1
|
Mohamadzadeh M, Fazeli A, Vasheghani-Farahani E, Shojaosadati SA. Viability and stability evaluation of microencapsulated Lactobacillus reuteri in polysaccharide-based bionanocomposite. Carbohydr Polym 2025; 347:122693. [PMID: 39486934 DOI: 10.1016/j.carbpol.2024.122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 11/04/2024]
Abstract
Microencapsulation is one of the most important methods to enhance the survival of bacteria when exposed to various harsh conditions. The present study evaluated the viability of L. reuteri ATCC 23272 microencapsulated in polysaccharide-based bionanocomposite. Inulin, polydextrose, and pectin were utilized as prebiotics, and magnesium oxide nanoparticles (MgO NPs) as reinforcing agent in the microgel structure. The composition of bionanocomposite was optimized using the simplex-lattice mixture method. Bionanocomposite optimal formulation was achieved by combining 91.6 % inulin and 8.4 % pectin in the presence of MgO NPs. L. reuteri prebiotic score (1.33) and E. coli (1.08), extrusion efficiency (97.57 %), viability after drying (99.37 %), and viability in simulated gastrointestinal conditions (SGI) (91.74 %) were obtained. Not using MgO NPs in the optimal composite structure caused a decrease of 2.14 log CFU/g in SGI. During 28 days of storage of bacteria at 4 and 25 °C, respectively, a reduction of 2.56 and 3.04 log CFU/g was observed for free cells compared to encapsulated cells. SEM, FTIR, and XRD analyses were performed on ingredients and microcapsules with and without bacteria. The results exhibited that the optimal bionanocomposite could be used as a beneficial encapsulation system to improve the performance of probiotics in harsh conditions.
Collapse
Affiliation(s)
| | - Ahmad Fazeli
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | | |
Collapse
|
2
|
Al-Habsi N, Al-Khalili M, Haque SA, Elias M, Olqi NA, Al Uraimi T. Health Benefits of Prebiotics, Probiotics, Synbiotics, and Postbiotics. Nutrients 2024; 16:3955. [PMID: 39599742 PMCID: PMC11597603 DOI: 10.3390/nu16223955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The trillions of microbes that constitute the human gut microbiome play a crucial role in digestive health, immune response regulation, and psychological wellness. Maintaining gut microbiota is essential as metabolic diseases are associated with it. Functional food ingredients potentially improving gut health include prebiotics, probiotics, synbiotics, and postbiotics (PPSPs). While probiotics are living bacteria that provide health advantages when ingested sufficiently, prebiotics are non-digestible carbohydrates that support good gut bacteria. Synbiotics work together to improve immunity and intestinal health by combining probiotics and prebiotics. Postbiotics have also demonstrated numerous health advantages, such as bioactive molecules created during probiotic fermentation. According to a recent study, PPSPs can regulate the synthesis of metabolites, improve the integrity of the intestinal barrier, and change the gut microbiota composition to control metabolic illnesses. Additionally, the use of fecal microbiota transplantation (FMT) highlights the potential for restoring gut health through microbiota modulation, reinforcing the benefits of PPSPs in enhancing overall well-being. Research has shown that PPSPs provide several health benefits, such as improved immunological function, alleviation of symptoms associated with irritable bowel disease (IBD), decreased severity of allergies, and antibacterial and anti-inflammatory effects. Despite encouraging results, many unanswered questions remain about the scope of PPSPs' health advantages. Extensive research is required to fully realize the potential of these functional food components in enhancing human health and well-being. Effective therapeutic and prophylactic measures require further investigation into the roles of PPSPs, specifically their immune-system-modulating, cholesterol-lowering, antioxidant, and anti-inflammatory characteristics.
Collapse
Affiliation(s)
- Nasser Al-Habsi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Maha Al-Khalili
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Syed Ariful Haque
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman
- Department of Fisheries, Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Melandah, Jamalpur 2012, Bangladesh
| | - Moussa Elias
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Nada Al Olqi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Tasnim Al Uraimi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| |
Collapse
|
3
|
Kodešová T, Mašlejová A, Vlková E, Musilová Š, Horváthová K, Šubrtová Salmonová H. In Vitro Utilization of Prebiotics by Listeria monocytogenes. Microorganisms 2024; 12:1876. [PMID: 39338550 PMCID: PMC11433794 DOI: 10.3390/microorganisms12091876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Listeria monocytognes is an emerging pathogen responsible for the serious foodborne disease, listeriosis. The commensal gut microbiota is the first line of defense against pathogen internalization. The gut microbiome can be modified by prebiotic substrates, which are frequently added to food products and dietary supplements. Prebiotics should selectively support the growth of beneficial microbes and thus improve host health. Nevertheless, little is known about their effect on the growth of L. monocytogenes. The aim of this study was to evaluate the growth ability of four L. monocytogenes strains, representing the most common serotypes, on prebiotic oligosaccharides (beta-(1,3)-D-glucan, inulin, fructooligosaccharides, galactooligosaccharides, lactulose, raffinose, stachyose and 2'-fucosyllactose and a mixture of human milk oligosaccharides) as a sole carbon source. The results showed that only beta-(1,3)-D-glucan was metabolized by L. monocytogenes. These cell culture data suggest that beta-(1,3)-D-glucan may not be selectively utilized by healthy commensal bacteria, and its role in intestinal pathogen growth warrants further exploration in vivo.
