höglinger GU. Association of Neurofilament Light Chain, [ 18F]PI-2620 Tau-PET, TSPO-PET, and Clinical Progression in Patients With β-Amyloid-Negative CBS. Neurology 2024; 102:e207901. [PMID: 38165362 PMCID: PMC10834119 DOI: 10.1212/wnl.0000000000207901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Corticobasal syndrome (CBS) with underlying 4-repeat tauopathy is a progressive neurodegenerative disease characterized by declining cognitive and motor functions. Biomarkers for assessing pathologic brain changes in CBS including tau-PET, 18 kDa translocator protein (TSPO)-PET, structural MRI, neurofilament light chain (NfL), or glial fibrillary acidic protein (GFAP) have recently been evaluated for differential diagnosis and disease staging, yet their association with disease trajectories remains unclear. Therefore, we performed a head-to-head comparison of neuroimaging (tau-PET, TSPO-PET, structural MRI) and plasma biomarkers (NfL, GFAP) as prognostic tools for longitudinal clinical trajectories in β-amyloid (Aβ)-negative CBS. METHODS We included patients with clinically diagnosed Aβ-negative CBS with clinical follow-up data who underwent baseline structural MRI and plasma-NfL analysis for assessing neurodegeneration, [18F]PI-2620-PET for assessing tau pathology, [18F]GE-180-PET for assessing microglia activation, and plasma-GFAP analysis for assessing astrocytosis. To quantify tau and microglia load, we assessed summary scores of whole-brain, cortical, and subcortical PET signal. For structural MRI analysis, we quantified subcortical and cortical gray matter volume. Plasma NfL and GFAP values were assessed using Simoa-based immunoassays. Symptom progression was determined using a battery of cognitive and motor tests (i.e., Progressive Supranuclear Palsy Rating Scale [PSPRS]). Using linear mixed models, we tested whether the assessed biomarkers at baseline were associated with faster symptom progression over time (i.e., time × biomarker interaction). RESULTS Overall, 21 patients with Aβ-negative CBS with ∼2-year clinical follow-up data were included. Patients with CBS with more widespread global tau-PET signal showed faster clinical progression (PSPRS: B/SE = 0.001/0.0005, p = 0.025), driven by cortical rather than subcortical tau-PET. By contrast, patients with higher global [18F]GE-180-PET readouts showed slower clinical progression (PSPRS: B/SE = -0.056/0.023, p = 0.019). No association was found between gray matter volume and clinical progression. Concerning fluid biomarkers, only higher plasma-NfL (PSPRS: B/SE = 0.176/0.046, p < 0.001) but not GFAP was associated with faster clinical deterioration. In a subsequent sensitivity analysis, we found that tau-PET, TSPO-PET, and plasma-NfL showed significant interaction effects with time on clinical trajectories when tested in the same model. DISCUSSION [18F]PI-2620 tau-PET, [18F]GE-180 TSPO-PET, and plasma-NfL show prognostic potential for clinical progression in patients with Aβ-negative CBS with probable 4-repeat tauopathy, which can be useful for clinical decision-making and stratifying patients in clinical trials.
Collapse
Affiliation(s)
- Carla Palleis
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Nicolai Franzmeier
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Endy Weidinger
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Alexander M Bernhardt
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Sabrina Katzdobler
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Stephan Wall
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Christian Ferschmann
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Stefanie Harris
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Julia Schmitt
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Sebastian Schuster
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Johannes Gnörich
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Anika Finze
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Gloria Biechele
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Simon Lindner
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Nathalie L Albert
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Peter Bartenstein
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Osama Sabri
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Henryk Barthel
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Rainer Rupprecht
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Brigitte Nuscher
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Andrew W Stephens
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Boris-Stephan Rauchmann
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Robert Perneczky
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Christian Haass
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Matthias Brendel
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Johannes Levin
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Günter U Höglinger
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| |
Collapse
|
4
|
McGeachan RI, King D. Clinical course in corticobasal syndrome and corticobasal degeneration: implications for diagnosis and management. Brain Commun 2023; 5:fcad321. [PMID: 38090278 PMCID: PMC10715777 DOI: 10.1093/braincomms/fcad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/24/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
This scientific commentary relates to 'Clinical course of pathologically confirmed corticobasal degeneration and corticobasal syndrome', by Aiba et al. (https://doi.org/10.1093/braincomms/fcad296).
Collapse
Affiliation(s)
- Robert I McGeachan
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, EH89JZ, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- The Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, EH259RG, UK
| | - Declan King
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, EH89JZ, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, EH16 4SB, UK
| |
Collapse
|
5
|
Persely A, Beszedics B, Paloczi K, Piroska M, Alijanpourotaghsara A, Strelnikov D, Vessal A, Szabo H, Hernyes A, Zoldi L, Jokkel Z, Fekete A, Juhasz J, Makra N, Szabo D, Buzas E, Tarnoki AD, Tarnoki DL. Analysis of Genetic and MRI Changes, Blood Markers, and Risk Factors in a Twin Pair Discordant of Progressive Supranuclear Palsy. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1696. [PMID: 37893413 PMCID: PMC10608279 DOI: 10.3390/medicina59101696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Progressive supranuclear palsy (PSP) is a neurodegenerative disease, a tauopathy, which results in a wide clinical spectrum of neurological symptoms. The diagnosis is mostly based on clinical signs and neuroimaging; however, possible biomarkers for screening have been under investigation, and the role of the gut microbiome is unknown. The aim of our study was to identify potential blood biomarkers and observe variations in the gut microbiome within a PSP discordant monozygotic twin pair. Materials and Methods: Anthropometric measurements, neuropsychological tests, and the neurological state were evaluated. Blood was collected for metabolic profiling and for the detection of neurodegenerative and vascular biomarkers. Both the gut microbiome and brain MRI results were thoroughly examined. Results: We found a relevant difference between alpha-synuclein levels and moderate difference in the levels of MMP-2, MB, Apo-A1, Apo-CIII, and Apo-H. With respect to the ratios, a small difference was observed for ApoA1/SAA and ApoB/ApoA1. Using a microbiome analysis, we also discovered a relative dysbiosis, and the MRI results revealed midbrain and frontoparietal cortical atrophy along with a reduction in overall brain volumes and an increase in white matter lesions in the affected twin. Conclusions: We observed significant differences between the unaffected and affected twins in some risk factors and blood biomarkers, along with disparities in the gut microbiome. Additionally, we detected abnormalities in brain MRI results and alterations in cognitive functions.
Collapse
Affiliation(s)
- Aliz Persely
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (A.P.); (B.B.); (M.P.); (A.A.); (D.S.); (A.V.); (H.S.); (A.H.); (L.Z.); (Z.J.); (A.F.); (A.D.T.)
- Neurology Department, Medical Centre Hungarian Defence Forces, 1134 Budapest, Hungary
| | - Beatrix Beszedics
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (A.P.); (B.B.); (M.P.); (A.A.); (D.S.); (A.V.); (H.S.); (A.H.); (L.Z.); (Z.J.); (A.F.); (A.D.T.)
| | - Krisztina Paloczi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1085 Budapest, Hungary; (K.P.); (E.B.)
| | - Marton Piroska
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (A.P.); (B.B.); (M.P.); (A.A.); (D.S.); (A.V.); (H.S.); (A.H.); (L.Z.); (Z.J.); (A.F.); (A.D.T.)
| | - Amirreza Alijanpourotaghsara
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (A.P.); (B.B.); (M.P.); (A.A.); (D.S.); (A.V.); (H.S.); (A.H.); (L.Z.); (Z.J.); (A.F.); (A.D.T.)
| | - David Strelnikov
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (A.P.); (B.B.); (M.P.); (A.A.); (D.S.); (A.V.); (H.S.); (A.H.); (L.Z.); (Z.J.); (A.F.); (A.D.T.)
| | - Arsalan Vessal
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (A.P.); (B.B.); (M.P.); (A.A.); (D.S.); (A.V.); (H.S.); (A.H.); (L.Z.); (Z.J.); (A.F.); (A.D.T.)
| | - Helga Szabo
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (A.P.); (B.B.); (M.P.); (A.A.); (D.S.); (A.V.); (H.S.); (A.H.); (L.Z.); (Z.J.); (A.F.); (A.D.T.)
- Central Radiological Diagnostic Department, Medical Centre Hungarian Defence Forces, 1134 Budapest, Hungary
| | - Anita Hernyes
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (A.P.); (B.B.); (M.P.); (A.A.); (D.S.); (A.V.); (H.S.); (A.H.); (L.Z.); (Z.J.); (A.F.); (A.D.T.)
| | - Luca Zoldi
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (A.P.); (B.B.); (M.P.); (A.A.); (D.S.); (A.V.); (H.S.); (A.H.); (L.Z.); (Z.J.); (A.F.); (A.D.T.)
| | - Zsofia Jokkel
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (A.P.); (B.B.); (M.P.); (A.A.); (D.S.); (A.V.); (H.S.); (A.H.); (L.Z.); (Z.J.); (A.F.); (A.D.T.)
| | - Andrea Fekete
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (A.P.); (B.B.); (M.P.); (A.A.); (D.S.); (A.V.); (H.S.); (A.H.); (L.Z.); (Z.J.); (A.F.); (A.D.T.)
| | - Janos Juhasz
- Institute of Medical Microbiology, Semmelweis University, 1085 Budapest, Hungary; (J.J.); (N.M.); (D.S.)
- Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, 1085 Budapest, Hungary
| | - Nora Makra
- Institute of Medical Microbiology, Semmelweis University, 1085 Budapest, Hungary; (J.J.); (N.M.); (D.S.)
| | - Dora Szabo
- Institute of Medical Microbiology, Semmelweis University, 1085 Budapest, Hungary; (J.J.); (N.M.); (D.S.)
| | - Edit Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1085 Budapest, Hungary; (K.P.); (E.B.)
| | - Adam Domonkos Tarnoki
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (A.P.); (B.B.); (M.P.); (A.A.); (D.S.); (A.V.); (H.S.); (A.H.); (L.Z.); (Z.J.); (A.F.); (A.D.T.)
| | - David Laszlo Tarnoki
- Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary; (A.P.); (B.B.); (M.P.); (A.A.); (D.S.); (A.V.); (H.S.); (A.H.); (L.Z.); (Z.J.); (A.F.); (A.D.T.)
| |
Collapse
|
6
|
Uchida W, Kamagata K, Andica C, Takabayashi K, Saito Y, Owaki M, Fujita S, Hagiwara A, Wada A, Akashi T, Sano K, Hori M, Aoki S. Fiber-specific micro- and macroscopic white matter alterations in progressive supranuclear palsy and corticobasal syndrome. NPJ Parkinsons Dis 2023; 9:122. [PMID: 37591877 PMCID: PMC10435458 DOI: 10.1038/s41531-023-00565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) are characterized by progressive white matter (WM) alterations associated with the prion-like spreading of four-repeat tau, which has been pathologically confirmed. It has been challenging to monitor the WM degeneration patterns underlying the clinical deficits in vivo. Here, a fiber-specific fiber density and fiber cross-section, and their combined measure estimated using fixel-based analysis (FBA), were cross-sectionally and longitudinally assessed in PSP (n = 20), CBS (n = 17), and healthy controls (n = 20). FBA indicated disease-specific progression patterns of fiber density loss and subsequent bundle atrophy consistent with the tau propagation patterns previously suggested in a histopathological study. This consistency suggests the new insight that FBA can monitor the progressive tau-related WM changes in vivo. Furthermore, fixel-wise metrics indicated strong correlations with motor and cognitive dysfunction and the classifiability of highly overlapping diseases. Our findings might also provide a tool to monitor clinical decline and classify both diseases.
Collapse
Affiliation(s)
- Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
- Faculty of Health Data Science, Juntendo University, Urayasu, Chiba, 279-0013, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Mana Owaki
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Shohei Fujita
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Toshiaki Akashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Katsuhiro Sano
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center, Ota-ku, Tokyo, 143-8541, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
- Faculty of Health Data Science, Juntendo University, Urayasu, Chiba, 279-0013, Japan
| |
Collapse
|
7
|
Zhang ZY, Harischandra DS, Wang R, Ghaisas S, Zhao JY, McMonagle TP, Zhu G, Lacuarta KD, Song J, Trojanowski JQ, Xu H, Lee VMY, Yang X. TRIM11 protects against tauopathies and is down-regulated in Alzheimer's disease. Science 2023; 381:eadd6696. [PMID: 37499037 PMCID: PMC11550485 DOI: 10.1126/science.add6696] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 06/01/2023] [Indexed: 07/29/2023]
Abstract
Aggregation of tau into filamentous inclusions underlies Alzheimer's disease (AD) and numerous other neurodegenerative tauopathies. The pathogenesis of tauopathies remains unclear, which impedes the development of disease-modifying treatments. Here, by systematically analyzing human tripartite motif (TRIM) proteins, we identified a few TRIMs that could potently inhibit tau aggregation. Among them, TRIM11 was markedly down-regulated in AD brains. TRIM11 promoted the proteasomal degradation of mutant tau as well as superfluous normal tau. It also enhanced tau solubility by acting as both a molecular chaperone to prevent tau misfolding and a disaggregase to dissolve preformed tau fibrils. TRIM11 maintained the connectivity and viability of neurons. Intracranial delivery of TRIM11 through adeno-associated viruses ameliorated pathology, neuroinflammation, and cognitive impairments in multiple animal models of tauopathies. These results suggest that TRIM11 down-regulation contributes to the pathogenesis of tauopathies and that restoring TRIM11 expression may represent an effective therapeutic strategy.
