1
|
Ferrera G, Derderian K, Izzo R, Gnutti B, Legati A, Zorzi G, Lamantea E, Iuso A, Ardissone A. WDR45-related encephalopathy mimicking Leigh syndrome associated with complex I deficiency: a case report. Eur J Hum Genet 2025; 33:248-251. [PMID: 39578614 PMCID: PMC11840114 DOI: 10.1038/s41431-024-01745-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/02/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Pathogenic WDR45 variants cause neurodevelopmental disorders (NDDs) including β-propeller protein-associated neurodegeneration (BPAN), characterized by developmental delay (DD), ataxia and extrapyramidal signs. Our patient, initially presenting at 22 months with DD, now, aged 7, shows intellectual disability, ataxia and rigidity. MRI findings were suggestive of Leigh syndrome, a mitochondrial disorder (MD) phenotype, with no brain iron accumulation. Reduced activity of respiratory chain complex I (cI) and complex II (cII) was identified in muscle and fibroblasts, and a cII reduction in muscle only; however, a primary MD was excluded. Exome sequencing revealed a de novo pathogenic WDR45 variant. Autophagic flux analysis showed a mildly reduced p62 response, with normal autophagy progression. This is the first report linking WDR45 to cI assembly and activity, indicating mitochondrial dysfunction as a potential pathophysiological BPAN mechanism. We recommend considering WDR45-related NDDs when diagnosing early-onset NDDs, particularly Leigh-like encephalopathies with cI deficiency, even without brain iron accumulation.
Collapse
Affiliation(s)
- Giulia Ferrera
- Child Neurology Unit - Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Kevork Derderian
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Rossella Izzo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126, Milan, Italy
| | - Barbara Gnutti
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126, Milan, Italy
| | - Giovanna Zorzi
- Child Neurology Unit - Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126, Milan, Italy
| | - Arcangela Iuso
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anna Ardissone
- Child Neurology Unit - Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy.
| |
Collapse
|
2
|
Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Romero-Domínguez JM, Reche-López D, Álvarez-Córdoba M, Romero-González A, López-Cabrera A, De Oliveira MC, Rodríguez-Sacristán A, González-Granero S, García-Verdugo JM, Sánchez-Alcázar JA. Polydatin and Nicotinamide Prevent Iron Accumulation and Lipid Peroxidation in Cellular Models of Mitochondrial Diseases. Antioxidants (Basel) 2025; 14:215. [PMID: 40002401 DOI: 10.3390/antiox14020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Ferroptosis, an iron-dependent form of non-apoptotic cell death, is regulated by a complex network involving lipid metabolism, iron homeostasis, and the oxidative-reductive system, with iron accumulation and lipid peroxidation as key drivers. Mitochondrial dysfunction and ROS overproduction often underlie the pathogenesis of mitochondrial diseases, for which treatment options are limited, emphasizing the need for novel therapies. In this study, we investigated whether polydatin and nicotinamide could reverse ferroptosis-related pathological features in cellular models derived from patients with pathogenic GFM1 variants. Mutant fibroblasts showed increased iron and lipofuscin accumulation, altered expression of iron metabolism-related proteins, elevated lipid peroxidation, and heightened susceptibility to erastin-induced ferroptosis. Treatment with polydatin and nicotinamide effectively corrected these alterations and reduced iron accumulation and lipid peroxidation in induced neurons. Furthermore, chloramphenicol treatment in control cells mimicked the mutant phenotype, suggesting that these pathological changes are linked to the mitochondrial protein synthesis defect characteristic of pathogenic GFM1 variants. Notably, adding vitamin E to the polydatin and nicotinamide co-treatment resulted in a reduction in the minimum effective concentration, suggesting potential benefits of its inclusion. In conclusion, the combination of polydatin, nicotinamide, and vitamin E could represent a promising therapeutic option for patients with mitochondrial disorders caused by pathogenic GFM1 variants.
Collapse
Affiliation(s)
- Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain
| | | | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain
| | - Alejandra López-Cabrera
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain
| | - Marta Castro De Oliveira
- Neuropediatria, Neurolinkia, C. Jardín de la Isla, 8, Local 4 y 5, 41014 Sevilla, Spain
- FEA Pediatría, Centro Universitario Hospitalar de Faro, R. Leão Penedo, 8000-386 Faro, Portugal
| | - Andrés Rodríguez-Sacristán
- Neuropediatría, Servicio de Pediatría, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain
- Departamento de Farmacología, Radiología y Pediatría de la Facultad de Medicina de la Universidad de Sevilla, 41009 Sevilla, Spain
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain
| | | |
Collapse
|
3
|
Lai L, Tan M, Hu M, Yue X, Tao L, Zhai Y, Li Y. Important molecular mechanisms in ferroptosis. Mol Cell Biochem 2025; 480:639-658. [PMID: 38668809 DOI: 10.1007/s11010-024-05009-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/07/2024] [Indexed: 02/19/2025]
Abstract
Ferroptosis is a type of cell death that is caused by the oxidation of lipids and is dependent on the presence of iron. It was first characterized by Brent R. Stockwell in 2012, and since then, research in the field of ferroptosis has rapidly expanded. The process of ferroptosis-induced cell death is genetically, biochemically, and morphologically distinct from other forms of cellular death, such as apoptosis, necroptosis, and non-programmed cell death. Extensive research has been devoted to comprehending the intricate process of ferroptosis and the various factors that contribute to it. While the majority of these studies have focused on examining the effects of lipid metabolism and mitochondria on ferroptosis, recent findings have highlighted the significant involvement of signaling pathways and associated proteins, including Nrf2, P53, and YAP/TAZ, in this process. This review provides a concise summary of the crucial signaling pathways associated with ferroptosis based on relevant studies. It also elaborates on the drugs that have been employed in recent years to treat ferroptosis-related diseases by targeting the relevant signaling pathways. The established and potential therapeutic targets for ferroptosis-related diseases, such as cancer and ischemic heart disease, are systematically addressed.
Collapse
Affiliation(s)
- Lunmeng Lai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Menglei Tan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Mingming Hu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Xiyue Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Lulu Tao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yanru Zhai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yunsen Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Kovacs GG, Grinberg LT, Halliday G, Alafuzoff I, Dugger BN, Murayama S, Forrest SL, Martinez‐Valbuena I, Tanaka H, Kon T, Yoshida K, Jaunmuktane Z, Spina S, Nelson PT, Gentleman S, Alegre‐Abarrategui J, Serrano GE, Paes VR, Takao M, Wakabayashi K, Uchihara T, Yoshida M, Saito Y, Kofler J, Rodriguez RD, Gelpi E, Attems J, Crary JF, Seeley WW, Duda JE, Keene CD, Woulfe J, Munoz D, Smith C, Lee EB, Neumann M, White CL, McKee AC, Thal DR, Jellinger K, Ghetti B, Mackenzie IRA, Dickson DW, Beach TG. Biomarker-Based Approach to α-Synucleinopathies: Lessons from Neuropathology. Mov Disord 2024; 39:2173-2179. [PMID: 39360851 PMCID: PMC11657033 DOI: 10.1002/mds.30028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 12/20/2024] Open
Affiliation(s)
- Gabor G. Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of TorontoTorontoOntarioCanada
| | - Lea T. Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
- Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
| | - Glenda Halliday
- Brain and Mind Centre, The University of SydneySydneyAustralia
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| | | | | | - Shigeo Murayama
- Brain Bank for Aging Research, Tokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Shelley L. Forrest
- Tanz Centre for Research in Neurodegenerative Diseases, University of TorontoTorontoOntarioCanada
| | - Ivan Martinez‐Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of TorontoTorontoOntarioCanada
| | - Hidetomo Tanaka
- Tanz Centre for Research in Neurodegenerative Diseases, University of TorontoTorontoOntarioCanada
| | - Tomoya Kon
- Department of NeurologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Koji Yoshida
- Tanz Centre for Research in Neurodegenerative Diseases, University of TorontoTorontoOntarioCanada
| | - Zane Jaunmuktane
- Department of Clinical and Movement NeurosciencesQueen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Salvatore Spina
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| | - Peter T. Nelson
- Sanders‐Brown Center on Aging, University of KentuckyLexingtonKentuckyUSA
| | - Steve Gentleman
- Imperial College London, Parkinson's UK Tissue BankLondonUnited Kingdom
| | | | | | - Vitor Ribeiro Paes
- Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
| | - Masaki Takao
- Department of Clinical Laboratory and Internal MedicineNational Center of Neurology and Psychiatry (NCNP), National Center HospitalTokyoJapan
| | - Koichi Wakabayashi
- Department of NeuropathologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Toshiki Uchihara
- University of Hawaii Postgraduate Medical Education Program at Okinawa Chubu HospitalUrumaJapan
| | - Mari Yoshida
- Department of NeuropathologyInstitute for Medical Science of Aging, Aichi Medical UniversityAichiJapan
| | - Yuko Saito
- Brain Bank for Aging Research, Tokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Julia Kofler
- Department of PathologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Roberta Diehl Rodriguez
- Laboratorio de Ressonancia Magnetica em Neurorradiologia (LIM‐44), HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| | - Johannes Attems
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - John F. Crary
- Departments of Pathology, Neuroscience, and Artificial Intelligence and Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - William W. Seeley
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| | - John E. Duda
- Michael J. Crescenz VA Medical CenterPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - C. Dirk Keene
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - John Woulfe
- Ottawa Hospital Research Institute and University of OttawaOttawaOntarioCanada
| | | | - Colin Smith
- University of Edinburgh, Academic Department of Neuropathology, Centre for Clinical Brain SciencesEdinburghUnited Kingdom
| | - Edward B. Lee
- Department of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Manuela Neumann
- Department of NeuropathologyUniversity Hospital Tübingen and DZNE TübingenTübingenGermany
| | - Charles L. White
- Neuropathology Section, Department of PathologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Ann C. McKee
- Boston University Alzheimer's Disease Center and CTE CenterBostonMassachusettsUSA
| | - Dietmar R. Thal
- Laboratory of Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU‐LeuvenLeuvenBelgium
- Department of PathologyUniversity Hospital LeuvenLeuvenBelgium
| | | | - Bernardino Ghetti
- School of Medicine, Department of Pathology and Laboratory MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Ian R. A. Mackenzie
- Department of PathologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | | |
Collapse
|
5
|
Pereira A, Fischinger Moura de Souza C, Álvarez-Córdoba M, Reche-López D, Sánchez-Alcázar JA. A therapeutic approach to pantothenate kinase associated neurodegeneration: a pilot study. Orphanet J Rare Dis 2024; 19:442. [PMID: 39609877 PMCID: PMC11606047 DOI: 10.1186/s13023-024-03453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Neurodegeneration with brain iron accumulation (NBIA) is a group of genetic neurological disorders frequently associated with iron accumulation in the basal nuclei of the brain characterized by progressive spasticity, dystonia, muscle rigidity, neuropsychiatric symptoms, and retinal degeneration or optic nerve atrophy. Pantothenate kinase-associated neurodegeneration (PKAN) is one of the most widespread NBIA disorders. The diagnosis of PKAN is established with clinical features and the "eye of the tiger" sign identified on brain MRI and the identification of biallelic pantothenate kinase 2 (PANK2) pathogenic variants on molecular genetic testing. PANK2 catalyzes the first reaction of coenzyme A (CoA) biosynthesis, thus, altered PANK2 activity is expected to induce CoA deficiency as well as low levels of essential metabolic intermediates such as 4'-phosphopantetheine which is a necessary cofactor for critical proteins involved in cytosolic and mitochondrial pathways such as fatty acid biosynthesis, mitochondrial respiratory complex I assembly and lysine and tetrahydrofolate metabolism, among other metabolic processes. METHODS In this manuscript, we examined the effect of a multitarget complex supplements (pantothenate, pantethine, omega-3 and vitamin E) on in vitro patient-derived cellular models and the clinical outcome of the adjuvant supplements in combination with the baseline neurological medication in three PKAN patients. RESULTS Multitarget complex supplements significantly reduced iron accumulation and increased PANK2 and ACP expression levels in the cellular models derived from all three PKAN patients. In addition, the adjunct treatment to the standard neurological medication improved or stabilized the clinical symptoms of patients. CONCLUSIONS Our results suggest that multitarget complex supplements can be clinically useful as augmentation therapy for PKAN patients harboring pathogenic variants with residual enzyme levels. TRIAL REGISTRATION CAAE: 58219522.6.0000.5330. Registered 25 May 2022-Retrospectively registered, https://plataformabrasil.saude.gov.br/visao/pesquisador/gerirPesquisa/gerirPesquisaAgrupador.jsf .