Collapse
Affiliation(s)
- Tereza Kodešová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Anna Mašlejová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Eva Vlková
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Šárka Musilová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Kristýna Horváthová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Hana Šubrtová Salmonová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| |
Collapse
|
4
|
Ferjančič B, Korošec M, Kočevar Baloh A, Bertoncelj J. Fructan content in most commonly consumed Slovenian foods and estimation of daily fructan consumption. Front Nutr 2024; 11:1446771. [PMID: 39155934 PMCID: PMC11327153 DOI: 10.3389/fnut.2024.1446771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Fructans can be considered as part of the group of fermentable oligo-, di- and monosaccharides and polyols (FODMAPs). Short-chain fructans have a rapid fermentation rate and can thus worsen symptoms in patients with irritable bowel syndrome. In this study, the fructan content in 40 of the most commonly consumed foods in Slovenia was measured. Overall, the fructan content was relatively low: 0.1-1.97 g/100 g fresh weight. The highest fructan content was found in onion (1.97 g/100 g), followed by wheat flour (0.75 g/100 g). A simple model for calculating fructan intake was developed based on the results of the SI. Menu 2017/2018 national survey, which collected data on the frequency of intake of different foods and food groups (expressed in g/day). After calculating the daily intake of the surveyed foods, we used our results on fructan content to estimate daily fructan consumption. Mean daily fructan intake reaches 1.6-1.7 g/day, with no differences between men and women. Our assessment of fructan intake at the national level represents the first step toward the creation of a database on FODMAP intake.
Collapse
Affiliation(s)
- Blaž Ferjančič
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
5
|
Roux AE, Langella P, Martin R. Overview on biotics development. Curr Opin Biotechnol 2024; 86:103073. [PMID: 38335705 DOI: 10.1016/j.copbio.2024.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024]
Abstract
Although probiotics have been used in food products and supplements for decades, there has been a considerable increase in their use more recently. Recent technological advances have thus led to major advances in knowledge of the gut microbiota, enabling a significant development of biotics. In this review, we discuss the uses of traditional probiotics but also the discovery of next-generation probiotics that could be used as live biotherapeutics. These novel preventive and therapeutic strategies hold promise for the treatment of numerous diseases such as inflammatory bowel diseases such as Crohn's disease and ulcerative colitis. Probiotic bacteria can be consumed alone, or in combination with prebiotics as synbiotics, or mixed with other probiotic strains to form a consortium for enhanced effects. We also discuss the benefits of using postbiotics.
Collapse
Affiliation(s)
- Anne-Emmanuelle Roux
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Philippe Langella
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Rebeca Martin
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
6
|
Riva A, Rasoulimehrabani H, Cruz-Rubio JM, Schnorr SL, von Baeckmann C, Inan D, Nikolov G, Herbold CW, Hausmann B, Pjevac P, Schintlmeister A, Spittler A, Palatinszky M, Kadunic A, Hieger N, Del Favero G, von Bergen M, Jehmlich N, Watzka M, Lee KS, Wiesenbauer J, Khadem S, Viernstein H, Stocker R, Wagner M, Kaiser C, Richter A, Kleitz F, Berry D. Identification of inulin-responsive bacteria in the gut microbiota via multi-modal activity-based sorting. Nat Commun 2023; 14:8210. [PMID: 38097563 PMCID: PMC10721620 DOI: 10.1038/s41467-023-43448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Prebiotics are defined as non-digestible dietary components that promote the growth of beneficial gut microorganisms. In many cases, however, this capability is not systematically evaluated. Here, we develop a methodology for determining prebiotic-responsive bacteria using the popular dietary supplement inulin. We first identify microbes with a capacity to bind inulin using mesoporous silica nanoparticles functionalized with inulin. 16S rRNA gene amplicon sequencing of sorted cells revealed that the ability to bind inulin was widespread in the microbiota. We further evaluate which taxa are metabolically stimulated by inulin and find that diverse taxa from the phyla Firmicutes and Actinobacteria respond to inulin, and several isolates of these taxa can degrade inulin. Incubation with another prebiotic, xylooligosaccharides (XOS), in contrast, shows a more robust bifidogenic effect. Interestingly, the Coriobacteriia Eggerthella lenta and Gordonibacter urolithinfaciens are indirectly stimulated by the inulin degradation process, expanding our knowledge of inulin-responsive bacteria.
Collapse
Affiliation(s)
- Alessandra Riva
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Chair of Nutrition and Immunology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Hamid Rasoulimehrabani
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - José Manuel Cruz-Rubio
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Stephanie L Schnorr
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Cornelia von Baeckmann
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Deniz Inan
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Georgi Nikolov
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry and Surgical Research Laboratories, Medical University of Vienna, Vienna, Austria
| | - Márton Palatinszky
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Aida Kadunic
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Norbert Hieger
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research, Department of Molecular Systems Biology, Leipzig, Germany
| | - Nico Jehmlich
- Helmholtz Centre for Environmental Research, Department of Molecular Systems Biology, Leipzig, Germany
| | - Margarete Watzka
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Kang Soo Lee
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Julia Wiesenbauer
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Sanaz Khadem
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Roman Stocker
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Freddy Kleitz
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Manoj PM, Mohan JR, Khasherao BY, Shams R, Dash KK. Fruit based probiotic functional beverages: A review. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2023; 14:100729. [DOI: 10.1016/j.jafr.2023.100729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Divyashri G, Karthik P, Murthy TPK, Priyadarshini D, Reddy KR, Raghu AV, Vaidyanathan VK. Non-digestible oligosaccharides-based prebiotics to ameliorate obesity: Overview of experimental evidence and future perspectives. Food Sci Biotechnol 2023; 32:1993-2011. [PMID: 37860742 PMCID: PMC10581984 DOI: 10.1007/s10068-023-01381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/25/2023] [Indexed: 10/21/2023] Open
Abstract
The diverse populations reportedly suffer from obesity on a global scale, and inconclusive evidence has indicated that both environmental and genetic factors are associated with obesity development. Therefore, a need exists to examine potential therapeutic or prophylactic molecules for obesity treatment. Prebiotics with non-digestible oligosaccharides (NDOs) have the potential to treat obesity. A limited number of prebiotic NDOs have demonstrated their ability as a convincing therapeutic solution to encounter obesity through various mechanisms, viz., stimulating beneficial microorganisms, reducing the population of pathogenic microorganisms, and also improving lipid metabolism and glucose homeostasis. NDOs include pectic-oligosaccharides, fructo-oligosaccharides, xylo-oligosaccharides, isomalto-oligosaccharides, manno-oligosaccharides and other oligosaccharides which significantly influence the overall human health by different mechanisms. This review provides the treatment of obesity benefits by incorporating these prebiotic NDOs, according to established scientific research, which shows their good effects extend beyond the colon.
