1
|
Zhang G, Lu Y, Wang Z, Ma R, Jin H, Zhang J, Liu F, Ding Y. Causal relationship between gut microbiota and ageing: A multi-omics Mendelian randomization study. Arch Gerontol Geriatr 2025; 131:105765. [PMID: 39988416 DOI: 10.1016/j.archger.2025.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/12/2025] [Accepted: 01/18/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Observational studies and clinical trials have suggested a connection between gut microbiota and aging. However, the causal relationship between them remains undetermined. OBJECTIVES This study aimed to use bidirectional two-sample Mendelian randomization (TSMR) analysis to explore the causal relationship between gut microbiota and aging. METHODS Summary statistics from genome-wide association studies (GWAS) on gut microbiota and seven aging-related phenotypes were employed for TSMR analysis. Reverse Mendelian randomization (MR) analysis was performed to assess the potential for reverse causality. Additionally, the relationship between Akkermansia muciniphila and inflammation-related proteins and metabolites was further investigated. The effects of Akkermansia muciniphila on aging were also examined in Caenorhabditis elegans by measuring both lifespan and healthspan. RESULTS MR analysis of 207 microbial taxa and seven aging phenotypes revealed 44 causal relationships between the gut microbiota and aging. Akkermansia muciniphila was found to be causally linked to several aging-related traits, including mvAge, appendicular lean mass, and grip strength (P < 0.05). Reverse MR analysis identified 23 causal relationships, but no bidirectional causality was observed. Moreover, Akkermansia muciniphila is causally related to ST1A1, taurine bile acid, and mannose (P < 0.05). In Caenorhabditis elegans, treatment with Akkermansia muciniphila significantly extended lifespan (P < 0.05) and improved mobility in aging nematodes. CONCLUSION TSMR analysis uncovers multiple potential causal links between gut microbiota and aging, particularly Akkermansia muciniphila. Experimental results support its role in alleviating aging. This study provides a strong foundation for future research on gut microbiota's role in aging.
Collapse
Affiliation(s)
- Guolin Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yuqing Lu
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhen Wang
- Department of General Surgery, The First Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ruicong Ma
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hongjin Jin
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingsi Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Fengyi Liu
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yanchun Ding
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
2
|
Chen VCH, Wu SI. An exploratory analysis on the association between suicidal ideation and the microbiome in patients with or without major depressive disorder. J Affect Disord 2025; 370:362-372. [PMID: 39481689 DOI: 10.1016/j.jad.2024.10.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/14/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Scarce research has investigated associations between suicidal ideation and the gut microbiota. We aimed to explore variations in the gut microbiome associated with suicidal ideation and major depressive disorder (MDD). METHOD A case-control study compared abundances of fecal microbiota and biomarkers of gut permeability among patients with MDD, with or without suicidal ideation, and healthy volunteers without depression. Information on demographic variables and assessments of suicidal ideation (Beck Suicidal Ideation Scale), depression (Hamilton Depression Scale, Patient Health Questionnaire, Hospital Anxiety and Depression Scale- Depression), as well as anxiety (Hospital Anxiety and Depression Scale- Anxiety), were obtained. Univariate and multivariate regression model was performed to explore the possible predictors of suicidal ideation. RESULTS Among the 140 participants, significant differences in Beta diversity were found between MDD patients with (n = 43) or without suicidal ideation (n = 34), and healthy volunteers (n = 42) (all p < 0.001). The strain of g-Phascolarctobacterium was found to have significant positive associations with scores of BSSI and BSSI Part 1 (suicidal ideation), particularly in MDD patients with suicidal ideation, after controlling for demographic and mood covariates. Mediation analyses revealed that g-Phascolarctobacterium may be a partial mediator between depression and suicidal ideation; however, it is also possible that the association between g-Phascolarctobacterium and suicidal ideation was partially mediated by the level of depression. CONCLUSION We found different compositions, diversities, and possible mediating of the gut microbiome associated with suicidal ideations. Potential mechanisms need further investigation to establish whether this reflects a biological process that might be the focus for intervention development. SYNOPSIS Our objective was to investigate whether the diversities and abundances of the gut microbiome varied in people with or without suicidal ideation and with or without MDD after considering possible demographic and mood confounders.
Collapse
Affiliation(s)
- Vincent Chin-Hung Chen
- Department of Psychiatry, Chang Gung Memorial Hospital, 6, Sec. West Chia-Pu Road, Pu-Zi City, Chiayi County 613, Taiwan; School of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei- Shan Tao-Yuan, Taiwan
| | - Shu-I Wu
- Department of Medicine, Mackay Medical College, No. 46, Sec. 3, Zhongzheng Rd, Sanzhi Dist 252., New Taipei City, Taiwan; Department of Psychiatry, Mackay Memorial Hospital, No.45, Ming-Shen Rd., Danshui., New Taipei City 25140, Taiwan.
| |
Collapse
|
3
|
Konstanti P, Gómez-Martínez C, Muralidharan J, Vioque J, Corella D, Fitó M, Vidal J, Tinahones FJ, Torres-Collado L, Coltell O, Castañer O, Moreno-Indias I, Atzeni A, Ruiz-Canela M, Salas-Salvadó J, Belzer C. Faecal microbiota composition and impulsivity in a cohort of older adults with metabolic syndrome. Sci Rep 2024; 14:28075. [PMID: 39543142 PMCID: PMC11564772 DOI: 10.1038/s41598-024-78527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Impulsivity is an important determinant of human behaviour, affecting self-control, reasonable thinking and food choices. Recent evidence suggests a role for gut microbiota in human behaviour, but the relationship between gut microbiota and impulsive behaviours remains largely unexplored. To address this knowledge gap, the present study aims to explore the associations between faecal microbiota composition with trait and behavioural impulsivity, in a subcohort of the PREDIMED-Plus trial, including older adults presenting overweight/obesity. Fecal samples (n = 231) were profiled for their microbiota composition using 16 S rRNA amplicon sequencing and impulsivity was determined through four different assessments. Adherence to different dietary patterns was estimated through questionnaires. Beta diversity analyses showed a significant association with the Conner's Performance Test (CPT) in multivariate-adjusted models, and, in total, 13 bacterial genera associated with CPT. Erysipelotrichaceae UCG 003 showed the highest association with CPT and known butyrate producers such as Butyricicoccus spp., Roseburia spp., and Eubacterium hallii were among the identified bacteria. The bacteria Lachnospiraceae UCG 001, Anaerostipes and Blautia were associated with CPT and also the adherence to healthy and unhealthy plant-based diets. In addition, functional analysis showed a significant negative association between the CPT and the glucuronate and galacturonate metabolic pathways. From the other impulsivity assessments, two more associations were identified, for the genus Phascolarctobacterium with the Stroop test, and the genus Lachnospiraceae GAG 54 with the positive urgency subscore of UPPS-P Impulsive Behaviour Scale. Overall, our findings suggest potential links between the faecal microbiota composition and function with behavioural impulsive inattention as determined by the CPT.