Collapse
Affiliation(s)
| | | | - Mónica Álvarez-Córdoba
- Andalusian Centre for Developmental Biology-CSIC-Pablo de Olavide University, 41013, Seville, Spain
| | - Diana Reche-López
- Andalusian Centre for Developmental Biology-CSIC-Pablo de Olavide University, 41013, Seville, Spain
| | | |
Collapse
|
6
|
Agostini F, Sgalletta B, Bisaglia M. Iron Dyshomeostasis in Neurodegeneration with Brain Iron Accumulation (NBIA): Is It the Cause or the Effect? Cells 2024; 13:1376. [PMID: 39195264 DOI: 10.3390/cells13161376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Iron is an essential metal ion implicated in several cellular processes. However, the reactive nature of iron renders this metal ion potentially dangerous for cells, and its levels need to be tightly controlled. Alterations in the intracellular concentration of iron are associated with different neuropathological conditions, including neurodegeneration with brain iron accumulation (NBIA). As the name suggests, NBIA encompasses a class of rare and still poorly investigated neurodegenerative disorders characterized by an abnormal accumulation of iron in the brain. NBIA is mostly a genetic pathology, and to date, 10 genes have been linked to familial forms of NBIA. In the present review, after the description of the principal mechanisms implicated in iron homeostasis, we summarize the research data concerning the pathological mechanisms underlying the genetic forms of NBIA and discuss the potential involvement of iron in such processes. The picture that emerges is that, while iron overload can contribute to the pathogenesis of NBIA, it does not seem to be the causal factor in most forms of the pathology. The onset of these pathologies is rather caused by a combination of processes involving the interplay between lipid metabolism, mitochondrial functions, and autophagic activity, eventually leading to iron dyshomeostasis.
Collapse
Affiliation(s)
- Francesco Agostini
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Bibiana Sgalletta
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Marco Bisaglia
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, 35121 Padova, Italy
| |
Collapse
|
7
|
Ficiarà E, Stura I, Vernone A, Silvagno F, Cavalli R, Guiot C. Iron Overload in Brain: Transport Mismatches, Microbleeding Events, and How Nanochelating Therapies May Counteract Their Effects. Int J Mol Sci 2024; 25:2337. [PMID: 38397013 PMCID: PMC10889007 DOI: 10.3390/ijms25042337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Iron overload in many brain regions is a common feature of aging and most neurodegenerative diseases. In this review, the causes, mechanisms, mathematical models, and possible therapies are summarized. Indeed, physiological and pathological conditions can be investigated using compartmental models mimicking iron trafficking across the blood-brain barrier and the Cerebrospinal Fluid-Brain exchange membranes located in the choroid plexus. In silico models can investigate the alteration of iron homeostasis and simulate iron concentration in the brain environment, as well as the effects of intracerebral iron chelation, determining potential doses and timing to recover the physiological state. Novel formulations of non-toxic nanovectors with chelating capacity are already tested in organotypic brain models and could be available to move from in silico to in vivo experiments.
Collapse
Affiliation(s)
- Eleonora Ficiarà
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy;
| | - Ilaria Stura
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| | - Annamaria Vernone
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| | - Francesca Silvagno
- Department of Oncology, Università degli Studi di Torino, 10126 Torino, TO, Italy;
| | - Roberta Cavalli
- Department of Drug Science and Technology, Università degli Studi di Torino, 10125 Torino, TO, Italy;
| | - Caterina Guiot
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| |
Collapse
|
8
|
Sreejith P, Lolo S, Patten KR, Gunasinghe M, More N, Pallanck LJ, Bharadwaj R. Nazo, the Drosophila homolog of the NBIA-mutated protein-c19orf12, is required for triglyceride homeostasis. PLoS Genet 2024; 20:e1011137. [PMID: 38335241 PMCID: PMC10883546 DOI: 10.1371/journal.pgen.1011137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/22/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Lipid dyshomeostasis has been implicated in a variety of diseases ranging from obesity to neurodegenerative disorders such as Neurodegeneration with Brain Iron Accumulation (NBIA). Here, we uncover the physiological role of Nazo, the Drosophila melanogaster homolog of the NBIA-mutated protein-c19orf12, whose function has been elusive. Ablation of Drosophila c19orf12 homologs leads to dysregulation of multiple lipid metabolism genes. nazo mutants exhibit markedly reduced gut lipid droplet and whole-body triglyceride contents. Consequently, they are sensitive to starvation and oxidative stress. Nazo is required for maintaining normal levels of Perilipin-2, an inhibitor of the lipase-Brummer. Concurrent knockdown of Brummer or overexpression of Perilipin-2 rescues the nazo phenotype, suggesting that this defect, at least in part, may arise from diminished Perilipin-2 on lipid droplets leading to aberrant Brummer-mediated lipolysis. Our findings potentially provide novel insights into the role of c19orf12 as a possible link between lipid dyshomeostasis and neurodegeneration, particularly in the context of NBIA.
Collapse
Affiliation(s)
- Perinthottathil Sreejith
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Sara Lolo
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Kristen R. Patten
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Maduka Gunasinghe
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Neya More
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Leo J. Pallanck
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Rajnish Bharadwaj
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
9
|
Hashemi N, Abadi RNS, Alavi A, Rohani M, Ghasemi A, Tavasoli AR. The first reports of FA2H-associated neurodegeneration from two unrelated Iranian families. Neurol Sci 2023; 44:4359-4362. [PMID: 37410270 DOI: 10.1007/s10072-023-06932-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND NBIA (neurodegeneration with brain iron accumulation) is a diverse collection of neurodegenerative illnesses defined by iron accumulation in the basal ganglia. The fatty acid hydroxylase-associated neurodegeneration, or FAHN, is one of the uncommon subtypes of NBIAs, associated with inherited autosomal recessive mutations in gene coding the membrane-bound fatty acid 2 hydroxylase (FA2H) enzyme. CASES Here, we report two cases with FAHN from two unrelated families from Iran confirmed by whole exome sequencing. CONCLUSION FAHN is an uncommon variant of NBIA that may manifest as spastic paraparesis without signs of iron buildup on brain imaging. As a result, it should be taken into account while making a differential diagnosis of the hereditary spastic paraplegia (HSP) syndrome, especially in individuals who lack iron deposits.
Collapse
Affiliation(s)
- Narges Hashemi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, School of Medicine, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Aida Ghasemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ali Reza Tavasoli
- Pediatric Neurology Division, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Chavoshinezhad S, Beirami E, Izadpanah E, Feligioni M, Hassanzadeh K. Molecular mechanism and potential therapeutic targets of necroptosis and ferroptosis in Alzheimer's disease. Biomed Pharmacother 2023; 168:115656. [PMID: 37844354 DOI: 10.1016/j.biopha.2023.115656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative condition, is defined by neurofibrillary tangles, amyloid plaques, and gradual cognitive decline. Regardless of the advances in understanding AD's pathogenesis and progression, its causes are still contested, and there are currently no efficient therapies for the illness. The post-mortem analyses revealed widespread neuronal loss in multiple brain regions in AD, evidenced by a decrease in neuronal density and correlated with the disease's progression and cognitive deterioration. AD's neurodegeneration is complicated, and different types of neuronal cell death, alone or in combination, play crucial roles in this process. Recently, the involvement of non-apoptotic programmed cell death in the neurodegenerative mechanisms of AD has received a lot of attention. Aberrant activation of necroptosis and ferroptosis, two newly discovered forms of regulated non-apoptotic cell death, is thought to contribute to neuronal cell death in AD. In this review, we first address the main features of necroptosis and ferroptosis, cellular signaling cascades, and the mechanisms involved in AD pathology. Then, we discuss the latest therapies targeting necroptosis and ferroptosis in AD animal/cell models and human research to provide vital information for AD treatment.
Collapse
Affiliation(s)
- Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, 00161 Rome, Italy; Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, 20144 Milan, Italy.
| | - Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
11
|
Saft C, Burgunder JM, Dose M, Jung HH, Katzenschlager R, Priller J, Nguyen HP, Reetz K, Reilmann R, Seppi K, Landwehrmeyer GB. Differential diagnosis of chorea (guidelines of the German Neurological Society). Neurol Res Pract 2023; 5:63. [PMID: 37993913 PMCID: PMC10666412 DOI: 10.1186/s42466-023-00292-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/24/2023] Open
Abstract
INTRODUCTION Choreiform movement disorders are characterized by involuntary, rapid, irregular, and unpredictable movements of the limbs, face, neck, and trunk. These movements often initially go unnoticed by the affected individuals and may blend together with seemingly intended, random motions. Choreiform movements can occur both at rest and during voluntary movements. They typically increase in intensity with stress and physical activity and essentially cease during deep sleep stages. In particularly in advanced stages of Huntington disease (HD), choreiform hyperkinesia occurs alongside with dystonic postures of the limbs or trunk before they typically decrease in intensity. The differential diagnosis of HD can be complex. Here, the authors aim to provide guidance for the diagnostic process. This guidance was prepared for the German Neurological Society (DGN) for German-speaking countries. RECOMMENDATIONS Hereditary (inherited) and non-hereditary (non-inherited) forms of chorea can be distinguished. Therefore, the family history is crucial. However, even in conditions with autosomal-dominant transmission such as HD, unremarkable family histories do not necessarily rule out a hereditary form (e.g., in cases of early deceased or unknown parents, uncertainties in familial relationships, as well as in offspring of parents with CAG repeats in the expandable range (27-35 CAG repeats) which may display expansions into the pathogenic range). CONCLUSIONS The differential diagnosis of chorea can be challenging. This guidance prepared for the German Neurological Society (DGN) reflects the state of the art as of 2023.