Collapse
Affiliation(s)
- G. Divyashri
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054 India
| | - Pothiyappan Karthik
- Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, 641 021 India
| | - T. P. Krishna Murthy
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054 India
| | - Dey Priyadarshini
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054 India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006 Australia
| | - Anjanapura V. Raghu
- Faculty of Allied Health Sciences, BLDE (Deemed-to-Be University), Vijayapura, 586103 Karnataka India
| | - Vinoth Kumar Vaidyanathan
- Department of Biotechnology, School of Bioengineering, Integrated Bioprocessing Laboratory, SRM Institute of Science and Technology (SRM IST), 603 203 Kattankulathur, India
| |
Collapse
|
9
|
Al-Baadani HH, Alhotan RA, Azzam MM. Evaluation of the Interaction between Gum Arabic Addition and Stocking Density on Growth Performance, Carcass Characteristics, and General Health Parameters of Broiler Chickens. Animals (Basel) 2023; 13:3024. [PMID: 37835630 PMCID: PMC10571560 DOI: 10.3390/ani13193024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The present study aims to investigate the interaction between the addition of gum arabic as a prebiotic and various stocking densities on performance indicators, intestinal morphology, carcass characteristics, lymphoid organs, and selected blood indices of broiler chickens. A total of 816 1-day-old male broilers (Ross 308) were used and randomly divided into six blocks as replicates with eight treatments per block (forty-eight floor pens) based on 4 × 2 factorial arrangements with four dietary treatments containing 0.00% (CONT), 0.12% gum arabic (T1), 0.25% gum arabic (T2), and 0.10% commercial prebiotic (T3) and two stocking densities (normal = 28 kg/m2; high = 50 kg/m2). All performance indicators were evaluated during the feeding phases. Blood biochemical indicators were analyzed at 36 days of age. At 37 days of age, carcass characteristics, lymphoid organs, and intestinal morphology were measured. On days 1-36, growth performance indicators were negatively affected at high stocking density, but all growth performance indicators except feed intake improved in chickens receiving T1-T3 compared to CONT (p < 0.05). The relative weight of total small intestine and weight-to-length ratio showed a significant interaction between treatments and stocking density (p < 0.05). A high stocking density decreased pre-slaughter weight, carcass weight, and dressing yield, while legs and thymus increased (p < 0.05). None of the interactions or treatments affected carcass characteristics or lymphoid organs (p > 0.05). Indicators of blood biochemistry were not affected by treatments, stocking density, or their interaction (p > 0.05), except for uric acid, creatinine, and aspartate aminotransferase, which were higher at a high stocking density (p < 0.05). In conclusion, gum arabic as a prebiotic improved growth performance, production efficiency, and intestinal morphology in broilers. In contrast, high stocking density negatively affected performance, production efficiency, some blood indices, carcass weight, dressing yield, and intestinal morphology. Further research is needed to determine the mechanism.
Collapse
Affiliation(s)
- Hani H. Al-Baadani
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Rashed A. Alhotan
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | | |
Collapse
|
10
|
Gnatzy L, Ismailos G, Vertzoni M, Reppas C. Managing the clinical effects of drug-induced intestinal dysbiosis with a focus to antibiotics: Challenges and opportunities. Eur J Pharm Sci 2023; 188:106510. [PMID: 37380062 DOI: 10.1016/j.ejps.2023.106510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
The term "intestinal dysbiosis" is used for indicating change(s) of the intestinal microbiota which have been associated with the development of diseases and the deterioration of disease treatments in humans. In this review, documented clinical effects of drug-induced intestinal dysbiosis are briefly presented, and methodologies which could be considered for the management of drug-induced intestinal dysbiosis based on clinical data are critically reviewed. Until relevant methodologies are optimized and/or their effectiveness to the general population is confirmed, and, since drug-induced intestinal dysbiosis refers predominantly to antibiotic-specific intestinal dysbiosis, a pharmacokinetically-based approach for mitigating the impact of antimicrobial therapy on intestinal dysbiosis is proposed.
Collapse
Affiliation(s)
- Lea Gnatzy
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - George Ismailos
- Experimental, Research and Training Center ELPEN, ELPEN Pharmaceuticals, Pikermi, Greece; National Antimicrobial Testing Committee, Athens, Greece
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece.
| |
Collapse
|
11
|
Shrifteylik A, Maiolini M, Dufault M, Austin DL, Subhadra B, Lamichhane P, Deshmukh RR. A Current Review on the Role of Prebiotics in Colorectal Cancer. BIOLOGICS 2023; 3:209-231. [DOI: 10.3390/biologics3030012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Colorectal cancer (CRC) is one of the leading causes of death in the United States and worldwide. Recent evidence has corroborated a strong correlation between poor diet and the development of CRC, and further research is being conducted to investigate the association between intestinal microbiome and the development of cancer. New studies have established links with certain foods and synthetic food compounds that may be effective in reducing the risk for carcinogenesis by providing protection against cancer cell proliferation and antagonizing oncogenic pathways. Prebiotics are gaining popularity as studies have demonstrated chemo-preventive as well as anticancer potential of prebiotics. This paper aims to discuss the wide definition and scope of prebiotics by reviewing the studies that provide insights into their effects on human health in the context of colorectal cancer.