Collapse
Affiliation(s)
- Prokopis Konstanti
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Carlos Gómez-Martínez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Unitat de Nutrició Humana, Reus, Spain
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Jananee Muralidharan
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Unitat de Nutrició Humana, Reus, Spain
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Dolores Corella
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Montserrat Fitó
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Endocrinology, Institut d`Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Francisco J Tinahones
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Department of Endocrinology and Nutrition, Virgen de La Victoria Hospital, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, University of Málaga, Málaga, Spain
| | - Laura Torres-Collado
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Oscar Coltell
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Department of Computer Languages and Systems, University Jaume I, Castellón, Spain
| | - Olga Castañer
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Isabel Moreno-Indias
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Department of Endocrinology and Nutrition, Virgen de La Victoria Hospital, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, University of Málaga, Málaga, Spain
| | - Alessandro Atzeni
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Unitat de Nutrició Humana, Reus, Spain
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Miguel Ruiz-Canela
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, Pamplona, Spain
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Unitat de Nutrició Humana, Reus, Spain
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Song X, Wang Z, Xia Y, Chen Z, Wang G, Yang Y, Zhu B, Ai L, Xu H, Wang C. A Cross Talking between the Gut Microbiota and Metabolites of Participants in a Confined Environment. Nutrients 2024; 16:1761. [PMID: 38892694 PMCID: PMC11175105 DOI: 10.3390/nu16111761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Certain workplaces, like deep-sea voyages, subject workers to chronic psychological stress and circadian rhythm disorders due to confined environments and frequent shifts. In this study, participants lived in a strictly controlled confined environment, and we analyzed the effects of a confined environment on gut microbiota and metabolites. The results showed that living in confined environments can significantly alter both the gut microbiota and the gut metabolome, particularly affecting lipid metabolism pathways like glycerophospholipid metabolism. There was a significant reduction in the abundance of Faecalibacterium and Bacteroides, while Blautia, Bifidobacterium, and Collinsella showed significant increases. An association analysis revealed a strong correlation between changes in the gut microbiota and the metabolome. Four upregulated lipid metabolites may serve as biomarkers for damage induced by confined environments, and certain gut microbiota alterations, such as those involving Faecalibacterium and Bacteroides, could be potential psychobiotics or therapeutic targets for enhancing mental health in a confined environment.
Collapse
Affiliation(s)
- Xin Song
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.S.); (Y.X.); (G.W.); (Y.Y.); (L.A.)
| | - Ziying Wang
- Naval Medical Center, Naval Medical University, Shanghai 200433, China;
| | - Yongjun Xia
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.S.); (Y.X.); (G.W.); (Y.Y.); (L.A.)
| | - Zheng Chen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Z.C.); (B.Z.)
| | - Guangqiang Wang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.S.); (Y.X.); (G.W.); (Y.Y.); (L.A.)
| | - Yijin Yang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.S.); (Y.X.); (G.W.); (Y.Y.); (L.A.)
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Z.C.); (B.Z.)
| | - Lianzhong Ai
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.S.); (Y.X.); (G.W.); (Y.Y.); (L.A.)
| | - Haodan Xu
- Naval Medical Center, Naval Medical University, Shanghai 200433, China;
| | - Chuan Wang
- Naval Medical Center, Naval Medical University, Shanghai 200433, China;
| |
Collapse
|
5
|
Yang F, Lan Z, Chen H, He R. Causal associations between human gut microbiota and hemorrhoidal disease: A two-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37599. [PMID: 38552035 PMCID: PMC10977532 DOI: 10.1097/md.0000000000037599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
Hemorrhoidal disease (HEM) is a common condition affecting a significant proportion of the population. However, the causal relationship between the gut microbiota and hemorrhoids remains unclear. In this study, we employed a Mendelian randomization (MR) approach to investigate the potential associations between them. In this study, the exposure factor was determined by selecting summary statistics data from a large-scale gut microbiome whole-genome association study conducted by the MiBioGen Consortium, which involved a sample size of 18,340 individuals. The disease outcome data consisted of 218,920 cases of HEM and 725,213 controls of European ancestry obtained from the European Bioinformatics Institute dataset. Two-sample MR analyses were performed to assess the causalities between gut microbiota and hemorrhoids using various methods, including inverse-variance weighting, MR-Egger regression, MR Pleiotropy Residual Sum and Outlier (MR-PRESSO), simple mode, and weighted median. Reverse MR analyses were performed to examine reverse causal association. Our findings suggest phylum Cyanobacteria (OR = 0.947, 95% CI: 0.915-0.980, P = 2.10 × 10 - 3), genus Phascolarctobacterium (OR = 0.960, 95% CI: 0.924-0.997, P = .034) and family FamilyXI (OR = 0.974, 95% CI: 0.952-0.997, P = .027) have potentially protective causal effects on the risk of HEM, while genus Ruminococcaceae_UCG_002 (OR = 1.036, 95% CI: 1.001-1.071, P = .042), family Peptostreptococcaceae (OR = 1.042, 95% CI: 1.004-1.082, P = .029), genus Oscillospira (OR = 1.048, 95% CI: 1.005-1.091, P = .026), family Alcaligenaceae (OR = 1.048, 95% CI: 1.005-1.091, P = .036) and order Burkholderiales (OR = 1.074, 95% CI: 1.020-1.130, P = 6.50 × 10-3) have opposite effect. However, there was a reverse causal relationship between HEM and genus Oscillospira (OR = 1.140, 95% CI: 1.002-1.295, P = .046) This is the first MR study to explore the causalities between specific gut microbiota taxa and hemorrhoidal disease, which may offer valuable insights for future clinical interventions for hemorrhoidal disease.
Collapse
Affiliation(s)
- Fang Yang
- Anorectal Department of Traditional Chinese Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhihua Lan
- Department of Pathology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Huabing Chen
- Anorectal Department of Traditional Chinese Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Rongfang He
- Department of Pathology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
6
|
Campisi M, Cannella L, Pavanello S. Cosmic chronometers: Is spaceflight a catalyst for biological ageing? Ageing Res Rev 2024; 95:102227. [PMID: 38346506 DOI: 10.1016/j.arr.2024.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/05/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Astronauts returning from space missions often exhibit health issues mirroring age-related conditions, suggesting spaceflight as a potential driver of biological ageing and age-related diseases. To unravel the underlying mechanisms of these conditions, this comprehensive review explores the impact of the space "exposome" on the twelve hallmarks of ageing. Through a meticulous analysis encompassing both space environments and terrestrial analogs, we aim to decipher how different conditions influence ageing hallmarks. Utilizing PubMed, we identified 189 studies and 60 meet screening criteria. Research on biological ageing in space has focused on genomic instability, chronic inflammation, and deregulated nutrient sensing. Spaceflight consistently induces genomic instability, linked to prolonged exposure to ionizing radiation, triggers pro-inflammatory and immune alterations, resembling conditions in isolated simulations. Nutrient sensing pathways reveal increased systemic insulin-like growth-factor-1. Microbiome studies indicate imbalances favoring opportunistic species during spaceflight. Telomere dynamics present intriguing patterns, with lengthening during missions and rapid shortening upon return. Despite a pro-ageing trend, some protective mechanisms emerge. Countermeasures, encompassing dietary adjustments, prebiotics, postbiotics, symbiotics, tailored exercises, meditation, and anti-inflammatory supplements, exhibit potential. Spaceflight's impact on ageing is intricate, with diverse findings challenging established beliefs. Multidisciplinary studies provide guidance for future research in this field.