Collapse
Affiliation(s)
- Carsten Saft
- Department of Neurology, St. Josef-Hospital, Huntington-Zentrum NRW, Ruhr-Universität Bochum, Bochum, Germany.
| | - Jean-Marc Burgunder
- Department of Neurology, Schweizerisches Huntington-Zentrum, Bern University, Bern, Switzerland
| | - Matthias Dose
- Kbo-Isar-Amper-Klinikum Taufkirchen/München-Ost, Munich, Germany
| | - Hans Heinrich Jung
- Department of Neurology, University Hospital Zürich, Zurich, Switzerland
| | - Regina Katzenschlager
- Department of Neurology, Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Klinik Donaustadt, Vienna, Austria
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Huntington-Zentrum NRW, Ruhr-Universität Bochum, Bochum, Germany
| | - Kathrin Reetz
- Department of Neurology, Euregional Huntington Centre Aachen, RWTH Aachen University Hospital, Aachen, Germany
| | - Ralf Reilmann
- George-Huntington-Institute, Muenster, Germany
- Department of Radiology, Universitaetsklinikum Muenster (UKM), Westfaelische Wilhelms-University, Muenster, Germany
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
12
|
Si L, Wang Z, Li XY, Song Y, Yao T, Xu E, Wang X, Wang C. Novel mutations and molecular pathways identified in patients with brain iron accumulation disorders. Neurogenetics 2023; 24:231-241. [PMID: 37453004 DOI: 10.1007/s10048-023-00725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Brain iron accumulation disorders (BIADs) are a group of diseases characterized by iron overload in deep gray matter nuclei, which is a common feature of neurodegenerative diseases. Although genetic factors have been reported to be one of the etiologies, much more details about the genetic background and molecular mechanism of BIADs remain unclear. This study aimed to illustrate the genetic characteristics of BIADs and clarify their molecular mechanisms. A total of 84 patients with BIADs were recruited from April 2018 to October 2022 at Xuanwu Hospital. Clinical characteristics including family history, consanguineous marriage history, and age at onset (AAO) were collected and assessed by two senior neurologists. Neuroimaging data were conducted for all the patients, including cranial magnetic resonance imaging (MRI) and susceptibility-weighted imaging (SWI). Whole-exome sequencing (WES) and capillary electrophoresis for detecting sequence mutation and trinucleotide repeat expansion, respectively, were conducted on all patients and part of their parents (whose samples were available). Variant pathogenicity was assessed according to the American College of Medical Genetics and Association for Molecular Pathology (ACMG/AMP). The NBIA and NBIA-like genes with mutations were included for bioinformatic analysis, using Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genome (KEGG). GO annotation and KEGG pathway analysis were performed on Metascape platform. In the 84 patients, 30 (35.7%) were found to carry mutations, among which 20 carried non-dynamic mutations (missense, stop-gained, frameshift, inframe, and exonic deletion) and 10 carried repeat expansion mutations. Compared with sporadic cases, familial cases had more genetic variants (non-dynamic mutation: P=0.025, dynamic mutation: P=0.003). AAO was 27.85±10.42 years in cases with non-dynamic mutations, which was significantly younger than those without mutations (43.13±17.17, t=3.724, P<0.001) and those with repeated expansions (45.40±8.90, t=4.550, P<0.001). Bioinformatic analysis suggested that genes in lipid metabolism, autophagy, mitochondria regulation, and ferroptosis pathways are more likely to be involved in the pathogenesis of BIADs. This study broadens the genetic spectrum of BIADs and has important implications in genetic counselling and clinical diagnosis. Patients diagnosed as BIADs with early AAO and family history are more likely to carry mutations. Bioinformatic analysis provides new insights into the molecular pathogenesis of BIADs, which may shed lights on the therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Lianghao Si
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Zhanjun Wang
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Xu-Ying Li
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Yang Song
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Tingyan Yao
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Erhe Xu
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Xianling Wang
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Chaodong Wang
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
| |
Collapse
|
13
|
Suárez-Carrillo A, Álvarez-Córdoba M, Romero-González A, Talaverón-Rey M, Povea-Cabello S, Cilleros-Holgado P, Piñero-Pérez R, Reche-López D, Gómez-Fernández D, Romero-Domínguez JM, Munuera-Cabeza M, Díaz A, González-Granero S, García-Verdugo JM, Sánchez-Alcázar JA. Antioxidants Prevent Iron Accumulation and Lipid Peroxidation, but Do Not Correct Autophagy Dysfunction or Mitochondrial Bioenergetics in Cellular Models of BPAN. Int J Mol Sci 2023; 24:14576. [PMID: 37834028 PMCID: PMC11340724 DOI: 10.3390/ijms241914576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of rare neurogenetic disorders frequently associated with iron accumulation in the basal nuclei of the brain. Among NBIA subtypes, β-propeller protein-associated neurodegeneration (BPAN) is associated with mutations in the autophagy gene WDR45. The aim of this study was to demonstrate the autophagic defects and secondary pathological consequences in cellular models derived from two patients harboring WDR45 mutations. Both protein and mRNA expression levels of WDR45 were decreased in patient-derived fibroblasts. In addition, the increase of LC3B upon treatments with autophagy inducers or inhibitors was lower in mutant cells compared to control cells, suggesting decreased autophagosome formation and impaired autophagic flux. A transmission electron microscopy (TEM) analysis showed mitochondrial vacuolization associated with the accumulation of lipofuscin-like aggregates containing undegraded material. Autophagy dysregulation was also associated with iron accumulation and lipid peroxidation. In addition, mutant fibroblasts showed altered mitochondrial bioenergetics. Antioxidants such as pantothenate, vitamin E and α-lipoic prevented lipid peroxidation and iron accumulation. However, antioxidants were not able to correct the expression levels of WDR45, neither the autophagy defect nor cell bioenergetics. Our study demonstrated that WDR45 mutations in BPAN cellular models impaired autophagy, iron metabolism and cell bioenergetics. Antioxidants partially improved cell physiopathology; however, autophagy and cell bioenergetics remained affected.
Collapse
Affiliation(s)
- Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - José Manuel Romero-Domínguez
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Antonio Díaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA;
- Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46100 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46100 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| |
Collapse
|
14
|
Benarroch E. What Is the Role of Ferroptosis in Neurodegeneration? Neurology 2023; 101:312-319. [PMID: 37580137 PMCID: PMC10437014 DOI: 10.1212/wnl.0000000000207730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 08/16/2023] Open
|
15
|
Talaverón-Rey M, Álvarez-Córdoba M, Villalón-García I, Povea-Cabello S, Suárez-Rivero JM, Gómez-Fernández D, Romero-González A, Suárez-Carrillo A, Munuera-Cabeza M, Cilleros-Holgado P, Reche-López D, Piñero-Pérez R, Sánchez-Alcázar JA. Alpha-lipoic acid supplementation corrects pathological alterations in cellular models of pantothenate kinase-associated neurodegeneration with residual PANK2 expression levels. Orphanet J Rare Dis 2023; 18:80. [PMID: 37046296 PMCID: PMC10091671 DOI: 10.1186/s13023-023-02687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Neurodegeneration with brain iron accumulation (NBIA) disorders are a group of neurodegenerative diseases that have in common the accumulation of iron in the basal nuclei of the brain which are essential components of the extrapyramidal system. Frequent symptoms are progressive spasticity, dystonia, muscle rigidity, neuropsychiatric symptoms, and retinal degeneration or optic nerve atrophy. One of the most prevalent subtypes of NBIA is Pantothenate kinase-associated neurodegeneration (PKAN). It is caused by pathogenic variants in the gene of pantothenate kinase 2 (PANK2) which encodes the enzyme responsible for the first reaction on the coenzyme A (CoA) biosynthesis pathway. Thus, deficient PANK2 activity induces CoA deficiency as well as low expression levels of 4'-phosphopantetheinyl proteins which are essential for mitochondrial metabolism. METHODS This study is aimed at evaluating the role of alpha-lipoic acid (α-LA) in reversing the pathological alterations in fibroblasts and induced neurons derived from PKAN patients. Iron accumulation, lipid peroxidation, transcript and protein expression levels of PANK2, mitochondrial ACP (mtACP), 4''-phosphopantetheinyl and lipoylated proteins, as well as pyruvate dehydrogenase (PDH) and Complex I activity were examined. RESULTS Treatment with α-LA was able to correct all pathological alterations in responsive mutant fibroblasts with residual PANK2 enzyme expression. However, α-LA had no effect on mutant fibroblasts with truncated/incomplete protein expression. The positive effect of α-LA in particular pathogenic variants was also confirmed in induced neurons derived from mutant fibroblasts. CONCLUSIONS Our results suggest that α-LA treatment can increase the expression levels of PANK2 and reverse the mutant phenotype in PANK2 responsive pathogenic variants. The existence of residual enzyme expression in some affected individuals raises the possibility of treatment using high dose of α-LA.
Collapse
Affiliation(s)
- Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain.
| |
Collapse
|
16
|
Alvarez Jerez P, Alcantud JL, de Los Reyes-Ramírez L, Moore A, Ruz C, Vives Montero F, Rodriguez-Losada N, Saini P, Gan-Or Z, Alvarado CX, Makarious MB, Billingsley KJ, Blauwendraat C, Noyce AJ, Singleton AB, Duran R, Bandres-Ciga S. Exploring the genetic and genomic connection underlying neurodegeneration with brain iron accumulation and the risk for Parkinson's disease. NPJ Parkinsons Dis 2023; 9:54. [PMID: 37024536 PMCID: PMC10079978 DOI: 10.1038/s41531-023-00496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) represents a group of neurodegenerative disorders characterized by abnormal iron accumulation in the brain. In Parkinson's Disease (PD), iron accumulation is a cardinal feature of degenerating regions in the brain and seems to be a key player in mechanisms that precipitate cell death. The aim of this study was to explore the genetic and genomic connection between NBIA and PD. We screened for known and rare pathogenic mutations in autosomal dominant and recessive genes linked to NBIA in a total of 4481 PD cases and 10,253 controls from the Accelerating Medicines Partnership Parkinsons' Disease Program and the UKBiobank. We examined whether a genetic burden of NBIA variants contributes to PD risk through single-gene, gene-set, and single-variant association analyses. In addition, we assessed publicly available expression quantitative trait loci (eQTL) data through Summary-based Mendelian Randomization and conducted transcriptomic analyses in blood of 1886 PD cases and 1285 controls. Out of 29 previously reported NBIA screened coding variants, four were associated with PD risk at a nominal p value < 0.05. No enrichment of heterozygous variants in NBIA-related genes risk was identified in PD cases versus controls. Burden analyses did not reveal a cumulative effect of rare NBIA genetic variation on PD risk. Transcriptomic analyses suggested that DCAF17 is differentially expressed in blood from PD cases and controls. Due to low mutation occurrence in the datasets and lack of replication, our analyses suggest that NBIA and PD may be separate molecular entities.
Collapse
Affiliation(s)
- Pilar Alvarez Jerez
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jose Luis Alcantud
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Lucia de Los Reyes-Ramírez
- Laboratory of Neuropharmacology. Dept. Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anni Moore
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Clara Ruz
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Francisco Vives Montero
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Noela Rodriguez-Losada
- Department Human Physiology, Faculty of Medicine, Biomedicine Research Institute of Malaga (IBIMA C07), University of Malaga, Malaga, Spain
| | - Prabhjyot Saini
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Chelsea X Alvarado
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Mary B Makarious
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Kimberley J Billingsley
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alastair J Noyce
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Preventive Neurology Unit, Centre for Prevention, Detection and Diagnosis, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Raquel Duran
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Lee S, Martinez-Valbuena I, de Andrea CE, Villalba-Esparza M, Ilaalagan S, Couto B, Visanji NP, Lang AE, Kovacs GG. Cell-Specific Dysregulation of Iron and Oxygen Homeostasis as a Novel Pathophysiology in PSP. Ann Neurol 2023; 93:431-445. [PMID: 36309960 DOI: 10.1002/ana.26540] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Progressive supranuclear palsy (PSP) is a 4R-tauopathy showing heterogeneous tau cytopathology commencing in the globus pallidus (GP) and the substantia nigra (SN), regions also associated with age-related iron accumulation. Abnormal iron levels have been extensively associated with tau pathology in neurodegenerative brains, however, its role in PSP pathogenesis remains yet unknown. We perform the first cell type-specific evaluation of PSP iron homeostasis and the closely related oxygen homeostasis, in relation to tau pathology in human postmortem PSP brains. METHODS In brain regions vulnerable to PSP pathology (GP, SN, and putamen), we visualized iron deposition in tau-affected and unaffected neurons, astroglia, oligodendrocytes, and microglia, using a combination of iron staining with immunolabelling. To further explore molecular pathways underlying our observations, we examined the expression of key iron and oxygen homeostasis mRNA transcripts and proteins. RESULTS We found astrocytes as the major cell type accumulating iron in the early affected regions of PSP, highly associated with cellular tau pathology. The same regions are affected by dysregulated expression of alpha and beta hemoglobin and neuroglobin showing contrasting patterns. We discovered changes in iron and oxygen homeostasis-related gene expression associated with aging of the brain, and identified dysregulated expression of rare neurodegeneration with brain iron accumulation (NBIA) genes associated with tau pathology to distinguish PSP from the healthy aging brain. INTERPRETATION We present novel aspects of PSP pathophysiology highlighting an overlap with NBIA pathways. Our findings reveal potential novel targets for therapy development and have implications beyond PSP for other iron-associated neurodegenerative diseases. ANN NEUROL 2023;93:431-445.
