1
|
Al-Dajani AR, Hou QK, Kiang TKL. Liquid Chromatography-Mass Spectrometry Analytical Methods for the Quantitation of p-Cresol Sulfate and Indoxyl Sulfate in Human Matrices: Biological Applications and Diagnostic Potentials. Pharmaceutics 2024; 16:743. [PMID: 38931865 PMCID: PMC11206749 DOI: 10.3390/pharmaceutics16060743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Indoxyl sulfate (IxS) and p-cresyl sulfate (pCS) are toxic uremic compounds with documented pathological outcomes. This review critically and comprehensively analyzes the available liquid chromatography-mass spectrometry methods quantifying IxS and pCS in human matrices and the biological applications of these validated assays. Embase, Medline, PubMed, Scopus, and Web of Science were searched until December 2023 to identify assays with complete analytical and validation data (N = 23). Subsequently, citation analysis with PubMed and Scopus was utilized to identify the biological applications for these assays (N = 45). The extraction methods, mobile phase compositions, chromatography, and ionization methods were evaluated with respect to overall assay performance (e.g., sensitivity, separation, interference). Most of the assays focused on human serum/plasma, utilizing acetonitrile or methanol (with ammonium acetate/formate or formic/acetic acid), liquid-liquid extraction, reverse phase (e.g., C18) chromatography, and gradient elution for analyte separation. Mass spectrometry conditions were also consistent in the identified papers, with negative electrospray ionization, select multiple reaction monitoring transitions and deuterated internal standards being the most common approaches. The validated biological applications indicated IxS and/or pCS were correlated with renal disease progression and cardiovascular outcomes, with limited data on central nervous system disorders. Methods for reducing IxS and/or pCS concentrations were also identified (e.g., drugs, natural products, diet, dialysis, transplantation) where inconsistent findings have been reported. The clinical monitoring of IxS and pCS is gaining significant interest, and this review will serve as a useful compendium for scientists and clinicians.
Collapse
Affiliation(s)
| | | | - Tony K. L. Kiang
- Katz Group Centre for Pharmacy and Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (A.R.A.-D.); (Q.K.H.)
| |
Collapse
|
2
|
Hu ZQ, Hung YM, Chen LH, Lai LC, Pan MH, Chuang EY, Tsai MH. NURECON: A Novel Online System for Determining Nutrition Requirements Based on Microbial Composition. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:254-264. [PMID: 38568776 DOI: 10.1109/tcbb.2024.3349572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Dietary habits have been proven to have an impact on the microbial composition and health of the human gut. Over the past decade, researchers have discovered that gut microbiota can use nutrients to produce metabolites that have major implications for human physiology. However, there is no comprehensive system that specifically focuses on identifying nutrient deficiencies based on gut microbiota, making it difficult to interpret and compare gut microbiome data in the literature. This study proposes an analytical platform, NURECON, that can predict nutrient deficiency information in individuals by comparing their metagenomic information to a reference baseline. NURECON integrates a next-generation bacterial 16S rRNA analytical pipeline (QIIME2), metabolic pathway prediction tools (PICRUSt2 and KEGG), and a food compound database (FooDB) to enable the identification of missing nutrients and provide personalized dietary suggestions. Metagenomic information from total number of 287 healthy subjects was used to establish baseline microbial composition and metabolic profiles. The uploaded data is analyzed and compared to the baseline for nutrient deficiency assessment. Visualization results include gut microbial composition, related enzymes, pathways, and nutrient abundance. NURECON is a user-friendly online platform that provides nutritional advice to support dietitians' research or menu design.
Collapse
|
3
|
Stepanova N, Tolstanova G, Aleksandrova I, Korol L, Dovbynchuk T, Driianska V, Savchenko S. Gut Microbiota's Oxalate-Degrading Activity and Its Implications on Cardiovascular Health in Patients with Kidney Failure: A Pilot Prospective Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2189. [PMID: 38138292 PMCID: PMC10744410 DOI: 10.3390/medicina59122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: The present study aims to investigate the association between gut microbiota's oxalate-degrading activity (ODA) and the risk of developing cardiovascular disease (CVD) over a three-year follow-up period in a cohort of patients undergoing kidney replacement therapy (KRT). Additionally, various factors were examined to gain insight into the potential mechanisms underlying the ODA-CVD link. Materials and Methods: A cohort of 32 KRT patients and 18 healthy volunteers was enrolled in this prospective observational pilot study. Total fecal ODA, routine clinical data, plasma oxalic acid (POx), serum indoxyl sulfate, lipid profile, oxidative stress, and proinflammatory markers were measured, and the patients were followed up for three years to assess CVD events. Results: The results revealed that patients with kidney failure exhibited significantly lower total fecal ODA levels compared to the healthy control group (p = 0.017), with a higher proportion showing negative ODA status (≤-1% per 0.01 g) (p = 0.01). Negative total fecal ODA status was associated with a significantly higher risk of CVD events during the three-year follow-up period (HR = 4.1, 95% CI 1.4-16.3, p = 0.003), even after adjusting for potential confounders. Negative total fecal ODA status was significantly associated with elevated POx and indoxyl sulfate levels and linked to dyslipidemia, increased oxidative stress, and inflammation, which are critical contributors to CVD. Conclusions: The findings contribute novel insights into the relationship between gut microbiota's ODA and cardiovascular health in patients undergoing KRT, emphasizing the need for further research to elucidate underlying mechanisms and explore potential therapeutic implications of targeting gut microbiota's ODA in this vulnerable population.
Collapse
Affiliation(s)
- Natalia Stepanova
- State Institution “Institute of Nephrology of the National Academy of Medical Sciences of Ukraine”, 04050 Kyiv, Ukraine; (L.K.)
- Educational and Scientific Institute of High Technologies, Taras Shevchenko National University, 01601 Kyiv, Ukraine
| | - Ganna Tolstanova
- Educational and Scientific Institute of High Technologies, Taras Shevchenko National University, 01601 Kyiv, Ukraine
| | - Iryna Aleksandrova
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University, 01601 Kyiv, Ukraine (T.D.)
| | - Lesya Korol
- State Institution “Institute of Nephrology of the National Academy of Medical Sciences of Ukraine”, 04050 Kyiv, Ukraine; (L.K.)
| | - Taisa Dovbynchuk
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University, 01601 Kyiv, Ukraine (T.D.)
| | - Victoria Driianska
- State Institution “Institute of Nephrology of the National Academy of Medical Sciences of Ukraine”, 04050 Kyiv, Ukraine; (L.K.)
| | - Svitlana Savchenko
- State Institution “Institute of Nephrology of the National Academy of Medical Sciences of Ukraine”, 04050 Kyiv, Ukraine; (L.K.)
| |
Collapse
|
4
|
Jackson MI, Jewell DE. Feeding of fish oil and medium-chain triglycerides to canines impacts circulating structural and energetic lipids, endocannabinoids, and non-lipid metabolite profiles. Front Vet Sci 2023; 10:1168703. [PMID: 37691632 PMCID: PMC10484482 DOI: 10.3389/fvets.2023.1168703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction The effect of medium-chain fatty acid-containing triglycerides (MCT), long-chain polyunsaturated fatty acid-containing triglycerides from fish oil (FO), and their combination (FO+MCT) on the serum metabolome of dogs (Canis familiaris) was evaluated. Methods Dogs (N = 64) were randomized to either a control food, one with 7% MCT, one with FO (0.18% eicosapentaenoate and 1.3% docosahexaenoate), or one with FO+MCT for 28 days following a 14-day washout period on the control food. Serum metabolites were analyzed via chromatography followed by mass spectrometry. Results Additive effects of serum metabolites were observed for a number of metabolite classes, including fatty acids, phospholipids, acylated amines including endocannabinoids, alpha-oxidized fatty acids, and methyl donors. Some effects of the addition of FO+MCT were different when the oils were combined compared with when each oil was fed separately, namely for acylcarnitines, omega-oxidized dicarboxylic acids, and amino acids. Several potentially beneficial effects on health were observed, including decreased circulating triglycerides and total cholesterol with the addition of FO (with or without MCT) and decreases in N-acyl taurines with the addition of MCT, FO, or FO+MCT. Discussion Overall, the results of this study provide a phenotypic characterization of the serum lipidomic response to dietary supplementation of long-chain n3-polyunsaturated and medium-chain saturated fats in canines.