Collapse
Affiliation(s)
- Manuela Campisi
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Luana Cannella
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy.
| |
Collapse
|
7
|
Cai Y, Gu H, Kenney T. Rank selection for non-negative matrix factorization. Stat Med 2023; 42:5676-5693. [PMID: 37848186 DOI: 10.1002/sim.9934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Non-Negative Matrix Factorization (NMF) is a widely used dimension reduction method that factorizes a non-negative data matrix into two lower dimensional non-negative matrices: one is the basis or feature matrix which consists of the variables and the other is the coefficients matrix which is the projections of data points to the new basis. The features can be interpreted as sub-structures of the data. The number of sub-structures in the feature matrix is also called the rank. This parameter controls the model complexity and is the only tuning parameter for the NMF model. An appropriate rank will extract the key latent features while minimizing the noise from the original data. However due to the large amount of optimization error always present in the NMF computation, the rank selection has been a difficult problem. We develop a novel rank selection method based on hypothesis testing, using a deconvolved bootstrap distribution to assess the significance level accurately. Through simulations, we compare our method with a rank selection method based on hypothesis testing using bootstrap distribution without deconvolution and a method based on cross-validation; we demonstrate that our method is not only accurate at estimating the true ranks for NMF, especially when the features are hard to distinguish, but also efficient at computation. When applied to real microbiome data (eg, OTU data and functional metagenomic data), our method also shows the ability to extract interpretable subcommunities in the data.
Collapse
Affiliation(s)
- Yun Cai
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada
| | - Hong Gu
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada
| | - Toby Kenney
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada
| |
Collapse
|
8
|
Klos B, Steinbach C, Ketel J, Lambert C, Penders J, Doré J, Enck P, Mack I. Effects of isolation and confinement on gastrointestinal microbiota-a systematic review. Front Nutr 2023; 10:1214016. [PMID: 37492598 PMCID: PMC10364611 DOI: 10.3389/fnut.2023.1214016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Purpose The gastrointestinal (GI) microbiota is a complex and dynamic ecosystem whose composition and function are influenced by many internal and external factors. Overall, the individual GI microbiota composition appears to be rather stable but can be influenced by extreme shifts in environmental exposures. To date, there is no systematic literature review that examines the effects of extreme environmental conditions, such as strict isolation and confinement, on the GI microbiota. Methods We conducted a systematic review to examine the effects of isolated and confined environments on the human GI microbiota. The literature search was conducted according to PRISMA criteria using PubMed, Web of Science and Cochrane Library. Relevant studies were identified based on exposure to isolated and confined environments, generally being also antigen-limited, for a minimum of 28 days and classified according to the microbiota analysis method (cultivation- or molecular based approaches) and the isolation habitat (space, space- or microgravity simulation such as MARS-500 or natural isolation such as Antarctica). Microbial shifts in abundance, alpha diversity and community structure in response to isolation were assessed. Results Regardless of the study habitat, inconsistent shifts in abundance of 40 different genera, mainly in the phylum Bacillota (formerly Firmicutes) were reported. Overall, the heterogeneity of studies was high. Reducing heterogeneity was neither possible by differentiating the microbiota analysis methods nor by subgrouping according to the isolation habitat. Alpha diversity evolved non-specifically, whereas the microbial community structure remained dissimilar despite partial convergence. The GI ecosystem returned to baseline levels following exposure, showing resilience irrespective of the experiment length. Conclusion An isolated and confined environment has a considerable impact on the GI microbiota composition in terms of diversity and relative abundances of dominant taxa. However, due to a limited number of studies with rather small sample sizes, it is important to approach an in-depth conclusion with caution, and results should be considered as a preliminary trend. The risk of dysbiosis and associated diseases should be considered when planning future projects in extreme environments. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022357589.
Collapse
Affiliation(s)
- Bea Klos
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Christina Steinbach
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Jasmin Ketel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Claude Lambert
- CIRI–Immunology Lab University Hospital, Saint-Étienne, France
- LCOMS/ENOSIS Université de Lorraine, Metz, France
| | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center, CAPHRI Care and Public Health Research Institute, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center, School of Nutrition and Translational Research in Metabolism, Maastricht, Netherlands
| | - Joël Doré
- UMR Micalis Institut, INRA, Paris-Saclay University, Jouy-En-Josas, France
| | - Paul Enck
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Zheng H, Sun Y, Zeng Y, Zheng T, Jia F, Xu P, Xu Y, Cao Y, He K, Yang Y. Effects of Four Extraction Methods on Structure and In Vitro Fermentation Characteristics of Soluble Dietary Fiber from Rape Bee Pollen. Molecules 2023; 28:4800. [PMID: 37375355 DOI: 10.3390/molecules28124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, soluble dietary fibers (SDFs) were extracted from rape bee pollen using four methods including acid extraction (AC), alkali extraction (AL), cellulase extraction (CL) and complex enzyme extraction (CE). The effects of different extraction methods on the structure of SDFs and in vitro fermentation characteristics were further investigated. The results showed that the four extraction methods significantly affected the monosaccharide composition molar ratio, molecular weight, surface microstructure and phenolic compounds content, but showed little effect on the typical functional groups and crystal structure. In addition, all SDFs decreased the Firmicutes/Bacteroidota ratio, promoted the growth of beneficial bacteria such as Bacteroides, Parabacteroides and Phascolarctobacterium, inhibited the growth of pathogenic bacteria such as Escherichia-Shigella, and increased the total short-chain fatty acids (SCFAs) concentrations by 1.63-2.45 times, suggesting that the bee pollen SDFs had a positive regulation on gut microbiota. Notably, the SDF obtained by CE exhibited the largest molecular weight, a relatively loose structure, higher extraction yield and phenolic compounds content and the highest SCFA concentration. Overall, our results indicated that CE was an appropriate extraction method of high-quality bee pollen SDF.