Collapse
Affiliation(s)
- Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Carlos E de Andrea
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain.,Department of Anatomy, Physiology, and Pathology, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria Villalba-Esparza
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain.,Department of Anatomy, Physiology, and Pathology, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Suganthini Ilaalagan
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Blas Couto
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Naomi P Visanji
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Humulus lupulus L. extract and its active constituent xanthohumol attenuate oxidative stress and nerve injury induced by iron overload via activating AKT/GSK3β and Nrf2/NQO1 pathways. J Nat Med 2023; 77:12-27. [PMID: 36074228 DOI: 10.1007/s11418-022-01642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/13/2022] [Indexed: 01/06/2023]
Abstract
Hops, the dried female clusters from Humulus lupulus L., have traditionally been used as folk medicines for treating insomnia, neuralgia, and menopausal disorders. However, its pharmacological action on iron overload induced nerve damage has not been investigated. This study aims to evaluate the protective effects of hops extract (HLE) and its active constituent xanthohumol (XAN) on nerve injury induced by iron overload in vivo and in vitro, and to explore its underlying mechanism. The results showed that HLE and XAN significantly improved the memory impairment of iron overload mice, mainly manifested as shortened latency time, increased crossing platform times and spontaneous alternation ratio, and increased the expression of related proteins. Additionally, HLE and XAN significantly increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities, and remarkably decreased malondialdehyde (MDA) level in hippocampus. Also, HLE and XAN apparently reduced reactive oxygen species (ROS) content of PC12 cells induced by iron dextran (ID), and improved the oxidative stress level. Moreover, HLE and XAN significantly upregulated the expression of nuclear factor E2-related factor (Nrf2), NAD(P)H quinone oxidoreductase (NQO1), heme oxygenase-1 (HO-1), SOD, phosphorylated AKT (p-AKT), and phosphorylated GSK3β (p-GSK3β) both in hippocampus and PC12 cells. These findings demonstrated the protective effect of HLE and XAN against iron-induced memory impairment, which is attributed to its antioxidant profile by activation of AKT/GSK3β and Nrf2/NQO1 pathways. Also, it was suggested that hops could be a potential candidate for iron overload-related neurological diseases treatment.
Collapse
|
19
|
Mandik F, Kanana Y, Rody J, Misera S, Wilken B, Laabs von Holt BH, Klein C, Vos M. A new model for fatty acid hydroxylase-associated neurodegeneration reveals mitochondrial and autophagy abnormalities. Front Cell Dev Biol 2022; 10:1000553. [PMID: 36589738 PMCID: PMC9794614 DOI: 10.3389/fcell.2022.1000553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Fatty acid hydroxylase-associated neurodegeneration (FAHN) is a rare disease that exhibits brain modifications and motor dysfunctions in early childhood. The condition is caused by a homozygous or compound heterozygous mutation in fatty acid 2 hydroxylase (FA2H), whose encoded protein synthesizes 2-hydroxysphingolipids and 2-hydroxyglycosphingolipids and is therefore involved in sphingolipid metabolism. A few FAHN model organisms have already been established and give the first insight into symptomatic effects. However, they fail to establish the underlying cellular mechanism of FAHN so far. Drosophila is an excellent model for many neurodegenerative disorders; hence, here, we have characterized and validated the first FAHN Drosophila model. The investigation of loss of dfa2h lines revealed behavioral abnormalities, including motor impairment and flying disability, in addition to a shortened lifespan. Furthermore, alterations in mitochondrial dynamics, and autophagy were identified. Analyses of patient-derived fibroblasts, and rescue experiments with human FA2H, indicated that these defects are evolutionarily conserved. We thus present a FAHN Drosophila model organism that provides new insights into the cellular mechanism of FAHN.
Collapse
Affiliation(s)
- Frida Mandik
- Institute of Neurogenetics, University of Luebeck, UKSH, Luebeck, Germany
| | - Yuliia Kanana
- Institute of Neurogenetics, University of Luebeck, UKSH, Luebeck, Germany
| | - Jost Rody
- Institute of Neurogenetics, University of Luebeck, UKSH, Luebeck, Germany
| | - Sophie Misera
- Institute of Neurogenetics, University of Luebeck, UKSH, Luebeck, Germany
| | - Bernd Wilken
- Department of Neuropediatrics, Klinikum Kassel, Kassel, Germany
| | | | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, UKSH, Luebeck, Germany
| | - Melissa Vos
- Institute of Neurogenetics, University of Luebeck, UKSH, Luebeck, Germany,*Correspondence: Melissa Vos,
| |
Collapse
|
20
|
Hashemi N, Nejad Shahrokh Abadi R, Alavi A, Tavasoli AR, Rohani M. A Mild Form of Neurodegeneration with Brain Iron Accumulation attributed to Coenzyme A Synthase Mutation. Mov Disord Clin Pract 2022; 10:331-334. [PMID: 36825041 PMCID: PMC9941925 DOI: 10.1002/mdc3.13624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Narges Hashemi
- Department of Pediatrics, School of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Afagh Alavi
- Genetics Research CenterUniversity of Social Welfare and Rehabilitation SciencesTehranIran
| | - Ali Reza Tavasoli
- Pediatric Neurology DivisionChildren's Medical Center, Pediatric Center of Excellence, Tehran University of Medical SciencesTehranIran,Jefferson Institute of Molecular MedicineThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Mohammad Rohani
- Department of NeurologyRasool Akram Hospital, School of Medicine, Iran University of Medical SciencesTehranIran
| |
Collapse
|
21
|
Saft C, Achenbach J, Nguyen HP, Seppi K. Comment on "A series of cases with Huntington-like phenotype and intermediate repeats in HTT" by Acuña and colleagues". J Neurol Sci 2022; 442:120409. [PMID: 36126372 DOI: 10.1016/j.jns.2022.120409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Carsten Saft
- Department of Neurology, Huntington-Centre NRW, St. Josef Hospital, Ruhr-University of Bochum, Gudrunstraße 56, 44791 Bochum, Germany.
| | - Jannis Achenbach
- Department of Neurology, Huntington-Centre NRW, St. Josef Hospital, Ruhr-University of Bochum, Gudrunstraße 56, 44791 Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr-University of Bochum, Bochum, Germany
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
22
|
Wang L, Qi A, Liu J, Shen Y, Wang J. Comparative metabolic analysis of the adaptive Candida tropicalis to furfural stress response. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Villalón-García I, Povea-Cabello S, Álvarez-Córdoba M, Talaverón-Rey M, Suárez-Rivero JM, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Pérez R, Sánchez-Alcázar JA. Vicious cycle of lipid peroxidation and iron accumulation in neurodegeneration. Neural Regen Res 2022; 18:1196-1202. [PMID: 36453394 PMCID: PMC9838166 DOI: 10.4103/1673-5374.358614] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Lipid peroxidation and iron accumulation are closely associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, or neurodegeneration with brain iron accumulation disorders. Mitochondrial dysfunction, lipofuscin accumulation, autophagy disruption, and ferroptosis have been implicated as the critical pathomechanisms of lipid peroxidation and iron accumulation in these disorders. Currently, the connection between lipid peroxidation and iron accumulation and the initial cause or consequence in neurodegeneration processes is unclear. In this review, we have compiled the known mechanisms by which lipid peroxidation triggers iron accumulation and lipofuscin formation, and the effect of iron overload on lipid peroxidation and cellular function. The vicious cycle established between both pathological alterations may lead to the development of neurodegeneration. Therefore, the investigation of these mechanisms is essential for exploring therapeutic strategies to restrict neurodegeneration. In addition, we discuss the interplay between lipid peroxidation and iron accumulation in neurodegeneration, particularly in PLA2G6-associated neurodegeneration, a rare neurodegenerative disease with autosomal recessive inheritance, which belongs to the group of neurodegeneration with brain iron accumulation disorders.
Collapse
Affiliation(s)
- Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Juan M. Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain,Correspondence to: José A. Sánchez-Alcázar, MD, PhD, .
| |
Collapse
|
24
|
Lovrić J, Najafinobar N, Kurczy ME, De Castro O, Biesemeier A, von Sydow L, Klarqvist M, Wirtz T, Malmberg P. Correlative High-Resolution Imaging of Iron Uptake in Lung Macrophages. Anal Chem 2022; 94:12798-12806. [PMID: 36070604 PMCID: PMC9494303 DOI: 10.1021/acs.analchem.2c02675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Detection of iron at the subcellular level in order to
gain insights
into its transport, storage, and therapeutic prospects to prevent
cytotoxic effects of excessive iron accumulation is still a challenge.
Nanoscale magnetic sector secondary ion mass spectrometry (SIMS) is
an excellent candidate for subcellular mapping of elements in cells
since it provides high secondary ion collection efficiency and transmission,
coupled with high-lateral-resolution capabilities enabled by nanoscale
primary ion beams. In this study, we developed correlative methodologies
that implement SIMS high-resolution imaging technologies to study
accumulation and determine subcellular localization of iron in alveolar
macrophages. We employed transmission electron microscopy (TEM) and
backscattered electron (BSE) microscopy to obtain structural information
and high-resolution analytical tools, NanoSIMS and helium ion microscopy-SIMS
(HIM-SIMS) to trace the chemical signature of iron. Chemical information
from NanoSIMS was correlated with TEM data, while high-spatial-resolution
ion maps from HIM-SIMS analysis were correlated with BSE structural
information of the cell. NanoSIMS revealed that iron is accumulating
within mitochondria, and both NanoSIMS and HIM-SIMS showed accumulation
of iron in electrolucent compartments such as vacuoles, lysosomes,
and lipid droplets. This study provides insights into iron metabolism
at the subcellular level and has future potential in finding therapeutics
to reduce the cytotoxic effects of excessive iron loading.
Collapse
Affiliation(s)
- Jelena Lovrić
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 50 Gothenburg, Sweden
| | - Neda Najafinobar
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, SE-431 50 Gothenburg, Sweden
| | - Michael E Kurczy
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 50 Gothenburg, Sweden
| | - Olivier De Castro
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg
| | - Antje Biesemeier
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg
| | - Lena von Sydow
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, SE-431 50 Gothenburg, Sweden
| | - Magnus Klarqvist
- Early Product Development, Pharm Sci, IMED Biotech Unit, AstraZeneca, SE-431 50 Gothenburg, Sweden
| | - Tom Wirtz
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg
| | - Per Malmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
25
|
Diaw SH, Ganos C, Zittel S, Plötze-Martin K, Kulikovskaja L, Vos M, Westenberger A, Rakovic A, Lohmann K, Dulovic-Mahlow M. Mutant WDR45 Leads to Altered Ferritinophagy and Ferroptosis in β-Propeller Protein-Associated Neurodegeneration. Int J Mol Sci 2022; 23:ijms23179524. [PMID: 36076926 PMCID: PMC9455908 DOI: 10.3390/ijms23179524] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022] Open
Abstract
Beta-propeller protein-associated neurodegeneration (BPAN) is a subtype of neurodegeneration with brain iron accumulation (NBIA) caused by loss-of-function variants in WDR45. The underlying mechanism of iron accumulation in WDR45 deficiency remains elusive. We established a primary skin fibroblast culture of a new BPAN patient with a missense variant p.(Asn61Lys) in WDR45 (NM_007075.3: c.183C>A). The female patient has generalized dystonia, anarthria, parkinsonism, spasticity, stereotypies, and a distinctive cranial MRI with generalized brain atrophy, predominantly of the cerebellum. For the functional characterization of this variant and to provide a molecular link of WDR45 and iron accumulation, we looked for disease- and variant-related changes in the patient’s fibroblasts by qPCR, immunoblotting and immunofluorescence comparing to three controls and a previously reported WDR45 patient. We demonstrated molecular changes in mutant cells comprising an impaired mitochondrial network, decreased levels of lysosomal proteins and enzymes, and altered autophagy, confirming the pathogenicity of the variant. Compared to increased levels of the ferritinophagy marker Nuclear Coactivator 4 (NCOA4) in control cells upon iron treatment, patients’ cells revealed unchanged NCOA4 protein levels, indicating disturbed ferritinophagy. Additionally, we observed abnormal protein levels of markers of the iron-dependent cell death ferroptosis in patients’ cells. Altogether, our data suggests that WDR45 deficiency affects ferritinophagy and ferroptosis, consequentially disturbing iron recycling.