Collapse
Affiliation(s)
- Matthew I. Jackson
- Pet Nutrition Center, Hill's Pet Nutrition, Inc., Topeka, KS, United States
| | - Dennis E. Jewell
- Pet Nutrition Center, Hill's Pet Nutrition, Inc., Topeka, KS, United States
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
5
|
Yamada S, Tanaka S, Arase H, Hiyamuta H, Kitamura H, Tokumoto M, Mitsuiki K, Tsuruya K, Kitazono T, Nakano T. Association between prevalence of laxative use and history of bone fractures and cardiovascular diseases in patients with chronic kidney disease: the Fukuoka Kidney disease Registry (FKR) study. Clin Exp Nephrol 2023; 27:151-160. [PMID: 36318395 DOI: 10.1007/s10157-022-02289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Constipation is a common complication in patients with chronic kidney disease (CKD) and is involved in the pathogenesis of dysbiosis and progression of CKD. However, little is known about its association with disorders of the bone-cardiovascular axis in patients with CKD. METHODS We performed a cross-sectional analysis of 3878 patients with CKD using the baseline dataset of the Fukuoka Kidney disease Registry study, as a multicenter, prospective cohort study of pre-dialysis CKD patients. The main exposure of interest was constipation defined as use of at least one type of laxative. The main outcomes were the histories of bone fractures and cardiovascular diseases (CVDs) as manifestations of disorders of the bone-cardiovascular axis. RESULTS The prevalences of laxative use and histories of bone fractures and CVDs increased as kidney function declined. Among the 3878 patients, 532 (13.7%) patients used laxatives, 235 (6.1%) patients had prior bone fractures, and 1001 (25.8%) patients had prior CVDs. Histories of bone fractures and CVDs were significantly more prevalent among laxative users (P < 0.05). Multivariable-adjusted logistic regression analysis revealed that patients with laxatives had a significantly higher odds ratios for histories of bone fractures and CVDs than those without laxatives [adjusted odds ratios (95% confidence intervals) 1.67 (1.20-2.31) and 1.70 (1.30-2.22), respectively, P < 0.05]. CONCLUSIONS These results suggest that constipation indicated by laxative use is associated with increased prevalences of historical bone fractures and CVDs in pre-dialysis patients with CKD.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Shigeru Tanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Hokuto Arase
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Hiroto Hiyamuta
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Hiromasa Kitamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Masanori Tokumoto
- Division of Nephrology, Japanese Red Cross Fukuoka Hospital, Fukuoka, Japan
| | - Koji Mitsuiki
- Division of Nephrology, Harasanshin Hospital, Fukuoka, Japan
| | | | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 8128582, Japan.
| |
Collapse
|
6
|
Chew W, Lim YP, Lim WS, Chambers ES, Frost G, Wong SH, Ali Y. Gut-muscle crosstalk. A perspective on influence of microbes on muscle function. Front Med (Lausanne) 2023; 9:1065365. [PMID: 36698827 PMCID: PMC9868714 DOI: 10.3389/fmed.2022.1065365] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Our gastrointestinal system functions to digest and absorb ingested food, but it is also home to trillions of microbes that change across time, nutrition, lifestyle, and disease conditions. Largely commensals, these microbes are gaining prominence with regards to how they collectively affect the function of important metabolic organs, from the adipose tissues to the endocrine pancreas to the skeletal muscle. Muscle, as the biggest utilizer of ingested glucose and an important reservoir of body proteins, is intricately linked with homeostasis, and with important anabolic and catabolic functions, respectively. Herein, we provide a brief overview of how gut microbiota may influence muscle health and how various microbes may in turn be altered during certain muscle disease states. Specifically, we discuss recent experimental and clinical evidence in support for a role of gut-muscle crosstalk and include suggested underpinning molecular mechanisms that facilitate this crosstalk in health and diseased conditions. We end with a brief perspective on how exercise and pharmacological interventions may interface with the gut-muscle axis to improve muscle mass and function.
Collapse
Affiliation(s)
- Weixuan Chew
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Yen Peng Lim
- Institute of Geriatrics and Active Aging, Tan Tock Seng Hospital, Singapore, Singapore,Department of Nutrition and Dietetics, Tan Tock Seng Hospital, National Healthcare Group, Singapore, Singapore
| | - Wee Shiong Lim
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Institute of Geriatrics and Active Aging, Tan Tock Seng Hospital, Singapore, Singapore
| | - Edward S. Chambers
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gary Frost
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Sunny Hei Wong
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, Singapore, Singapore
| | - Yusuf Ali
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Singapore General Hospital, Singapore Eye Research Institute (SERI), Singapore, Singapore,Clinical Research Unit, Khoo Teck Puat Hospital, National Healthcare Group, Singapore, Singapore,*Correspondence: Yusuf Ali ✉
| |
Collapse
|
7
|
Tsai KF, Cheng FJ, Huang WT, Kung CT, Lee CT, Cheng BC, Chen JB, Li SH, Wang CC, Wang LJ, Ou YC, Lee WC. The associations between renal disease severity and exposure to organophosphate flame retardants in patients with chronic kidney disease. ENVIRONMENT INTERNATIONAL 2022; 170:107573. [PMID: 36240623 DOI: 10.1016/j.envint.2022.107573] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Organophosphate flame retardants (OPFRs) are emerging and widespread environmental pollutants with potential health hazards, including nephrotoxicity. However, the exposure patterns and nephrotoxic potential of OPFRs are yet to be investigated in patients with chronic kidney disease (CKD). We conducted a cross-sectional study involving 166 patients with CKD stratified by estimated glomerular filtration rate (eGFR) and severity of proteinuria. The urinary concentrations of 10 OPFR compounds were measured to evaluate the exposure patterns. Clinical and urinary OPFR profiles were compared among subgroups to identify whether the OPFR compounds were independently correlated with eGFR and proteinuria. Additionally, lifestyle factors were compared among subgroups stratified by median concentrations of urinary OPFR compounds associated with renal disease severity. This study revealed universal exposure to OPFRs in the CKD population, with an overall urinary detection rate of 98.80 %. Furthermore, after adjusting for covariates, the urinary concentration of bis(2-chloroethyl) phosphate (BCEP) was identified as an independent predictor of lower eGFR (low vs high eGFR, odds ratio (OR) (95 % confidence interval (CI)), 1.761 (1.032-3.005) per log μg/g creatinine, p = 0.038), and the urinary concentration of bis(2-butoxyethyl) phosphate (BBOEP) was independently correlated with overt proteinuria in CKD patients (with vs without overt proteinuria, OR (95 % CI), 1.813 (1.065-3.086) per log μg/g creatinine, p = 0.028). Moreover, frequent seafood consumption was negatively correlated with urinary BCEP concentration (high vs low BCEP, OR (95 % CI), 0.455 (0.228-0.908), p = 0.025), and age was inversely associated with urinary BBOEP concentration (high vs low BBOEP, OR (95 % CI), 0.968 (0.937-0.999) per year, p = 0.048). In conclusion, our investigation highlights the extensive exposure to OPFRs and the independent association between renal disease severity and urinary BCEP/BBOEP concentrations in the CKD population, indicating the nephrotoxic potential of these pollutants.
Collapse
Affiliation(s)
- Kai-Fan Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Ting Huang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ben-Chung Cheng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jin-Bor Chen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, R.O.C
| | - Shau-Hsuan Li
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Department of Occupational Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Che Ou
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
8
|
Tanaka T, Talegawkar SA, Jin Y, Candia J, Tian Q, Moaddel R, Simonsick EM, Ferrucci L. Metabolomic Profile of Different Dietary Patterns and Their Association with Frailty Index in Community-Dwelling Older Men and Women. Nutrients 2022; 14:2237. [PMID: 35684039 PMCID: PMC9182888 DOI: 10.3390/nu14112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
Diet quality has been associated with slower rates of aging; however, the mechanisms underlying the role of a healthy diet in aging are not fully understood. To address this question, we aimed to identify plasma metabolomic biomarkers of dietary patterns and explored whether these metabolites mediate the relationship between diet and healthy aging, as assessed by the frailty index (FI) in 806 participants of the Baltimore Longitudinal Study of Aging. Adherence to different dietary patterns was evaluated using the Mediterranean diet score (MDS), Mediterranean-DASH Diet Intervention for Neurodegenerative Delay (MIND) score, and Alternate Healthy Eating Index-2010 (AHEI). Associations between diet, FI, and metabolites were assessed using linear regression models. Higher adherence to these dietary patterns was associated with lower FI. We found 236, 218, and 278 metabolites associated with the MDS, MIND, and AHEI, respectively, with 127 common metabolites, which included lipids, tri/di-glycerides, lyso/phosphatidylcholine, amino acids, bile acids, ceramides, cholesterol esters, fatty acids and acylcarnitines, indoles, and sphingomyelins. Metabolomic signatures of diet explained 28%, 37%, and 38% of the variance of the MDS, MIND, and AHEI, respectively. Signatures of MIND and AHEI mediated 55% and 61% of the association between each dietary pattern with FI, while the mediating effect of MDS signature was not statistically significant. The high number of metabolites associated with the different dietary patterns supports the notion of common mechanisms that underly the relationship between diet and frailty. The identification of multiple metabolite classes suggests that the effect of diet is complex and not mediated by any specific biomarkers. Furthermore, these metabolites may serve as biomarkers for poor diet quality to identify individuals for targeted dietary interventions.