Collapse
Affiliation(s)
- Hui Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Yan Sun
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Yiqiong Zeng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Tao Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Fan Jia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Pan Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Yao Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Yuxin Cao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua 418000, China
| | - Yong Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| |
Collapse
|
10
|
Zhu J, Zhu Y, Song G. Effect of Probiotic Yogurt Supplementation( Bifidobacterium animalis ssp. lactis BB-12) on Gut Microbiota of Female Taekwondo Athletes and Its Relationship with Exercise-Related Psychological Fatigue. Microorganisms 2023; 11:1403. [PMID: 37374905 DOI: 10.3390/microorganisms11061403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVE The gut microbiota plays a critical role in regulating human health and athletic performance. Probiotic supplementation has been shown to modulate gut microbiota composition and improve exercise performance. This study aimed to investigate the effect of probiotic yogurt supplementation on gut microbiota and its relationship with exercise-related psychological fatigue in female taekwondo athletes. METHODS Twenty female taekwondo athletes were randomly assigned to either a dietary intervention group (DK) or a control group (CK). The athletes' exercise-related psychological fatigue was measured using the Athlete Burnout Questionnaire (ABQ) before and after an 8-week intervention. High-throughput sequencing was used to profile the gut microbiota, and functional prediction of the microbial community was performed. The effect of the dietary intervention on the athletes' exercise-related psychological fatigue clearance rate and its relationship with the gut microbiota were explored. RESULTS (1) The probiotic supplementation of Bifidobacterium animalis ssp. lactis BB-12 for 8 weeks significantly increased the ABQ scores of the DK group compared to the CK group (p < 0.05). (2) The abundances of Bifidobacterium, Bacteroides, Lachnospiraceae, family _Lactobacillaceae, and genus _Lactobacillus were significantly higher in the DK group than in the CK group after probiotic supplementation, while Escherichia coli was significantly lower in the DK group than in the CK group. (3) The ABQa scores were positively correlated with Proteus; ABQb scores were positively correlated with Streptococcus and Enterococcus; and ABQc scores were positively correlated with Klebsiella, Bacteroides, and Streptomyces. (4) The DK group had significantly higher levels of L-arginine biosynthesis I (via L-ornithine), fatty acid biosynthesis and oxidation, and L-isoleucine biosynthesis III pathways compared to the CK group. Tyrosine degradation I (via 2,3-dihydroxyphenylpropionate) was significantly lower in the DK group than in the CK group. CONCLUSIONS Probiotic yogurt supplementation of Bifidobacterium animalis ssp. lactis can promote the clearance of exercise-related psychological fatigue in female taekwondo athletes by upregulating beneficial gut microbiota, inhibiting harmful gut microbiota, and regulating relevant metabolic pathways.
Collapse
Affiliation(s)
- Jiang Zhu
- Southwest University Hospital, Chongqing, 400715, China
| | - Yuping Zhu
- College of Physical Education, Southwest University, Chongqing 200715, China
| | - Gang Song
- College of Physical Education, Southwest University, Chongqing 200715, China
| |
Collapse
|
11
|
Li Y, Liu Z, Luo G, Lan H, Chen P, Du R, Jing G, Liu L, Cui X, Li Y, Han Y, Xu J, Zhu H, Ling S, Li Y. Effects of 60 days of 6° head-down bed rest on the composition and function of the human gut microbiota. iScience 2023; 26:106615. [PMID: 37250329 PMCID: PMC10214410 DOI: 10.1016/j.isci.2023.106615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/28/2023] [Accepted: 04/04/2023] [Indexed: 05/31/2023] Open
Abstract
Spaceflight is rigorous and dangerous environment which can negatively affect astronauts' health and the entire mission. The 60 days of 6° head-down bed rest (HDBR) experiment provided us with an opportunity to trace the change of gut microbiota under simulated microgravity. The gut microbiota of volunteers was analyzed and characterized by 16S rRNA gene sequencing and metagenomic sequencing. Our results showed that the composition and function of the volunteers' gut microbiota were markedly was affected by 60 days of 6° HDBR. We further confirmed the species and diversity fluctuations. Resistance and virulence genes in the gut microbiota were also affected by 60 days of 6° HDBR, but the species attributions remained stable. The human gut microbiota affected by 60 days of 6° HDBR which was partially consistent with the effect of spaceflight, this implied that HDBR was a simulation of how spaceflight affects the human gut microbiota.
Collapse
Affiliation(s)
- Yixuan Li
- School of Life Sciences, Ludong University, Yantai, China
- Yantai Hi-tech Industrial Development Zone Center for Disease Control and Prevention, Yantai, China
| | - Zizhong Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Gui Luo
- Department of Rheumatology, Chinese PLA General Hospital, Beijing, China
| | - Haiyun Lan
- Key Lab of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Pu Chen
- Key Lab of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Ruikai Du
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Gongchao Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Lu Liu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Xiaohan Cui
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Yongzhi Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai, China
| | - Shukuan Ling
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325000, P.R. China
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
12
|
Pesantes N, Barberá A, Pérez-Rocher B, Artacho A, Vargas SL, Moya A, Ruiz-Ruiz S. Influence of mental health medication on microbiota in the elderly population in the Valencian region. Front Microbiol 2023; 14:1094071. [PMID: 37007475 PMCID: PMC10062206 DOI: 10.3389/fmicb.2023.1094071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
Spain has an aging population; 19.93% of the Spanish population is over 65. Aging is accompanied by several health issues, including mental health disorders and changes in the gut microbiota. The gut-brain axis is a bidirectional network linking the central nervous system with gastrointestinal tract functions, and therefore, the gut microbiota can influence an individual’s mental health. Furthermore, aging-related physiological changes affect the gut microbiota, with differences in taxa and their associated metabolic functions between younger and older people. Here, we took a case–control approach to study the interplay between gut microbiota and mental health of elderly people. Fecal and saliva samples from 101 healthy volunteers over 65 were collected, of which 28 (EE|MH group) reported using antidepressants or medication for anxiety or insomnia at the time of sampling. The rest of the volunteers (EE|NOMH group) were the control group. 16S rRNA gene sequencing and metagenomic sequencing were applied to determine the differences between intestinal and oral microbiota. Significant differences in genera were found, specifically eight in the gut microbiota, and five in the oral microbiota. Functional analysis of fecal samples showed differences in five orthologous genes related to tryptophan metabolism, the precursor of serotonin and melatonin, and in six categories related to serine metabolism, a precursor of tryptophan. Moreover, we found 29 metabolic pathways with significant inter-group differences, including pathways regulating longevity, the dopaminergic synapse, the serotoninergic synapse, and two amino acids.