Collapse
Affiliation(s)
| | - Christos Ganos
- Department of Neurology, Charité—University Medicine, 10117 Berlin, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | | | | | - Melissa Vos
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
| | | | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
- Correspondence:
| | | |
Collapse
|
26
|
Álvarez-Córdoba M, Reche-López D, Cilleros-Holgado P, Talaverón-Rey M, Villalón-García I, Povea-Cabello S, Suárez-Rivero JM, Suárez-Carrillo A, Munuera-Cabeza M, Piñero-Pérez R, Sánchez-Alcázar JA. Therapeutic approach with commercial supplements for pantothenate kinase-associated neurodegeneration with residual PANK2 expression levels. Orphanet J Rare Dis 2022; 17:311. [PMID: 35945593 PMCID: PMC9364590 DOI: 10.1186/s13023-022-02465-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background Neurodegeneration with brain iron accumulation (NBIA) is a group of rare neurogenetic disorders frequently associated with iron accumulation in the basal nuclei of the brain characterized by progressive spasticity, dystonia, muscle rigidity, neuropsychiatric symptoms, and retinal degeneration or optic nerve atrophy. Pantothenate kinase-associated neurodegeneration (PKAN) is one of the most widespread NBIA subtypes. It is caused by mutations in the gene of pantothenate kinase 2 (PANK2) that result in dysfunction in PANK2 enzyme activity, with consequent deficiency of coenzyme A (CoA) biosynthesis, as well as low levels of essential metabolic intermediates such as 4′-phosphopantetheine, a necessary cofactor for essential cytosolic and mitochondrial proteins. Methods In this manuscript, we examined the therapeutic effectiveness of pantothenate, panthetine, antioxidants (vitamin E and omega 3) and mitochondrial function boosting supplements (L-carnitine and thiamine) in mutant PANK2 cells with residual expression levels. Results Commercial supplements, pantothenate, pantethine, vitamin E, omega 3, carnitine and thiamine were able to eliminate iron accumulation, increase PANK2, mtACP, and NFS1 expression levels and improve pathological alterations in mutant cells with residual PANK2 expression levels. Conclusion Our results suggest that several commercial compounds are indeed able to significantly correct the mutant phenotype in cellular models of PKAN. These compounds alone or in combinations are of common use in clinical practice and may be useful for the treatment of PKAN patients with residual enzyme expression levels. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02465-9.
Collapse
Affiliation(s)
- Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain.
| |
Collapse
|
27
|
Ceramide and Sphingosine-1-Phosphate in Neurodegenerative Disorders and Their Potential Involvement in Therapy. Int J Mol Sci 2022; 23:ijms23147806. [PMID: 35887154 PMCID: PMC9324343 DOI: 10.3390/ijms23147806] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative disorders (ND) are progressive diseases of the nervous system, often without resolutive therapy. They are characterized by a progressive impairment and loss of specific brain regions and neuronal populations. Cellular and animal model studies have identified several molecular mechanisms that play an important role in the pathogenesis of ND. Among them are alterations of lipids, in particular sphingolipids, that play a crucial role in neurodegeneration. Overall, during ND, ceramide-dependent pro-apoptotic signalling is promoted, whereas levels of the neuroprotective spingosine-1-phosphate are reduced. Moreover, ND are characterized by alterations of the metabolism of complex sphingolipids. The finding that altered sphingolipid metabolism has a role in ND suggests that its modulation might provide a useful strategy to identify targets for possible therapies. In this review, based on the current literature, we will discuss how bioactive sphingolipids (spingosine-1-phosphate and ceramide) are involved in some ND (Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis) and their possible involvement in therapies.
Collapse
|
28
|
Hanna Al-Shaikh R, Milanowski LM, Holla VV, Kurihara K, Yadav R, Kamble N, Muthusamy B, Bellad A, Koziorowski D, Szlufik S, Hoffman-Zacharska D, Fujioka S, Tsuboi Y, Ross OA, Wierenga K, Uitti RJ, Wszolek Z, Pal PK. PLA2G6-associated neurodegeneration in four different populations-case series and literature review. Parkinsonism Relat Disord 2022; 101:66-74. [PMID: 35803092 DOI: 10.1016/j.parkreldis.2022.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND PLA2G6-Associated Neurodegeneration, PLAN, is subdivided into: Infantile neuroaxonal dystrophy, atypical neuroaxonal dystrophy, and adult-onset dystonia parkinsonism [1]. It is elicited by a biallelic pathogenic variant in phospholipase A2 group VI (PLA2G6) gene. In this study we describe new cases and provide a comprehensive review of previously published cases. METHODS Eleven patients, from four different institutions and four different countries. All underwent a comprehensive chart review. RESULTS Ages at onset ranged from 1 to 36 years, with a median of 16 and a mean of 16.18 ± 11.91 years. Phenotypic characteristics were heterogenous and resembled that of patients with infantile neuroaxonal dystrophy (n = 2), atypical neuroaxonal dystrophy (n = 1), adult-onset dystonia parkinsonism (n = 1), complex hereditary spastic paraparesis (n = 3), and early onset Parkinson's disease (n = 2). Parental genetic studies were performed for all patients and confirmed with sanger sequencing in five. Visual evoked potential illustrated optic atrophy in P4. Mineralization was evident in brain magnetic resonance imaging of P1, P2, P4, P5, P7, and P11. Single photon emission computed tomography was conducted for three patients, revealed decreased perfusion in the occipital lobes for P10. DaTscan was performed for P11 and showed decreased uptake in the deep gray matter, bilateral caudate nuclei, and bilateral putamen. Positive response to Apomorphine was noted for P10 and to Baclofen in P2, and P3. CONCLUSIONS PLAN encompasses a wide clinical spectrum. Age and symptom at onset are crucial when classifying patients. Reporting new variants is critical to draw more attention to this condition and identify biomarkers to arrive at potential therapeutics.
Collapse
Affiliation(s)
| | - Lukasz M Milanowski
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA; Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | | | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, Bengaluru, India; Manipal Academy of Higher Education, Manipal, India
| | - Anikha Bellad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India; Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Stanislaw Szlufik
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Dorota Hoffman-Zacharska
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland; Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | | | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Klaas Wierenga
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| |
Collapse
|
29
|
Ke S, Wang C, Su Z, Lin S, Wu G. Integrated Analysis Reveals Critical Ferroptosis Regulators and FTL Contribute to Cancer Progression in Hepatocellular Carcinoma. Front Genet 2022; 13:897683. [PMID: 35651950 PMCID: PMC9149379 DOI: 10.3389/fgene.2022.897683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/13/2022] [Indexed: 12/21/2022] Open
Abstract
Background: The carcinogenesis and prognosis of hepatocellular carcinoma (HCC) involve complex molecular mechanisms, and ferroptosis is related to the development and therapeutic efficacy of HCC, but the specific mechanism and prognostic role of ferroptosis-related genes in HCC have not been elucidated. Methods: Differentially expressed gene analysis, Cox regression, and unsupervised consensus clustering were applied to identify crucial ferroptosis regulators and establish ferroptosis-related subtypes in HCC. Random forest analysis and survival analysis were adopted to confirm FTL as the hub prognostic and diagnostic ferroptosis regulator in HCC. Results: The ferroptosis-related subtypes based on the crucial prognostic ferroptosis regulators showed that patients in fescluster A had a higher survival probability (p < 0.001) and better clinical characteristics than patients in fescluster B in the TCGA-LIHC cohort. Patients with a high tumor mutation burden (TMB) in fescluster B presented a significantly poorer prognosis. FTL was the core ferroptosis regulator, and its low expression revealed a significant survival advantage compared with its high expression (p = 0.03). The expression and predictive value of FTL were both closely related to the clinical features (p < 0.05). Expression of FTL accurately distinguished HCC from normal tissues in the TCGA-LIHC cohort, ICGC cohort, and GSE14520 dataset. In addition, higher infiltrating fractions of immune cells, such as activated CD8+ T cells and Gamma delta T cells, mainly enriched immune-related signaling pathways, including the IL2-STAT3 signaling pathway and interferon-gamma response signaling pathway, and higher expression of immune checkpoints, including PDCD1, CTLA4, TIGIT, and CD83, were presented in patients with high FTL expression (p < 0.05). Patients with high FTL were more sensitive to some targeted drugs, such as cisplatin, dasatinib, and sorafenib, than those with low FTL (p < 0.05). A nomogram based on FTL accurately predicted the prognosis of HCC. Further knockdown of FTL was determined to significantly inhibit cell proliferation and migration in HCC. Conclusion: Our study validated ferroptosis-related subtypes and FTL with effective prognostic value in HCC and was beneficial for identifying candidates suitable for targeted drug therapy and immunotherapy, thereby offering further insight into individual treatment strategies to improve disease outcomes in HCC patients.
Collapse
Affiliation(s)
- Shaoying Ke
- Hepatological Surgery Department, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Congren Wang
- Hepatological Surgery Department, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Zijian Su
- Hepatological Surgery Department, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Shaoze Lin
- Hepatological Surgery Department, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Gongle Wu
- Hepatological Surgery Department, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
30
|
Cerebral Iron Deposition in Neurodegeneration. Biomolecules 2022; 12:biom12050714. [PMID: 35625641 PMCID: PMC9138489 DOI: 10.3390/biom12050714] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Disruption of cerebral iron regulation appears to have a role in aging and in the pathogenesis of various neurodegenerative disorders. Possible unfavorable impacts of iron accumulation include reactive oxygen species generation, induction of ferroptosis, and acceleration of inflammatory changes. Whole-brain iron-sensitive magnetic resonance imaging (MRI) techniques allow the examination of macroscopic patterns of brain iron deposits in vivo, while modern analytical methods ex vivo enable the determination of metal-specific content inside individual cell-types, sometimes also within specific cellular compartments. The present review summarizes the whole brain, cellular, and subcellular patterns of iron accumulation in neurodegenerative diseases of genetic and sporadic origin. We also provide an update on mechanisms, biomarkers, and effects of brain iron accumulation in these disorders, focusing on recent publications. In Parkinson’s disease, Friedreich’s disease, and several disorders within the neurodegeneration with brain iron accumulation group, there is a focal siderosis, typically in regions with the most pronounced neuropathological changes. The second group of disorders including multiple sclerosis, Alzheimer’s disease, and amyotrophic lateral sclerosis shows iron accumulation in the globus pallidus, caudate, and putamen, and in specific cortical regions. Yet, other disorders such as aceruloplasminemia, neuroferritinopathy, or Wilson disease manifest with diffuse iron accumulation in the deep gray matter in a pattern comparable to or even more extensive than that observed during normal aging. On the microscopic level, brain iron deposits are present mostly in dystrophic microglia variably accompanied by iron-laden macrophages and in astrocytes, implicating a role of inflammatory changes and blood–brain barrier disturbance in iron accumulation. Options and potential benefits of iron reducing strategies in neurodegeneration are discussed. Future research investigating whether genetic predispositions play a role in brain Fe accumulation is necessary. If confirmed, the prevention of further brain Fe uptake in individuals at risk may be key for preventing neurodegenerative disorders.