Collapse
Affiliation(s)
- Anna Shrifteylik
- School of Pharmacy, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | | | - Matthew Dufault
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Daniel L. Austin
- School of Pharmacy, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | | | | | | |
Collapse
|
12
|
Al-Baadani HH, Alhotan RA, Azzam MM, Suliman GM, Alharthi AS, Fazea EH, Alhidary IA. Effects of Gum Arabic ( Acacia senegal) Powder on Characteristics of Carcass and Breast Meat Quality Parameters in Male Broiler Chickens. Foods 2023; 12:2526. [PMID: 37444264 DOI: 10.3390/foods12132526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Gum Arabic, one of the soluble fibers, is considered a source of natural prebiotics that can be fermented by the activity of the intestinal microbiota and, therefore, may have a positive effect on the performance, carcass characteristics, and meat quality of broilers. Therefore, the objective of this study was to investigate the effects of gum Arabic on performance, carcass characteristics, physicochemical properties, and quality of broiler breast meat. Six dietary treatments (T1-T5) with a basal diet (CON) containing 0.12%, 0.25%, 0.5%, 0.75%, and 1.0% gum Arabic, respectively. A total of 432 one-day-old male broiler chickens were conducted for 35 days. Performance and carcass characteristics, as well as physical, qualitative, and chemical indicators of breast meat, were evaluated. The results showed that the treatments improved overall performance (p < 0.05), such as body weight, weight gain, feed conversion ratio, and performance index, except for feed intake, which was lower at T1, T2, and T5 than at CON. Carcass characteristics, body components, and breast meat color or initial pH were not affected by dietary treatments (p > 0.05), but ultimate pH (T1 and T2) and color lightness were comparatively lower, and color change (T2-T3) was comparatively higher. Cooking water loss (T2-T4) and shear force (T1-T5) were higher in the treatments. Cohesiveness and resilience were higher in T2, while gumminess and chewiness were lower in T4 and T5. T1 breast meat had higher crude protein content and lower crude fat content, but the other chemical compositions were not affected by the treatments. Some fatty acids in the breast meat were more affected by treatments compared to CON. In conclusion, the present findings showed that gum Arabic (0.12% to 0.75%) has favorable effects on growth performance and some quality indicators of breast meat (such as cooking water loss, shear force, protein, and fat content), especially at the level of 0.12% with no alterations on the carcass characteristics and body components or physical indicators of breast meat.
Collapse
Affiliation(s)
- Hani H Al-Baadani
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Rashed A Alhotan
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Mahmoud M Azzam
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Gamaleldin M Suliman
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdulrahman S Alharthi
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Esam H Fazea
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ibrahim A Alhidary
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Gut microbial modulation by culinary herbs and spices. Food Chem 2023; 409:135286. [PMID: 36599291 DOI: 10.1016/j.foodchem.2022.135286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Culinary herbs and spices have previously been recognised for their potential impact on health through antioxidant and antimicrobial properties. They may also be promotors of positive microbial modulation by stimulating beneficial gut bacteria during fermentation, increasing the production of short chain fatty acids and thereby exhibiting a prebiotic effect. In the present paper, current literature around herb and spice consumption, gut microbiota modulation and prospective health benefits were reviewed. Herb and spice consumption can positively modulate gut microbes and possibly play an important role in inflammation related afflictions such as obesity. Current literature indicates that few human studies have been conducted to confirm the impact of herb and spice consumption on gut microbiota in connection with prospective health outcomes and inconsistencies in conclusions therefore remain.
Collapse
|
14
|
Andrade MER, Trindade LM, Leocádio PCL, Leite JIA, Dos Reis DC, Cassali GD, da Silva TF, de Oliveira Carvalho RD, de Carvalho Azevedo VA, Cavalcante GG, de Oliveira JS, Fernandes SOA, Generoso SV, Cardoso VN. Association of Fructo-oligosaccharides and Arginine Improves Severity of Mucositis and Modulate the Intestinal Microbiota. Probiotics Antimicrob Proteins 2023; 15:424-440. [PMID: 36631616 DOI: 10.1007/s12602-022-10032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/13/2023]
Abstract
Mucositis is defined as inflammatory and ulcerative lesions along of the gastrointestinal tract that leads to the imbalance of the intestinal microbiota. The use of compounds with action on the integrity of the intestinal epithelium and their microbiota may be a beneficial alternative for the prevention and/or treatment of mucositis. So, the aim of this study was to evaluate the effectiveness of the association of fructo-oligosaccharides (FOS) and arginine on intestinal damage in experimental mucositis. BALB/c mice were randomized into five groups: CTL (without mucositis + saline), MUC (mucositis + saline), MUC + FOS (mucositis + supplementation with FOS-1st until 10th day), MUC + ARG (mucositis + supplementation with arginine-1st until 10th day), and MUC + FOS + ARG (mucositis + supplementation with FOS and arginine-1st until 10th day). On the 7th day, mucositis was induced with an intraperitoneal injection of 300 mg/kg 5-fluorouracil (5-FU), and after 72 h, the animals were euthanized. The results showed that association of FOS and arginine reduced weight loss and oxidative stress (P < 0.05) and maintained intestinal permeability and histological score at physiological levels. The supplementation with FOS and arginine also increased the number of goblet cells, collagen area, and GPR41 and GPR43 gene expression (P < 0.05). Besides these, the association of FOS and arginine modulated intestinal microbiota, leading to an increase in the abundance of the genera Bacteroides, Anaerostipes, and Lactobacillus (P < 0.05) in relation to increased concentration of propionate and acetate. In conclusion, the present results show that the association of FOS and arginine could be important adjuvants in the prevention of intestinal mucositis probably due to modulated intestinal microbiota.