Collapse
Affiliation(s)
- Nicole Pesantes
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
| | - Ana Barberá
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
| | - Benjamí Pérez-Rocher
- Instituto de Biología Integrativa de Sistemas (I2Sysbio), CSIC-Universitat de València, València, Spain
| | - Alejandro Artacho
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
| | - Sergio Luís Vargas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrés Moya
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
- Instituto de Biología Integrativa de Sistemas (I2Sysbio), CSIC-Universitat de València, València, Spain
| | - Susana Ruiz-Ruiz
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
- *Correspondence: Susana Ruiz-Ruiz,
| |
Collapse
|
13
|
Hu W, Di Q, Liang T, Zhou N, Chen H, Zeng Z, Luo Y, Shaker M. Effects of in vitro simulated digestion and fecal fermentation of polysaccharides from straw mushroom (Volvariella volvacea) on its physicochemical properties and human gut microbiota. Int J Biol Macromol 2023; 239:124188. [PMID: 36996950 DOI: 10.1016/j.ijbiomac.2023.124188] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Herein, the fermentation and digestion behavior of Volvariella volvacea polysaccharide (VVP) were examined through the in vitro simulation experiment. The results revealed that succeeding the simulated salivary gastrointestinal digestion, the molecular weight of VVP was reduced by only 8.9 %. In addition, the reducing sugar, uronic acid, monosaccharide composition and Fourier transform infrared spectroscopy characteristics of VVP did not change significantly, which indicate that saliva-gastrointestinal could not digest VVP. However, 48 h of fecal fermentation of VVP dramatically reduced its molecular weight by 40.4 %. Furthermore, the molar ratios of the monosaccharide composition altered considerably due to the degradation of VVP by microorganisms and the metabolysis into different short-chain fatty acids (SCFAs). Meanwhile, the VVP also raised the proportion of Bacteroidetes to Firmicutes and promoted the proliferation of some beneficial bacteria including Bacteroides and Phascolarctobacterium, whereas it inhibited the growth of unfavorable bacteria such as Escherichia-shigella. Therefore, VVP has the potential to have a positive influence on health and hinder diseases by improving the intestinal microbial environment. These findings provide a theoretical foundation to further develop Volvariella volvacea as a healthy functional food.
Collapse
Affiliation(s)
- Wei Hu
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Qing Di
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Tao Liang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Na Zhou
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Hongxia Chen
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Zhihong Zeng
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China.
| | - Yang Luo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Majid Shaker
- Chongqing 2D Materials Institute, Chongqing 400714, China; Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, Erlangen 91058, Germany
| |
Collapse
|
14
|
Tian J, Wang X, Zhang X, Chen X, Dong M, Rui X, Zhang Q, Jiang M, Li W. Artificial simulated saliva, gastric and intestinal digestion and fermentation in vitro by human gut microbiota of intrapolysaccharide from Paecilomyces cicadae TJJ1213. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Chen Z, Wang Z, Li D, Zhu B, Xia Y, Wang G, Ai L, Zhang C, Wang C. The gut microbiota as a target to improve health conditions in a confined environment. Front Microbiol 2022; 13:1067756. [PMID: 36601399 PMCID: PMC9806127 DOI: 10.3389/fmicb.2022.1067756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Confined environments increase psychological stress and lead to health problems such as abnormal mood and rhythm disruption. However, the mechanism by which confined environments impact health has remained unclear. Significant correlations have been reported between psychological stress and changes in gut microbiota. Therefore, we investigated the effect of a confined environment on the composition of the gut microbiota by 16s rDNA high-throughput sequencing, and analyzed the correlation between gut microbiota and health indicators such as uric acid (UA), sleep, and mood. We found that the gut microbiota of the subjects clustered into two enterotypes (Bi and Bla), and that the groups differed significantly. There were notable differences in the abundances of genera such as Bifidobacterium, Dorea, Ruminococcus_torques_group, Ruminococcus_gnavus_group, Klebsiella, and UCG-002 (p < 0.05). A confined environment significantly impacted the subjects' health indicators. We also observed differences in how the subjects of the two enterotypes adapted to the confined environment. The Bi group showed no significant differences in health indicators before and after confinement; however, the Bla group experienced several health problems after confinement, such as increased UA, anxiety, and constipation, and lack of sleep. Redundancy analysis (RDA) showed that UA, RBC, mood, and other health problems were significantly correlated with the structure of the gut microbiota. We concluded that genera such as UCG-002, Ruminococcus, CAG352, and Ruminococcus_torques_group increased vulnerability to confined environments, resulting in abnormal health conditions. We found that the differences in the adaptability of individuals to confined environments were closely related to the composition of their gut microbiota.
Collapse
Affiliation(s)
- Zheng Chen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - ZiYing Wang
- Navy Special Medical Center, Naval Medical University, Shanghai, China
| | - Dan Li
- Navy Special Medical Center, Naval Medical University, Shanghai, China
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yongjun Xia
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Chunhong Zhang
- Navy Special Medical Center, Naval Medical University, Shanghai, China,*Correspondence: Chunhong Zhang,
| | - Chuan Wang
- Navy Special Medical Center, Naval Medical University, Shanghai, China,Chuan Wang,
| |
Collapse
|
16
|
Chaucheyras-Durand F, Sacy A, Karges K, Apper E. Gastro-Intestinal Microbiota in Equines and Its Role in Health and Disease: The Black Box Opens. Microorganisms 2022; 10:microorganisms10122517. [PMID: 36557769 PMCID: PMC9783266 DOI: 10.3390/microorganisms10122517] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Horses are large non-ruminant herbivores and rely on microbial fermentation for energy, with more than half of their maintenance energy requirement coming from microbial fermentation occurring in their enlarged caecum and colon. To achieve that, the gastro-intestinal tract (GIT) of horses harbors a broad range of various microorganisms, differing in each GIT segment, which are essential for efficient utilization of feed, especially to use nutrients that are not or little degraded by endogenous enzymes. In addition, like in other animal species, the GIT microbiota is in permanent interplay with the host's cells and is involved in a lot of functions among which inflammation, immune homeostasis, and energy metabolism. As for other animals and humans, the horse gut microbiome is sensitive to diet, especially consumption of starch, fiber, and fat. Age, breeds, stress during competitions, transportation, and exercise may also impact the microbiome. Because of its size and its complexity, the equine GIT microbiota is prone to perturbations caused by external or internal stressors that may result in digestive diseases like gastric ulcer, diarrhea, colic, or colitis, and that are thought to be linked with systemic diseases like laminitis, equine metabolic syndrome or obesity. Thus, in this review we aim at understanding the common core microbiome -in terms of structure and function- in each segment of the GIT, as well as identifying potential microbial biomarkers of health or disease which are crucial to anticipate putative perturbations, optimize global practices and develop adapted nutritional strategies and personalized nutrition.
Collapse
Affiliation(s)
- Frédérique Chaucheyras-Durand
- Lallemand SAS, 31702 Blagnac, France
- UMR MEDIS, INRAE, Université Clermont-Auvergne, 63122 Saint-Genès Champanelle, France
| | | | - Kip Karges
- Lallemand Specialities Inc., Milwaukee, WI 53218, USA
| | | |
Collapse
|
17
|
Effects of Two Kinds of Extracts of Cistanche deserticola on Intestinal Microbiota and Its Metabolism. Foods 2022; 11:foods11182897. [PMID: 36141024 PMCID: PMC9498788 DOI: 10.3390/foods11182897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Cistanche deserticola belongs to the Liedang family. Known as "desert ginseng", it has high medicinal value and plays important roles in endocrine regulation, neuroprotection, immune regulation, and other processes. Some studies have shown that single substances such as polysaccharides and phenylethanolside can affect intestinal microbiota, but few studies have studied the synergistic effect of various components in Cistanche deserticola extracts on intestinal microbiota. Therefore, in this study, through an in vitro digestion model (Changdao Moni, CDMN) combined with 16S rRNA gene amplification sequencing technology and untargeted metabolomics technology, it was found that the two extracts all had significant effects on the enteric cavity and mucosal flora. Both extracts inhibited Bacteroides in the intestinal cavity and Parabacteroides and Ruminococcus 2 in the intestinal mucosa and promoted Bifidobacterium and Prevotella in the intestinal cavity and Megasphaera in the intestinal mucosa. The aqueous extract also inhibited Phascolarctobacterium. Both extracts also significantly increased the production of short-chain fatty acids, especially butyrate. The intake of extract had significant effects on the metabolic pathways related to amino acids and lipids. Indoles were upregulated by the aqueous extract but downregulated by the alcohol extract. In addition, the extract also had a significant effect on the hemolytic phosphorus esters. In conclusion, the two kinds of extracts have different effects on intestinal microbiota and its metabolism. This study provides guiding significance for the edibility and food development of Cistanche deserticola.