Collapse
|
31
|
Ferreira AD, Queiroz HM, Otero XL, Barcellos D, Bernardino ÂF, Ferreira TO. Iron hazard in an impacted estuary: Contrasting controls of plants and implications to phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128216. [PMID: 35033915 DOI: 10.1016/j.jhazmat.2022.128216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Due to its abundance and role as a micronutrient for plants iron (Fe) is rarely perceived as a contaminant. However, in redox active environments, Fe bioavailability increases sharply representing an environmental risk. In this study, a recent catastrophic mining dam failure is used as a field framework to evaluate the role of wetland plants on Fe biogeochemistry and assess their potential for phytoremediation programs. To achieve these objectives, a Fe geochemical partitioning and the concentration of Fe in different plant compartments (iron plaque on root surfaces, roots, and leaves) were determined in two sites vegetated by different wetland species. Soils exhibited contrasting Fe biogeochemical dynamics. Lower pseudo-total contents and more reactive Fe oxides were observed in the soil vegetated by Typha domingensis. Iron plaque was present on both species but more concentrated in Fe in T. domingensis. T. domingensis showed Fe shoot concentrations (3874 mg kg-1) 10-fold higher than in Hibiscus tiliaceus, which prevented Fe absorption through iron plaque formation and root accumulation. In conclusion, contrasting biogeochemical effects on Fe (e.g., rhizosphere acidification) lead to different phytoremediation abilities. T. domingensis showed a high potential for Fe phytoremediation on sites affected by Fe-enriched wastes and should be tested in assisted phytoremediation approaches.
Collapse
Affiliation(s)
- Amanda Duim Ferreira
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Hermano Melo Queiroz
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Xosé Luis Otero
- Departamento de Edafología y Química Agrícola, Facultad de Biología, Universidad de Santiago de Compostela, Spain
| | - Diego Barcellos
- Department of Environmental Sciences, Federal University of São Paulo, Brazil
| | - Ângelo Fraga Bernardino
- Grupo de Ecologia Bentônica, Departamento de Oceanografia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Tiago Osório Ferreira
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil.
| |
Collapse
|
32
|
Kolarova H, Tan J, Strom TM, Meitinger T, Wagner M, Klopstock T. Lifetime risk of autosomal recessive neurodegeneration with brain iron accumulation (NBIA) disorders calculated from genetic databases. EBioMedicine 2022; 77:103869. [PMID: 35180557 PMCID: PMC8856992 DOI: 10.1016/j.ebiom.2022.103869] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Background Neurodegeneration with brain iron accumulation (NBIA) are a group of clinically and genetically heterogeneous diseases characterized by iron overload in basal ganglia and progressive neurodegeneration. Little is known about the epidemiology of NBIA disorders. In the absence of large-scale population-based studies, obtaining reliable epidemiological data requires innovative approaches. Methods All pathogenic variants were collected from the 13 genes associated with autosomal recessive NBIA (PLA2G6, PANK2, COASY, ATP13A2, CP, AP4M1, FA2H, CRAT, SCP2, C19orf12, DCAF17, GTPBP2, REPS1). The allele frequencies of these disease-causing variants were assessed in exome/genome collections: the Genome Aggregation Database (gnomAD) and our in-house database. Lifetime risks were calculated from the sum of allele frequencies in the respective genes under assumption of Hardy-Weinberg equilibrium. Findings The combined estimated lifetime risk of all 13 investigated NBIA disorders is 0.88 (95% confidence interval 0.70–1.10) per 100,000 based on the global gnomAD dataset (n = 282,912 alleles), 0.92 (0.65–1.29) per 100,000 in the European gnomAD dataset (n = 129,206), and 0.90 (0.48–1.62) per 100,000 in our in-house database (n = 44,324). Individually, the highest lifetime risks (>0.15 per 100,000) are found for disorders caused by variants in PLA2G6, PANK2 and COASY. Interpretation This population-genetic estimation on lifetime risks of recessive NBIA disorders reveals frequencies far exceeding previous population-based numbers. Importantly, our approach represents lifetime risks from conception, thus including prenatal deaths. Understanding the true lifetime risk of NBIA disorders is important in estimating disease burden, allocating resources and targeting specific interventions.
Collapse
Affiliation(s)
- Hana Kolarova
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig Maximilian University of Munich, Ziemssenstraße 1a, Munich 80336, Germany; Institute of Human Genetics, Technical University of Munich, Trogerstraße 32, Munich 81675, Germany; Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 12000, Czech Republic
| | - Jing Tan
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig Maximilian University of Munich, Ziemssenstraße 1a, Munich 80336, Germany; Institute of Human Genetics, Technical University of Munich, Trogerstraße 32, Munich 81675, Germany; Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tim M Strom
- Institute of Human Genetics, Technical University of Munich, Trogerstraße 32, Munich 81675, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technical University of Munich, Trogerstraße 32, Munich 81675, Germany
| | - Matias Wagner
- Institute of Human Genetics, Technical University of Munich, Trogerstraße 32, Munich 81675, Germany; Institute of Neurogenomics, Helmholtz Zentrum Munich, Ingolstädter Landstraße 1, Neuherberg 85764, Germany; LMU University Hospital, Department of Pediatrics, Dr. von Hauner Children's Hospital, Division of Pediatric Neurology, LMU Center for Development and Children with Medical Complexity, Ludwig-Maximilians-University, Munich, Germany.
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig Maximilian University of Munich, Ziemssenstraße 1a, Munich 80336, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
33
|
Villalón-García I, Álvarez-Córdoba M, Povea-Cabello S, Talaverón-Rey M, Villanueva-Paz M, Luzón-Hidalgo R, Suárez-Rivero JM, Suárez-Carrillo A, Munuera-Cabeza M, Salas JJ, Falcón-Moya R, Rodríguez-Moreno A, Armengol JA, Sánchez-Alcázar JA. Vitamin E prevents lipid peroxidation and iron accumulation in PLA2G6-Associated Neurodegeneration. Neurobiol Dis 2022; 165:105649. [PMID: 35122944 DOI: 10.1016/j.nbd.2022.105649] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND PLA2G6-Associated Neurodegeneration (PLAN) is a rare neurodegenerative disease with autosomal recessive inheritance, which belongs to the NBIA (Neurodegeneration with Brain Iron Accumulation) group. Although the pathogenesis of the disease remains largely unclear, lipid peroxidation seems to play a central role in the pathogenesis. Currently, there is no cure for the disease. OBJECTIVE In this work, we examined the presence of lipid peroxidation, iron accumulation and mitochondrial dysfunction in two cellular models of PLAN, patients-derived fibroblasts and induced neurons, and assessed the effects of α-tocopherol (vitamin E) in correcting the pathophysiological alterations in PLAN cell cultures. METHODS Pathophysiological alterations were examined in fibroblasts and induced neurons generated by direct reprograming. Iron and lipofuscin accumulation were assessed using light and electron microscopy, as well as biochemical analysis techniques. Reactive Oxygen species production, lipid peroxidation and mitochondrial dysfunction were measured using specific fluorescent probes analysed by fluorescence microscopy and flow cytometry. RESULTS PLAN fibroblasts and induced neurons clearly showed increased lipid peroxidation, iron accumulation and altered mitochondrial membrane potential. All these pathological features were reverted with vitamin E treatment. CONCLUSIONS PLAN fibroblasts and induced neurons reproduce the main pathological alterations of the disease and provide useful tools for disease modelling. The main pathological alterations were corrected by Vitamin E supplementation in both models, suggesting that blocking lipid peroxidation progression is a critical therapeutic target.
Collapse
Affiliation(s)
- Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Raquel Luzón-Hidalgo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Joaquín J Salas
- Departamento de Bioquímica y Biología Molecular de Productos Vegetales, Instituto de la Grasa (CSIC), Sevilla, Spain.
| | - Rafael Falcón-Moya
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain.
| | - Antonio Rodríguez-Moreno
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain.
| | - José A Armengol
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain.
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
34
|
Lefter A, Mitrea I, Mitrea D, Plaiasu V, Bertoli-Avella A, Beetz C, Cozma L, Tulbă D, Mitu CE, Popescu BO. Novel C19orf12 loss-of-function variant leading to neurodegeneration with brain iron accumulation. Neurocase 2021; 27:481-483. [PMID: 34983316 DOI: 10.1080/13554794.2021.2022703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of inherited disorders characterised by cerebral iron overload mainly in the basal ganglia. Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a form of NBIA caused by pathogenic C19orf12 gene variants. We report on a Romanian patient with MPAN confirmed through exome sequencing, revealing a homozygous nonsense variant in the C19orf12 gene, NM_001031726.3: c.215T>G (p.Leu72*), that co-segregates with disease in tested relatives: the patient`s parents, younger brother and paternal uncle are heterozygous carriers. This is a novel disease-causing variant in the C19orf12 gene and the first reported MPAN case in a Romanian patient.
Collapse
Affiliation(s)
- Antonia Lefter
- Department of Neurology, Colentina Clinical Hospital, Bucharest, Romania.,Department of Clinical Neurosciences, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Iulia Mitrea
- Department of Neurology, Colentina Clinical Hospital, Bucharest, Romania.,Department of Clinical Neurosciences, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Dan Mitrea
- "Neuroaxis" Neurology Clinic, Bucharest, Romania
| | - Vasilica Plaiasu
- Department of Clinical Genetics, "Alfred Rusescu" Institute for Mother and Child, Bucharest, Romania
| | | | | | - Liviu Cozma
- Department of Clinical Neurosciences, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,"Neuroaxis" Neurology Clinic, Bucharest, Romania
| | - Delia Tulbă
- Department of Neurology, Colentina Clinical Hospital, Bucharest, Romania.,Department of Clinical Neurosciences, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Bogdan Ovidiu Popescu
- Department of Neurology, Colentina Clinical Hospital, Bucharest, Romania.,Department of Clinical Neurosciences, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Laboratory of Molecular Medicine, "Victor Babeș" National Institute of Pathology, Bucharest, Romania
| |
Collapse
|
35
|
Aring L, Choi EK, Kopera H, Lanigan T, Iwase S, Klionsky DJ, Seo YA. A neurodegeneration gene, WDR45, links impaired ferritinophagy to iron accumulation. J Neurochem 2021; 160:356-375. [PMID: 34837396 PMCID: PMC8811950 DOI: 10.1111/jnc.15548] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/18/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a clinically and genetically heterogeneous group of neurodegenerative diseases characterized by the abnormal accumulation of brain iron and the progressive degeneration of the nervous system. One of the recently identified subtypes of NBIA is β‐propeller protein‐associated neurodegeneration (BPAN). BPAN is caused by de novo mutations in the WDR45/WIPI4 (WD repeat domain 45) gene. WDR45 is one of the four mammalian homologs of yeast Atg18, a regulator of autophagy. WDR45 deficiency in BPAN patients and animal models may result in defects in autophagic flux. However, how WDR45 deficiency leads to brain iron overload remains unclear. To elucidate the role of WDR45, we generated a WDR45‐knockout (KO) SH‐SY5Y neuroblastoma cell line using CRISPR‐Cas9‐mediated genome editing. Using these cells, we demonstrated that the non‐TF (transferrin)‐bound iron pathway dominantly mediated the accumulation of iron. Moreover, the loss of WDR45 led to defects in ferritinophagy, a form of autophagy that degrades the iron storage protein ferritin. We showed that impaired ferritinophagy contributes to iron accumulation in WDR45‐KO cells. Iron accumulation was also detected in the mitochondria, which was accompanied by impaired mitochondrial respiration, elevated reactive oxygen species, and increased cell death. Thus, our study links WDR45 to specific iron acquisition pathways and ferritinophagy.