Collapse
Affiliation(s)
- Maria Emília Rabelo Andrade
- Laboratório de Radioisótopos, Departamento de Análise Clínica e Toxicológica, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Luisa Martins Trindade
- Departamento Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Paola Caroline Lacerda Leocádio
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Jacqueline Isaura Alvarez Leite
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Diego Carlos Dos Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Geovanni Dantas Cassali
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tales Fernando da Silva
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rodrigo Dias de Oliveira Carvalho
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gregório Grama Cavalcante
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Jamil Silvano de Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos, Departamento de Análise Clínica e Toxicológica, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Simone Vasconcelos Generoso
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Av Professor Alfredo Balena, 190, Belo Horizonte, MG, 30130-100, Brazil
| | - Valbert Nascimento Cardoso
- Laboratório de Radioisótopos, Departamento de Análise Clínica e Toxicológica, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 667, Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
15
|
Thompson MS, Hui Yan T, Saari N, Sarbini SR. A review: Resistant starch, a promising prebiotic for obesity and weight management. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
Al-Baadani HH, Alhotan RA, Al-Abdullatif AA, Alhidary IA, Alharthi AS, Al-Mufarrej SI, Al-Garadi MA, Qaid MM, Al-Sagan AA, Ibrahim KE, Azzam MM. The Effect of Gum Arabic Supplementation on Growth Performance, Blood Indicators, Immune Response, Cecal Microbiota, and the Duodenal Morphology of Broiler Chickens. Animals (Basel) 2022; 12:2809. [PMID: 36290194 PMCID: PMC9597837 DOI: 10.3390/ani12202809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Gum Arabic (GA) belongs to the Fabaceae family and contains indigestible soluble fibers (80-85%) that could be fermented by commensal bacteria to enhance performance, immune response, and intestinal integrity. This study aimed to investigate the effects of GA on performance, serum biochemical indicators, microbiota, immune-related gene expression, and histological changes in chickens. Six GA levels (0.0, 0.12, 0.25, 0.5, 0.75, 1.0%) were allocated using a total of 432 1-day-old male chickens (12 replicates with 6 chickens each). Growth performance was evaluated on days 10 and 24 of age. Blood parameters, organ pH levels, and intestinal health were determined on day 10 of age. Results showed that GA at 0.12% increased weight gain and 0.12 to 1.0% decreased feed intake but was best in feed conversion ratio and production efficiency except for 1.0% on day 1-10 of age. There was an increase in the thymus weight at GA level 0.25 to 0.75%. GA decreased the pH value of the proventriculus (at 0.50 and 1.0%) as well as the duodenum and cecum (at 0.12 and 1.0%). Chickens fed GA between 0.25 to 1.0% had higher protein and HDL, but lower cholesterol, LDL, and creatinine. Globulin was increased at 0.50% GA, while glucose and triglycerides were decreased (at 0.25 and 0.75% GA, respectively). The immune-related gene expression was reduced, except for 0.25% GA, which increased IL-10. Furthermore, chickens fed GA (0.25 to 0.75%) had higher Lactobacillus spp. and lower Salmonella spp. and Escherichia coli. When chickens received GA, the villus length and length to crypt ratio were higher, which also improved the integrity of intestinal epithelial cells and early duodenal development. We conclude that using GA (0.25 to 0.75%) as a natural prebiotic positively affects the performance, microbiota, immune response, morphology, and gut health of post-hatched chickens. More studies are needed to determine the potential mechanism of GA on broiler chickens.
Collapse
Affiliation(s)
- Hani H. Al-Baadani
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Rashed A. Alhotan
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A. Al-Abdullatif
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ibrahim A. Alhidary
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdulrahman S. Alharthi
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Saud I. Al-Mufarrej
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Maged A. Al-Garadi
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Qaid
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ahmed A. Al-Sagan
- King Abdul-Aziz City for Science and Technology, Riyadh 11451, Saudi Arabia
| | - Khalid E. Ibrahim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Mahmoud M. Azzam
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Poultry Production Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
17
|
Deehan EC, Zhang Z, Riva A, Armet AM, Perez-Muñoz ME, Nguyen NK, Krysa JA, Seethaler B, Zhao YY, Cole J, Li F, Hausmann B, Spittler A, Nazare JA, Delzenne NM, Curtis JM, Wismer WV, Proctor SD, Bakal JA, Bischoff SC, Knights D, Field CJ, Berry D, Prado CM, Walter J. Elucidating the role of the gut microbiota in the physiological effects of dietary fiber. MICROBIOME 2022; 10:77. [PMID: 35562794 PMCID: PMC9107176 DOI: 10.1186/s40168-022-01248-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/16/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Dietary fiber is an integral part of a healthy diet, but questions remain about the mechanisms that underlie effects and the causal contributions of the gut microbiota. Here, we performed a 6-week exploratory trial in adults with excess weight (BMI: 25-35 kg/m2) to compare the effects of a high-dose (females: 25 g/day; males: 35 g/day) supplement of fermentable corn bran arabinoxylan (AX; n = 15) with that of microbiota-non-accessible microcrystalline cellulose (MCC; n = 16). Obesity-related surrogate endpoints and biomarkers of host-microbiome interactions implicated in the pathophysiology of obesity (trimethylamine N-oxide, gut hormones, cytokines, and measures of intestinal barrier integrity) were assessed. We then determined whether clinical outcomes could be predicted by fecal microbiota features or mechanistic biomarkers. RESULTS AX enhanced satiety after a meal and decreased homeostatic model assessment of insulin resistance (HOMA-IR), while MCC reduced tumor necrosis factor-α and fecal calprotectin. Machine learning models determined that effects on satiety could be predicted by fecal bacterial taxa that utilized AX, as identified by bioorthogonal non-canonical amino acid tagging. Reductions in HOMA-IR and calprotectin were associated with shifts in fecal bile acids, but correlations were negative, suggesting that the benefits of fiber may not be mediated by their effects on bile acid pools. Biomarkers of host-microbiome interactions often linked to bacterial metabolites derived from fiber fermentation (short-chain fatty acids) were not affected by AX supplementation when compared to non-accessible MCC. CONCLUSION This study demonstrates the efficacy of purified dietary fibers when used as supplements and suggests that satietogenic effects of AX may be linked to bacterial taxa that ferment the fiber or utilize breakdown products. Other effects are likely microbiome independent. The findings provide a basis for fiber-type specific therapeutic applications and their personalization. TRIAL REGISTRATION Clinicaltrials.gov, NCT02322112 , registered on July 3, 2015. Video Abstract.