Collapse
Affiliation(s)
- Toshiko Tanaka
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD 21224, USA; (J.C.); (Q.T.); (E.M.S.); (L.F.)
| | - Sameera A. Talegawkar
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; (S.A.T.); (Y.J.)
| | - Yichen Jin
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; (S.A.T.); (Y.J.)
| | - Julián Candia
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD 21224, USA; (J.C.); (Q.T.); (E.M.S.); (L.F.)
| | - Qu Tian
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD 21224, USA; (J.C.); (Q.T.); (E.M.S.); (L.F.)
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Eleanor M. Simonsick
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD 21224, USA; (J.C.); (Q.T.); (E.M.S.); (L.F.)
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD 21224, USA; (J.C.); (Q.T.); (E.M.S.); (L.F.)
| |
Collapse
|
9
|
Choroszy M, Sobieszczańska B, Litwinowicz K, Łaczmański Ł, Chmielarz M, Walczuk U, Roleder T, Radziejewska J, Wawrzyńska M. Co-toxicity of Endotoxin and Indoxyl Sulfate, Gut-Derived Bacterial Metabolites, to Vascular Endothelial Cells in Coronary Arterial Disease Accompanied by Gut Dysbiosis. Nutrients 2022; 14:nu14030424. [PMID: 35276782 PMCID: PMC8840142 DOI: 10.3390/nu14030424] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Gut dysbiosis, alongside a high-fat diet and cigarette smoking, is considered one of the factors promoting coronary arterial disease (CAD) development. The present study aimed to research whether gut dysbiosis can increase bacterial metabolites concentration in the blood of CAD patients and what impact these metabolites can exert on endothelial cells. The gut microbiomes of 15 age-matched CAD patients and healthy controls were analyzed by 16S rRNA sequencing analysis. The in vitro impact of LPS and indoxyl sulfate at concentrations present in patients' sera on endothelial cells was investigated. 16S rRNA sequencing analysis revealed gut dysbiosis in CAD patients, further confirmed by elevated LPS and indoxyl sulfate levels in patients' sera. CAD was associated with depletion of Bacteroidetes and Alistipes. LPS and indoxyl sulfate demonstrated co-toxicity to endothelial cells inducing reactive oxygen species, E-selectin, and monocyte chemoattractant protein-1 (MCP-1) production. Moreover, both of these metabolites promoted thrombogenicity of endothelial cells confirmed by monocyte adherence. The co-toxicity of LPS and indoxyl sulfate was associated with harmful effects on endothelial cells, strongly suggesting that gut dysbiosis-associated increased intestinal permeability can initiate or promote endothelial inflammation and atherosclerosis progression.
Collapse
Affiliation(s)
- Marcin Choroszy
- Department of Microbiology, Wrocław Medical University, Chalubinskiego 4 Street, 51-657 Wroclaw, Poland; (M.C.); (M.C.); (U.W.)
| | - Beata Sobieszczańska
- Department of Microbiology, Wrocław Medical University, Chalubinskiego 4 Street, 51-657 Wroclaw, Poland; (M.C.); (M.C.); (U.W.)
- Correspondence:
| | - Kamil Litwinowicz
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubińskiego 10 Street, 50-368 Wroclaw, Poland;
| | - Łukasz Łaczmański
- Laboratory of Genomics & Bioinformatics, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12 Street, 53-114 Wroclaw, Poland;
| | - Mateusz Chmielarz
- Department of Microbiology, Wrocław Medical University, Chalubinskiego 4 Street, 51-657 Wroclaw, Poland; (M.C.); (M.C.); (U.W.)
| | - Urszula Walczuk
- Department of Microbiology, Wrocław Medical University, Chalubinskiego 4 Street, 51-657 Wroclaw, Poland; (M.C.); (M.C.); (U.W.)
| | - Tomasz Roleder
- Research and Development Centre, Regional Specialist Hospital, Kamienskiego 73a Street, 51-124 Wroclaw, Poland;
| | | | - Magdalena Wawrzyńska
- Department of Preclinical Studies, Faculty of Health Sciences, Wrocław Medical University, 50-367 Wrocław, Poland;
| |
Collapse
|
10
|
Acceptability of Plant-Based Diets for People with Chronic Kidney Disease: Perspectives of Renal Dietitians. Nutrients 2022; 14:nu14010216. [PMID: 35011091 PMCID: PMC8747619 DOI: 10.3390/nu14010216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/24/2021] [Accepted: 01/01/2022] [Indexed: 02/08/2023] Open
Abstract
The purpose of this study was to explore the perspective of renal dietitians regarding plant-based diets for chronic kidney disease (CKD) management and evaluate the acceptability of a hypothetical plant-based dietary prescription aiming for the consumption of 30 unique plant foods per week. This study used an exploratory mixed methods design. Forty-six renal dietitians participated in either an online survey (n = 35) or an in-depth interview (n = 11). Dietitians perceived that plant-based diets could address multiple clinical concerns relevant to CKD. Forty percent of survey respondents reported the hypothetical dietary prescription was realistic for people with CKD, 34.3% were unsure, and 25.7% perceived it as unrealistic. Strengths of the hypothetical prescription included shifting the focus to whole foods and using practical resources like recipes. Limited staffing, time, and follow-up opportunities with patients, as well as differing nutrition philosophies were the most commonly reported challenges to implementation; while a supportive multidisciplinary team was identified as an important enabler. To increase patient acceptance of plant-based dietary approaches, education about plant food benefits was recommended, as was implementing small, incremental dietary changes. Successful implementation of plant-based diets is perceived to require frequent patient contact and ongoing education and support by a dietitian. Buy-in from the multidisciplinary team was also considered imperative.
Collapse
|
11
|
Khan MA, Kassianos AJ, Hoy WE, Alam AK, Healy HG, Gobe GC. Promoting Plant-Based Therapies for Chronic Kidney Disease. J Evid Based Integr Med 2022; 27:2515690X221079688. [PMID: 35243916 PMCID: PMC8902019 DOI: 10.1177/2515690x221079688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is debilitating, increasing in incidence worldwide, and a financial and social burden on health systems. Kidney failure, the final stage of CKD, is life-threatening if untreated with kidney replacement therapies. Current therapies using commercially-available drugs, such as angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and calcium channel blockers, generally only delay the progression of CKD. This review article focuses on effective alternative therapies to improve the prevention and treatment of CKD, using plants or plant extracts. Three mechanistic processes that are well-documented in CKD pathogenesis are inflammation, fibrosis, and oxidative stress. Many plants and their extracts are already known to ameliorate kidney dysfunction through antioxidant action, with subsequent benefits on inflammation and fibrosis. In vitro and in vivo experiments using plant-based therapies for pre-clinical research demonstrate some robust therapeutic benefits. In the CKD clinic, combination treatments of plant extracts with conventional therapies that are seen as relatively successful currently may confer additive or synergistic renoprotective effects. Therefore, the aim of recent research is to identify, rigorously test pre-clinically and clinically, and avoid any toxic outcomes to obtain optimal therapeutic benefit from medicinal plants. This review may prove to be a filtering tool to researchers into complementary and alternative medicines to find out the current trends of using plant-based therapies for the treatment of kidney diseases, including CKD.
Collapse
Affiliation(s)
- Muhammad Ali Khan
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Faculty of Medicine, Univ of Queensland, Australia.,Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Kidney Disease Research Collaborative, Princess Alexandra Hospital and Univ of Queensland, Translational Research Institute, Brisbane, Australia.,Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Bangladesh
| | - Andrew J Kassianos
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia.,IHBI, Queensland Univ of Technology, Brisbane, Australia
| | - Wendy E Hoy
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia
| | | | - Helen G Healy
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Glenda C Gobe
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Faculty of Medicine, Univ of Queensland, Australia.,Kidney Disease Research Collaborative, Princess Alexandra Hospital and Univ of Queensland, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
12
|
Tracz J, Luczak M. Applying Proteomics and Integrative "Omics" Strategies to Decipher the Chronic Kidney Disease-Related Atherosclerosis. Int J Mol Sci 2021; 22:7492. [PMID: 34299112 PMCID: PMC8305100 DOI: 10.3390/ijms22147492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with chronic kidney disease (CKD) are at increased risk of atherosclerosis and premature mortality, mainly due to cardiovascular events. However, well-known risk factors, which promote "classical" atherosclerosis are alone insufficient to explain the high prevalence of atherosclerosis-related to CKD (CKD-A). The complexity of the molecular mechanisms underlying the acceleration of CKD-A is still to be defied. To obtain a holistic picture of these changes, comprehensive proteomic approaches have been developed including global protein profiling followed by functional bioinformatics analyses of dysregulated pathways. Furthermore, proteomics surveys in combination with other "omics" techniques, i.e., transcriptomics and metabolomics as well as physiological assays provide a solid ground for interpretation of observed phenomena in the context of disease pathology. This review discusses the comprehensive application of various "omics" approaches, with emphasis on proteomics, to tackle the molecular mechanisms underlying CKD-A progression. We summarize here the recent findings derived from global proteomic approaches and underline the potential of utilizing integrative systems biology, to gain a deeper insight into the pathogenesis of CKD-A and other disorders.