Collapse
Affiliation(s)
- Zi-Yang Zhang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Dilshan S. Harischandra
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ruifang Wang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Shivani Ghaisas
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Janet Y. Zhao
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Thomas P. McMonagle
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Guixin Zhu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kenzo D. Lacuarta
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jianing Song
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging, and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Hong Xu
- Department of Pathology and Laboratory Medicine, Institute on Aging, and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Virginia M.-Y. Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging, and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Xiaolu Yang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
8
|
Kim M, Sekiya H, Yao G, Martin NB, Castanedes-Casey M, Dickson DW, Hwang TH, Koga S. Diagnosis of Alzheimer Disease and Tauopathies on Whole-Slide Histopathology Images Using a Weakly Supervised Deep Learning Algorithm. J Transl Med 2023; 103:100127. [PMID: 36889541 DOI: 10.1016/j.labinv.2023.100127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Neuropathologic assessment during autopsy is the gold standard for diagnosing neurodegenerative disorders. Neurodegenerative conditions, such as Alzheimer disease (AD) neuropathological change, are a continuous process from normal aging rather than categorical; therefore, diagnosing neurodegenerative disorders is a complicated task. We aimed to develop a pipeline for diagnosing AD and other tauopathies, including corticobasal degeneration (CBD), globular glial tauopathy, Pick disease, and progressive supranuclear palsy. We used a weakly supervised deep learning-based approach called clustering-constrained-attention multiple-instance learning (CLAM) on the whole-slide images (WSIs) of patients with AD (n = 30), CBD (n = 20), globular glial tauopathy (n = 10), Pick disease (n = 20), and progressive supranuclear palsy (n = 20), as well as nontauopathy controls (n = 21). Three sections (A: motor cortex; B: cingulate gyrus and superior frontal gyrus; and C: corpus striatum) that had been immunostained for phosphorylated tau were scanned and converted to WSIs. We evaluated 3 models (classic multiple-instance learning, single-attention-branch CLAM, and multiattention-branch CLAM) using 5-fold cross-validation. Attention-based interpretation analysis was performed to identify the morphologic features contributing to the classification. Within highly attended regions, we also augmented gradient-weighted class activation mapping to the model to visualize cellular-level evidence of the model's decisions. The multiattention-branch CLAM model using section B achieved the highest area under the curve (0.970 ± 0.037) and diagnostic accuracy (0.873 ± 0.087). A heatmap showed the highest attention in the gray matter of the superior frontal gyrus in patients with AD and the white matter of the cingulate gyrus in patients with CBD. Gradient-weighted class activation mapping showed the highest attention in characteristic tau lesions for each disease (eg, numerous tau-positive threads in the white matter inclusions for CBD). Our findings support the feasibility of deep learning-based approaches for the classification of neurodegenerative disorders on WSIs. Further investigation of this method, focusing on clinicopathologic correlations, is warranted.
Collapse
Affiliation(s)
- Minji Kim
- Department of Artificial Intelligence and Informatics Research, Mayo Clinic, Jacksonville, Florida
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Gary Yao
- Department of Artificial Intelligence and Informatics Research, Mayo Clinic, Jacksonville, Florida
| | | | | | | | - Tae Hyun Hwang
- Department of Artificial Intelligence and Informatics Research, Mayo Clinic, Jacksonville, Florida
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida.
| |
Collapse
|
9
|
Tau PET imaging in progressive supranuclear palsy: a systematic review and meta-analysis. J Neurol 2023; 270:2451-2467. [PMID: 36633672 DOI: 10.1007/s00415-022-11556-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
OBJECTIVES To evaluate the difference of tau burden between patients with progressive supranuclear palsy (PSP) and healthy controls (HCs) or other neurodegenerative diseases using tau-positron emission tomography (PET) imaging. METHODS A systematic search on PubMed, Embase, and Web of Science databases was performed for tau-PET studies in PSP patients, up to April 1, 2022. Standardized mean differences (SMDs) of tau tracer uptake were calculated using random-effects models. Subgroup analysis based on the type of tau tracers, meta-regression, and sensitivity analysis were conducted. RESULTS Twenty-seven studies comprising 553 PSP, 626 HCs, and 406 other neurodegenerative diseases were included. Compared with HCs, PSP patients showed elevated tau binding in basal ganglia, midbrain, dentate nucleus, cerebellar white matter, and frontal lobe with decreasing SMD (SMD: 0.390-1.698). Compared with Parkinson's disease patients, increased tau binding was identified in the midbrain, basal ganglia, dentate nucleus, and frontal and parietal lobe in PSP patients with decreasing SMD (SMD: 0.503-1.853). PSP patients showed higher tau binding in the subthalamic nucleus (SMD = 1.351) and globus pallidus (SMD = 1.000), and lower binding in the cortex and parahippocampal gyrus than Alzheimer's disease patients (SMD: - 2.976 to - 1.018). PSP patients showed higher midbrain tau binding than multiple system atrophy patients (SMD = 1.269). CONCLUSION Tau PET imaging indicates different topography of tau deposition between PSP patients and HCs or other neurodegenerative disorders. The affinity and selectivity of tracers for 4R-tau and the off-target binding of tracers should be considered when interpreting the results.
Collapse
|
10
|
Sakurai K, Kaneda D, Morimoto S, Uchida Y, Inui S, Kimura Y, Kato T, Ito K, Hashizume Y. Asymmetric Cerebral Peduncle Atrophy: A Simple Diagnostic Clue for Distinguishing Frontotemporal Lobar Degeneration from Alzheimer's Disease. J Alzheimers Dis 2023; 95:1657-1665. [PMID: 37718809 DOI: 10.3233/jad-230441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Due to confusing clinicoradiological features such as amnestic symptoms and hippocampal atrophy in frontotemporal lobar degeneration (FTLD), antemortem differentiation between FTLD and Alzheimer's disease (AD) can be challenging. Although asymmetric atrophy of the cerebral peduncle is regarded as a representative imaging finding in some disorders of the FTLD spectrum, the utility of this finding has not been sufficiently evaluated for differentiating between FTLD and AD. OBJECTIVE This study aimed to explore the diagnostic performance of asymmetric cerebral peduncle atrophy on axial magnetic resonance imaging as a simple radiological discriminator between FTLD and AD. METHODS Seventeen patients with pathologically confirmed FTLD, including six with progressive supranuclear palsy, three with corticobasal degeneration, eight with TAR DNA-binding protein 43 (FTLD-TDP), and 11 with pathologically confirmed AD, were investigated. Quantitative indices representing the difference between the volumes of the bilateral cerebral peduncles (i.e., cerebral peduncular asymmetry index [CPAI]), the voxel-based specific regional analysis system for Alzheimer's disease (VSRAD) Z-score representing the degree of hippocampal atrophy, and semiquantitative visual analysis to evaluate the asymmetry of the cerebral peduncle (visual assessment of cerebral peduncular asymmetry: VACPA) were compared between the two groups. RESULTS Contrary to the VSRAD Z-score, the CPAI and VACPA scores demonstrated higher diagnostic performance in differentiating patients with FTLD from those with AD (areas under the receiver operating characteristic curve of 0.88, 082, and 0.60, respectively). CONCLUSIONS Quantitative and visual analytical techniques can differentiate between FTLD and AD. These simple methods may be useful in daily clinical practice.
Collapse
Affiliation(s)
- Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Daita Kaneda
- Choju Medical Institute, Fukushimura Hospital, Aichi, Japan
| | - Satoru Morimoto
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Yuto Uchida
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Shohei Inui
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Takashi Kato
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Kengo Ito
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | | |
Collapse
|
11
|
Yoshida M, Akagi A, Miyahara H, Riku Y, Ando T, Ikeda T, Yabata H, Moriyoshi H, Koizumi R, Iwasaki Y. Macroscopic diagnostic clue for parkinsonism. Neuropathology 2022; 42:394-419. [PMID: 35996308 DOI: 10.1111/neup.12853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/25/2022]
Abstract
The neuropathological background of parkinsonism includes various neurodegenerative disorders, including Lewy body disease (LBD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). The pathological diagnostic procedure begins by assessing the macroscopic findings to evaluate the degenerative lesions in brains with the naked eye. Usually, degenerative lesions show variable atrophy and brownish discoloration in accordance with disease-specific profiles. These macroscopic appearances support neuropathologists in identifying the relevant regions for microscopic examination. The neuropathological diagnosis of parkinsonism is based on regional distribution and fundamental proteinopathies in neurons and glia cells. LBD and MSA are synucleinopathies, and PSP and CBD are tauopathies. Among them, glial-predominant proteinopathy (MSA, PSP, and CBD) may play a significant role in volume reduction. Therefore, macroscopic inspection provides the appropriate direction for assessment. The disease duration, the severity of lesions, and mixed pathologies make the validation of macroscopic observations more complicated. In this review, we outline the macroscopic diagnostic clues in LBD, MSA, PSP, and CBD that could help with pathological refinement.
Collapse
Affiliation(s)
- Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Yuichi Riku
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Ando
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshimasa Ikeda
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Yabata
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology, Shiga University of Medical Science, Ohtsu
| | - Hideyuki Moriyoshi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuichi Koizumi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
12
|
Koga S, Josephs KA, Aiba I, Yoshida M, Dickson DW. Neuropathology and emerging biomarkers in corticobasal syndrome. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328586. [PMID: 35697501 PMCID: PMC9380481 DOI: 10.1136/jnnp-2021-328586] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 11/05/2022]
Abstract
Corticobasal syndrome (CBS) is a clinical syndrome characterised by progressive asymmetric limb rigidity and apraxia with dystonia, myoclonus, cortical sensory loss and alien limb phenomenon. Corticobasal degeneration (CBD) is one of the most common underlying pathologies of CBS, but other disorders, such as progressive supranuclear palsy (PSP), Alzheimer's disease (AD) and frontotemporal lobar degeneration with TDP-43 inclusions, are also associated with this syndrome.In this review, we describe common and rare neuropathological findings in CBS, including tauopathies, synucleinopathies, TDP-43 proteinopathies, fused in sarcoma proteinopathy, prion disease (Creutzfeldt-Jakob disease) and cerebrovascular disease, based on a narrative review of the literature and clinicopathological studies from two brain banks. Genetic mutations associated with CBS, including GRN and MAPT, are also reviewed. Clinicopathological studies on neurodegenerative disorders associated with CBS have shown that regardless of the underlying pathology, frontoparietal, as well as motor and premotor pathology is associated with CBS. Clinical features that can predict the underlying pathology of CBS remain unclear. Using AD-related biomarkers (ie, amyloid and tau positron emission tomography (PET) and fluid biomarkers), CBS caused by AD often can be differentiated from other causes of CBS. Tau PET may help distinguish AD from other tauopathies and non-tauopathies, but it remains challenging to differentiate non-AD tauopathies, especially PSP and CBD. Although the current clinical diagnostic criteria for CBS have suboptimal sensitivity and specificity, emerging biomarkers hold promise for future improvements in the diagnosis of underlying pathology in patients with CBS.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ikuko Aiba
- Department of Neurology, National Hospital Organization Higashinagoya National Hospital, Nagoya, Aichi, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
13
|
Ono Y, Higashida K, Yoshikura N, Hayashi Y, Kimura A, Iwasaki Y, Yoshida M, Shimohata T. Progressive supranuclear palsy with predominant frontal presentation exhibiting progressive nonfluent aphasia due to crossed aphasia. Neuropathology 2022; 42:232-238. [DOI: 10.1111/neup.12805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Yoya Ono
- Department of Neurology Gifu University Graduate School of Medicine Gifu Japan
| | - Kazuhiro Higashida
- Department of Neurology Gifu University Graduate School of Medicine Gifu Japan
| | - Nobuaki Yoshikura
- Department of Neurology Gifu University Graduate School of Medicine Gifu Japan
| | - Yuichi Hayashi
- Department of Neurology Gifu University Graduate School of Medicine Gifu Japan
| | - Akio Kimura
- Department of Neurology Gifu University Graduate School of Medicine Gifu Japan
| | - Yasushi Iwasaki
- Department of Neuropathology Institute for Medical Sciences of Aging, Aichi Medical University Nagakute Japan
| | - Mari Yoshida
- Department of Neuropathology Institute for Medical Sciences of Aging, Aichi Medical University Nagakute Japan
| | - Takayoshi Shimohata
- Department of Neurology Gifu University Graduate School of Medicine Gifu Japan
| |
Collapse
|
14
|
Kassavetis P, Kaski D, Anderson T, Hallett M. Eye Movement Disorders in Movement Disorders. Mov Disord Clin Pract 2022; 9:284-295. [PMID: 35402641 PMCID: PMC8974874 DOI: 10.1002/mdc3.13413] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 11/05/2022] Open
Abstract
Oculomotor assessment is an essential element of the neurological clinical examination and is particularly important when evaluating patients with movements disorders. Most of the brain is involved in oculomotor control, and thus many neurological conditions present with oculomotor abnormalities. Each of the different classes of eye movements and their features can provide important information that can facilitate differential diagnosis. This educational review presents a clinical approach to eye movement abnormalities that are commonly seen in parkinsonism, ataxia, dystonia, myoclonus, tremor, and chorea. In parkinsonism, subtle signs such as prominent square wave jerks, impaired vertical optokinetic nystagmus, and/or the "round the houses" sign suggest early progressive supranuclear gaze palsy before vertical gaze is restricted. In ataxia, nystagmus is common, but other findings such as oculomotor apraxia, supranuclear gaze palsy, impaired fixation, or saccadic pursuit can contribute to diagnoses such as ataxia with oculomotor apraxia, Niemann-Pick type C, or ataxia telangiectasia. Opsoclonus myoclonus and oculopalatal myoclonus present with characteristic phenomenology and are usually easy to identify. The oculomotor exam is usually unremarkable in isolated dystonia, but oculogyric crisis is a medical emergency and should be recognized and treated in a timely manner. Gaze impersistence in a patient with chorea suggests Huntington's disease, but in a patient with dystonia or tremor, Wilson's disease is more likely. Finally, functional eye movements can reinforce the clinical impression of a functional movement disorder.