Collapse
Affiliation(s)
- Edward C. Deehan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| | - Zhengxiao Zhang
- Department of Medicine, University of Alberta, Edmonton, Alberta Canada
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian China
| | - Alessandra Riva
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Anissa M. Armet
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| | - Maria Elisa Perez-Muñoz
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| | - Nguyen K. Nguyen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| | - Jacqueline A. Krysa
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
- Metabolic and Cardiovascular Disease Laboratory, University of Alberta, Edmonton, Alberta Canada
| | - Benjamin Seethaler
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Yuan-Yuan Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| | - Janis Cole
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| | - Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry and Department of Surgery, Research Lab, Medical University of Vienna, Vienna, Austria
| | - Julie-Anne Nazare
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, F-CRIN/FORCE Network, Pierre-Bénite, France
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Jonathan M. Curtis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| | - Wendy V. Wismer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| | - Spencer D. Proctor
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
- Metabolic and Cardiovascular Disease Laboratory, University of Alberta, Edmonton, Alberta Canada
| | - Jeffrey A. Bakal
- Patient Health Outcomes Research and Clinical Effectiveness Unit, Division of General Internal Medicine, University of Alberta, Edmonton, Alberta Canada
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota USA
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota USA
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| | - David Berry
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and University of Vienna, Vienna, Austria
| | - Carla M. Prado
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta Canada
- APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork – National University of Ireland, Cork, Ireland
| |
Collapse
|
18
|
Cosme F, Inês A, Vilela A. Consumer's acceptability and health consciousness of probiotic and prebiotic of non-dairy products. Food Res Int 2022; 151:110842. [PMID: 34980381 DOI: 10.1016/j.foodres.2021.110842] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/01/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022]
Abstract
Human gut microbiota is a protective agent of intestinal and systemic health, and its modulation is of great interest for human wellbeing. In the world of biotics, besides probiotics, prebiotics, and synbiotics, also appears the denomination of "postbiotics" and "psychobiotics". Fermented dairy products are, traditionally, the major source of probiotics. Nevertheless, due to the increasing number of lactose-intolerant individuals and strict vegetarians, there is a need for innovative non-dairy products. Non-dairy biotics are being included in the normal diet and due to technological advances, many products are created using non-conventional food matrices like kombucha tea, herbal tea, baking mix, and cereal-based products. The microorganisms most used as probiotics in many of the non-dairy products are strains belonging to the genera Bifidobacterium, Enterococcus, Lactobacillus, Lactococcus, Streptococcus, and Bacillus, and some yeast strains namely Saccharomyces cerevisiae var. boulardii. Recently, several other yeasts have been described as having probiotic properties. This review describes gut-derived effects in humans of possible microorganisms, such as yeasts, and bacteria, isolated from non-dairy fermented and non-fermented foods and beverages. The microorganisms responsible for the processing of these non-dairy fermented products, together with the prebiotics, form a class of nutrients that have been proven to be beneficial for our gut health.
Collapse
Affiliation(s)
- Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), Dep. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - António Inês
- Chemistry Research Centre-Vila Real (CQ-VR), Dep. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Alice Vilela
- Chemistry Research Centre-Vila Real (CQ-VR), Dep. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| |
Collapse
|
19
|
Jampílek J, Kráľová K, Bella V. Probiotics and prebiotics in the prevention and management of human cancers (colon cancer, stomach cancer, breast cancer, and cervix cancer ). PROBIOTICS IN THE PREVENTION AND MANAGEMENT OF HUMAN DISEASES 2022:187-212. [DOI: 10.1016/b978-0-12-823733-5.00009-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Divyashri G, Sadanandan B, Chidambara Murthy KN, Shetty K, Mamta K. Neuroprotective Potential of Non-Digestible Oligosaccharides: An Overview of Experimental Evidence. Front Pharmacol 2021; 12:712531. [PMID: 34497516 PMCID: PMC8419344 DOI: 10.3389/fphar.2021.712531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Non-digestible oligosaccharides (NDOs) from dietary sources have the potential as prebiotics for neuroprotection. Globally, diverse populations suffering from one or the other forms of neurodegenerative disorders are on the rise, and NDOs have the potential as supportive complementary therapeutic options against these oxidative-linked disorders. Elevated levels of free radicals cause oxidative damage to biological molecules like proteins, lipids, and nucleic acids associated with various neurological disorders. Therefore, investigating the therapeutic or prophylactic potential of prebiotic bioactive molecules such as NDOs as supplements for brain and cognitive health has merits. Few prebiotic NDOs have shown promise as persuasive therapeutic solutions to counter oxidative stress by neutralizing free radicals directly or indirectly. Furthermore, they are also known to modulate through brain-derived neurotrophic factors through direct and indirect mechanisms conferring neuroprotective and neuromodulating benefits. Specifically, NDOs such as fructo-oligosaccharides, xylo-oligosaccharides, isomalto-oligosaccharides, manno-oligosaccharides, pectic-oligosaccharides, and similar oligosaccharides positively influence the overall health via various mechanisms. Increasing evidence has suggested that the beneficial role of such prebiotic NDOs is not only directed towards the colon but also distal organs including the brain. Despite the wide applications of these classes of NDOs as health supplements, there is limited understanding of the possible role of these NDOs as neuroprotective therapeutics. This review provides important insights into prebiotic NDOs, their source, and production with special emphasis on existing direct and indirect evidence of their therapeutic potential in neuroprotection.