Collapse
Affiliation(s)
| | - Magdalena Luczak
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland;
| |
Collapse
|
13
|
Al-Asmakh M, Sohail MU, Al-Jamal O, Shoair BM, Al-Baniali AY, Bouabidi S, Nasr S, Bawadi H. The Effects of Gum Acacia on the Composition of the Gut Microbiome and Plasma Levels of Short-Chain Fatty Acids in a Rat Model of Chronic Kidney Disease. Front Pharmacol 2021; 11:569402. [PMID: 33628167 PMCID: PMC7898900 DOI: 10.3389/fphar.2020.569402] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/21/2020] [Indexed: 01/07/2023] Open
Abstract
Chronic kidney disease (CKD) may be fatal for its victims and is an important long-term public health problem. The complicated medical procedures and diet restrictions to which patients with CKD are subjected alter the gut microbiome in an adverse manner, favoring over-accumulation of proteolytic bacteria that produce ammonia and other toxic substances. The present study aimed to investigate the effect of GA on 1) the composition of the gut microbiome and 2) on plasma levels of short-chain fatty acids. Male Wister rats were divided into four groups (six each) and treated for 4 weeks based on the following: control, dietary adenine (0.75%, w/w) to induce CKD, GA in the drinking water (15%, w/v), and both adenine and GA. At the end of the treatment period, plasma, urine, and fecal samples were collected for determination of several biochemical indicators of renal function and plasma levels of short-chain fatty acids (SCFAs) as well as characterization of the gut microbiome. Dietary adenine induced the typical signs of CKD, i.e., loss of body weight and impairment of renal function, while GA alleviated these effects. The intestine of the rats with CKD contained an elevated abundance of pathogenic Proteobacteria, Actinobacteria, and Verrucomicrobia but lowered proportions of Lactobacillaceae belonging to the Firmicutes phylum. Plasma levels of propionate and butyrate were lowered by dietary adenine and restored by GA. A negative association (Spearman's p-value ≤ 0.01, r ≤ 0.5) was observed between Firmicutes and plasma creatinine, urea, urine N-acetyl-beta-D-glucosaminidase (NAG) and albumin. Phylum Proteobacteria on the other hand was positively associated with these markers while Phylum Bacteroidetes was positively associated with plasma SCFAs. In conclusion, the adverse changes in the composition of the gut microbiome, plasma levels of SCFAs, and biochemical indicators of renal function observed in the rats with CKD induced by dietary adenine were mitigated by GA. These findings are indicative of a link between uremia and the composition of the microbiome in connection with this disease. Dietary administration of GA to patients with CKD may improve their renal function via modulating the composition of their microbiome-a finding that certainly warrants further investigation.
Collapse
Affiliation(s)
- Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
| | | | - Ola Al-Jamal
- Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
| | - Banan Mosaad Shoair
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Asmaa Yousef Al-Baniali
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Salma Bouabidi
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Shahd Nasr
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hiba Bawadi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Yang CY, Chen TW, Lu WL, Liang SS, Huang HD, Tseng CP, Tarng DC. Synbiotics Alleviate the Gut Indole Load and Dysbiosis in Chronic Kidney Disease. Cells 2021; 10:cells10010114. [PMID: 33435396 PMCID: PMC7826693 DOI: 10.3390/cells10010114] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease (CKD) has long been known to cause significant digestive tract pathology. Of note, indoxyl sulfate is a gut microbe-derived uremic toxin that accumulates in CKD patients. Nevertheless, the relationship between gut microbiota, fecal indole content, and blood indoxyl sulfate level remains unknown. In our study, we established an adenine-induced CKD rat model, which recapitulates human CKD-related gut dysbiosis. Synbiotic treatment in CKD rats showed a significant reduction in both the indole-producing bacterium Clostridium and fecal indole amount. Furthermore, gut microbiota diversity was reduced in CKD rats but was restored after synbiotic treatment. Intriguingly, in our end-stage kidney disease (ESKD) patients, the abundance of indole-producing bacteria, Bacteroides, Prevotella, and Clostridium, is similar to that of healthy controls. Consistently, the fecal indole tends to be higher in the ESKD patients, but the difference did not achieve statistical significance. However, the blood level of indoxyl sulfate was significantly higher than that of healthy controls, implicating that under an equivalent indole production rate, the impaired renal excretion contributes to the accumulation of this notorious uremic toxin. On the other hand, we did identify two short-chain fatty acid-producing bacteria, Faecalibacterium and Roseburia, were reduced in ESKD patients as compared to the healthy controls. This may contribute to gut dysbiosis. We also identified that three genera Fusobacterium, Shewanella, and Erwinia, in the ESKD patients but not in the healthy controls. Building up gut symbiosis to treat CKD is a novel concept, but once proved effective, it will provide an additional treatment strategy for CKD patients.
Collapse
Affiliation(s)
- Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Stem Cell Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), Hsinchu 30010, Taiwan
| | - Ting-Wen Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan; (T.-W.C.); (W.-L.L.); (H.-D.H.)
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Wan-Lun Lu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan; (T.-W.C.); (W.-L.L.); (H.-D.H.)
| | - Shih-Shin Liang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Institute of Biomedical Science, College of Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Hsien-Da Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan; (T.-W.C.); (W.-L.L.); (H.-D.H.)
| | - Ching-Ping Tseng
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), Hsinchu 30010, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan; (T.-W.C.); (W.-L.L.); (H.-D.H.)
- Correspondence: (C.-P.T.); (D.-C.T.)
| | - Der-Cherng Tarng
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), Hsinchu 30010, Taiwan
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Correspondence: (C.-P.T.); (D.-C.T.)
| |
Collapse
|
15
|
Dietary Fatty Acids Change Circulating Fatty Acids, Microbial Putrefactive Postbiotics and Betaine Status in the Cat. Animals (Basel) 2020; 10:ani10122310. [PMID: 33291310 PMCID: PMC7762147 DOI: 10.3390/ani10122310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The cat is an obligate carnivore that is well adapted to dietary polyunsaturated fatty acids (PUFA), perhaps because of the variance resulting from normal consumption of organ meat which is high in PUFA, and storage lipid which is often relatively low in PUFA. Although able to tolerate and thrive with this variation, cats have a metabolic response to fatty acids that is relatively unknown. This study shows that dietary PUFA resulted in changing circulating concentrations of that specific PUFA. Increasing dietary eicosapentaenoic acid EPA and docosahexaenoic acid DHA (E&D) resulted in little change in total circulating PUFA as compared to increasing dietary arachidonic acid (ARA) which resulted in an increased concentration of total circulating PUFA. Cats responded to increased dietary E&D by reducing circulating cholesterol as compared to control fed cats. Increasing dietary PUFA also resulted in a decrease in circulating betaine, dimethylglycine and sarcosine in comparison to the cats consuming the control food at the end of the study. Changing dietary PUFA also changed circulating concentrations of gut microbial purification postbiotics. Increasing dietary ARA resulted in an increased concentration of indoleacetate, indolepropionate and indoleacetylglutamine in comparison to cats fed foods enhanced with increased E&D. Increasing E&D resulted in a decreased concentration of 4-ethylphenylsulfate, 3-methyl catechol sulfate and 4-vinylphenol sulfate at the end of the feeding period as compared to cats fed increased ARA or fed the unsupplemented control food. These changes suggest that support of single carbon metabolism would benefit cats with increasing dietary PUFA, that increasing E&D beneficially lowered cholesterol and that dietary PUFA influenced gut microbes resulting in changes in their postbiotics. Abstract There is a normal variation of polyunsaturated fatty acids (PUFA) in the foods consumed both by the domestic cat and wild felines. This variation may lead to specific changes in metabolites and circulating fatty acids that influence health and response to disease. Therefore, in order to evaluate the response to these changes in dietary PUFA three foods were formulated: a complete and balanced control food (COF) with no enhanced source of added PUFA (ARA = 0.08%, EPA & DHA = 0.01%), Test food 1 (E&DF) like the COF with added eicosapentaenoic acid EPA and docosahexaenoic acid DHA (E&D = 0.36%)) from menhaden fish oil, and Test Food 2 (ARAF) like the COF with added arachidonic acid (ARA = 0.16%) from liver. All test foods had similar protein concentrations and similar vitamin and mineral concentrations while the PUFA supplemented foods had slightly higher fat concentrations. Cats (n = 36) were fed a pre-trial food for 28 days and then assigned to a group fed either the control, E&DF or ARAF for 56 days (12 cats per group). Blood samples were drawn and serum analyzed for fatty acids, albumin, urea, creatinine, cholesterol and triglycerides at the beginning of the study and after consuming the test foods for 28 and 56 days. Plasma was similarly analyzed for metabolomics. Increasing dietary E&D resulted in reduced cholesterol, betaine, dimethyl glycine, sarcosine and 4-ethylphenylsulfate. Increasing dietary ARA resulted in reduced betaine, dimethyl glycine and sarcosine and an increased concentration of indoleacetate, indolepropionate and indoleacetylglutamine. These data suggest a benefit of dietary single carbon metabolism support for cats supplemented with ARA or E&D. Moreover, the reduction in circulating cholesterol and triglycerides through dietary E&D supplementation could benefit cats with hyperlipidemia. Further research into the interrelationship between dietary PUFA and the gut microbe will benefit from the data showing that ARA increased specific positive postbiotics (i.e., indoleacetate, indolepropionate) while E&D supplementation showed the benefit of reducing some postbiotics which have been associated with reduced health (4-ethylphenylsulfate, 3-methyl catechol sulfate and 4-vinylphenol sulfate).