Collapse
Affiliation(s)
- Panagiotis Kassavetis
- National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
- Department of NeurologyUniversity of UtahSalt Lake CityUtahUSA
| | - Diego Kaski
- Centre for Vestibular and Behavioural Neurosciences, Department of Clinical and Movement NeurosciencesUniversity College London, Institute of NeurologyLondonUK
| | - Tim Anderson
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
15
|
Tau deposition patterns are associated with functional connectivity in primary tauopathies. Nat Commun 2022; 13:1362. [PMID: 35292638 PMCID: PMC8924216 DOI: 10.1038/s41467-022-28896-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/14/2022] [Indexed: 11/08/2022] Open
Abstract
Tau pathology is the main driver of neuronal dysfunction in 4-repeat tauopathies, including cortico-basal degeneration and progressive supranuclear palsy. Tau is assumed to spread prion-like across connected neurons, but the mechanisms of tau propagation are largely elusive in 4-repeat tauopathies, characterized not only by neuronal but also by astroglial and oligodendroglial tau accumulation. Here, we assess whether connectivity is associated with 4R-tau deposition patterns by combining resting-state fMRI connectomics with both 2nd generation 18F-PI-2620 tau-PET in 46 patients with clinically diagnosed 4-repeat tauopathies and post-mortem cell-type-specific regional tau assessments from two independent progressive supranuclear palsy patient samples (n = 97 and n = 96). We find that inter-regional connectivity is associated with higher inter-regional correlation of both tau-PET and post-mortem tau levels in 4-repeat tauopathies. In regional cell-type specific post-mortem tau assessments, this association is stronger for neuronal than for astroglial or oligodendroglial tau, suggesting that connectivity is primarily associated with neuronal tau accumulation. Using tau-PET we find further that patient-level tau patterns are associated with the connectivity of subcortical tau epicenters. Together, the current study provides combined in vivo tau-PET and histopathological evidence that brain connectivity is associated with tau deposition patterns in 4-repeat tauopathies.
Collapse
|
16
|
Krzosek P, Madetko N, Migda A, Migda B, Jaguś D, Alster P. Differential Diagnosis of Rare Subtypes of Progressive Supranuclear Palsy and PSP-Like Syndromes—Infrequent Manifestations of the Most Common Form of Atypical Parkinsonism. Front Aging Neurosci 2022; 14:804385. [PMID: 35221993 PMCID: PMC8864174 DOI: 10.3389/fnagi.2022.804385] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Presently, there is increasing interest in rare PSP (progressive supranuclear palsy) variants, including PSP-PGF (PSP-progressive gait freezing), PSP-PI (PSP-postural instability), PSP-OM (PSP-ocular motor dysfunction), PSP-C (PSP-predominant cerebellar ataxia), PSP-CBS (PSP-corticobasal syndrome), PSP-SL (PSP-speech/language disorders), and PSP-PLS (PSP-primary lateral sclerosis). Diagnosis of these subtypes is usually based on clinical symptoms, thus thorough examination with anamnesis remains a major challenge for clinicians. The individual phenotypes often show great similarity to various neurodegenerative diseases and other genetic, autoimmune, or infectious disorders, manifesting as PSP-mimicking syndromes. At the current stage of knowledge, it is not possible to isolate a specific marker to make a definite ante-mortem diagnosis. The purpose of this review is to discuss recent developments in rare PSP phenotypes and PSP-like syndromes.
Collapse
Affiliation(s)
- Patrycja Krzosek
- Students’ Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Patrycja Krzosek,
| | - Natalia Madetko
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Migda
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Bartosz Migda
- Diagnostic Ultrasound Lab, Department of Pediatric Radiology, Medical Faculty, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Jaguś
- Diagnostic Ultrasound Lab, Department of Pediatric Radiology, Medical Faculty, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
17
|
Sánchez-Ruiz de Gordoa J, Zelaya V, Tellechea-Aramburo P, Acha B, Roldán M, López-Molina C, Coca V, Galbete A, Mendioroz M, Erro ME. Is the Phenotype Designation by PSP-MDS Criteria Stable Throughout the Disease Course and Consistent With Tau Distribution? Front Neurol 2022; 13:827338. [PMID: 35185775 PMCID: PMC8850262 DOI: 10.3389/fneur.2022.827338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction The MDS-PSP criteria have shown high sensitivity for the PSP diagnosis, but do not discriminate the phenotype diversity. Our purpose was to search for anatomopathological differences among PSP phenotypes resulting from the application of the MDS-PSP criteria comparing with the previous ones. Methods Thirty-four PSP cases from a single brain bank were retrospectively classified according to the criteria used by Respondek et al. in 2014 and the PSP-MDS criteria at 3 years (MDS-3y), 6 years (MDS-6y) and at the last clinical evaluation before death (MDS-last). Semiquantitative measurement of total, cortical and subcortical tau load was compared. For comparative analysis, PSP-Richardson syndrome and PSP postural instability were grouped (PSP-RS/PI) as well as the PSP atypical cortical phenotypes (PSP-Cx). Results Applying the Respondek's criteria, PSP phenotypes were distributed as follow: 55.9% PSP-RS/PI, 26.5% PSP-Cx, 11.8% PSP-Parkinsonism (PSP-P), and 5.9% PSP-Cerebellum. PSP-RS/PI and PSP-Cx had a higher total tau load than PSP-P; PSP-Cx showed a higher cortical tau load than PSP-RS/PI and PSP-P; and PSP-RS/PI had a higher subcortical tau load than PSP-P. Applying the MDS-3y, MDS-6y and MDS-last criteria; the PSP-RS/PI group increased (67.6, 70.6 and 70.6% respectively) whereas the PSP-Cx group decreased (8.8, and 8.8 and 11.8%). Then, only differences in total and subcortical tau burden between PSP-RS/PI and PSP-P were observed. Interpretation After the retrospective application of the new MDS-PSP criteria, total and subcortical tau load is higher in PSP-RS/PI than in PSP-P whereas no other differences in tau load between phenotypes were found, as a consequence of the loss of phenotypic diversity.
Collapse
Affiliation(s)
- Javier Sánchez-Ruiz de Gordoa
- Department of Neurology, Hospital Universitario de Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Neuroepigenetics Laboratory-Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- *Correspondence: Javier Sánchez-Ruiz de Gordoa
| | - Victoria Zelaya
- Department of Pathology, Hospital Universitario de Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Paula Tellechea-Aramburo
- Department of Neurology, Hospital Universitario de Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Blanca Acha
- Neuroepigenetics Laboratory-Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Miren Roldán
- Neuroepigenetics Laboratory-Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Carlos López-Molina
- Dpto. Automática y Computación, Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Valle Coca
- Navarrabiomed Brain Bank, Hospital Universitario de Navarra, Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Arkaitz Galbete
- Navarrabiomed, Universidad Pública de Navarra (UPNA), REDISSEC, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Maite Mendioroz
- Department of Neurology, Hospital Universitario de Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Neuroepigenetics Laboratory-Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - M. Elena Erro
- Department of Neurology, Hospital Universitario de Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Neuroepigenetics Laboratory-Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
18
|
King G, Veros KM, MacLaren DAA, Leigh MPK, Spernyak JA, Clark SD. Human wildtype tau expression in cholinergic pedunculopontine tegmental neurons is sufficient to produce PSP-like behavioural deficits and neuropathology. Eur J Neurosci 2021; 54:7688-7709. [PMID: 34668254 DOI: 10.1111/ejn.15496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
Progressive Supranuclear Palsy (PSP) is the most common atypical parkinsonism and exhibits hallmark symptomology including motor function impairment and dysexecutive dementia. In contrast to Parkinson's disease, the underlying pathology displays aggregation of the protein tau, which is also seen in disorders such as Alzheimer's disease. Currently, there are no pharmacological treatments for PSP, and drug discovery efforts are hindered by the lack of an animal model specific to PSP. Based on previous results and clinical pathology, it was hypothesized that viral deposition of tau in cholinergic neurons within the hindbrain would produce a tauopathy along neural connections to produce PSP-like symptomology and pathology. By using a combination of ChAT-CRE rats and CRE-dependent AAV vectors, wildtype human tau (the PSP-relevant 1N4R isoform; hTau) was expressed in hindbrain cholinergic neurons. Compared to control subjects (GFP), rats with tau expression displayed deficits in a variety of behavioural paradigms: acoustic startle reflex, marble burying, horizontal ladder and hindlimb motor reflex. Postmortem, the hTau rats had significantly reduced number of cholinergic pedunculopontine tegmentum and dopaminergic substantia nigra neurons, as well as abnormal tau deposits. This preclinical model has multiple points of convergence with the clinical features of PSP, some of which distinguish between PSP and Parkinson's disease.
Collapse
Affiliation(s)
- Gabriella King
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Kaliana M Veros
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | | | | | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
19
|
Stamelou M, Respondek G, Giagkou N, Whitwell JL, Kovacs GG, Höglinger GU. Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies. Nat Rev Neurol 2021; 17:601-620. [PMID: 34426686 DOI: 10.1038/s41582-021-00541-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Tauopathies are classified according to whether tau deposits predominantly contain tau isoforms with three or four repeats of the microtubule-binding domain. Those in which four-repeat (4R) tau predominates are known as 4R-tauopathies, and include progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, globular glial tauopathies and conditions associated with specific MAPT mutations. In these diseases, 4R-tau deposits are found in various cell types and anatomical regions of the brain and the conditions share pathological, pathophysiological and clinical characteristics. Despite being considered 'prototype' tauopathies and, therefore, ideal for studying neuroprotective agents, 4R-tauopathies are still severe and untreatable diseases for which no validated biomarkers exist. However, advances in research have addressed the issues of phenotypic overlap, early clinical diagnosis, pathophysiology and identification of biomarkers, setting a road map towards development of treatments. New clinical criteria have been developed and large cohorts with early disease are being followed up in prospective studies. New clinical trial readouts are emerging and biomarker research is focused on molecular pathways that have been identified. Lessons learned from failed trials of neuroprotective drugs are being used to design new trials. In this Review, we present an overview of the latest research in 4R-tauopathies, with a focus on progressive supranuclear palsy, and discuss how current evidence dictates ongoing and future research goals.
Collapse
Affiliation(s)
- Maria Stamelou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece. .,European University of Cyprus, Nicosia, Cyprus. .,Philipps University, Marburg, Germany.
| | - Gesine Respondek
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Nikolaos Giagkou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece
| | | | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Günter U Höglinger
- Department of Neurology, Hanover Medical School, Hanover, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
20
|
"Parkinson's disease" on the way to progressive supranuclear palsy: a review on PSP-parkinsonism. Neurol Sci 2021; 42:4927-4936. [PMID: 34532773 DOI: 10.1007/s10072-021-05601-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022]
Abstract
Progressive supranuclear palsy (PSP) is a progressive atypical parkinsonian syndrome characterised by postural instability, supranuclear ophthalmoplegia, dysarthria, dysphagia, executive dysfunction and other features. This clinical presentation represents the classic PSP-Richardson syndrome (PSP-RS). However, several other clinical subtypes have been recognised, including PSP-parkinsonism (PSP-P), probably the second most common PSP variant. Unlike PSP-RS, PSP-P often presents with an asymmetric onset, tremor and a moderate initial response to levodopa, especially during the first years of the disease, thus resembling Parkinson's disease (PD). It runs a more favourable course, but over time, PSP-P may evolve clinically into PSP-RS. Therefore, it may seem that PSP-P stands clinically between PD and PSP. There are several peculiarities that can distinguish PSP-P from these entities. As there is lack of systematic reviews on PSP-P in the literature, we decided to summarise all the necessary data about the epidemiology, clinical picture, neuroimaging, genetics and other aspects of this PSP variant in order to provide complete information for the reader.
Collapse
|
21
|
Whiteside DJ, Jones PS, Ghosh BCP, Coyle-Gilchrist I, Gerhard A, Hu MT, Klein JC, Leigh PN, Church A, Burn DJ, Morris HR, Rowe JB, Rittman T. Altered network stability in progressive supranuclear palsy. Neurobiol Aging 2021; 107:109-117. [PMID: 34419788 PMCID: PMC8599965 DOI: 10.1016/j.neurobiolaging.2021.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/15/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023]
Abstract
We investigated network dynamics in the tauopathy progressive supranuclear palsy Abnormal temporal properties of large-scale networks are related to phenotype Progressive supranuclear palsy paradoxically increases frontoparietal state time Reductions in neural signal complexity relate to altered network dynamics Dynamic network and topological changes occur distally to primary sites of atrophy
The clinical syndromes of Progressive Supranuclear Palsy (PSP) may be mediated by abnormal temporal dynamics of brain networks, due to the impact of atrophy, synapse loss and neurotransmitter deficits. We tested the hypothesis that alterations in signal complexity in neural networks influence short-latency state transitions. Ninety-four participants with PSP and 64 healthy controls were recruited from two independent cohorts. All participants underwent clinical and neuropsychological testing and resting-state functional MRI. Network dynamics were assessed using hidden Markov models and neural signal complexity measured in terms of multiscale entropy. In both cohorts, PSP increased the proportion of time in networks associated with higher cognitive functions. This effect correlated with clinical severity as measured by the PSP-rating-scale, and with reduced neural signal complexity. Regional atrophy influenced abnormal brain-state occupancy, but abnormal network topology and dynamics were not restricted to areas of atrophy. Our findings show that the pathology of PSP causes clinically relevant changes in neural temporal dynamics, leading to a greater proportion of time in inefficient brain-states.
Collapse
Affiliation(s)
- David J Whiteside
- Cambridge University Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK.
| | - P Simon Jones
- Cambridge University Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| | - Boyd C P Ghosh
- Wessex Neurological Centre, University Hospital Southampton, Southampton, UK
| | | | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Michele T Hu
- Oxford Parkinson's Disease Centre and Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Johannes C Klein
- Oxford Parkinson's Disease Centre and Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - P Nigel Leigh
- Department of Neuroscience, Brighton and Sussex Medical School, Brighton, UK
| | | | - David J Burn
- Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, University College London. Queen Square Institute of Neurology, London, UK
| | - James B Rowe
- Cambridge University Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| | - Timothy Rittman
- Cambridge University Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| |
Collapse
|
22
|
Murthy M, Cheng YY, Holton JL, Bettencourt C. Neurodegenerative movement disorders: An epigenetics perspective and promise for the future. Neuropathol Appl Neurobiol 2021; 47:897-909. [PMID: 34318515 PMCID: PMC9291277 DOI: 10.1111/nan.12757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/12/2021] [Indexed: 02/02/2023]
Abstract
Neurodegenerative movement disorders (NMDs) are age‐dependent disorders that are characterised by the degeneration and loss of neurons, typically accompanied by pathological accumulation of different protein aggregates in the brain, which lead to motor symptoms. NMDs include Parkinson's disease, multiple system atrophy, progressive supranuclear palsy, and Huntington's disease, among others. Epigenetic modifications are responsible for functional gene regulation during development, adult life and ageing and have progressively been implicated in complex diseases such as cancer and more recently in neurodegenerative diseases, such as NMDs. DNA methylation is by far the most widely studied epigenetic modification and consists of the reversible addition of a methyl group to the DNA without changing the DNA sequence. Although this research field is still in its infancy in relation to NMDs, an increasing number of studies point towards a role for DNA methylation in disease processes. This review addresses recent advances in epigenetic and epigenomic research in NMDs, with a focus on human brain DNA methylation studies. We discuss the current understanding of the DNA methylation changes underlying these disorders, the potential for use of these DNA modifications in peripheral tissues as biomarkers in early disease detection, classification and progression as well as a promising role in future disease management and therapy.