Collapse
Affiliation(s)
- Gangaraju Divyashri
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| | - Bindu Sadanandan
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| | - Kotamballi N Chidambara Murthy
- Central Research Laboratory and Division of Research and Patents, Ramaiah Medical College and Hospital, Bengaluru, India
| | - Kalidas Shetty
- Department of Plant Science, North Dakota State University, Fargo, ND, United States
| | - Kumari Mamta
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| |
Collapse
|
21
|
The first insights on trans-galactooligosaccharide effects on fatty acids profile and microstructure of muscle in common carp. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of the study was to determine the effects of prebiotic GOS on muscle histomorphometry and the total lipid, total cholesterol content and fatty acids profile in the meat of common carp. The 60-day-long experiment was performed on one-year-old fish. Three diets were used in the experiment: control diet 1 (C) with no microbiota affecting feed additives, diet 2 (B1) with 1 % of GOS, and diet 3 (B2) with 2 % of GOS. At the end of the trial, 16 individuals from each treatment group were used for the analyses. Fish meat from the B1 group had significantly higher lipid content compared to B2, but neither B1 nor B2 groups were different from the control group. The percentages of SFA, MUFA, PUFA, indexes n-3/n-6, PUFA/SFA, AI and TI, and total cholesterol content were not affected, in contrast to C14:0, C16:1 n-7, C18:0, C18:2 n-6, C20:4 n-6, and total n-6 FA. GOS significantly increased the percentage of normal fibres, while the lower number of fibre atrophy and splitting were observed. The results confirm that diet supplemented with 2 % GOS may be recommended as feed additive in carp nutrition due to positive effects on some fatty acids profiles and muscle microstructure.
Collapse
|
22
|
|
23
|
Vinarov Z, Abrahamsson B, Artursson P, Batchelor H, Berben P, Bernkop-Schnürch A, Butler J, Ceulemans J, Davies N, Dupont D, Flaten GE, Fotaki N, Griffin BT, Jannin V, Keemink J, Kesisoglou F, Koziolek M, Kuentz M, Mackie A, Meléndez-Martínez AJ, McAllister M, Müllertz A, O'Driscoll CM, Parrott N, Paszkowska J, Pavek P, Porter CJH, Reppas C, Stillhart C, Sugano K, Toader E, Valentová K, Vertzoni M, De Wildt SN, Wilson CG, Augustijns P. Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Adv Drug Deliv Rev 2021; 171:289-331. [PMID: 33610694 DOI: 10.1016/j.addr.2021.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Although oral drug delivery is the preferred administration route and has been used for centuries, modern drug discovery and development pipelines challenge conventional formulation approaches and highlight the insufficient mechanistic understanding of processes critical to oral drug absorption. This review presents the opinion of UNGAP scientists on four key themes across the oral absorption landscape: (1) specific patient populations, (2) regional differences in the gastrointestinal tract, (3) advanced formulations and (4) food-drug interactions. The differences of oral absorption in pediatric and geriatric populations, the specific issues in colonic absorption, the formulation approaches for poorly water-soluble (small molecules) and poorly permeable (peptides, RNA etc.) drugs, as well as the vast realm of food effects, are some of the topics discussed in detail. The identified controversies and gaps in the current understanding of gastrointestinal absorption-related processes are used to create a roadmap for the future of oral drug absorption research.
Collapse
Affiliation(s)
- Zahari Vinarov
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Department of Chemical and Pharmaceutical Engineering, Sofia University, Sofia, Bulgaria
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Philippe Berben
- Pharmaceutical Development, UCB Pharma SA, Braine- l'Alleud, Belgium
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - James Butler
- GlaxoSmithKline Research and Development, Ware, United Kingdom
| | | | - Nigel Davies
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Gøril Eide Flaten
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | | | | | | | | | | | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Basel, Switzerland
| | - Alan Mackie
- School of Food Science & Nutrition, University of Leeds, Leeds, United Kingdom
| | | | | | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Petr Pavek
- Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | | | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Kiyohiko Sugano
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Elena Toader
- Faculty of Medicine, University of Medicine and Pharmacy of Iasi, Romania
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saskia N De Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
24
|
Kaur AP, Bhardwaj S, Dhanjal DS, Nepovimova E, Cruz-Martins N, Kuča K, Chopra C, Singh R, Kumar H, Șen F, Kumar V, Verma R, Kumar D. Plant Prebiotics and Their Role in the Amelioration of Diseases. Biomolecules 2021; 11:440. [PMID: 33809763 PMCID: PMC8002343 DOI: 10.3390/biom11030440] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Prebiotics are either natural or synthetic non-digestible (non-)carbohydrate substances that boost the proliferation of gut microbes. Undigested fructooligosaccharides in the large intestine are utilised by the beneficial microorganisms for the synthesis of short-chain fatty acids for their own growth. Although various food products are now recognized as having prebiotic properties, several others, such as almonds, artichoke, barley, chia seeds, chicory, dandelion greens, flaxseeds, garlic, and oats, are being explored and used as functional foods. Considering the benefits of these prebiotics in mineral absorption, metabolite production, gut microbiota modulation, and in various diseases such as diabetes, allergy, metabolic disorders, and necrotising enterocolitis, increasing attention has been focused on their applications in both food and pharmaceutical industries, although some of these food products are actually used as food supplements. This review aims to highlight the potential and need of these prebiotics in the diet and also discusses data related to the distinct types, sources, modes of action, and health benefits.
Collapse
Affiliation(s)
- Amrit Pal Kaur
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| | - Sonali Bhardwaj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.B.); (D.S.D.); (C.C.); (R.S.)
| | - Harsh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| | - Fatih Șen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, EvliyaÇelebi Campus, Dumlupınar University, Kütahya 43100, Turkey;
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK430AL, UK;
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India;
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (A.P.K.); (H.K.)