Collapse
|
16
|
Toth-Manikowski SM, Sirich TL, Meyer TW, Hostetter TH, Hwang S, Plummer NS, Hai X, Coresh J, Powe NR, Shafi T. Contribution of 'clinically negligible' residual kidney function to clearance of uremic solutes. Nephrol Dial Transplant 2020; 35:846-853. [PMID: 30879076 DOI: 10.1093/ndt/gfz042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/03/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Residual kidney function (RKF) is thought to exert beneficial effects through clearance of uremic toxins. However, the level of native kidney function where clearance becomes negligible is not known. METHODS We aimed to assess whether levels of nonurea solutes differed among patients with 'clinically negligible' RKF compared with those with no RKF. The hemodialysis study excluded patients with urinary urea clearance >1.5 mL/min, below which RKF was considered to be 'clinically negligible'. We measured eight nonurea solutes from 1280 patients participating in this study and calculated the relative difference in solute levels among patients with and without RKF based on measured urinary urea clearance. RESULTS The mean age of the participants was 57 years and 57% were female. At baseline, 34% of the included participants had clinically negligible RKF (mean 0.7 ± 0.4 mL/min) and 66% had no RKF. Seven of the eight nonurea solute levels measured were significantly lower in patients with RKF than in those without RKF, ranging from -24% [95% confidence interval (CI) -31 to -16] for hippurate, -7% (-14 to -1) for trimethylamine-N-oxide and -4% (-6 to -1) for asymmetric dimethylarginine. The effect of RKF on plasma levels was comparable or more pronounced than that achieved with a 31% higher dialysis dose (spKt/Vurea 1.7 versus 1.3). Preserved RKF at 1-year follow-up was associated with a lower risk of cardiac death and first cardiovascular event. CONCLUSIONS Even at very low levels, RKF is not 'negligible', as it continues to provide nonurea solute clearance. Management of patients with RKF should consider these differences.
Collapse
Affiliation(s)
| | - Tammy L Sirich
- Department of Medicine, Division of Nephrology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Timothy W Meyer
- Department of Medicine, Division of Nephrology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thomas H Hostetter
- Department of Medicine, Palo Alto Veterans Affairs Health Care System, Stanford University, Palo Alto, CA, USA
| | - Seungyoung Hwang
- Department of Medicine, Division of Nephrology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Natalie S Plummer
- Department of Medicine, Division of Nephrology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xin Hai
- Department of Medicine, Palo Alto Veterans Affairs Health Care System, Stanford University, Palo Alto, CA, USA
| | - Josef Coresh
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Neil R Powe
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Tariq Shafi
- Department of Medicine, Division of Nephrology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, MD, USA.,Department of Medicine, Priscilla Chan and Mark Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
17
|
Stanford J, Charlton K, Stefoska-Needham A, Zheng H, Bird L, Borst A, Fuller A, Lambert K. Associations Among Plant-Based Diet Quality, Uremic Toxins, and Gut Microbiota Profile in Adults Undergoing Hemodialysis Therapy. J Ren Nutr 2020; 31:177-188. [PMID: 32981834 DOI: 10.1053/j.jrn.2020.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The objective of the study was to evaluate associations among diet quality, serum uremic toxin concentrations, and the gut microbiota profile in adults undergoing hemodialysis therapy. DESIGN AND METHODS This is a cross-sectional analysis of baseline data from a clinical trial involving adults receiving hemodialysis therapy. Usual dietary intake was determined using a diet history method administered by Accredited Practising Dietitians. Two approaches were used for diet quality assessment: (1) using three a priori defined plant-based diet indices-an overall plant-based diet index (PDI), a healthy PDI, and an unhealthy PDI and (2) classification of food group intake. Serum uremic toxins (p-cresyl sulfate and indoxyl sulfate (IS); free and total) were determined by ultra-performance liquid chromatography. Gut microbiota composition was established through sequencing the 16S rRNA gene in stool samples. RESULTS Twenty-two adults (median age 70.5 [interquartile range: 59-76], 64% male) were included in the final analysis. Higher adherence to the PDI was associated with lower total IS levels (P = .028), independent of dialysis adequacy, urinary output, and blood albumin levels. In contrast, higher adherence to the unhealthy PDI was associated with increases in both free and total IS. Several other direct and inverse associations between diet quality with uremic toxins, microbial relative abundances, and diversity metrics were also highlighted. Diet-associated taxa showed significantly different trends of association with serum uremic toxin concentrations (P < .05). Higher adherence to the PDI was negatively associated with relative abundances of Haemophilus and Haemophilus parainfluenzae that were related to elevated total IS levels. In contrast, increased intake of food items considered unhealthy, such as animal fats, sweets and desserts, were associated with bacteria linked to higher IS and p-cresyl sulfate (total and free) concentrations. CONCLUSIONS The quality of diet and food selections may influence uremic toxin production by the gut microbiota in adults receiving hemodialysis. Well-designed dietary intervention trials that adopt multi-omic technologies appropriate for the functional annotation of the gut microbiome are needed to validate our findings and establish causality.
Collapse
Affiliation(s)
- Jordan Stanford
- Faculty of Science, Medicine and Health, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.
| | - Karen Charlton
- Faculty of Science, Medicine and Health, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Anita Stefoska-Needham
- Faculty of Science, Medicine and Health, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Huimin Zheng
- Division of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Luke Bird
- Wollongong Hospital, Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
| | - Addison Borst
- Faculty of Science, Medicine and Health, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Andrew Fuller
- Faculty of Science, Medicine and Health, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Kelly Lambert
- Faculty of Science, Medicine and Health, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
18
|
Lobel L, Cao YG, Fenn K, Glickman JN, Garrett WS. Diet posttranslationally modifies the mouse gut microbial proteome to modulate renal function. Science 2020; 369:1518-1524. [PMID: 32943527 PMCID: PMC8178816 DOI: 10.1126/science.abb3763] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022]
Abstract
Associations between chronic kidney disease (CKD) and the gut microbiota have been postulated, yet questions remain about the underlying mechanisms. In humans, dietary protein increases gut bacterial production of hydrogen sulfide (H2S), indole, and indoxyl sulfate. The latter are uremic toxins, and H2S has diverse physiological functions, some of which are mediated by posttranslational modification. In a mouse model of CKD, we found that a high sulfur amino acid-containing diet resulted in posttranslationally modified microbial tryptophanase activity. This reduced uremic toxin-producing activity and ameliorated progression to CKD in the mice. Thus, diet can tune microbiota function to support healthy host physiology through posttranslational modification without altering microbial community composition.