Collapse
Affiliation(s)
- Megha Murthy
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Yun Yung Cheng
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
23
|
Ichinose K, Watanabe M, Mizutani S, Tanizawa T, Uchihara T, Fujigasaki H. An autopsy case of corticobasal syndrome with pure diffuse Lewy Body Disease. Neurocase 2021; 27:231-237. [PMID: 34128767 DOI: 10.1080/13554794.2021.1921220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Corticobasal syndrome (CBS) is associated with diverse pathological substrates such as tau, prion protein, transactive response and, rarely, alpha synuclein. We report the case of a54-year-old man, who presented with asymmetric levodopa-poor-responsive parkinsonism, frontal lobe signs and behavioral changes. He was diagnosed with CBS, and postmortem analyses revealed Lewy body disease Braak stage VI without comorbid pathologies. Retrospectively, the clinical course of our patient and previous reports indicate that CBS plus mood changes and autonomic dysfunction, including reduced uptake of metaiodobenzylguanidine, are predictive factors of Lewy body pathology, even if the clinical picture is atypical.
Collapse
Affiliation(s)
- Keiko Ichinose
- Department of Neurology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Mutsufusa Watanabe
- Department of Neurology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Saneyuki Mizutani
- Department of Neurology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Toru Tanizawa
- Department of Clinical Examination, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Toshiki Uchihara
- Department of Neurology and Neurological Science Tokyo Medical and Dental University, Tokyo, Japan.,Department of Neurology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
| | - Hiroto Fujigasaki
- Department of Neurology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| |
Collapse
|
24
|
Mahale RR, Krishnan S, Divya KP, Jisha VT, Kishore A. Subtypes of PSP and Prognosis: A Retrospective Analysis. Ann Indian Acad Neurol 2021; 24:56-62. [PMID: 33911380 PMCID: PMC8061531 DOI: 10.4103/aian.aian_611_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/27/2020] [Accepted: 09/16/2020] [Indexed: 11/04/2022] Open
Abstract
Background Progressive supranuclear palsy (PSP) is a clinically heterogeneous disease characterized by supranuclear gaze palsy and varying combinations of Parkinsonism, gait disturbances, postural instability, and fronto-limbic cognitive dysfunction. A major challenge in clinical diagnosis is the existence of subtypes whose clinical features overlap with those of other Parkinsonian disorders. Objectives To categorize patients of PSP into its using the recently proposed movement disorder society criteria (2017) and to determine the prognosis of the PSP subtypes. Methods Demographic and clinical data of patients diagnosed with PSP over a 21 year period were collected by review of medical records and categorized into its subtypes. Subtype prognosis was assessed from the interval between disease onset and attainment of the first of 5 clinical disability milestones namely wheelchair dependency, unintelligible speech, severe dysphagia, severe cognitive impairment, and urinary catheterization. Results When categorized into subtypes, out of the 334 patients with PSP, PSP-RS predominated (72%), followed by PSP-parkinsonism (PSP-P) (13.5%), PSP-corticobasal syndrome (PSP-CBS) (5.1%), PSP-frontal (PSP-F) (4.2%), PSP-progressive gait freezing (PSP-PGF) (4.2%), PSP-postural instability (PSP-PI) (0.6%), and PSP-speech/language (PSP-SL) (0.3%). PSP-P reaches the milestones of wheelchair dependency, unintelligible speech, and dysphagia later than other subtypes. Conclusion PSP-RS was the commonest and PSP-OM the rarest PSP subtype in our retrospective PSP cohort analysis. PSP-P had a better prognosis than all other subtypes of PSP. A large proportion of these cases would remain unclassified using NINDS-SPSP (1996) criteria.
Collapse
Affiliation(s)
- Rohan R Mahale
- Department of Neurology, Sree Chitra Tirunal Institute of Medical Sciences and Technology (SCTIMST), Trivandrum, Kerala, India
| | - Syam Krishnan
- Department of Neurology, Sree Chitra Tirunal Institute of Medical Sciences and Technology (SCTIMST), Trivandrum, Kerala, India
| | - K P Divya
- Department of Neurology, Sree Chitra Tirunal Institute of Medical Sciences and Technology (SCTIMST), Trivandrum, Kerala, India
| | - V T Jisha
- Achutha Menon Centre for Health Science Studies (AMCHSS), Sree Chitra Tirunal Institute of Medical Sciences and Technology (SCTIMST), Trivandrum, Kerala, India
| | - Asha Kishore
- Department of Neurology, Sree Chitra Tirunal Institute of Medical Sciences and Technology (SCTIMST), Trivandrum, Kerala, India
| |
Collapse
|
25
|
Coughlin DG, Dickson DW, Josephs KA, Litvan I. Progressive Supranuclear Palsy and Corticobasal Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:151-176. [PMID: 33433875 DOI: 10.1007/978-3-030-51140-1_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are neurodegenerative tauopathies with neuronal and glial lesions composed of tau that is composed predominantly of isomers with four repeats in the microtubule-binding domain (4R tau). The brain regions vulnerable to pathology in PSP and CBD overlap, but there are differences, particularly with respect to distribution of neuronal loss, the relative abundance of neuronal and glial lesions, the morphologic features of glial lesions, and the frequency of comorbid pathology. Both PSP and CBD have a wide spectrum of clinical manifestations, including disorders of movement and cognition. Recognition of phenotypic diversity in PSP and CBD may improve antemortem diagnostic accuracy, which tends to be very good for the most common presentation of PSP (Richardson syndrome), but poor for the most characteristic presentation of CBD (corticobasal syndrome: CBS). Development of molecular and imaging biomarkers may improve antemortem diagnostic accuracy. Currently, multidisciplinary symptomatic and supportive treatment with pharmacological and non-pharmacological strategies remains the standard of care. In the future, experimental therapeutic trials will be important to slow disease progression.
Collapse
Affiliation(s)
| | | | | | - Irene Litvan
- UC San Diego Department of Neurosciences, La Jolla, CA, USA.
| |
Collapse
|
26
|
Zhang L, Toyoshima Y, Takeshima A, Shimizu H, Tomita I, Onodera O, Takahashi H, Kakita A. Progressive supranuclear palsy: Neuropathology of patients with a short disease duration due to unexpected death. Neuropathology 2020; 41:174-182. [PMID: 33205528 DOI: 10.1111/neup.12707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/27/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Progressive supranuclear palsy (PSP) presents with a wide variety of signs/symptoms, making early initial diagnosis difficult. We investigated the clinical and neuropathological features of five patients with autopsy-proven PSP of short duration, ranging from 11 to 41 months (average, 26.2 months) due to unexpected death, focusing particularly on the distribution and severity of neuronal loss as well as neuronal and glial tau pathology in the affected brain. Clinical features were studied retrospectively through careful review of the medical records, and neuropathological examinations were carried out, along with tau immunohistochemistry using a monoclonal antibody AT8. These patients were diagnosed as having probable PSP (n = 4) and suggestive PSP (n = 1), respectively. In all cases, neuronal loss was evident in the substantia nigra, subthalamic nucleus, globus pallidus, and locus ceruleus. AT8-identified tau lesions, that is, pretangles/neurofibrillary tangles (PTs/NFTs), tufted astrocytes (TAs), and coiled bodies/neuropil threads (CBs/NTs), were distributed widely in the brain regions, especially in patients with longer disease duration. All cases showed variation in the regional tau burden among PTs/NFTs, TAs, and CBs/NTs. There was also a tendency for tau deposition to be more predominant in neuronal cells in the brainstem and cerebellum and in glial cells in the cerebral cortex and subcortical gray matter. These findings suggest that in PSP, the initial signs/symptoms are associated with degeneration and subsequent death of neurons with pathological tau deposition, and that the tau deposition in neuronal cells is independent of that in glial cells.
Collapse
Affiliation(s)
- Lu Zhang
- Departments of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yasuko Toyoshima
- Departments of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akari Takeshima
- Departments of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroshi Shimizu
- Departments of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Itsuro Tomita
- Department of Neurology, Nagasaki-kita Hospital, Nagasaki, Japan
| | - Osamu Onodera
- Departments of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hitoshi Takahashi
- Departments of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Departments of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
27
|
Ling H, Gelpi E, Davey K, Jaunmuktane Z, Mok KY, Jabbari E, Simone R, R'Bibo L, Brandner S, Ellis MJ, Attems J, Mann D, Halliday GM, Al-Sarraj S, Hedreen J, Ironside JW, Kovacs GG, Kovari E, Love S, Vonsattel JPG, Allinson KSJ, Hansen D, Bradshaw T, Setó-Salvia N, Wray S, de Silva R, Morris HR, Warner TT, Hardy J, Holton JL, Revesz T. Fulminant corticobasal degeneration: a distinct variant with predominant neuronal tau aggregates. Acta Neuropathol 2020; 139:717-734. [PMID: 31950334 PMCID: PMC7096362 DOI: 10.1007/s00401-019-02119-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 02/01/2023]
Abstract
Corticobasal degeneration typically progresses gradually over 5–7 years from onset till death. Fulminant corticobasal degeneration cases with a rapidly progressive course were rarely reported (RP-CBD). This study aimed to investigate their neuropathological characteristics. Of the 124 autopsy-confirmed corticobasal degeneration cases collected from 14 centres, we identified 6 RP-CBD cases (4.8%) who died of advanced disease within 3 years of onset. These RP-CBD cases had different clinical phenotypes including rapid global cognitive decline (N = 2), corticobasal syndrome (N = 2) and Richardson’s syndrome (N = 2). We also studied four corticobasal degeneration cases with an average disease duration of 3 years or less, who died of another unrelated illness (Intermediate-CBD). Finally, we selected 12 age-matched corticobasal degeneration cases out of a cohort of 110, who had a typical gradually progressive course and reached advanced clinical stage (End-stage-CBD). Quantitative analysis showed high overall tau burden (p = 0.2) and severe nigral cell loss (p = 0.47) in both the RP-CBD and End-stage-CBD groups consistent with advanced pathological changes, while the Intermediate-CBD group (mean disease duration = 3 years) had milder changes than End-stage-CBD (p < 0.05). These findings indicated that RP-CBD cases had already developed advanced pathological changes as those observed in End-stage-CBD cases (mean disease duration = 6.7 years), but within a significantly shorter duration (2.5 years; p < 0.001). Subgroup analysis was performed to investigate the cellular patterns of tau aggregates in the anterior frontal cortex and caudate by comparing neuronal-to-astrocytic plaque ratios between six RP-CBD cases, four Intermediate-CBD and 12 age-matched End-stage-CBD. Neuronal-to-astrocytic plaque ratios of Intermediate-CBD and End-stage-CBD, but not RP-CBD, positively correlated with disease duration in both the anterior frontal cortex and caudate (p = 0.02). In contrast to the predominance of astrocytic plaques we previously reported in preclinical asymptomatic corticobasal degeneration cases, neuronal tau aggregates predominated in RP-CBD exceeding those in Intermediate-CBD (anterior frontal cortex: p < 0.001, caudate: p = 0.001) and End-stage-CBD (anterior frontal cortex: p = 0.03, caudate: p = 0.01) as demonstrated by its higher neuronal-to-astrocytic plaque ratios in both anterior frontal cortex and caudate. We did not identify any difference in age at onset, any pathogenic tau mutation or concomitant pathologies that could have contributed to the rapid progression of these RP-CBD cases. Mild TDP-43 pathology was observed in three RP-CBD cases. All RP-CBD cases were men. The MAPT H2 haplotype, known to be protective, was identified in one RP-CBD case (17%) and 8 of the matched End-stage-CBD cases (67%). We conclude that RP-CBD is a distinct aggressive variant of corticobasal degeneration with characteristic neuropathological substrates resulting in a fulminant disease process as evident both clinically and pathologically. Biological factors such as genetic modifiers likely play a pivotal role in the RP-CBD variant and should be the subject of future research.
Collapse
Affiliation(s)
- Helen Ling
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK.
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Karen Davey
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Zane Jaunmuktane
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospital Trust, Queen Square, London, UK
| | - Kin Y Mok
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Division of Life Science, Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, Hong Kong, China
| | - Edwin Jabbari
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Roberto Simone
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Lea R'Bibo
- UK Dementia Research Institute, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospital Trust, Queen Square, London, UK
| | - Matthew J Ellis
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Johannes Attems
- Newcastle Brain Tissue Resource, Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - David Mann
- Manchester Brain Bank, University of Manchester, Manchester, UK
| | - Glenda M Halliday
- Sydney Brain Bank, Neuroscience Research Australia (NeuRA), Sydney, Australia
- Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - S Al-Sarraj
- The London Neurodegeneration Brain Bank, The Institute of Psychiatry Psychology and Neurosciences (IOPPN), Kings College London, London, UK
| | - J Hedreen
- The Harvard Brain Tissue Resource Centre, McLean Hospital, Belmont, USA
| | - James W Ironside
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Gabor G Kovacs
- University of Toronto, University Health Network, and Tanz Centre for Research in Neurodegenerative Disease, Toronto, Canada
| | - E Kovari
- Department of Psychiatry, HUG Belle-Idée, University of Geneva School of Medicine, Geneva, Switzerland
| | - S Love
- South West Dementia Brain Bank, University of Bristol, Bristol, UK
| | - Jean Paul G Vonsattel
- Taub Institute for Research on AD and the Aging Brain, Columbia University Medical Center, New York, USA
| | | | - Daniela Hansen
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Teisha Bradshaw
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Núria Setó-Salvia
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Selina Wray
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rohan de Silva
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Huw R Morris
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Thomas T Warner
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - John Hardy
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK.