Collapse
|
18
|
Kim H, Jeon S, Kim J, Seol D, Jo J, Cho S, Kim H. Investigation of memory-enhancing effects of Streptococcus thermophilus EG007 in mice and elucidating molecular and metagenomic characteristics using nanopore sequencing. Sci Rep 2022; 12:13274. [PMID: 35918353 PMCID: PMC9346115 DOI: 10.1038/s41598-022-14837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Over the past decades, accumulating evidences have highlighted the gut microbiota as a key player in the brain functioning via microbiota–gut–brain axis, and accordingly, the beneficial role of several probiotic strains in cognitive ability also have been actively investigated. However, the majority of the research have demonstrated the effects against age-related cognitive decline or neurological disease. To this end, we aimed to investigate lactic acid bacteria strains having beneficial effects on the cognitive function of healthy young mice and elucidate underlying characteristics by carrying out nanopore sequencing-based genomics and metagenomics analysis. 8-week consumption of Streptococcus thermophilus EG007 demonstrated marked enhancements in behavior tests assessing short-term spatial and non-spatial learning and memory. It was revealed that EG007 possessed genes encoding various metabolites beneficial for a health condition in many aspects, including gamma-aminobutyric acid producing system, a neurotransmitter associated with mood and stress response. Also, by utilizing 16S–23S rRNA operon as a taxonomic marker, we identified more accurate species-level compositional changes in gut microbiota, which was increase of certain species, previously reported to have associations with mental health or down-regulation of inflammation or infection-related species. Moreover, correlation analysis revealed that the EG007-mediated altered microbiota had a significant correlation with the memory traits.
Collapse
Affiliation(s)
- Hyaekang Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soomin Jeon
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jina Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Donghyeok Seol
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,eGnome, Inc, Seoul, Republic of Korea
| | - JinChul Jo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seoae Cho
- eGnome, Inc, Seoul, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. .,eGnome, Inc, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Goya-Jorge E, Gonza I, Bondue P, Douny C, Taminiau B, Daube G, Scippo ML, Delcenserie V. Human Adult Microbiota in a Static Colon Model: AhR Transcriptional Activity at the Crossroads of Host–Microbe Interaction. Foods 2022; 11:foods11131946. [PMID: 35804761 PMCID: PMC9265634 DOI: 10.3390/foods11131946] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Functional symbiotic intestinal microbiota regulates immune defense and the metabolic processing of xenobiotics in the host. The aryl hydrocarbon receptor (AhR) is one of the transcription factors mediating host–microbe interaction. An in vitro static simulation of the human colon was used in this work to analyze the evolution of bacterial populations, the microbial metabolic output, and the potential induction of AhR transcriptional activity in healthy gut ecosystems. Fifteen target taxa were explored by qPCR, and the metabolic content was chromatographically profiled using SPME-GC-MS and UPLC-FLD to quantify short-chain fatty acids (SCFA) and biogenic amines, respectively. Over 72 h of fermentation, the microbiota and most produced metabolites remained stable. Fermentation supernatant induced AhR transcription in two of the three reporter gene cell lines (T47D, HepG2, HT29) evaluated. Mammary and intestinal cells were more sensitive to microbiota metabolic production, which showed greater AhR agonism than the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) used as a positive control. Some of the SCFA and biogenic amines identified could crucially contribute to the potent AhR induction of the fermentation products. As a fundamental pathway mediating human intestinal homeostasis and as a sensor for several microbial metabolites, AhR activation might be a useful endpoint to include in studies of the gut microbiota.
Collapse
Affiliation(s)
- Elizabeth Goya-Jorge
- Laboratory of Food Quality Management, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (E.G.-J.); (I.G.)
| | - Irma Gonza
- Laboratory of Food Quality Management, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (E.G.-J.); (I.G.)
| | - Pauline Bondue
- Research & Development, ORTIS S.A., Hinter der Heck 46, 4750 Elsenborn, Belgium;
| | - Caroline Douny
- Laboratory of Food Analysis, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (C.D.); (M.-L.S.)
| | - Bernard Taminiau
- Laboratory of Microbiology, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 180 (B42), 4000 Liege, Belgium; (B.T.); (G.D.)
| | - Georges Daube
- Laboratory of Microbiology, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 180 (B42), 4000 Liege, Belgium; (B.T.); (G.D.)
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (C.D.); (M.-L.S.)
| | - Véronique Delcenserie
- Laboratory of Food Quality Management, Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, Av. de Cureghem 10 (B43b), 4000 Liege, Belgium; (E.G.-J.); (I.G.)
- Correspondence: ; Tel.: +32-4-366-51-24
| |
Collapse
|
20
|
de Vries LP, van de Weijer MP, Bartels M. The human physiology of well-being: A systematic review on the association between neurotransmitters, hormones, inflammatory markers, the microbiome and well-being. Neurosci Biobehav Rev 2022; 139:104733. [PMID: 35697161 DOI: 10.1016/j.neubiorev.2022.104733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/09/2022] [Accepted: 06/07/2022] [Indexed: 02/08/2023]
Abstract
To understand the pathways through which well-being contributes to health, we performed a systematic review according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines on the association between well-being and physiological markers in four categories, neurotransmitters, hormones, inflammatory markers, and microbiome. We identified 91 studies. Neurotransmitter studies (knumber of studies=9) reported only a possible positive association between serotonin and well-being. For the hormone studies (k = 48), a lower momentary cortisol level was related to higher well-being (meta-analytic r = -0.06), and a steeper diurnal slope of cortisol levels. Inflammatory marker studies (k = 36) reported negative or non-significant relations with well-being, with meta-analytic estimates of respectively r = -0.07 and r = -0.05 for C-reactive protein and interleukin-6. Microbiome studies (k = 4) reported inconsistent associations between different bacteria abundance and well-being. The results indicate possible but small roles of serotonin, cortisol, and inflammatory markers in explaining differences in well-being. The inconsistent and limited results for other markers and microbiome require further research. Future directions for a complete picture of the physiological factors underlying well-being are proposed.