Collapse
Affiliation(s)
- Lior Lobel
- Departments of Immunology and Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Y Grace Cao
- Departments of Immunology and Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kathrin Fenn
- Departments of Immunology and Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jonathan N Glickman
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02215, USA
| | - Wendy S Garrett
- Departments of Immunology and Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
19
|
New oral spherical carbon adsorbent effectively reduces serum indoxyl sulfate levels in moderate to advanced chronic kidney disease patients: a multicenter, prospective, open-label study. BMC Nephrol 2020; 21:317. [PMID: 32736531 PMCID: PMC7394678 DOI: 10.1186/s12882-020-01971-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elevated levels of serum indoxyl sulfate (IS) have been linked to cardiovascular complications in patients with chronic kidney disease (CKD). Oral sorbent therapy using spherical carbons selectively attenuates IS accumulation in CKD patients. This study aimed to investigate whether oral administration of a new oral spherical carbon adsorbent (OSCA), reduces serum IS levels in moderate to severe CKD patients. METHODS This prospective, multicenter, open-label study enrolled patients with CKD stages 3-5. Patients were prescribed OSCA for 8 weeks (6 g daily in 3 doses) in addition to standard management. Serum IS levels were measured at baseline and 4 and 8 weeks of treatment with OSCA. RESULTS A total of 118 patients were enrolled and 87 eligible patients completed 8 weeks of study. The mean age of the study subjects was 62.8 ± 13.7 years, and 80.5% were male. Baseline levels of serum IS were negatively correlated with estimated glomerular filtration rate (eGFR) (r = - 0.406, P < 0.001) and increased with increasing CKD stages (stage 3, 0.21 ± 0.21 mg/dL; stage 4, 0.54 ± 0.52 mg/dL; stage 5, 1.15 ± 054 mg/dL; P for trend = 0.001). The patients showed significant reduction in serum total IS levels as early as 4 weeks after OSCA treatment (22.5 ± 13.9% reduction from baseline, P < 0.001) and up to 8 weeks (31.9 ± 33.7% reduction from baseline, P < 0.001). This reduction effect was noted regardless of age, kidney function, or diabetes. No severe adverse effects were reported. Gastrointestinal symptoms were the most commonly reported adverse effects. In total, 21 patients withdrew from the study, with dyspepsia due to heavy pill burden as the most common reason. The medication compliance rate was 84.7 ± 21.2% (min 9%, max 101%) for 8 weeks among those who completed the study. CONCLUSIONS OSCA effectively reduced serum IS levels in moderate to severe CKD patients. Gastrointestinal symptoms were the most commonly reported complications, but no treatment-related severe adverse effects were reported. TRIAL REGISTRATION Clinical Research Information Service ( KCT0001875 . 14 December 2015.).
Collapse
|
20
|
Cheng Y, Li Y, Benkowitz P, Lamina C, Köttgen A, Sekula P. The relationship between blood metabolites of the tryptophan pathway and kidney function: a bidirectional Mendelian randomization analysis. Sci Rep 2020; 10:12675. [PMID: 32728058 PMCID: PMC7391729 DOI: 10.1038/s41598-020-69559-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Blood metabolites of the tryptophan pathway were found to be associated with kidney function and disease in observational studies. In order to evaluate causal relationship and direction, we designed a study using a bidirectional Mendelian randomization approach. The analyses were based on published summary statistics with study sizes ranging from 1,960 to 133,413. After correction for multiple testing, results provided no evidence of an effect of metabolites of the tryptophan pathway on estimated glomerular filtration rate (eGFR). Conversely, lower eGFR was related to higher levels of four metabolites: C-glycosyltryptophan (effect estimate = − 0.16, 95% confidence interval [CI] (− 0.22; − 0.1); p = 9.2e−08), kynurenine (effect estimate = − 0.18, 95% CI (− 0.25; − 0.11); p = 1.1e−06), 3-indoxyl sulfate (effect estimate = − 0.25, 95% CI (− 0.4; − 0.11); p = 6.3e−04) and indole-3-lactate (effect estimate = − 0.26, 95% CI (− 0.38; − 0.13); p = 5.4e−05). Our study supports that lower eGFR causes higher blood metabolite levels of the tryptophan pathway including kynurenine, C-glycosyltryptophan, 3-indoxyl sulfate, and indole-3-lactate. These findings aid the notion that metabolites of the tryptophan pathway are a consequence rather than a cause of reduced eGFR. Further research is needed to specifically examine relationships with respect to chronic kidney disease (CKD) progression among patients with existing CKD.
Collapse
Affiliation(s)
- Yurong Cheng
- Department of Biometry, Epidemiology and Medical Bioinformatics, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Hugstetter Str. 49, 79106, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yong Li
- Department of Biometry, Epidemiology and Medical Bioinformatics, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Hugstetter Str. 49, 79106, Freiburg, Germany
| | - Paula Benkowitz
- Department of Biometry, Epidemiology and Medical Bioinformatics, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Hugstetter Str. 49, 79106, Freiburg, Germany
| | - Claudia Lamina
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Köttgen
- Department of Biometry, Epidemiology and Medical Bioinformatics, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Hugstetter Str. 49, 79106, Freiburg, Germany
| | - Peggy Sekula
- Department of Biometry, Epidemiology and Medical Bioinformatics, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Hugstetter Str. 49, 79106, Freiburg, Germany.
| |
Collapse
|
21
|
Stanford J, Charlton K, Stefoska-Needham A, Ibrahim R, Lambert K. The gut microbiota profile of adults with kidney disease and kidney stones: a systematic review of the literature. BMC Nephrol 2020; 21:215. [PMID: 32503496 PMCID: PMC7275316 DOI: 10.1186/s12882-020-01805-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background There is mounting evidence that individuals with kidney disease and kidney stones have an abnormal gut microbiota composition. No studies to date have summarised the evidence to categorise how the gut microbiota profile of these individuals may differ from controls. Synthesis of this evidence is essential to inform future clinical trials. This systematic review aims to characterise differences of the gut microbial community in adults with kidney disease and kidney stones, as well as to describe the functional capacity of the gut microbiota and reporting of diet as a confounder in these studies. Methods Included studies were those that investigated the gut microbial community in adults with kidney disease or kidney stones and compared this to the profile of controls. Six scientific databases (CINHAL, Medline, PubMed, Scopus, Web of Science and Cochrane Library), as well as selected grey literature sources, were searched. Quality assessment was undertaken independently by three authors. The system of evidence level criteria was employed to quantitatively evaluate the alteration of microbiota by strictly considering the number, methodological quality and consistency of the findings. Additional findings relating to altered functions of the gut microbiota, dietary intakes and dietary methodologies used were qualitatively summarised. Results Twenty-five articles met the eligibility criteria and included data from a total of 892 adults with kidney disease or kidney stones and 1400 controls. Compared to controls, adults with kidney disease had increased abundances of several microbes including Enterobacteriaceae, Streptococcaceae, Streptococcus and decreased abundances of Prevotellaceae, Prevotella, Prevotella 9 and Roseburia among other taxa. Adults with kidney stones also had an altered microbial composition with variations to Bacteroides, Lachnospiraceae NK4A136 group, Ruminiclostridium 5 group, Dorea, Enterobacter, Christensenellaceae and its genus Christensenellaceae R7 group. Differences in the functional potential of the microbial community between controls and adults with kidney disease or kidney stones were also identified. Only three of the 25 articles presented dietary data, and of these studies, only two used a valid dietary assessment method. Conclusions The gut microbiota profile of adults with kidney disease and kidney stones differs from controls. Future study designs should include adequate reporting of important confounders such as dietary intake to assist with interpretation of findings.
Collapse
Affiliation(s)
- Jordan Stanford
- University of Wollongong, School of Medicine, Faculty of Science, Medicine and Health, Wollongong, New South Wales, 2522, Australia. .,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia.