Collapse
Affiliation(s)
- Luisa Aring
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Eun-Kyung Choi
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Huira Kopera
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA.,Vector Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas Lanigan
- Vector Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, Michigan, USA.,Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel J Klionsky
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
36
|
Mandik F, Vos M. Neurodegenerative Disorders: Spotlight on Sphingolipids. Int J Mol Sci 2021; 22:ijms222111998. [PMID: 34769423 PMCID: PMC8584905 DOI: 10.3390/ijms222111998] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are incurable diseases of the nervous system that lead to a progressive loss of brain areas and neuronal subtypes, which is associated with an increase in symptoms that can be linked to the affected brain areas. The key findings that appear in many neurodegenerative diseases are deposits of proteins and the damage of mitochondria, which mainly affect energy production and mitophagy. Several causative gene mutations have been identified in various neurodegenerative diseases; however, a large proportion are considered sporadic. In the last decade, studies linking lipids, and in particular sphingolipids, to neurodegenerative diseases have shown the importance of these sphingolipids in the underlying pathogenesis. Sphingolipids are bioactive lipids consisting of a sphingoid base linked to a fatty acid and a hydrophilic head group. They are involved in various cellular processes, such as cell growth, apoptosis, and autophagy, and are an essential component of the brain. In this review, we will cover key findings that demonstrate the relevance of sphingolipids in neurodegenerative diseases and will focus on neurodegeneration with brain iron accumulation and Parkinson’s disease.
Collapse
|
37
|
Fidelis KR, Dos Santos Nunes RG, da Silva CS, Oliveira CVB, Costa AR, de Lima Silva JR, Dos Santos LB, de Oliveira EES, Pereira PS, de Menezes IRA, Kamdem JP, Duarte AE, Pinho AI, Barros LM. Evaluation of the neuroprotective effect of rutin on Drosophila melanogaster about behavioral and biochemical aspects induced by mercury chloride (HgCl 2). Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109119. [PMID: 34182094 DOI: 10.1016/j.cbpc.2021.109119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Mercury chloride (HgCl2) acts as a bioaccumulator capable of causing numerous neurological and physiological changes in organisms in a negative way. However, rutin has been considered a very effective antioxidant compound in the treatment of neurodegenerative diseases, as it can neutralize radicals capable of damaging neuronal cells. In this context, this study aimed to evaluate rutin as a neoprotective agent against the damage induced by HgCl2 in Drosophila melanogaster. The exposure of the flies to the agents was carried out in triplicate, and about 150 adult flies were evaluated. To assess the antioxidant action of rutin, MTT, phenanthroline, nitric oxide, total thiols and NPSH tests were carried out in the following concentrations: Control (1500 μL of distilled water), 1 mg/g of HgCl2, 0.5 mg/g of Rutin + HgCl2, 1 mg/g of Rutin + HgCl2, 2 mg/g of Rutin + HgCl2. The locomotion test was verified by negative geotaxis, the result of which showed that flies exposed to HgCl2 had difficulties in flight. The group treated with HgCl2 alone had a high mortality rate, while in combination with different concentrations of rutin, it heard a moderate reduction in the number of deaths, as well as in the negative geotaxis data in which the rutin had a positive effect. An increase in iron (II) levels was observed at the highest concentrations of rutin, while at low concentrations, rutin significantly decreased nitric oxide levels. The HgCl2 + R group (2 mg/g) showed a significant increase in the total thiols content, while for the NPSH all rutin concentrations showed a significant increase in the levels of non-protein thiols. Our results demonstrate that mercury chloride can cause oxidative stress in D. melanogaster. However, the results suggest that rutin has antioxidant and protective effects against the damage caused by HgCl2.
Collapse
Affiliation(s)
- Kleber Ribeiro Fidelis
- Postgraduate Program in Biological Science, Federal University of Pernambuco, Recife, PE, Brazil
| | - Ricardo Gomes Dos Santos Nunes
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Postgraduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | - Adrielle Rodrigues Costa
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
| | | | | | | | - Pedro Silvino Pereira
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
| | | | - Jean Paul Kamdem
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
| | - Antônia Eliene Duarte
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Department of Biological Sciences, University of Regional Cariri, Crato, CE, Brazil
| | | | - Luiz Marivando Barros
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Department of Biological Sciences, University of Regional Cariri, Crato, CE, Brazil.
| |
Collapse
|
38
|
Battini R, Milone R, Aiello C, Astrea G, Sferra A, Pasquariello R, Cioni G, Bertini E. Broadening the spectrum phenotype of TBCE-related neuron neurodegeneration. Brain Dev 2021; 43:939-944. [PMID: 34134906 DOI: 10.1016/j.braindev.2021.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/09/2021] [Accepted: 05/30/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Severe loss of TBCE function has been related to two well-known dysmorphic syndromes, while TBCE hypomorphic variants have been linked to neurodegenerative conditions due to perturbed microtubule dynamics and homeostasis, with signs of central and peripheral nervous system involvement. METHOD We report on an Italian female originating from Southern Italy who presented early-onset regression and neurodegeneration, with neurological features of tetraparesis and signs of peripheral nervous system involvement. Her brain MRI revealed white matter involvement. RESULTS Analyzing all known hypomyelination leukodystrophies related genes, two mutations in TBCE (NM_001079515) were detected: the missense variant c.464 T > A; p. (Ile155Asn) and the frameshift variant c.924del; p. (Leu309Ter), in compound heterozygosity, already reported in the literature in patients coming from the same geographical area. The clinical phenotype of the proposita was more severe and with an earlier onset than the majority of the patients reported so far. CONCLUSIONS Next Generation Sequencing is becoming increasingly necessary to assess unusual phenotypes, with the opportunity to establish prognosis and disease mechanisms, and facilitating differential diagnosis.
Collapse
Affiliation(s)
- Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Roberta Milone
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Chiara Aiello
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Ospedale Bambino Gesù Research Children's Hospital, IRCCS, Rome, Italy
| | - Guja Astrea
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Antonella Sferra
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Ospedale Bambino Gesù Research Children's Hospital, IRCCS, Rome, Italy
| | - Rosa Pasquariello
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Ospedale Bambino Gesù Research Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
39
|
Atkins JL, Pilling LC, Heales CJ, Savage S, Kuo CL, Kuchel GA, Steffens DC, Melzer D. Hemochromatosis Mutations, Brain Iron Imaging, and Dementia in the UK Biobank Cohort. J Alzheimers Dis 2021; 79:1203-1211. [PMID: 33427739 PMCID: PMC7990419 DOI: 10.3233/jad-201080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background:
Brain iron deposition occurs in dementia. In European ancestry populations, the HFE p.C282Y variant can cause iron overload and hemochromatosis, mostly in homozygous males.
Objective: To estimate p.C282Y associations with brain MRI features plus incident dementia diagnoses during follow-up in a large community cohort. Methods:
UK Biobank participants with follow-up hospitalization records (mean 10.5 years). MRI in 206 p.C282Y homozygotes versus 23,349 without variants, including T2* measures (lower values indicating more iron).
Results:
European ancestry participants included 2,890 p.C282Y homozygotes. Male p.C282Y homozygotes had lower T2* measures in areas including the putamen, thalamus, and hippocampus, compared to no HFE mutations. Incident dementia was more common in p.C282Y homozygous men (Hazard Ratio HR = 1.83; 95% CI 1.23 to 2.72, p = 0.003), as was delirium. There were no associations in homozygote women or in heterozygotes.
Conclusion:
Studies are needed of whether early iron reduction prevents or slows related brain pathologies in male HFE p.C282Y homozygotes.
Collapse
Affiliation(s)
- Janice L Atkins
- Epidemiology and Public Health Group, University of Exeter Medical School, Exeter, UK
| | - Luke C Pilling
- Epidemiology and Public Health Group, University of Exeter Medical School, Exeter, UK
| | - Christine J Heales
- Medical Imaging, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Sharon Savage
- Psychology Department, University of Exeter, Exeter, UK and University of Newcastle, Newcastle, NSW, Australia
| | - Chia-Ling Kuo
- Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - George A Kuchel
- Biostatistics Center, Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, USA
| | - David C Steffens
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT, USA
| | - David Melzer
- Epidemiology and Public Health Group, University of Exeter Medical School, Exeter, UK.,Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
40
|
Coenzyme a Biochemistry: From Neurodevelopment to Neurodegeneration. Brain Sci 2021; 11:brainsci11081031. [PMID: 34439650 PMCID: PMC8392065 DOI: 10.3390/brainsci11081031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
Coenzyme A (CoA) is an essential cofactor in all living organisms. It is involved in a large number of biochemical processes functioning either as an activator of molecules with carbonyl groups or as a carrier of acyl moieties. Together with its thioester derivatives, it plays a central role in cell metabolism, post-translational modification, and gene expression. Furthermore, recent studies revealed a role for CoA in the redox regulation by the S-thiolation of cysteine residues in cellular proteins. The intracellular concentration and distribution in different cellular compartments of CoA and its derivatives are controlled by several extracellular stimuli such as nutrients, hormones, metabolites, and cellular stresses. Perturbations of the biosynthesis and homeostasis of CoA and/or acyl-CoA are connected with several pathological conditions, including cancer, myopathies, and cardiomyopathies. In the most recent years, defects in genes involved in CoA production and distribution have been found in patients affected by rare forms of neurodegenerative and neurodevelopmental disorders. In this review, we will summarize the most relevant aspects of CoA cellular metabolism, their role in the pathogenesis of selected neurodevelopmental and neurodegenerative disorders, and recent advancements in the search for therapeutic approaches for such diseases.
Collapse
|
41
|
Álvarez-Córdoba M, Talaverón-Rey M, Villalón-García I, Povea-Cabello S, Suárez-Rivero JM, Suárez-Carrillo A, Munuera-Cabeza M, Salas JJ, Sánchez-Alcázar JA. Down regulation of the expression of mitochondrial phosphopantetheinyl-proteins in pantothenate kinase-associated neurodegeneration: pathophysiological consequences and therapeutic perspectives. Orphanet J Rare Dis 2021; 16:201. [PMID: 33952316 PMCID: PMC8101147 DOI: 10.1186/s13023-021-01823-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background Neurodegeneration with brain iron accumulation (NBIA) is a group of genetic neurological disorders frequently associated with iron accumulation in the basal nuclei of the brain characterized by progressive spasticity, dystonia, muscle rigidity, neuropsychiatric symptoms, and retinal degeneration or optic nerve atrophy. Pantothenate kinase-associated neurodegeneration (PKAN) is the most widespread NBIA disorder. It is caused by mutations in the gene of pantothenate kinase 2 (PANK2) which catalyzes the first reaction of coenzyme A (CoA) biosynthesis. Thus, altered PANK2 activity is expected to induce CoA deficiency as well as low levels of essential metabolic intermediates such as 4′-phosphopantetheine which is a necessary cofactor for critical proteins involved in cytosolic and mitochondrial pathways such as fatty acid biosynthesis, mitochondrial respiratory complex I assembly and lysine and tetrahydrofolate metabolism, among other metabolic processes. Methods In this manuscript, we examined the effect of PANK2 mutations on the expression levels of proteins with phosphopantetheine cofactors in fibroblast derived from PKAN patients. These proteins include cytosolic acyl carrier protein (ACP), which is integrated within the multifunctional polypeptide chain of the fatty acid synthase involved in cytosolic fatty acid biosynthesis type I (FASI); mitochondrial ACP (mtACP) associated with mitocondrial fatty acid biosynthesis type II (FASII); mitochondrial alpha-aminoadipic semialdehyde synthase (AASS); and 10-formyltetrahydrofolate dehydrogenases (cytosolic, ALD1L1, and mitochondrial, ALD1L2). Results In PKAN fibroblasts the expression levels of cytosolic FAS and ALD1L1 were not affected while the expression levels of mtACP, AASS and ALD1L2 were markedly reduced, suggesting that 4′-phosphopantetheinylation of mitochondrial but no cytosolic proteins were markedly affected in PKAN patients. Furthermore, the correction of PANK2 expression levels by treatment with pantothenate in selected mutations with residual enzyme content was able to correct the expression levels of mitochondrial phosphopantetheinyl-proteins and restore the affected pathways. The positive effects of pantothenate in particular mutations were also corroborated in induced neurons obtained by direct reprograming of mutant PANK2 fibroblasts. Conclusions Our results suggest that the expression levels of mitochondrial phosphopantetheinyl-proteins are severely reduced in PKAN cells and that in selected mutations pantothenate increases the expression levels of both PANK2 and mitochondrial phosphopantetheinyl-proteins associated with remarkable improvement of cell pathophysiology. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01823-3.