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
28
|
Sánchez-Ruiz de Gordoa J, Erro ME, Vicuña-Urriza J, Zelaya MV, Tellechea P, Acha B, Zueco S, Urdánoz-Casado A, Roldán M, Blanco-Luquin I, Mendioroz M. Microglia-Related Gene Triggering Receptor Expressed in Myeloid Cells 2 (TREM2) Is Upregulated in the Substantia Nigra of Progressive Supranuclear Palsy. Mov Disord 2020; 35:885-890. [PMID: 32031293 DOI: 10.1002/mds.27992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The role of the microglia-related gene triggering receptor expressed in myeloid cells 2 (TREM2) in primary tauopathies, such as progressive supranuclear palsy (PSP), still remains unclear. OBJECTIVES The objective of this study was to profile overall and transcript-specific TREM2 expression levels in the substantia nigra (SN) of PSP patients and controls. METHODS SN samples from neuropathologically confirmed PSP cases (n = 24) and controls (n = 14) were used to measure TREM2 and TREM2-modulating gene Membrane-spanning 4-domains subfamily A member 4A (MS4A4A) mRNA levels by real-time quantitative polymerase chain reaction. Correlation with hyperphosphorylated tau protein burden was assessed. RESULTS Overall TREM2 and each of the 3 TREM2 transcripts mRNA levels were significantly increased in the SN of PSP cases versus controls. TREM2 mRNA levels positively correlated with hyperphosphorylated tau burden in SN, specifically in neurons. The MS4A4A gene was also upregulated in PSP patients versus controls. CONCLUSIONS These results add evidence to the involvement of microglia in the disease process of PSP. These findings support the idea that different tauopathies may share common patterns of deregulation in innate immune molecular pathways. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Javier Sánchez-Ruiz de Gordoa
- Department of Neurology, Complejo Hospitalario de Navarra, Pamplona, Navarra, Spain.,Neuroepigenetics Laboratory-Navarrabiomed, Universidad Pública de Navarra, Navarra Institute for Health Research, Pamplona, Navarra, Spain
| | - María Elena Erro
- Department of Neurology, Complejo Hospitalario de Navarra, Pamplona, Navarra, Spain.,Neuroepigenetics Laboratory-Navarrabiomed, Universidad Pública de Navarra, Navarra Institute for Health Research, Pamplona, Navarra, Spain
| | - Janire Vicuña-Urriza
- Neuroepigenetics Laboratory-Navarrabiomed, Universidad Pública de Navarra, Navarra Institute for Health Research, Pamplona, Navarra, Spain
| | | | - Paula Tellechea
- Department of Neurology, Complejo Hospitalario de Navarra, Pamplona, Navarra, Spain
| | - Blanca Acha
- Neuroepigenetics Laboratory-Navarrabiomed, Universidad Pública de Navarra, Navarra Institute for Health Research, Pamplona, Navarra, Spain
| | - Sara Zueco
- Neuroepigenetics Laboratory-Navarrabiomed, Universidad Pública de Navarra, Navarra Institute for Health Research, Pamplona, Navarra, Spain
| | - Amaya Urdánoz-Casado
- Neuroepigenetics Laboratory-Navarrabiomed, Universidad Pública de Navarra, Navarra Institute for Health Research, Pamplona, Navarra, Spain
| | - Miren Roldán
- Neuroepigenetics Laboratory-Navarrabiomed, Universidad Pública de Navarra, Navarra Institute for Health Research, Pamplona, Navarra, Spain
| | - Idoia Blanco-Luquin
- Neuroepigenetics Laboratory-Navarrabiomed, Universidad Pública de Navarra, Navarra Institute for Health Research, Pamplona, Navarra, Spain
| | - Maite Mendioroz
- Department of Neurology, Complejo Hospitalario de Navarra, Pamplona, Navarra, Spain.,Neuroepigenetics Laboratory-Navarrabiomed, Universidad Pública de Navarra, Navarra Institute for Health Research, Pamplona, Navarra, Spain
| |
Collapse
|
29
|
Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathol 2020; 140:99-119. [PMID: 32383020 PMCID: PMC7360645 DOI: 10.1007/s00401-020-02158-2] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/16/2020] [Accepted: 04/11/2020] [Indexed: 12/11/2022]
Abstract
Progressive supranuclear palsy (PSP) is a 4R-tauopathy predominated by subcortical pathology in neurons, astrocytes, and oligodendroglia associated with various clinical phenotypes. In the present international study, we addressed the question of whether or not sequential distribution patterns can be recognized for PSP pathology. We evaluated heat maps and distribution patterns of neuronal, astroglial, and oligodendroglial tau pathologies and their combinations in different clinical subtypes of PSP in postmortem brains. We used conditional probability and logistic regression to model the sequential distribution of tau pathologies across different brain regions. Tau pathology uniformly predominates in the neurons of the pallido-nigro-luysian axis in different clinical subtypes. However, clinical subtypes are distinguished not only by total tau load but rather cell-type (neuronal versus glial) specific vulnerability patterns of brain regions suggesting distinct dynamics or circuit-specific segregation of propagation of tau pathologies. For Richardson syndrome (n = 81) we recognize six sequential steps of involvement of brain regions by the combination of cellular tau pathologies. This is translated to six stages for the practical neuropathological diagnosis by the evaluation of the subthalamic nucleus, globus pallidus, striatum, cerebellum with dentate nucleus, and frontal and occipital cortices. This system can be applied to further clinical subtypes by emphasizing whether they show caudal (cerebellum/dentate nucleus) or rostral (cortical) predominant, or both types of pattern. Defining cell-specific stages of tau pathology helps to identify preclinical or early-stage cases for the better understanding of early pathogenic events, has implications for understanding the clinical subtype-specific dynamics of disease-propagation, and informs tau-neuroimaging on distribution patterns.
Collapse
|
30
|
Giagkou N, Höglinger GU, Stamelou M. Progressive supranuclear palsy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 149:49-86. [PMID: 31779824 DOI: 10.1016/bs.irn.2019.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized pathologically by 4 repeat tau deposition in various cell types and anatomical regions. Richardson's syndrome (RS) is the initially described and one of the clinical phenotypes associated with PSP pathology, characterized by vertical supranuclear gaze paly in particular downwards, postural instability with early falls and subcortical frontal dementia. PSP can manifest as several other clinical phenotypes, including PSP-parkinsonism, -pure akinesia with gait freezing, -frontotemporal dementia, - corticobasal syndrome, - speech/language impairment. RS can also have a pathologic diagnosis other than PSP, including corticobasal degeneration, FTD-TDP-43 and others. New clinical diagnostic criteria take into account this phenotypic variability in an attempt to diagnose the disease earlier, given the current lack of a validated biomarker. At present, therapeutic options for PSP are symptomatic and insufficient. Recent large neuroprotective trials have failed to provide a positive clinical outcome, however, have led to the design of better studies that are ongoing and hold promise for a neuroprotective treatment for PSP.
Collapse
Affiliation(s)
- Nikolaos Giagkou
- Parkinson's Disease and Movement Disorders Department, HYGEIA Hospital, Athens, Greece
| | - Günter U Höglinger
- Department for Neurology Hannover Medical School (MHH), Hannover, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Maria Stamelou
- Parkinson's Disease and Movement Disorders Department, HYGEIA Hospital, Athens, Greece; Aiginiteion Hospital, First Department of Neurology, University of Athens, Greece; Clinic for Neurology, Philipps University, Marburg, Germany
| |
Collapse
|
31
|
Forrest SL, Kril JJ, Halliday GM. Cellular and regional vulnerability in frontotemporal tauopathies. Acta Neuropathol 2019; 138:705-727. [PMID: 31203391 DOI: 10.1007/s00401-019-02035-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
The frontotemporal tauopathies all deposit abnormal tau protein aggregates, but often of only certain isoforms and in distinguishing pathologies of five main types (neuronal Pick bodies, neurofibrillary tangles, astrocytic plaques, tufted astrocytes, globular glial inclusions and argyrophilic grains). In those with isoform specific tau aggregates glial pathologies are substantial, even though there is limited evidence that these cells normally produce tau protein. This review will assess the differentiating features and clinicopathological correlations of the frontotemporal tauopathies, the genetic predisposition for these different pathologies, their neuroanatomical selectivity, current observations on how they spread through the brain, and any potential contributing cellular and molecular changes. The findings show that diverse clinical phenotypes relate most to the brain region degenerating rather than the type of pathology involved, that different regions on the MAPT gene and novel risk genes are associated with specific tau pathologies, that the 4-repeat glial tauopathies do not follow individual patterns of spreading as identified for neuronal pathologies, and that genetic and pathological data indicate that neuroinflammatory mechanisms are involved. Each pathological frontotemporal tauopathy subtype with their distinct pathological features differ substantially in the cell type affected, morphology, biochemical and anatomical distribution of inclusions, a fundamental concept central to future success in understanding the disease mechanisms required for developing therapeutic interventions. Tau directed therapies targeting genetic mechanisms, tau aggregation and pathological spread are being trialled, although biomarkers that differentiate these diseases are required. Suggested areas of future research to address the regional and cellular vulnerabilities in frontotemporal tauopathies are discussed.
Collapse
|
32
|
Miki Y, Ling H, Crampsie S, Mummery CJ, Rohrer JD, Jaunmuktane Z, Lashley T, Holton JL. Corticospinal tract degeneration and temporal lobe atrophy in frontotemporal lobar degeneration TDP-43 type C pathology. Neuropathol Appl Neurobiol 2019; 46:296-299. [PMID: 31602701 DOI: 10.1111/nan.12582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/02/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Y Miki
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - H Ling
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
| | - S Crampsie
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - C J Mummery
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - J D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Z Jaunmuktane
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - T Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - J L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
33
|
Shoeibi A, Olfati N, Litvan I. Frontrunner in Translation: Progressive Supranuclear Palsy. Front Neurol 2019; 10:1125. [PMID: 31695675 PMCID: PMC6817677 DOI: 10.3389/fneur.2019.01125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/08/2019] [Indexed: 12/26/2022] Open
Abstract
Progressive supranuclear palsy (PSP) is a four-repeat tau proteinopathy. Abnormal tau deposition is not unique for PSP and is the basic pathologic finding in some other neurodegenerative disorders such as Alzheimer's disease (AD), age-related tauopathy, frontotemporal degeneration, corticobasal degeneration, and chronic traumatic encephalopathy. While AD research has mostly been focused on amyloid beta pathology until recently, PSP as a prototype of a primary tauopathy with high clinical-pathologic correlation and a rapid course is a crucial candidate for tau therapeutic research. Several novel approaches to slow disease progression are being developed. It is expected that the benefits of translational research in this disease will extend beyond the PSP population. This article reviews advances in the diagnosis, epidemiology, pathology, hypothesized etiopathogenesis, and biomarkers and disease-modifying therapeutic approaches of PSP that is leading it to become a frontrunner in translation.
Collapse
Affiliation(s)
- Ali Shoeibi
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nahid Olfati
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Irene Litvan
- UC San Diego Department of Neurosciences, Parkinson and Other Movement Disorder Center, La Jolla, CA, United States
| |
Collapse
|
34
|
Ishii N, Mochizuki H. Alternating flexed-extended posturing in progressive supranuclear palsy. Neurol Int 2019; 11:8257. [PMID: 31579148 PMCID: PMC6763747 DOI: 10.4081/ni.2019.8257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/12/2019] [Indexed: 12/02/2022] Open
Abstract
A 69-year-old man who had been bedridden in nursing home because of a 5- year history of progressive supranuclear palsy (PSP) was admitted due to aspiration pneumonia. Besides neck dystonia in extension, he showed “alternating flexed–extended posturing”, in which the arm was flexed on one side and extended on the other. Magnetic resonance imaging of the brain revealed global cerebral atrophy that predominantly affected the cortex and midbrain. The mechanisms of complex posturing in late-stage PSP may sometimes be related to decortication and decerebration as well as dystonia, and “alternating flexed– extended posturing” might be one of the phenotypes of pathological progression in PSP.
Collapse
Affiliation(s)
- Nobuyuki Ishii
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Japan
| | - Hitoshi Mochizuki
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Japan
| |
Collapse
|
35
|
Fernández-Ferreira R, García-Santos RA, Rodríguez-Violante M, López-Martínez C, Becerra-Laparra IK, Torres-Pérez ME. Progressive supranuclear palsy as differential diagnosis of Parkinson's disease in the elderly. Rev Esp Geriatr Gerontol 2019; 54:251-256. [PMID: 31324404 DOI: 10.1016/j.regg.2019.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/28/2019] [Accepted: 04/24/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Progressive supranuclear palsy (PSP) is a syndrome characterized by progressive parkinsonism with early falls due to postural instability, typically vertical gaze supranuclear ophthalmoplegia, pseudobulbar dysfunction, neck dystonia and upper trunk rigidity as well as mild cognitive dysfunction. Progressive supranuclear palsy must be differentiated from Parkinson's disease taking into account several so-called red flags. MATERIALS AND METHODS We report a case series hallmarked by gait abnormalities, falls and bradykinesia in which Parkinson's disease was the initial diagnosis. RESULTS Due to a torpid clinical course, magnetic resonance imaging (MRI) was performed demonstrating midbrain atrophy, highly suggestive of progressive supranuclear palsy. CONCLUSION The neuroradiological exams (magnetic resonance imaging, single photon emission computer tomography, and positron emission tomography) can be useful for diagnosis of PSP. Treatment with levodopa should be considered, especially in patients with a more parkinsonian phenotype.