| |
Collapse
|
25
|
Carvalho PLA, Andrade MER, Trindade LM, Leocádio PCL, Alvarez-Leite JI, Dos Reis DC, Cassali GD, Souza E Melo ÉLDS, Dos Santos Martins F, Fernandes SOA, Gouveia Peluzio MDC, Generoso SDV, Cardoso VN. Prophylactic and therapeutic supplementation using fructo-oligosaccharide improves the intestinal homeostasis after mucositis induced by 5- fluorouracil. Biomed Pharmacother 2021; 133:111012. [PMID: 33254017 DOI: 10.1016/j.biopha.2020.111012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
The beneficial effects of prebiotic, such as fructo-oligosaccharides (FOS), in intestinal inflammation have been demonstrated in several studies. Herein, we evaluate whether joint treatment with FOS, both before and during mucositis, had additional beneficial effects and investigated the mechanisms underlying in the action of FOS on the intestinal barrier. BALB/c mice were randomly divided into five groups: CTR (without mucositis + saline solution), FOS (without mucositis + 6 % FOS), MUC (mucositis + saline solution), PT (mucositis + 6 % FOS supplementation before disease induction), and TT (mucositis + 6 % FOS supplementation before and during disease induction). Mucositis was induced by intraperitoneal injection (300 mg/kg) of 5-fluorouracil (5-FU). After 72 h, the animals were euthanized and intestinal permeability (IP), tight junction, bacterial translocation (BT), histology and morphometry, and immunoglobulin A secretory (sIgA), inflammatory infiltrate, and production of short-chain fatty acids (acetate, butyrate and propionate) were evaluated. The MUC group showed an increase in the IP, BT, and inflammatory infiltrate but a decrease in the tight junction expression and butyrate and propionate levels (P < 0.05). In the PT and TT groups, FOS supplementation maintained the IP, tight junction expression, and propionate concentration within physiologic levels, increased butyrate levels, and reduced BT and inflammatory infiltrate (P < 0.05). Total treatment with FOS (TT group) was more effective in maintaining histological score, morphometric parameters, and sIgA production. Thus, total treatment (prophylactic and therapeutic supplementation) with FOS was more effective than pretreatment alone, in reducing 5-FU-induced damage to the intestinal barrier.
Collapse
Affiliation(s)
- Paula Lopes Armond Carvalho
- Departamento de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Emília Rabelo Andrade
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luísa Martins Trindade
- Departamento de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paola Caroline Lacerda Leocádio
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacqueline Isaura Alvarez-Leite
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Diego Carlos Dos Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Geovanni Dantas Cassali
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Flaviano Dos Santos Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Simone Odília Antunes Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Valbert Nascimento Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
26
|
Lockyer S. Effects of diets, foods and nutrients on immunity: Implications for COVID‐19? NUTR BULL 2020. [DOI: 10.1111/nbu.12470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Azad MA, Gao J, Ma J, Li T, Tan B, Huang X, Yin J. Opportunities of prebiotics for the intestinal health of monogastric animals. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:379-388. [PMID: 33364453 PMCID: PMC7750794 DOI: 10.1016/j.aninu.2020.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
The goal of prebiotic applications from different sources is to improve the gut ecosystem where the host and microbiota can benefit from prebiotics. It has already been recognized that prebiotics have potential roles in the gut ecosystem because gut microbiota ferment complex dietary macronutrients and carry out a broad range of functions in the host body, such as the production of nutrients and vitamins, protection against pathogens, and maintenance of immune system balance. The gut ecosystem is very crucial and can be affected by numerous factors consisting of dietary constituents and commensal bacteria. This review focuses on recent scientific evidence, confirming a beneficial effect of prebiotics on animal health, particularly in terms of protection against pathogenic bacteria and increasing the number of beneficial bacteria that may improve epithelial cell barrier functions. It has also been reviewed that modification of the gut ecosystem through the utilization of prebiotics significantly affects the intestinal health of animals. However, the identification and characterization of novel potential prebiotics remain a topical issue and elucidation of the metagenomics relationship between gut microbiota alteration and prebiotic substances is necessary for future prebiotic studies.
Collapse
Affiliation(s)
- Md A.K. Azad
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Gao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Ma
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
28
|
Affiliation(s)
| | - A. Spiro
- British Nutrition Foundation London UK
| |
Collapse
|
29
|
Jaworska D, Królak M, Jeżewska‐Zychowicz M. Reformulation of bread rolls using oat fibre: An acceptable way of dietary fibre enrichment? NUTR BULL 2020. [DOI: 10.1111/nbu.12428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- D. Jaworska
- Department of Food Gastronomy and Food Hygiene Institute of Human Nutrition Sciences Warsaw University of Life Sciences‐SGGW Warsaw Poland
| | - M. Królak
- Department of Food Market and Consumer Research Institute of Human Nutrition Sciences Warsaw University of Life Sciences‐SGGW Warsaw Poland
| | - M. Jeżewska‐Zychowicz
- Department of Food Market and Consumer Research Institute of Human Nutrition Sciences Warsaw University of Life Sciences‐SGGW Warsaw Poland
| |
Collapse
|
30
|
Brito T, Pereira A, Pastore G, Moreira R, Ferreira M, Fai A. Chemical composition and physicochemical characterization for cabbage and pineapple by-products flour valorization. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Rossi M. Nutrition: an old science in a new microbial light. J Hum Nutr Diet 2019; 32:689-692. [PMID: 31663204 DOI: 10.1111/jhn.12705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M Rossi
- Department of Nutritional Sciences, King's College London, London, UK
| |
Collapse
|
32
|
Affiliation(s)
- M. Rossi
- Department of Nutritional Sciences King's College London London UK
| |
Collapse
|
33
|
Correa MJ, Giannuzzi L, Weisstaub AR, Zuleta A, Ferrero C. Chemically modified resistant starch in breadmaking: Impact on bone, mineral metabolism and gut health of growing
Wistar
rats. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- María Jimena Correa
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas‐UNLP, CIC, CONICET La Plata Argentina
| | - Leda Giannuzzi
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas‐UNLP, CIC, CONICET La Plata Argentina
| | - Adriana R. Weisstaub
- Departamento de Nutrición y Bromatología Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Junín 956 Buenos Aires Argentina
| | - Angela Zuleta
- Departamento de Nutrición y Bromatología Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Junín 956 Buenos Aires Argentina
| | - Cristina Ferrero
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas‐UNLP, CIC, CONICET La Plata Argentina
| |
Collapse
|