Collapse
Affiliation(s)
- Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Joaquín J Salas
- Departamento de Bioquímica Y Biología Molecular de Productos Vegetales, Instituto de La Grasa (CSIC), Sevilla, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain. .,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain.
| |
Collapse
|
42
|
SPG43 and ALS-like syndrome in the same family due to compound heterozygous mutations of the C19orf12 gene: a case description and brief review. Neurogenetics 2021; 22:95-101. [PMID: 33394258 DOI: 10.1007/s10048-020-00631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
C19orf12 gene biallelic mutations lead mainly to neurodegeneration with brain iron accumulation-4. A 15-year-old male and his 17-year-old sister complained of cramps and exercise intolerance. Clinical examination of the boy mainly showed distal amyotrophy and mild weakness, while the sister predominantly had a tetrapyramidal syndrome. Widespread chronic neurogenic signs and hypointense signals on the striatum were present in both patients. Clinical exome sequencing identified, on both patients, the compound heterozygous pathogenic mutations c.204_214del p.(Gly69ArgfsTer10) and c.32C>T p.(Thr11Met). The description of these rare SPG43 and ALS-like phenotypes in the same family contributes to improve genotype-phenotype correlation in C19orf12-related diseases.
Collapse
|
43
|
Qorri B, Tsay M, Agrawal A, Au R, Gracie J. Using machine intelligence to uncover Alzheimer’s disease progression heterogeneity. EXPLORATION OF MEDICINE 2020. [DOI: 10.37349/emed.2020.00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: Research suggests that Alzheimer’s disease (AD) is heterogeneous with numerous subtypes. Through a proprietary interactive ML system, several underlying biological mechanisms associated with AD pathology were uncovered. This paper is an introduction to emerging analytic efforts that can more precisely elucidate the heterogeneity of AD.
Methods: A public AD data set (GSE84422) consisting of transcriptomic data of postmortem brain samples from healthy controls (n = 121) and AD (n = 380) subjects was analyzed. Data were processed by an artificial intelligence platform designed to discover potential drug repurposing candidates, followed by an interactive augmented intelligence program.
Results: Using perspective analytics, six perspective classes were identified: Class I is defined by TUBB1, ASB4, and PDE5A; Class II by NRG2 and ZNF3; Class III by IGF1, ASB4, and GTSE1; Class IV is defined by cDNA FLJ39269, ITGA1, and CPM; Class V is defined by PDE5A, PSEN1, and NDUFS8; and Class VI is defined by DCAF17, cDNA FLJ75819, and SLC33A1. It is hypothesized that these classes represent biological mechanisms that may act alone or in any combination to manifest an Alzheimer’s pathology.
Conclusions: Using a limited transcriptomic public database, six different classes that drive AD were uncovered, supporting the premise that AD is a heterogeneously complex disorder. The perspective classes highlighted genetic pathways associated with vasculogenesis, cellular signaling and differentiation, metabolic function, mitochondrial function, nitric oxide, and metal ion metabolism. The interplay among these genetic factors reveals a more profound underlying complexity of AD that may be responsible for the confluence of several biological factors. These results are not exhaustive; instead, they demonstrate that even within a relatively small study sample, next-generation machine intelligence can uncover multiple genetically driven subtypes. The models and the underlying hypotheses generated using novel analytic methods may translate into potential treatment pathways.
Collapse
Affiliation(s)
- Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Mike Tsay
- NetraMark Corp, Toronto, ON M4E 1G8, Canada
| | | | - Rhoda Au
- Department of Anatomy & Neurobiology, Neurology and Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA 02218, USA
| | - Joseph Gracie
- NetraMark Corp, Toronto, ON M4E 1G8, Canada 5Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
44
|
Kumar JBS, Sharma B. A review on neuropharmacological role of erucic acid: an omega-9 fatty acid from edible oils. Nutr Neurosci 2020; 25:1041-1055. [PMID: 33054628 DOI: 10.1080/1028415x.2020.1831262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (ND) are characterised by loss of neurons in the brain and spinal cord. For the normal functioning of the brain, divers group of fatty acids in the form of glycerophospholipids, glycerol ether lipids, cerebrosides, sulfatides, and gangliosides are essential. They are present abundantly in the nervous system and are actively involved in both the development and maintenance of the nervous system. A dietary deficiency of essential fatty acid during development results in hypomyelination state which affects various neuronal functions. Several studies suggested that age remains the primary risk factor for almost all neurodegenerative disorders. The potential contribution of these fatty acids in the progression of neurodegenerative disorders is indispensable. Erucic acid an omega 9 fatty acid, which is obtained from edible oils has proven to cause myocardial lipidosis, heart lesions and hepatic steatosis in animals therefore, its content in edible oils is restricted to certain levels by regulatory agencies. However, erucic acid in the form of a mixture with oleic acid is often used as a dietary treatment for the management of adrenoleukodystrophy without any cardiotoxicity. Our literature search revealed that, erucic acid reported to enhance cognitive function, interact with peroxisome proliferator activated receptors (PPARs), inhibit elastase and thrombin. In this review first we have attempted to describe the relationship between fatty acids and neurodegeneration followed by a description on the pharmacology of erucic acid. The overall purpose of this review is to analyse toxic and beneficial neuropharmacological effects of erucic acid.
Collapse
Affiliation(s)
- J B Senthil Kumar
- Special centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.,School of Medical and Allied Sciences, KR Mangalam University, Delhi NCR, India
| | - Bhawna Sharma
- School of Medical and Allied Sciences, KR Mangalam University, Delhi NCR, India
| |
Collapse
|
45
|
Lee JH, Yun JY, Gregory A, Hogarth P, Hayflick SJ. Brain MRI Pattern Recognition in Neurodegeneration With Brain Iron Accumulation. Front Neurol 2020; 11:1024. [PMID: 33013674 PMCID: PMC7511538 DOI: 10.3389/fneur.2020.01024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/05/2020] [Indexed: 01/08/2023] Open
Abstract
Most neurodegeneration with brain iron accumulation (NBIA) disorders can be distinguished by identifying characteristic changes on magnetic resonance imaging (MRI) in combination with clinical findings. However, a significant number of patients with an NBIA disorder confirmed by genetic testing have MRI features that are atypical for their specific disease. The appearance of specific MRI patterns depends on the stage of the disease and the patient's age at evaluation. MRI interpretation can be challenging because of heterogeneously acquired MRI datasets, individual interpreter bias, and lack of quantitative data. Therefore, optimal acquisition and interpretation of MRI data are needed to better define MRI phenotypes in NBIA disorders. The stepwise approach outlined here may help to identify NBIA disorders and delineate the natural course of MRI-identified changes.
Collapse
Affiliation(s)
- Jae-Hyeok Lee
- Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan-si, South Korea
| | - Ji Young Yun
- Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Allison Gregory
- Departments of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
| | - Penelope Hogarth
- Departments of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
| | - Susan J Hayflick
- Departments of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
46
|
A preliminary study of the concentration of metallic elements in the blood of patients with multiple sclerosis as measured by ICP-MS. Sci Rep 2020; 10:13112. [PMID: 32753601 PMCID: PMC7403292 DOI: 10.1038/s41598-020-69979-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
It is estimated that multiple sclerosis (MS) affects 35,000 Brazilians and 2.5 million individuals worldwide. Many studies have suggested a possible role of metallic elements in the etiology of MS, but their concentration in the blood of MS patients is nonetheless little investigated in Brazil. In this work, these elements were studied through Inductively Coupled Plasma Mass Spectrometry (ICP-MS), whose analysis provides a tool to quantify the concentrations of metal elements in the blood samples of individuals with neurodegenerative disorders. This study aimed to compare the concentration of metallic elements in blood samples from patients with MS and healthy individuals. Blood was collected from 30 patients with multiple sclerosis and compared with the control group. Blood samples were digested in closed vessels using a microwave and ICP-MS was used to determine the concentrations of 12 metallic elements (Ba, Be, Ca, Co, Cr, Cu, Fe, Mg, Mo, Ni, Pb and Zn). In MS patients, we observed a reduction in the concentrations of beryllium, copper, chromium, cobalt, nickel, magnesium and iron. The mean concentration of lead in blood was significantly elevated in the MS group. However, no difference was observed in the concentrations of Mo, Ba, Ca and Zn in blood samples from MS patients and the control group. According to our data, there is a possible role for the concentrations of 8 of the 12 evaluated metallic elements in multiple sclerosis. Abnormalities in transition metals levels in biological matrices have been reported in several neurological diseases.
Collapse
|
47
|
Ayton S, Bush AI. Decreasing iron neurotoxicity in pantothenate kinase-associated neurodegeneration. Lancet Neurol 2020; 18:616-617. [PMID: 31202464 DOI: 10.1016/s1474-4422(19)30193-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
48
|
Pan S, Zhu C. Atypical pantothenate kinase-associated neurodegeneration with PANK2 mutations : clinical description and a review of the literature. Neurocase 2020; 26:175-182. [PMID: 32310012 DOI: 10.1080/13554794.2020.1752739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Panthothenate kinase-associated neurodegeneration (PKAN) is arare neurodegeneration caused by mutations in the pantothenate kinase (PANK2) gene, which is located on chromosome 20p13. These mutations result in iron accumulation in the brain basal ganglia leading to parkinsonism, dysarthria, spasticity, cognitive impairment, and retinopathy. Herein, we report acase of adult-onset PKAN who presented with young-onset action tremor, bradykinesia, dysarthria, and bilateral interossei atrophy. Neuroimaging demonstrated "eye-of-the-tiger signs". Through analyzing PANK2 gene, PANK2 NM_153638:c.1133A>G (p.Asp378 Gly) and PANK2 NM_153638:c.1502 T > A (p.lle501Asn), were detected. In addition, we reviewed the clinical and genetic features and therapeutic strategies for patients with PKAN.
Collapse
Affiliation(s)
- Si Pan
- Department of Neurology Intervention, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou University , Zhengzhou, Henan, China
| | - Chenkai Zhu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University , Zhengzhou, Henan, China
| |
Collapse
|
49
|
Bagwe-Parab S, Kaur G. Molecular targets and therapeutic interventions for iron induced neurodegeneration. Brain Res Bull 2020; 156:1-9. [DOI: 10.1016/j.brainresbull.2019.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 01/17/2023]
|
50
|
Alderson J, Ghosh PS. Clinical Reasoning: Seven-year-old girl with progressive gait difficulties. Neurology 2020; 94:364-367. [DOI: 10.1212/wnl.0000000000009003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|