Collapse
Affiliation(s)
| | - Raúl Anwar García-Santos
- Neurology Department, National Institute of Neurology and Neurosurgery, PC 14269, Mexico City, Mexico
| | - Mayela Rodríguez-Violante
- Clinical Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery, PC 14269, Mexico City, Mexico
| | - Coral López-Martínez
- Geriatrics Department, Médica Sur Clinic & Foundation, PC 14050, Mexico City, Mexico
| | | | | |
Collapse
|
36
|
Ali F, Martin PR, Botha H, Ahlskog JE, Bower JH, Masumoto JY, Maraganore D, Hassan A, Eggers S, Boeve BF, Knopman DS, Drubach D, Petersen RC, Dunkley ED, van Gerpen J, Uitti R, Whitwell JL, Dickson DW, Josephs KA. Sensitivity and Specificity of Diagnostic Criteria for Progressive Supranuclear Palsy. Mov Disord 2019; 34:1144-1153. [PMID: 30726566 PMCID: PMC6688972 DOI: 10.1002/mds.27619] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/08/2018] [Accepted: 12/23/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In 2017, the International Parkinson and Movement Disorder Society put forward new clinical criteria for the diagnosis of PSP, recognizing diverse PSP phenotypes. In this study, we compared the sensitivity and specificity of the new criteria with the National Institutes of Neurological Disease and Society for Progressive Supranuclear Palsy criteria at different times. METHODS Patients with clinical parkinsonism, clinical and/or neuropathological diagnosis of PSP, were identified from the Society for Progressive Supranuclear Palsy brain bank. All patients had neuropathologic diagnoses and detailed clinical examination performed by a neurologist at 1 of the 3 Mayo Clinic sites, in Florida, Arizona, and Minnesota. Clinical symptoms and signs were abstracted retrospectively in a blinded fashion and used to determine whether patients met either diagnostic criterion. Patients were divided into early and late disease stage groups using a 3-year cutoff. RESULTS A total of 129 patients were included, of whom 66 had PSP pathology (51%). The remainder had other neurodegenerative diseases. The overall sensitivity of the International Parkinson and Movement Disorder Society criteria was 87.9%, compared with 45.5% for the National Institutes of Neurological Disease and Society for Progressive Supranuclear Palsy criteria, whereas the specificity of the International Parkinson and Movement Disorder Society probable PSP criteria was 85.7%, compared with 90.5% for the National Institutes of Neurological Disease and Society for Progressive Supranuclear Palsy. Individual patients were noted to have features of multiple PSP phenotypes. CONCLUSION The International Parkinson and Movement Disorder Society criteria recognize several phenotypes of progressive supranuclear palsy and hence have higher sensitivity than the previous criteria. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Farwa Ali
- Department of Neurology Mayo Clinic Rochester
| | | | - Hugo Botha
- Department of Neurology Mayo Clinic Rochester
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ryan Uitti
- Department of Neurology Mayo Clinic Florida
| | | | | | | |
Collapse
|
37
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
38
|
Oliveira MCB, Ling H, Lees AJ, Holton JL, De Pablo-Fernandez E, Warner TT. Association of autonomic symptoms with disease progression and survival in progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 2019; 90:555-561. [PMID: 30598430 DOI: 10.1136/jnnp-2018-319374] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 11/03/2022]
Abstract
BACKGROUND Development of autonomic failure is associated with more rapid disease course and shorter survival in patients with Parkinson's disease and multiple system atrophy. However, autonomic symptoms have not been specifically assessed as a prognostic factor in progressive supranuclear palsy (PSP). We evaluated whether development of autonomic symptoms is associated with disease progression and survival in PSP. METHODS A retrospective review of clinical data from consecutive patients with autopsy-confirmed PSP from the Queen Square Brain Bank between January 2012 and November 2016 was performed. Time from disease onset to four autonomic symptoms (constipation, urinary symptoms, erectile dysfunction and orthostatic hypotension) were noted. Time from diagnosis to five disease milestones and survival were calculated to assess disease progression, and their risk was estimated through a Cox proportional hazards model. RESULTS A total of 103 PSP patients were included. Urinary symptoms and constipation were present in 81% and 71% of cases, respectively. Early development of constipation and urinary symptoms were associated with higher risk of reaching the first disease milestone (respectively, HR: 0.88; 95% CI 0.83 to 0.92; p<0.001; and HR: 0.80; 95% CI 0.75 to 0.86; p<0.001) and with a shorter survival in these patients (respectively, HR: 0.73; 95% CI 0.64 to 0.84; p<0.001; and HR: 0.88; 95% CI 0.80 to 0.96; p=0.004). On multivariate analysis, Richardson syndrome phenotype was the other variable independently associated with shorter survival. CONCLUSIONS Earlier urinary symptoms and constipation are associated with a more rapid disease progression and reduced survival in patients with PSP.
Collapse
Affiliation(s)
- Marcos C B Oliveira
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil.,Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Helen Ling
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Janice L Holton
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Molecular Neuroscience, University College London, London, UK
| | - Eduardo De Pablo-Fernandez
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas T Warner
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK .,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Molecular Neuroscience, University College London, London, UK
| |
Collapse
|
39
|
Pardini M, Huey ED, Spina S, Kreisl WC, Morbelli S, Wassermann EM, Nobili F, Ghetti B, Grafman J. FDG-PET patterns associated with underlying pathology in corticobasal syndrome. Neurology 2019; 92:e1121-e1135. [PMID: 30700592 DOI: 10.1212/wnl.0000000000007038] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/26/2018] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE To evaluate brain 18Fluorodeoxyglucose PET (FDG-PET) differences among patients with a clinical diagnosis of corticobasal syndrome (CBS) and distinct underling primary pathologies. METHODS We studied 29 patients with a diagnosis of CBS who underwent FDG-PET scan and postmortem neuropathologic examination. Patients were divided into subgroups on the basis of primary pathologic diagnosis: CBS-corticobasal degeneration (CBS-CBD) (14 patients), CBS-Alzheimer disease (CBS-AD) (10 patients), and CBS-progressive supranuclear palsy (CBS-PSP) (5 patients). Thirteen age-matched healthy patients who underwent FDG-PET were the control group (HC). FDG-PET scans were compared between the subgroups and the HC using SPM-12, with a threshold of p FWE < 0.05. RESULTS There were no differences in Mattis Dementia Rating Scale or finger tapping scores between CBS groups. Compared to HC, the patients with CBS presented significant hypometabolism in frontoparietal regions, including the perirolandic area, basal ganglia, and thalamus of the clinically more affected hemisphere. Patients with CBS-CBD showed a similar pattern with a more marked, bilateral involvement of the basal ganglia. Patients with CBS-AD presented with posterior, asymmetric hypometabolism, including the lateral parietal and temporal lobes and the posterior cingulate. Finally, patients with CBS-PSP disclosed a more anterior hypometabolic pattern, including the medial frontal regions and the anterior cingulate. A conjunction analysis revealed that the primary motor cortex was the only common area of hypometabolism in all groups, irrespective of pathologic diagnosis. DISCUSSION AND CONCLUSIONS In patients with CBS, different underling pathologies are associated with different patterns of hypometabolism. Our data suggest that FDG-PET scans could help in the etiologic diagnosis of CBS.
Collapse
Affiliation(s)
- Matteo Pardini
- From the Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health (M.P., F.N.) and Health Sciences (S.M.), University of Genoa; IRCCS Ospedale Policlinico San Martino (M.P., S.M., F.N.), Genoa, Italy; Cognitive Neuroscience Division, Department of Neurology (E.D.H.), Gertrude H. Sergievsky Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (E.D.H., W.C.K.), Columbia University Medical Center, New York, NY; Department of Neurology (S.S.), UCSF Memory and Aging Center, UCSF, San Francisco, CA; Department of Pathology and Laboratory Medicine (S.S., B.G.), Indiana University School of Medicine, Indianapolis; Nuclear Medicine Unit (S.M.), IRCCS AOU San Martino, IST, Genoa, Italy; Behavioral Neurology Unit (E.M.W.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Psychiatry and Behavioral Sciences & Cognitive Neurology/Alzheimer's Disease Research Center (J.G.), Feinberg School of Medicine and Department of Psychology, Northwestern University; and Brain Injury Research, Cognitive Neuroscience Lab, Think and Speak Lab (J.G.), Shirley Ryan AbilityLab, Chicago, IL.
| | - Edward D Huey
- From the Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health (M.P., F.N.) and Health Sciences (S.M.), University of Genoa; IRCCS Ospedale Policlinico San Martino (M.P., S.M., F.N.), Genoa, Italy; Cognitive Neuroscience Division, Department of Neurology (E.D.H.), Gertrude H. Sergievsky Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (E.D.H., W.C.K.), Columbia University Medical Center, New York, NY; Department of Neurology (S.S.), UCSF Memory and Aging Center, UCSF, San Francisco, CA; Department of Pathology and Laboratory Medicine (S.S., B.G.), Indiana University School of Medicine, Indianapolis; Nuclear Medicine Unit (S.M.), IRCCS AOU San Martino, IST, Genoa, Italy; Behavioral Neurology Unit (E.M.W.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Psychiatry and Behavioral Sciences & Cognitive Neurology/Alzheimer's Disease Research Center (J.G.), Feinberg School of Medicine and Department of Psychology, Northwestern University; and Brain Injury Research, Cognitive Neuroscience Lab, Think and Speak Lab (J.G.), Shirley Ryan AbilityLab, Chicago, IL
| | - Salvatore Spina
- From the Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health (M.P., F.N.) and Health Sciences (S.M.), University of Genoa; IRCCS Ospedale Policlinico San Martino (M.P., S.M., F.N.), Genoa, Italy; Cognitive Neuroscience Division, Department of Neurology (E.D.H.), Gertrude H. Sergievsky Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (E.D.H., W.C.K.), Columbia University Medical Center, New York, NY; Department of Neurology (S.S.), UCSF Memory and Aging Center, UCSF, San Francisco, CA; Department of Pathology and Laboratory Medicine (S.S., B.G.), Indiana University School of Medicine, Indianapolis; Nuclear Medicine Unit (S.M.), IRCCS AOU San Martino, IST, Genoa, Italy; Behavioral Neurology Unit (E.M.W.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Psychiatry and Behavioral Sciences & Cognitive Neurology/Alzheimer's Disease Research Center (J.G.), Feinberg School of Medicine and Department of Psychology, Northwestern University; and Brain Injury Research, Cognitive Neuroscience Lab, Think and Speak Lab (J.G.), Shirley Ryan AbilityLab, Chicago, IL
| | - William C Kreisl
- From the Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health (M.P., F.N.) and Health Sciences (S.M.), University of Genoa; IRCCS Ospedale Policlinico San Martino (M.P., S.M., F.N.), Genoa, Italy; Cognitive Neuroscience Division, Department of Neurology (E.D.H.), Gertrude H. Sergievsky Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (E.D.H., W.C.K.), Columbia University Medical Center, New York, NY; Department of Neurology (S.S.), UCSF Memory and Aging Center, UCSF, San Francisco, CA; Department of Pathology and Laboratory Medicine (S.S., B.G.), Indiana University School of Medicine, Indianapolis; Nuclear Medicine Unit (S.M.), IRCCS AOU San Martino, IST, Genoa, Italy; Behavioral Neurology Unit (E.M.W.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Psychiatry and Behavioral Sciences & Cognitive Neurology/Alzheimer's Disease Research Center (J.G.), Feinberg School of Medicine and Department of Psychology, Northwestern University; and Brain Injury Research, Cognitive Neuroscience Lab, Think and Speak Lab (J.G.), Shirley Ryan AbilityLab, Chicago, IL
| | - Silvia Morbelli
- From the Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health (M.P., F.N.) and Health Sciences (S.M.), University of Genoa; IRCCS Ospedale Policlinico San Martino (M.P., S.M., F.N.), Genoa, Italy; Cognitive Neuroscience Division, Department of Neurology (E.D.H.), Gertrude H. Sergievsky Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (E.D.H., W.C.K.), Columbia University Medical Center, New York, NY; Department of Neurology (S.S.), UCSF Memory and Aging Center, UCSF, San Francisco, CA; Department of Pathology and Laboratory Medicine (S.S., B.G.), Indiana University School of Medicine, Indianapolis; Nuclear Medicine Unit (S.M.), IRCCS AOU San Martino, IST, Genoa, Italy; Behavioral Neurology Unit (E.M.W.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Psychiatry and Behavioral Sciences & Cognitive Neurology/Alzheimer's Disease Research Center (J.G.), Feinberg School of Medicine and Department of Psychology, Northwestern University; and Brain Injury Research, Cognitive Neuroscience Lab, Think and Speak Lab (J.G.), Shirley Ryan AbilityLab, Chicago, IL
| | - Eric M Wassermann
- From the Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health (M.P., F.N.) and Health Sciences (S.M.), University of Genoa; IRCCS Ospedale Policlinico San Martino (M.P., S.M., F.N.), Genoa, Italy; Cognitive Neuroscience Division, Department of Neurology (E.D.H.), Gertrude H. Sergievsky Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (E.D.H., W.C.K.), Columbia University Medical Center, New York, NY; Department of Neurology (S.S.), UCSF Memory and Aging Center, UCSF, San Francisco, CA; Department of Pathology and Laboratory Medicine (S.S., B.G.), Indiana University School of Medicine, Indianapolis; Nuclear Medicine Unit (S.M.), IRCCS AOU San Martino, IST, Genoa, Italy; Behavioral Neurology Unit (E.M.W.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Psychiatry and Behavioral Sciences & Cognitive Neurology/Alzheimer's Disease Research Center (J.G.), Feinberg School of Medicine and Department of Psychology, Northwestern University; and Brain Injury Research, Cognitive Neuroscience Lab, Think and Speak Lab (J.G.), Shirley Ryan AbilityLab, Chicago, IL
| | - Flavio Nobili
- From the Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health (M.P., F.N.) and Health Sciences (S.M.), University of Genoa; IRCCS Ospedale Policlinico San Martino (M.P., S.M., F.N.), Genoa, Italy; Cognitive Neuroscience Division, Department of Neurology (E.D.H.), Gertrude H. Sergievsky Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (E.D.H., W.C.K.), Columbia University Medical Center, New York, NY; Department of Neurology (S.S.), UCSF Memory and Aging Center, UCSF, San Francisco, CA; Department of Pathology and Laboratory Medicine (S.S., B.G.), Indiana University School of Medicine, Indianapolis; Nuclear Medicine Unit (S.M.), IRCCS AOU San Martino, IST, Genoa, Italy; Behavioral Neurology Unit (E.M.W.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Psychiatry and Behavioral Sciences & Cognitive Neurology/Alzheimer's Disease Research Center (J.G.), Feinberg School of Medicine and Department of Psychology, Northwestern University; and Brain Injury Research, Cognitive Neuroscience Lab, Think and Speak Lab (J.G.), Shirley Ryan AbilityLab, Chicago, IL
| | - Bernardino Ghetti
- From the Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health (M.P., F.N.) and Health Sciences (S.M.), University of Genoa; IRCCS Ospedale Policlinico San Martino (M.P., S.M., F.N.), Genoa, Italy; Cognitive Neuroscience Division, Department of Neurology (E.D.H.), Gertrude H. Sergievsky Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (E.D.H., W.C.K.), Columbia University Medical Center, New York, NY; Department of Neurology (S.S.), UCSF Memory and Aging Center, UCSF, San Francisco, CA; Department of Pathology and Laboratory Medicine (S.S., B.G.), Indiana University School of Medicine, Indianapolis; Nuclear Medicine Unit (S.M.), IRCCS AOU San Martino, IST, Genoa, Italy; Behavioral Neurology Unit (E.M.W.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Psychiatry and Behavioral Sciences & Cognitive Neurology/Alzheimer's Disease Research Center (J.G.), Feinberg School of Medicine and Department of Psychology, Northwestern University; and Brain Injury Research, Cognitive Neuroscience Lab, Think and Speak Lab (J.G.), Shirley Ryan AbilityLab, Chicago, IL
| | - Jordan Grafman
- From the Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health (M.P., F.N.) and Health Sciences (S.M.), University of Genoa; IRCCS Ospedale Policlinico San Martino (M.P., S.M., F.N.), Genoa, Italy; Cognitive Neuroscience Division, Department of Neurology (E.D.H.), Gertrude H. Sergievsky Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (E.D.H., W.C.K.), Columbia University Medical Center, New York, NY; Department of Neurology (S.S.), UCSF Memory and Aging Center, UCSF, San Francisco, CA; Department of Pathology and Laboratory Medicine (S.S., B.G.), Indiana University School of Medicine, Indianapolis; Nuclear Medicine Unit (S.M.), IRCCS AOU San Martino, IST, Genoa, Italy; Behavioral Neurology Unit (E.M.W.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Psychiatry and Behavioral Sciences & Cognitive Neurology/Alzheimer's Disease Research Center (J.G.), Feinberg School of Medicine and Department of Psychology, Northwestern University; and Brain Injury Research, Cognitive Neuroscience Lab, Think and Speak Lab (J.G.), Shirley Ryan AbilityLab, Chicago, IL
| |
Collapse
|
40
|
Constantinides VC, Paraskevas GP, Potagas C, Stefanis L, Kapaki E. Quantifying apraxia and ophthalmokinetic abnormalities in patients with atypical Parkinsonism: A new way to differential diagnosis? Parkinsonism Relat Disord 2018; 61:39-44. [PMID: 30563744 DOI: 10.1016/j.parkreldis.2018.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Vasilios C Constantinides
- 1st Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, 72-74 Vas. Sophias Ave, 11528, Athens, Greece.