| | - Karen Charlton
- University of Wollongong, School of Medicine, Faculty of Science, Medicine and Health, Wollongong, New South Wales, 2522, Australia.,University of Wollongong, Health Impacts Research Cluster, Wollongong, New South Wales, 2522, Australia
| | - Anita Stefoska-Needham
- University of Wollongong, School of Medicine, Faculty of Science, Medicine and Health, Wollongong, New South Wales, 2522, Australia.,University of Wollongong, Health Impacts Research Cluster, Wollongong, New South Wales, 2522, Australia
| | - Rukayat Ibrahim
- University of Surrey, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, Guildford, GU2 7XH, UK
| | - Kelly Lambert
- University of Wollongong, School of Medicine, Faculty of Science, Medicine and Health, Wollongong, New South Wales, 2522, Australia.,University of Wollongong, Health Impacts Research Cluster, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
22
|
Walker ME, Song RJ, Xu X, Gerszten RE, Ngo D, Clish CB, Corlin L, Ma J, Xanthakis V, Jacques PF, Vasan RS. Proteomic and Metabolomic Correlates of Healthy Dietary Patterns: The Framingham Heart Study. Nutrients 2020; 12:E1476. [PMID: 32438708 PMCID: PMC7284467 DOI: 10.3390/nu12051476] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023] Open
Abstract
Data on proteomic and metabolomic signatures of healthy dietary patterns are limited. We evaluated the cross-sectional association of serum proteomic and metabolomic markers with three dietary patterns: the Alternative Healthy Eating Index (AHEI), the Dietary Approaches to Stop Hypertension (DASH) diet; and a Mediterranean-style (MDS) diet. We examined participants from the Framingham Offspring Study (mean age; 55 years; 52% women) who had complete proteomic (n = 1713) and metabolomic (n = 2284) data; using food frequency questionnaires to derive dietary pattern indices. Proteins and metabolites were quantified using the SomaScan platform and liquid chromatography/tandem mass spectrometry; respectively. We used multivariable-adjusted linear regression models to relate each dietary pattern index (independent variables) to each proteomic and metabolomic marker (dependent variables). Of the 1373 proteins; 103 were associated with at least one dietary pattern (48 with AHEI; 83 with DASH; and 8 with MDS; all false discovery rate [FDR] ≤ 0.05). We identified unique associations between dietary patterns and proteins (17 with AHEI; 52 with DASH; and 3 with MDS; all FDR ≤ 0.05). Significant proteins enriched biological pathways involved in cellular metabolism/proliferation and immune response/inflammation. Of the 216 metabolites; 65 were associated with at least one dietary pattern (38 with AHEI; 43 with DASH; and 50 with MDS; all FDR ≤ 0.05). All three dietary patterns were associated with a common signature of 24 metabolites (63% lipids). Proteins and metabolites associated with dietary patterns may help characterize intermediate phenotypes that provide insights into the molecular mechanisms mediating diet-related disease. Our findings warrant replication in independent populations.
Collapse
Affiliation(s)
- Maura E. Walker
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (L.C.); (V.X.); (R.S.V.)
| | - Rebecca J. Song
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA;
| | - Xiang Xu
- Department of Mathematics and Statistics, Boston University College of Arts and Sciences, Boston, MA 02215, USA;
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (R.E.G.); (D.N.)
| | - Debby Ngo
- Division of Cardiovascular Medicine Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (R.E.G.); (D.N.)
| | - Clary B. Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA;
| | - Laura Corlin
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (L.C.); (V.X.); (R.S.V.)
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jiantao Ma
- Framingham Heart Study, Framingham, MA 01702, USA;
- Nutrition Epidemiology and Data Science, Tufts University Friedman School of Nutrition Science and Policy, Boston, MA 02111, USA;
| | - Vanessa Xanthakis
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (L.C.); (V.X.); (R.S.V.)
- Framingham Heart Study, Framingham, MA 01702, USA;
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Paul F. Jacques
- Nutrition Epidemiology and Data Science, Tufts University Friedman School of Nutrition Science and Policy, Boston, MA 02111, USA;
- Nutrition Epidemiology, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Ramachandran S. Vasan
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (L.C.); (V.X.); (R.S.V.)
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA;
- Framingham Heart Study, Framingham, MA 01702, USA;
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Center for Computing and Data Sciences, Boston University, Boston, MA 02215, USA
| |
Collapse
|
23
|
Zheng X, Duan H, Lin F, Li X, Shen J, Han F, Huang F, Li S, Chang L, Xu H, Wang K, Liu J. Quantification of microbiota-related phenols and aromatic acids in mouse feces of a diabetic nephropathy model by simultaneous BDAPE derivatization using ultra-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2020; 412:3241-3252. [PMID: 32342129 DOI: 10.1007/s00216-020-02585-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 01/06/2023]
Abstract
In the intestine, several phenols and aromatic acids are generated by microbiota and are highly related to the formation of uremic toxins. Herein, we developed a new derivatization reagent, 2-bromo-1-[4-(dimethylamino)phenyl] ethyl ketone (BDAPE), that reacted simultaneously with phenols and aromatic acids. Following a reaction within 2 h at 60 °C in the presence of 200 mM potassium carbonate (K2CO3), the obtained BDAPE derivatives were separated on a reversed-phase C18 column and quantified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) in positive electrospray ionization mode. This method allowed a lower limit of quantification (LLOQ) of 0.090 μΜ for 3-indolepropionic acid (3IPA), indole-3-acetic acid (3IAA), p-cresol (PC), benzoic acid (BA), and phenol (PN); 0.30 μΜ for phenylacetic acid (PAA); 0.45 μΜ for 4-hydroxyphenylacetic acid (4HPAA); and 0.60 μΜ for 3-phenylpropionic acid (PPA). Methodological validation further demonstrated acceptable accuracy (%RE < 16.1) and precision (%RSD < 16.2), suggesting that this is a sensitive and robust method for simultaneous quantification of phenols and aromatic acids. The method was successfully applied to analyze these microbiota-related analytes in mouse feces of a diabetic nephropathy model. Graphical abstract.
Collapse
Affiliation(s)
- Xiaoli Zheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in University of Shandong, Yantai University, Yantai, 264005, People's Republic of China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Haonan Duan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Feifei Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Xiaomei Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jianhua Shen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Fanghui Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fubao Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shilin Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Lu Chang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Hui Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in University of Shandong, Yantai University, Yantai, 264005, People's Republic of China.
| | - Kai Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
24
|
Jackson MI, Jewell DE. Docosahexaenoate-enriched fish oil and medium chain triglycerides shape the feline plasma lipidome and synergistically decrease circulating gut microbiome-derived putrefactive postbiotics. PLoS One 2020; 15:e0229868. [PMID: 32163448 PMCID: PMC7067441 DOI: 10.1371/journal.pone.0229868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/15/2020] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to examine the influence of medium-chain fatty acid-containing triglycerides (MCT), long-chain polyunsaturated fatty acid-containing triglycerides, and their combination on the plasma metabolome of cats (Felis catus), including circulating microbiome-derived postbiotics. After a 14-day lead-in on the control food, cats were randomized to one of four foods (control, with 6.9% MCT, with fish oil [FO; 0.14% eicosapentaenoate, 1.0% docosahexaenoate], or with FO+MCT; n = 16 per group) for 28 days. Analysis of plasma metabolites showed that the addition of FO and MCT led to synergistic effects not seen with either alone across a number of lipid classes, including fatty acids, acylcarnitines, and acylated amines including endocannabinoids. Notably, the FO+MCT group had an increase in ketone body production relative to baseline and beyond that seen with MCT alone. N-acyl taurines, the accumulation of which has been implicated in the onset of type 2 diabetes, were significantly decreased in the FO+MCT group. Significant decreases in the gut microbiome-derived postbiotic classes of indoles/indolic sulfates and phenols/phenolic sulfates were observed only the FO+MCT group. Overall, the combination of MCT and FO led to number of changes in plasma metabolites that were not observed with either oil alone, particularly in postbiotics.
Collapse
Affiliation(s)
- Matthew I. Jackson
- Pet Nutrition Center, Hill’s Pet Nutrition, Inc., Topeka, Kansas, United States of America
- * E-mail:
| | - Dennis E. Jewell
- Pet Nutrition Center, Hill’s Pet Nutrition, Inc., Topeka, Kansas, United States of America
| |
Collapse
|
25
|
Krisko TI, Nicholls HT, Bare CJ, Holman CD, Putzel GG, Jansen RS, Sun N, Rhee KY, Banks AS, Cohen DE. Dissociation of Adaptive Thermogenesis from Glucose Homeostasis in Microbiome-Deficient Mice. Cell Metab 2020; 31:592-604.e9. [PMID: 32084379 PMCID: PMC7888548 DOI: 10.1016/j.cmet.2020.01.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 11/18/2019] [Accepted: 01/24/2020] [Indexed: 01/16/2023]
Abstract
Recent studies suggest that a key mechanism whereby the gut microbiome influences energy balance and glucose homeostasis is through the recruitment of brown and beige adipocytes, primary mediators of the adaptive thermogenic response. To test this, we assessed energy expenditure and glucose metabolism in two complementary mouse models of gut microbial deficiency, which were exposed to a broad range of thermal and dietary stresses. Neither ablation of the gut microbiome, nor the substantial microbial perturbations induced by cold ambient temperatures, influenced energy expenditure during cold exposure or high-fat feeding. Nevertheless, we demonstrated a critical role for gut microbial metabolism in maintaining euglycemia through the production of amino acid metabolites that optimized hepatic TCA (tricarboxylic acid) cycle fluxes in support of gluconeogenesis. These results distinguish the dispensability of the gut microbiome for the regulation of energy expenditure from its critical contribution to the maintenance of glucose homeostasis.