Collapse
Affiliation(s)
- Lianne P de Vries
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, the Netherlands.
| | - Margot P van de Weijer
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Li F, Feng Y, Liu H, Kong D, Hsueh CY, Shi X, Wu Q, Li W, Wang J, Zhang Y, Dai C. Gut Microbiome and Metabolome Changes in Mice With Acute Vestibular Deficit. Front Cell Infect Microbiol 2022; 12:821780. [PMID: 35444956 PMCID: PMC9013912 DOI: 10.3389/fcimb.2022.821780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Vestibular deficit is a very common disorder in clinical practice and is characterized by vertigo, spontaneous nystagmus, and autonomic nervous symptoms, including nausea, vomiting, and sweating. In addition, the comorbidity of vestibular deficit and anxiety has long been an integral component of the medical literature. Previous studies have suggested that the mechanisms underlying this comorbidity involved overlap of vestibular and cerebellar networks. Emerging evidence has shown that the microbiota–gut–brain axis plays a key role in the regulation of affective disorders. Thus, we hypothesized that the gut microbiota may be involved in the comorbidity of vestibular deficit and anxiety. To verify this, we constructed a unilateral labyrinthectomy mouse model to simulate vestibular deficit. Then, 16S rRNA gene sequencing and liquid chromatography–mass spectrometry (LC-MS) were used to analyze the microbiome and metabolome of the cecal samples collected from mice in the unilateral labyrinthectomy, sham surgery, and control groups. Notably, unilateral labyrinthectomy shaped the composition of the mouse gut microbiome, resulting in increased abundance of Lachnospiraceae NK4A136 group, Odoribacter and Roseburia and decreased abundance of Prevotella and Parasutterella at the genus level. Tax4Fun functional prediction indicated a decrease in tryptophan metabolism in mice in the unilateral labyrinthectomy group. Moreover, functional correlation of changes in gut microbes and metabolites between different groups showed that the oleamide level was negatively correlated with Odoribacter abundance (r = -0.89, p = 0.0002). The butyric acid level was positively correlated with Parasutterella abundance (r = 0.85, p = 0.0010). The propanoate level was negatively correlated with Prevotella abundance (r = -0.81, p = 0.0020). The 20-HETE level was positively correlated with Parasutterella abundance (r = 0.84, p = 0.0013). The altered microbes and metabolites were closely related to the pathogenesis of affective disorders. Our results not only offer novel insights into the vestibular deficit comorbid with anxiety but also build an important basis for future research on this etiology.
Collapse
Affiliation(s)
- Feitian Li
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Yisi Feng
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Hongyan Liu
- Department of Otolaryngology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dedi Kong
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Chi-Yao Hsueh
- Department of Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Xunbei Shi
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Qianru Wu
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Wei Li
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Yibo Zhang
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Chunfu Dai
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- *Correspondence: Chunfu Dai,
| |
Collapse
|
22
|
Yuan X, Chen B, Duan Z, Xia Z, Ding Y, Chen T, Liu H, Wang B, Yang B, Wang X, Liu S, Zhou JY, Liu Y, Wang Q, Shen Z, Xiao J, Shang H, Liu W, Shi G, Zhu L, Chen Y. Depression and anxiety in patients with active ulcerative colitis: crosstalk of gut microbiota, metabolomics and proteomics. Gut Microbes 2022; 13:1987779. [PMID: 34806521 PMCID: PMC8632339 DOI: 10.1080/19490976.2021.1987779] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Patients with ulcerative colitis (UC) have a high prevalence of mental disorders, such as depression and anxiety. Gut microbiota imbalance and disturbed metabolism have been suggested to play an important role in either UC or mental disorders. However, little is known about their detailed multi-omics characteristics in patients with UC and depression/anxiety. In this prospective observational study, 240 Chinese patients were enrolled, including 129 patients with active UC (69 in Phase 1 and 60 in Phase 2; divided into depression/non-depression or anxiety/non-anxiety groups), 49 patients with depression and anxiety (non-UC), and 62 healthy people. The gut microbiota of all subjects was analyzed using 16S rRNA sequencing. The serum metabolome and proteome of patients with UC in Phase 2 were analyzed using liquid chromatography/mass spectrometry. Associations between multi-omics were evaluated by correlation analysis. The prophylactic effect of candidate metabolites on the depressive-like behavior of mice with colitis was investigated. In total, 58% of patients with active UC had depression, while 50% had anxiety. Compared to patients with UC without depression/anxiety, patients with UC and depression/anxiety had lower fecal microbial community richness and diversity, with more Lactobacillales, Sellimonas, Streptococcus, and Enterococcus but less Prevotella_9 and Lachnospira. Most metabolites (e.g., glycochenodeoxycholate) were increased in the serum, while few metabolites, including 2'-deoxy-D-ribose and L-pipecolic acid, were decreased, accompanied by a general reduction in immunoglobulin proteins. These related bacteria, metabolites, and proteins were highly connected. A prophylactic administration of 2'-deoxy-D-ribose and L-pipecolic acid significantly reduced the depressive-like behaviors in mice with colitis and alleviated the inflammatory cytokine levels in their colon, blood and brain. This study has identified a comprehensive multi-omics network related to depression and anxiety in active UC. It is composed of a certain set of gut microbiota, metabolites, and proteins, which are potential targets for clinical intervention for patients with UC and depression/anxiety.