| | - George P Paraskevas
- 1st Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, 72-74 Vas. Sophias Ave, 11528, Athens, Greece.
| | - Constantinos Potagas
- 1st Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, 72-74 Vas. Sophias Ave, 11528, Athens, Greece.
| | - Leonidas Stefanis
- 1st Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, 72-74 Vas. Sophias Ave, 11528, Athens, Greece.
| | - Elisabeth Kapaki
- 1st Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, 72-74 Vas. Sophias Ave, 11528, Athens, Greece.
| |
Collapse
|
41
|
Jabbari E, Woodside J, Tan MMX, Shoai M, Pittman A, Ferrari R, Mok KY, Zhang D, Reynolds RH, de Silva R, Grimm MJ, Respondek G, Müller U, Al-Sarraj S, Gentleman SM, Lees AJ, Warner TT, Hardy J, Revesz T, Höglinger GU, Holton JL, Ryten M, Morris HR. Variation at the TRIM11 locus modifies progressive supranuclear palsy phenotype. Ann Neurol 2018; 84:485-496. [PMID: 30066433 PMCID: PMC6221133 DOI: 10.1002/ana.25308] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 12/27/2022]
Abstract
Objective The basis for clinical variation related to underlying progressive supranuclear palsy (PSP) pathology is unknown. We performed a genome‐wide association study (GWAS) to identify genetic determinants of PSP phenotype. Methods Two independent pathological and clinically diagnosed PSP cohorts were genotyped and phenotyped to create Richardson syndrome (RS) and non‐RS groups. We carried out separate logistic regression GWASs to compare RS and non‐RS groups and then combined datasets to carry out a whole cohort analysis (RS = 367, non‐RS = 130). We validated our findings in a third cohort by referring to data from 100 deeply phenotyped cases from a recent GWAS. We assessed the expression/coexpression patterns of our identified genes and used our data to carry out gene‐based association testing. Results Our lead single nucleotide polymorphism (SNP), rs564309, showed an association signal in both cohorts, reaching genome‐wide significance in our whole cohort analysis (odds ratio = 5.5, 95% confidence interval = 3.2–10.0, p = 1.7 × 10−9). rs564309 is an intronic variant of the tripartite motif‐containing protein 11 (TRIM11) gene, a component of the ubiquitin proteasome system (UPS). In our third cohort, minor allele frequencies of surrogate SNPs in high linkage disequilibrium with rs564309 replicated our findings. Gene‐based association testing confirmed an association signal at TRIM11. We found that TRIM11 is predominantly expressed neuronally, in the cerebellum and basal ganglia. Interpretation Our study suggests that the TRIM11 locus is a genetic modifier of PSP phenotype and potentially adds further evidence for the UPS having a key role in tau pathology, therefore representing a target for disease‐modifying therapies. Ann Neurol 2018;84:485–496
Collapse
Affiliation(s)
- Edwin Jabbari
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - John Woodside
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Manuela M X Tan
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Maryam Shoai
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| | - Alan Pittman
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| | - Raffaele Ferrari
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| | - Kin Y Mok
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| | - David Zhang
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| | - Regina H Reynolds
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| | - Rohan de Silva
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom.,Reta Lila Weston Institute, UCL Institute of Neurology, London, United Kingdom
| | - Max-Joseph Grimm
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE); Department of Neurology, Technical University of Munich; Munich Cluster for Systems Neurology SyNergy, Munich, Germany
| | - Gesine Respondek
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE); Department of Neurology, Technical University of Munich; Munich Cluster for Systems Neurology SyNergy, Munich, Germany
| | - Ulrich Müller
- Institute for Human Genetics, Justus Liebig University, Giessen, Germany
| | - Safa Al-Sarraj
- MRC London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Stephen M Gentleman
- Multiple Sclerosis and Parkinson's UK Brain Bank, Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Andrew J Lees
- Reta Lila Weston Institute, UCL Institute of Neurology, London, United Kingdom.,Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, London, United Kingdom
| | - Thomas T Warner
- Reta Lila Weston Institute, UCL Institute of Neurology, London, United Kingdom.,Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, London, United Kingdom
| | - John Hardy
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| | - Tamas Revesz
- Reta Lila Weston Institute, UCL Institute of Neurology, London, United Kingdom.,Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, London, United Kingdom
| | - Günter U Höglinger
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE); Department of Neurology, Technical University of Munich; Munich Cluster for Systems Neurology SyNergy, Munich, Germany
| | - Janice L Holton
- Reta Lila Weston Institute, UCL Institute of Neurology, London, United Kingdom.,Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, London, United Kingdom
| | - Mina Ryten
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
42
|
Alster P, Krzyżanowska E, Koziorowski D, Szlufik S, Różański D, Noskowska J, Mianowicz J, Michno A, Królicki L, Friedman A. Difficulties in the diagnosis of four repeats (4R) tauopathic parkinsonian syndromes. Neurol Neurochir Pol 2018; 52:459-464. [PMID: 30025721 DOI: 10.1016/j.pjnns.2018.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/03/2018] [Accepted: 06/19/2018] [Indexed: 11/28/2022]
Abstract
Corticobasal Degeneration Degeneration (CBD) and Progressive Supranuclear Palsy (PSP) are types of four repeats (4R) tauopathies, which are associated to parkinsonian syndromes. The aim of the work is to analyze cases of patients of the Department of Neurology, overlapping of syndromes related to both pathologies and to show that most likely CBS and PSP are not lineary related to their commonly associated syndromes i.e. adequately corticobasal syndromes and progressive supranuclear palsy syndromes. In the context of each patient factors in favor of most likely CBS, PSP or both diseases are discussed and analyzed using contemporary criteria. This work discusses multidimensional aspect of the examination of five patient aged 64 to 83 - 4 females and 1 male with 4R tauopathies and difficulties in distinguishing both diseases. The duration of the disease varied from 1 to 5 years. Each patient after neurological examination was assessed using magnetic resonance imaging (MRI) and psychological test. Examination of all patients was extended using single photon emission computer tomography (SPECT) to reveal the usefulness of this tool in differentiation of diseases was done. The outcome of this examination was verified with prior clinical manifestation of patients and morphological abnormalities in magnetic resonance imaging. Autopsies were not conducted.
Collapse
Affiliation(s)
- Piotr Alster
- Department of Neurology, Medical University of Warsaw, Poland.
| | | | | | | | - Dorota Różański
- Department of Neurology, Medical University of Warsaw, Poland
| | | | | | | | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, Poland
| | | |
Collapse
|
43
|
Ali F, Josephs K. The diagnosis of progressive supranuclear palsy: current opinions and challenges. Expert Rev Neurother 2018; 18:603-616. [DOI: 10.1080/14737175.2018.1489241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Keith Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
44
|
Ling H, Macerollo A. Is it Useful to Classify PSP and CBD as Different Disorders? Yes. Mov Disord Clin Pract 2018; 5:145-148. [PMID: 30363457 DOI: 10.1002/mdc3.12581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/10/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Helen Ling
- Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology University College London London UK
| | - Antonella Macerollo
- Sobell Department of Motor Neuroscience and Movement Disorders University College London London UK
| |
Collapse
|
45
|
Abstract
Alien hand syndrome (AHS) is a rare disorder of involuntary limb movement together with a sense of loss of limb ownership. It most commonly affects the hand, but can occur in the leg. The anterior (frontal, callosal) and posterior variants are recognized, with distinguishing clinical features and anatomical lesions. Initial descriptions were attributed to stroke and neurosurgical operations, but neurodegenerative causes are now recognized as most common. Structural and functional imaging and clinical studies have implicated the supplementary motor area, pre-supplementary motor area, and their network connections in the frontal variant of AHS, and the inferior parietal lobule and connections in the posterior variant. Several theories are proposed to explain the pathophysiology. Herein, we review the literature to update advances in the understanding of the classification, pathophysiology, etiology, and treatment of AHS.
Collapse
Affiliation(s)
- Anhar Hassan
- Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
46
|
Boxer AL, Yu JT, Golbe LI, Litvan I, Lang AE, Höglinger GU. Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol 2017; 16:552-563. [PMID: 28653647 PMCID: PMC5802400 DOI: 10.1016/s1474-4422(17)30157-6] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 04/12/2017] [Accepted: 04/25/2017] [Indexed: 12/12/2022]
Abstract
Progressive supranuclear palsy (PSP), previously believed to be a common cause of atypical parkinsonism, is now recognised as a range of motor and behavioural syndromes that are associated with a characteristic 4-repeat tau neuropathology. New research criteria that recognise early presentations of PSP and operationalise diagnosis of the full spectrum of clinical phenotypes have been reported. The Movement Disorders Society PSP diagnostic criteria include syndromes with few or mild symptoms that are suggestive of underlying PSP pathology and could provide an opportunity for earlier therapeutic interventions in the future. These criteria also include definitions for variant PSP syndromes with different patterns of movement, language, or behavioural features than have been conclusively associated with PSP pathology. Data from new diagnostic biomarkers can be combined with the clinical features of disease to increase the specificity of the new criteria for underlying PSP pathology. Because PSP is associated with tau protein abnormalities, there is growing interest in clinical trials of new tau-directed therapies. These therapies are hypothesised to have disease-modifying effects by reducing the concentration of toxic forms of tau in the brain or by compensating for loss of tau function. Since tau pathology is also central to Alzheimer's disease and chronic traumatic encephalopathy, a successful tau therapeutic for PSP might inform treatment of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA.