Collapse
Affiliation(s)
- Tibor I Krisko
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Hayley T Nicholls
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Curtis J Bare
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Corey D Holman
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Gregory G Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, New York, NY 10021, USA
| | - Robert S Jansen
- Division of Infectious Diseases, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Natalie Sun
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Kyu Y Rhee
- Division of Infectious Diseases, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Alexander S Banks
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
26
|
Novel dietary and pharmacologic approaches for acid–base modulation to preserve kidney function and manage uremia. Curr Opin Nephrol Hypertens 2020; 29:39-48. [DOI: 10.1097/mnh.0000000000000568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Dietary Fiber and Gut Microbiota in Renal Diets. Nutrients 2019; 11:nu11092149. [PMID: 31505733 PMCID: PMC6770883 DOI: 10.3390/nu11092149] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
Nutrition is crucial for the management of patients affected by chronic kidney disease (CKD) to slow down disease progression and to correct symptoms. The mainstay of the nutritional approach to renal patients is protein restriction coupled with adequate energy supply to prevent malnutrition. However, other aspects of renal diets, including fiber content, can be beneficial. This paper summarizes the latest literature on the role of different types of dietary fiber in CKD, with special attention to gut microbiota and the potential protective role of renal diets. Fibers have been identified based on aqueous solubility, but other features, such as viscosity, fermentability, and bulking effect in the colon should be considered. A proper amount of fiber should be recommended not only in the general population but also in CKD patients, to achieve an adequate composition and metabolism of gut microbiota and to reduce the risks connected with obesity, diabetes, and dyslipidemia.
Collapse
|
28
|
Vitetta L, Llewellyn H, Oldfield D. Gut Dysbiosis and the Intestinal Microbiome: Streptococcus thermophilus a Key Probiotic for Reducing Uremia. Microorganisms 2019; 7:microorganisms7080228. [PMID: 31370220 PMCID: PMC6723445 DOI: 10.3390/microorganisms7080228] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022] Open
Abstract
In the intestines, probiotics can produce antagonistic effects such as antibiotic–like compounds, bactericidal proteins such as bacteriocins, and encourage the production of metabolic end products that may assist in preventing infections from various pathobionts (capable of pathogenic activity) microbes. Metabolites produced by intestinal bacteria and the adoptions of molecular methods to cross-examine and describe the human microbiome have refreshed interest in the discipline of nephology. As such, the adjunctive administration of probiotics for the treatment of chronic kidney disease (CKD) posits that certain probiotic bacteria can reduce the intestinal burden of uremic toxins. Uremic toxins eventuate from the over manifestation of glucotoxicity and lipotoxicity, increased activity of the hexosamine and polyol biochemical and synthetic pathways. The accumulation of advanced glycation end products that have been regularly associated with a dysbiotic colonic microbiome drives the overproduction of uremic toxins in the colon and the consequent local pro-inflammatory processes. Intestinal dysbiosis associated with significant shifts in abundance and diversity of intestinal bacteria with a resultant and maintained uremia promoting an uncontrolled mucosal pro-inflammatory state. In this narrative review we further address the efficacy of probiotics and highlighted in part the probiotic bacterium Streptococcus thermophilus as an important modulator of uremic toxins in the gut of patients diagnosed with chronic kidney disease. In conjunction with prudent nutritional practices it may be possible to prevent the progression of CKD and significantly downregulate mucosal pro-inflammatory activity with the administration of probiotics that contain S. thermophilus.
Collapse
Affiliation(s)
- Luis Vitetta
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2006, Australia.
- Medlab Clinical, Sydney NSW 2015, Australia.
| | | | | |
Collapse
|
29
|
Menez S, Hanouneh M, Shafi T, Jaar BG. Indoxyl sulfate is associated with mortality after AKI - more evidence needed! BMC Nephrol 2019; 20:280. [PMID: 31345164 PMCID: PMC6659241 DOI: 10.1186/s12882-019-1465-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Patients who develop acute kidney injury (AKI) have significantly higher short-term outcomes including in-hospital mortality. The development of AKI has been associated with long-term consequences including progression to chronic kidney disease (CKD) and higher rates of cardiovascular disease (CVD) and mortality. In recent years there has been a growing push for the discovery of novel methods to diagnose AKI at earlier stages, and for an improvement in risk stratification and prognosis following AKI.Wang and colleagues assessed the association of total serum indoxyl sulfate (IS) levels, a protein bound uremic toxin, with 90-day mortality after hospital-acquired AKI (HA-AKI). These authors found that serum IS levels were significantly elevated in patients with HA-AKI (2.74 ± 0.75 μg/mL) compared to healthy subjects (1.73 ± 0.11 μg/ml, P < 0.001) and critically ill patients (2.46 ± 0.35 μg/ml, P = 0.016).The mechanisms of this relationship remain unclear, with a limited understanding of cause-specific mortality associated with either the high or low-IS group. One limitation of this current study is an understanding of the acceptable or expected higher level in IS during episodes of AKI. IS levels remained persistently elevated at day 7 compared to β2-microglobulin and serum creatinine which were both lower at 7 days. It is unclear, however, if levels of β2-microglobulin and serum creatinine were lower for other reasons, such as if any patients with AKI required dialysis.This work provides an important addition to the field of AKI research, specifically in the evaluation of readily measurable biomarkers and outcomes after AKI. Moving forward, further validation in studies of acute kidney injury are needed to develop a better understanding of IS levels at the time of AKI diagnosis and trends during the course of AKI.
Collapse
Affiliation(s)
- Steven Menez
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 416, Baltimore, MD, 21287, USA.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.,Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, 2024 E. Monument Street, Baltimore, MD, 21205, USA
| | - Mohamad Hanouneh
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 416, Baltimore, MD, 21287, USA.,Nephrology Center of Maryland, 5601 Loch Raven Boulevard, Suite 3 North, Baltimore, MD, 21239, USA
| | - Tariq Shafi
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 416, Baltimore, MD, 21287, USA.,Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Bernard G Jaar
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 416, Baltimore, MD, 21287, USA. .,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA. .,Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, 2024 E. Monument Street, Baltimore, MD, 21205, USA. .,Nephrology Center of Maryland, 5601 Loch Raven Boulevard, Suite 3 North, Baltimore, MD, 21239, USA.
| |
Collapse
|
30
|
Vitetta L. Probiotics Can Break the Toxic Relationship Between the Intestinal Microbiome and the Kidney. Dig Dis Sci 2019; 64:297-299. [PMID: 30390235 DOI: 10.1007/s10620-018-5355-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Luis Vitetta
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney and Medlab Clinical, Sydney, NSW, Australia.
| |
Collapse
|
31
|
Acute Exposure to Indoxyl Sulfate Impairs Endothelium-Dependent Vasorelaxation in Rat Aorta. Int J Mol Sci 2019; 20:ijms20020338. [PMID: 30650577 PMCID: PMC6359309 DOI: 10.3390/ijms20020338] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/20/2022] Open
Abstract
Gut microbiota are emerging as potential contributors to the regulation of host homeostasis. Dysbiosis of the gut microbiota associated with increased intestinal permeability facilitates the passage of endotoxins and other microbial products, including indoxyl sulfate in the circulation. Although an emerging body of evidence has suggested that indoxyl sulfate is a key substance for the development of chronic kidney disease, few studies have investigated the direct association of indoxyl sulfate with vascular function. We hypothesized that indoxyl sulfate adversely affects vascular function. Aortas isolated from male Wistar rat were examined in the presence or absence of indoxyl sulfate to assess the vascular function, including vasorelaxation and vasocontraction. Indoxyl sulfate (vs. vehicle) (1) decreased vasorelaxation induced by acetylcholine (ACh) but not by sodium nitroprusside; (2) had no significant alterations of noradrenaline-induced vasocontraction in the absence and presence of endothelium; (3) decreased adenylyl cyclase activator (forskolin)-induced vasorelaxation, while such a difference was eliminated by endothelial denudation; and (4) decreased vasorelaxations induced by calcium ionophore (A23187) and transient receptor potential vanilloid 4 agonist (GSK1016790A). The indoxyl sulfate-induced decrease in the vasorelaxations induced by ACh and A23187 increased by cell-permeant superoxide dismutase or by organic anion transporter inhibitor. However, apocynin, an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, had no effects on vasorelaxations induced by ACh, A23187, forskolin, and GSK1016790A in the presence of indoxyl sulfate. These results suggest that indoxyl sulfate directly affects the vascular function, particularly, endothelium-dependent vasorelaxation, and this effect may be attributable to increased oxidative stress after cell transportion via organic anion transporter, and such increased oxidative stress may not be attributable to activation of NADPH oxidase activation.
Collapse
|