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lawrence I Golbe
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Irene Litvan
- Department of Neurology, University of California, San Diego, CA, USA
| | - Anthony E Lang
- Department of Neurology, University of Toronto, Toronto, ON, Canada
| | - Günter U Höglinger
- Department of Neurology, Technical University of Munich, Munich, Germany; Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology SyNergy, Munich, Germany
| |
Collapse
|
47
|
Respondek G, Kurz C, Arzberger T, Compta Y, Englund E, Ferguson LW, Gelpi E, Giese A, Irwin DJ, Meissner WG, Nilsson C, Pantelyat A, Rajput A, van Swieten JC, Troakes C, Josephs KA, Lang AE, Mollenhauer B, Müller U, Whitwell JL, Antonini A, Bhatia KP, Bordelon Y, Corvol JC, Colosimo C, Dodel R, Grossman M, Kassubek J, Krismer F, Levin J, Lorenzl S, Morris H, Nestor P, Oertel WH, Rabinovici GD, Rowe JB, van Eimeren T, Wenning GK, Boxer A, Golbe LI, Litvan I, Stamelou M, Höglinger GU. Which ante mortem clinical features predict progressive supranuclear palsy pathology? Mov Disord 2017; 32:995-1005. [PMID: 28500752 PMCID: PMC5543934 DOI: 10.1002/mds.27034] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is a neuropathologically defined disease presenting with a broad spectrum of clinical phenotypes. OBJECTIVE To identify clinical features and investigations that predict or exclude PSP pathology during life, aiming at an optimization of the clinical diagnostic criteria for PSP. METHODS We performed a systematic review of the literature published since 1996 to identify clinical features and investigations that may predict or exclude PSP pathology. We then extracted standardized data from clinical charts of patients with pathologically diagnosed PSP and relevant disease controls and calculated the sensitivity, specificity, and positive predictive value of key clinical features for PSP in this cohort. RESULTS Of 4166 articles identified by the database inquiry, 269 met predefined standards. The literature review identified clinical features predictive of PSP, including features of the following 4 functional domains: ocular motor dysfunction, postural instability, akinesia, and cognitive dysfunction. No biomarker or genetic feature was found reliably validated to predict definite PSP. High-quality original natural history data were available from 206 patients with pathologically diagnosed PSP and from 231 pathologically diagnosed disease controls (54 corticobasal degeneration, 51 multiple system atrophy with predominant parkinsonism, 53 Parkinson's disease, 73 behavioral variant frontotemporal dementia). We identified clinical features that predicted PSP pathology, including phenotypes other than Richardson's syndrome, with varying sensitivity and specificity. CONCLUSIONS Our results highlight the clinical variability of PSP and the high prevalence of phenotypes other than Richardson's syndrome. The features of variant phenotypes with high specificity and sensitivity should serve to optimize clinical diagnosis of PSP. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gesine Respondek
- Department of Neurology, Technische Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Carolin Kurz
- Department of Psychiatry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases, Munich, Germany
- Department of Psychiatry, Ludwig-Maximilians-Universität, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Yaroslau Compta
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clinic/IDIBAPS/University of Barcelona/CIBERNED, Barcelona, Catalonia, Spain
| | - Elisabet Englund
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Leslie W Ferguson
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Saskatchewan, Canada
| | - Ellen Gelpi
- Neurological Tissue Bank and Neurology Department, Hospital Clínic de Barcelona, Universitat de Barcelona, IDIBAPS, CERCA, Barcelona, Catalonia, Spain
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - David J Irwin
- Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Pennsylvania, USA
| | - Wassilios G Meissner
- University of Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- Centre national de la recherche scientifique (CNRS), Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- Service de Neurologie, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - Christer Nilsson
- Department of Clinical Sciences, Division of Neurology, Lund University, Lund, Sweden
| | | | - Alex Rajput
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Saskatchewan, Canada
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, UK
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Anthony E Lang
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J Safra Program in Parkinson's Disease, Toronto Western Hospital, Toronto, Canada
| | - Brit Mollenhauer
- Paracelsus-Elena Klinik Kassel and University Medical Center Goettingen, Institute of Neuropathology, Goettingen, Germany
| | | | | | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Istituto di ricovero e cura a carattere scientifico (IRCCS) Hospital San Camillo and Department of Neurosciences (DNS), Padova University, Padova, Italy
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - Yvette Bordelon
- Department of Neurology, University of California, Los Angeles, California, USA
| | - Jean-Christophe Corvol
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ) Paris 06; and INSERM UMRS_1127, CIC_1422; and CNRS UMR_7225; and Assistance publique - Hôpitaux de Paris (AP-HP); and Institut du Cerveau et de la Moelle Epinière (ICM), Hôpital Pitié-Salpêtrière, Département des maladies du système nerveux, F-75013, Paris, France
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital of Terni, Terni, Italy
| | - Richard Dodel
- Department of Geriatric Medicine, University Hospital Essen, Essen, Germany
| | - Murray Grossman
- Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Pennsylvania, USA
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Florian Krismer
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Stefan Lorenzl
- Department of Palliative Medicine, Munich University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Munich, Germany
- Institute of Nursing Science and Practice, Paracelsus Medical University, Salzburg, Austria
- Department of Neurology, Hospital Agatharied, Agatharied, Germany
| | - Huw Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
| | - Peter Nestor
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | | | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
| | - James B Rowe
- Department of Clinical Neurosciences, Cambridge University, Cambridge, UK
| | - Thilo van Eimeren
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Gregor K Wenning
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Adam Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
| | - Lawrence I Golbe
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Irene Litvan
- Department of Neurology, University of California, San Diego, California, USA
| | - Maria Stamelou
- Department of Neurology, Philipps Universität, Marburg, Germany
- Second Department of Neurology, Attikon University Hospital, University of Athens, Greece
- HYGEIA Hospital, Athens, Greece
| | - Günter U Höglinger
- Department of Neurology, Technische Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| |
Collapse
|
48
|
Hoglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, Mollenhauer B, Muller U, Nilsson C, Whitwell JL, Arzberger T, Englund E, Gelpi E, Giese A, Irwin DJ, Meissner WG, Pantelyat A, Rajput A, van Swieten JC, Troakes C, Antonini A, Bhatia KP, Bordelon Y, Compta Y, Corvol JC, Colosimo C, Dickson DW, Dodel R, Ferguson L, Grossman M, Kassubek J, Krismer F, Levin J, Lorenzl S, Morris HR, Nestor P, Oertel WH, Poewe W, Rabinovici G, Rowe JB, Schellenberg GD, Seppi K, van Eimeren T, Wenning GK, Boxer AL, Golbe LI, Litvan I. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Mov Disord 2017; 32:853-864. [PMID: 28467028 PMCID: PMC5516529 DOI: 10.1002/mds.26987] [Citation(s) in RCA: 1429] [Impact Index Per Article: 178.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/09/2017] [Accepted: 02/16/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND PSP is a neuropathologically defined disease entity. Clinical diagnostic criteria, published in 1996 by the National Institute of Neurological Disorders and Stroke/Society for PSP, have excellent specificity, but their sensitivity is limited for variant PSP syndromes with presentations other than Richardson's syndrome. OBJECTIVE We aimed to provide an evidence- and consensus-based revision of the clinical diagnostic criteria for PSP. METHODS We searched the PubMed, Cochrane, Medline, and PSYCInfo databases for articles published in English since 1996, using postmortem diagnosis or highly specific clinical criteria as the diagnostic standard. Second, we generated retrospective standardized clinical data from patients with autopsy-confirmed PSP and control diseases. On this basis, diagnostic criteria were drafted, optimized in two modified Delphi evaluations, submitted to structured discussions with consensus procedures during a 2-day meeting, and refined in three further Delphi rounds. RESULTS Defined clinical, imaging, laboratory, and genetic findings serve as mandatory basic features, mandatory exclusion criteria, or context-dependent exclusion criteria. We identified four functional domains (ocular motor dysfunction, postural instability, akinesia, and cognitive dysfunction) as clinical predictors of PSP. Within each of these domains, we propose three clinical features that contribute different levels of diagnostic certainty. Specific combinations of these features define the diagnostic criteria, stratified by three degrees of diagnostic certainty (probable PSP, possible PSP, and suggestive of PSP). Clinical clues and imaging findings represent supportive features. CONCLUSIONS Here, we present new criteria aimed to optimize early, sensitive, and specific clinical diagnosis of PSP on the basis of currently available evidence. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gunter U. Hoglinger
- Department of Neurology, Technische Universitat Munchen, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Gesine Respondek
- Department of Neurology, Technische Universitat Munchen, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Maria Stamelou
- Second Department of Neurology, Attikon University Hospital, University of Athens, Athens, Greece
| | - Carolin Kurz
- Department of Psychiatry, Ludwig-Maximilians-Universitat, Munich, Germany
| | | | - Anthony E. Lang
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson’s Disease, Toronto Western Hospital, Toronto, Canada
| | - Brit Mollenhauer
- Paracelsus-Elena Klinik, Kassel, Germany, and University Medical Center Gottingen, Institute of Neuropathology, Gottingen, Germany
| | | | - Christer Nilsson
- Department of Clinical Sciences, Division of Neurology, Lund University, Lund, Sweden
| | | | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry, Ludwig-Maximilians-Universitat, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universitat, Munich, Germany
| | - Elisabet Englund
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobank - Hospital Clínic de Barcelona, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universitat, Munich, Germany
| | - David J. Irwin
- Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wassilios G. Meissner
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- Service de Neurologie, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | | | - Alex Rajput
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, IRCCS Hospital San Camillo, Venice, and Department of Neurosciences, Padova University, Padova, Italy
| | - Kailash P. Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Yvette Bordelon
- Department of Neurology, University of California, Los Angeles, California, USA
| | - Yaroslau Compta
- Parkinson’s Disease & Movement Disorders Unit, Neurology Service, Hospital Clinic/IDIBAPS/University of Barcelona, Barcelona, Catalonia, Spain
| | - Jean-Christophe Corvol
- Sorbonne Universités, UPMC Univ Paris 06; and INSERM UMRS_1127, CIC_1422; and CNRS UMR_7225; and AP-HP; and ICM, Hôpital Pitié-Salpêtrière, Département des maladies du système nerveux, Paris, France
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital of Terni, Terni, Italy
| | | | - Richard Dodel
- Department of Geriatric Medicine, University Hospital Essen, Essen, Germany
| | - Leslie Ferguson
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Murray Grossman
- Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Florian Krismer
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, Ludwig-Maximilians-Universitat, Munich, Germany
| | - Stefan Lorenzl
- Institute of Nursing Science and Practice, Paracelsus Medical University, Salzburg, Austria
- Department of Neurology, Hospital Agatharied, Agatharied, Germany
- Department of Palliative Medicine, Munich University Hospital, LMU Munich, Munich, Germany
| | - Huw R. Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Peter Nestor
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | | | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Gil Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
| | - James B. Rowe
- Department of Clinical Neurosciences, Cambridge University, Cambridge, United Kingdom
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Klaus Seppi
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Thilo van Eimeren
- Departments of Nuclear Medicine and Neurology, University of Cologne, Cologne, Germany
| | - Gregor K. Wenning
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Adam L. Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
| | - Lawrence I. Golbe
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Irene Litvan
- Department of Neurology, University of California, San Diego, California, USA
| |
Collapse
|
49
|
Incipient progressive supranuclear palsy is more common than expected and may comprise clinicopathological subtypes: a forensic autopsy series. Acta Neuropathol 2017; 133:809-823. [PMID: 28064358 DOI: 10.1007/s00401-016-1665-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/30/2016] [Accepted: 12/30/2016] [Indexed: 12/14/2022]
Abstract
We investigated 998 serial Japanese forensic autopsy cases (0-101 years old, mean age 61.7 ± 21.9), with no case selection, using immunohistochemistry to detect cases with progressive supranuclear palsy (PSP). Twenty-nine cases (mean age 82.3 ± 7.2 years, 11 males, 18 females) fulfilled the National Institute of Neuronal Disorders and Stroke (NINDS)-PSP pathological criteria (2.9% of all cases, 4.6% of cases over 60). All had neuronal and glial inclusions in the basal ganglia and brainstem. However, 13 cases had low tau pathology and were categorized as atypical PSP. In addition to PSP pathology, multiple types of astrocytic inclusions and comorbid proteinopathies, particularly a high prevalence of argyrophilic grain disease, were found. All cases had not been diagnosed with PSP and had preserved daily functioning prior to death. However, 14 (48.3%), 11 (37.9%), and 16 (55.2%) cases showed signs of dementia, depressive state, and gait disturbance, respectively. Sixteen accidental death cases (55.2%), including from falls and getting lost, and 11 suicide cases (37.9%) appear to have a relationship with incipient PSP pathology. Cluster analysis using the distribution and amount of 4-repeat-tau pathology classified the cases into three subgroups: Group 1 (10 cases) had typical PSP pathology and seven cases (70.0%) had dementia as the most frequent symptom; Group 2 (7 cases) had significantly higher frequency of gait disorder (6 cases, 85.7%), and less neocortical tau pathology than Group 1; Group 3 (12 cases) had relatively mild PSP pathology and high argyrophilic grain burdens. Granular-shaped astrocytes were the dominant astrocytic inclusion in all cases. We conclude that in forensic cases incipient PSP occurs with a higher prevalence than expected. If these findings can be extrapolated to other population-based cohorts, PSP may be more common than previously thought.
Collapse
|
50
|
Upadhyay N, Suppa A, Piattella MC, Giannì C, Bologna M, Di Stasio F, Petsas N, Tona F, Fabbrini G, Berardelli A, Pantano P. Functional disconnection of thalamic and cerebellar dentate nucleus networks in progressive supranuclear palsy and corticobasal syndrome. Parkinsonism Relat Disord 2017; 39:52-57. [PMID: 28318985 DOI: 10.1016/j.parkreldis.2017.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/10/2017] [Accepted: 03/13/2017] [Indexed: 11/25/2022]
Abstract
AIM To assess functional rearrangement following neurodegeneration in the thalamus and dentate nucleus in patients with progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). METHODS We recruited 19 patients with PSP, 11 with CBS and 14 healthy subjects. All the subjects underwent resting-state (rs) fMRI using a 3T system. Whole brain functional connectivity of the thalamus and dentate nucleus were calculated by means of a seed-based approach with FEAT script in FSL toolbox. Thalamic volume was calculated by means of FIRST, and the dentate area by means of Jim software. RESULTS Both thalamic volume and dentate area were significantly smaller in PSP and CBS patients than in healthy subjects. No significant difference emerged in thalamic volume between PSP and CBS patients, whereas dentate area was significantly smaller in PSP than in CBS. Thalamic functional connectivity was significantly reduced in both patient groups in various cortical, subcortical and cerebellar areas. By contrast, changes in dentate nucleus functional connectivity differed in PSP and CBS: it decreased in subcortical and prefrontal cortical areas in PSP, but increased asymmetrically in the frontal cortex in CBS. CONCLUSIONS Evaluating the dentate nucleus size and its functional connectivity may help to differentiate patients with PSP from those with CBS.
Collapse
Affiliation(s)
- Neeraj Upadhyay
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy
| | - Antonio Suppa
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy; IRCCS Neuromed Institute, Pozzilli (IS), Italy
| | | | - Costanza Giannì
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy
| | - Matteo Bologna
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy; IRCCS Neuromed Institute, Pozzilli (IS), Italy
| | | | - Nikolaos Petsas
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy
| | - Francesca Tona
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy
| | - Giovanni Fabbrini
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy; IRCCS Neuromed Institute, Pozzilli (IS), Italy
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy; IRCCS Neuromed Institute, Pozzilli (IS), Italy
| | - Patrizia Pantano
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy; IRCCS Neuromed Institute, Pozzilli (IS), Italy.
| |
Collapse
|