Collapse
Affiliation(s)
- Xiaomin Yuan
- Department of Colon and Rectum Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P. R. China
| | - Biqing Chen
- Central Laboratory/Research Center of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R.China
| | - Zhenglan Duan
- Department of Colon and Rectum Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P. R. China
| | - Ziqian Xia
- Department of Colon and Rectum Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P. R. China
| | - Yang Ding
- Department of Colon and Rectum Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P. R. China
| | - Tuo Chen
- Department of Colon and Rectum Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P. R. China
| | - Huize Liu
- Department of Colon and Rectum Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P. R. China
| | - Baosheng Wang
- Department of Colon and Rectum Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P. R. China
| | - Bolin Yang
- Department of Colon and Rectum Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P. R. China
| | - Xiaoyong Wang
- Centre of Brain Disease, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R.China
| | - Shijia Liu
- Department of Pharmacy, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R.China
| | - Jin-Yong Zhou
- Central Laboratory/Research Center of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R.China
| | - Yajun Liu
- Department of Gastroenterology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R.China
| | - Qiong Wang
- Laboratory of Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R.China
| | - Zhaofeng Shen
- Department of Science and Technology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R.China
| | - Jun Xiao
- Gastrointestinal Endoscopy Center, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R.China
| | - Hongtao Shang
- Medical Examination Center, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing,Jiangsu, P.R.China
| | - Weiwei Liu
- Medical Examination Center, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing,Jiangsu, P.R.China
| | - Guoping Shi
- Collaborative Innovation Center for Cancer Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R.China,Guoping Shi Collaborative Innovation Center for Cancer Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P. R. China
| | - Lei Zhu
- Department of Gastroenterology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R.China,Lei Zhu Department of Gastroenterology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P. R. China
| | - Yugen Chen
- Department of Colon and Rectum Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P. R. China,CONTACT Yugen Chen Department of Colon and Rectum Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu210029, P. R. China
| |
Collapse
|
23
|
Sun Z, Zhang M, Li M, Bhaskar Y, Zhao J, Ji Y, Cui H, Zhang H, Sun Z. Interactions between Human Gut Microbiome Dynamics and Sub-Optimal Health Symptoms during Seafaring Expeditions. Microbiol Spectr 2022; 10:e0092521. [PMID: 35019672 PMCID: PMC8754112 DOI: 10.1128/spectrum.00925-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
During long ocean voyages, crew members are subject to complex pressures from their living and working environment, which lead to chronic diseases-like sub-optimal health status. Although the association between dysbiotic gut microbiome and chronic diseases has been broadly reported, the correlation between the sub-optimal health status and gut microbiome remains elusive. Here, the health status of 77 crew members (20-35 years old Chinese, male) during a 135-day sea expedition was evaluated using the shotgun metagenomics of stool samples and health questionnaires taken before and after the voyage. We found five core symptoms (e.g., abnormal defecation frequency, insomnia, poor sleep quality, nausea, and overeating) in 55 out of 77 crew members suffering from sub-optimal health status, and this was termed "seafaring syndrome" (SS) in this study. Significant correlation was found between the gut microbiome and SS rather than any single symptom. For example, SS was proven to be associated with individual perturbation in the gut microbiome, and the microbial dynamics between SS and non-SS samples were different during the voyage. Moreover, the microbial signature for SS was identified using the variation of 19 bacterial species and 26 gene families. Furthermore, using a Random Forest model, SS was predicted with high accuracy (84.4%, area under the concentration-time curve = 0.91) based on 28 biomarkers from pre-voyage samples, and the prediction model was further validated by another 30-day voyage cohort (accuracy = 83.3%). The findings in this study provide insights to help us discover potential predictors or even therapeutic targets for dysbiosis-related diseases. IMPORTANCE Systemic and chronic diseases are important health problems today and have been proven to be strongly associated with dysbiotic gut microbiome. Studying the association between the gut microbiome and sub-optimal health status of humans in extreme environments (such as ocean voyages) will give us a better understanding of the interactions between observable health signs and a stable versus dysbiotic gut microbiome states. In this paper, we illustrated that ocean voyages could trigger different symptoms for different crew member cohorts due to individual differences; however, the co-occurrence of high prevalence symptoms indicated widespread perturbation of the gut microbiome. By investigating the microbial signature and gut microbiome dynamics, we demonstrated that such sub-optimal health status can be predicted even before the voyage. We termed this phenomenon as "seafaring syndrome." This study not only provides the potential strategy for health management in extreme environments but also can assist the prediction of other dysbiosis-related diseases.
Collapse
Affiliation(s)
- Zheng Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Single-Cell Center and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, China
| | - Min Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, China
| | - Yogendra Bhaskar
- Single-Cell Center and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Jinshan Zhao
- College of Animal Science, Qingdao University, Qingdao, Shandong, China
| | - Youran Ji
- Medical Department, 971 Hospital, Qingdao, Shandong, China
| | - Hongbing Cui
- Department of Emergency, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, China
| |
Collapse
|
24
|
Ou Y, Belzer C, Smidt H, de Weerth C. Development of the gut microbiota in healthy children in the first ten years of life: associations with internalizing and externalizing behavior. Gut Microbes 2022; 14:2038853. [PMID: 35188073 PMCID: PMC8865293 DOI: 10.1080/19490976.2022.2038853] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Increasing evidence indicates that psychopathological disorders are associated with the gut microbiota. However, data are largely lacking from long-term longitudinal birth cohorts, especially those comprising low-risk healthy individuals. Therefore, this study aims to describe gut microbiota development in healthy children from birth till age 10 years, as well as to investigate potential associations with internalizing and externalizing behavior. RESULTS Fecal microbial composition of participants in an ongoing longitudinal study (N = 193) was analyzed at 1, 3 and 4 months, and 6 and 10 years of age by 16S ribosomal RNA gene sequencing. Based on these data, three clusters were identified in infancy, two of which were predominated by Bifidobacterium. In childhood, four clusters were observed, two of which increased in prevalence with age. One of the childhood clusters, similar to an enterotype, was highly enriched in genus-level taxon Prevotella_9. Breastfeeding had marked associations with microbiota composition up till age 10, implying an extended role in shaping gut microbial ecology. Microbial clusters were not associated with behavior. However, Prevotella_9 in childhood was positively related to mother-reported externalizing behavior at age 10; this was validated in child reports. CONCLUSIONS This study validated previous findings on Bifidobacterium-enriched and -depleted clusters in infancy. Importantly, it also mapped continued development of gut microbiota in middle childhood. Novel associations between gut microbial composition in the first 10 years of life (especially Prevotella_9), and externalizing behavior at age 10 were found. Replications in other cohorts, as well as follow-up assessments, will help determine the significance of these findings.
Collapse
Affiliation(s)
- Yangwenshan Ou
- Department of Agrotechnology and Food Sciences, Laboratory of Microbiology, Wageningen University & Research, P.O. Box 8033, EH Wageningen, 6700Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, P.O. Box 9010, 6500GL Nijmegen, Netherlands
| | - Clara Belzer
- Department of Agrotechnology and Food Sciences, Laboratory of Microbiology, Wageningen University & Research, P.O. Box 8033, EH Wageningen, 6700Netherlands
| | - Hauke Smidt
- Department of Agrotechnology and Food Sciences, Laboratory of Microbiology, Wageningen University & Research, P.O. Box 8033, EH Wageningen, 6700Netherlands
| | - Carolina de Weerth
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, P.O. Box 9010, 6500GL Nijmegen, Netherlands
| |
Collapse
|
25
|
The Role of the Gut Microbiota in the Development and Progression of Major Depressive and Bipolar Disorder. Nutrients 2021; 14:nu14010037. [PMID: 35010912 PMCID: PMC8746924 DOI: 10.3390/nu14010037] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
A growing number of studies in rodents indicate a connection between the intestinal microbiota and the brain, but comprehensive human data is scarce. Here, we systematically reviewed human studies examining the connection between the intestinal microbiota and major depressive and bipolar disorder. In this review we discuss various changes in bacterial abundance, particularly on low taxonomic levels, in terms of a connection with the pathophysiology of major depressive and bipolar disorder, their use as a diagnostic and treatment response parameter, their health-promoting potential, as well as novel adjunctive treatment options. The diversity of the intestinal microbiota is mostly decreased in depressed subjects. A consistent elevation of phylum Actinobacteria, family Bifidobacteriaceae, and genus Bacteroides, and a reduction of family Ruminococcaceae, genus Faecalibacterium, and genus Roseburia was reported. Probiotics containing Bifidobacterium and/or Lactobacillus spp. seemed to improve depressive symptoms, and novel approaches with different probiotics and synbiotics showed promising results. Comparing twin studies, we report here that already with an elevated risk of developing depression, microbial changes towards a “depression-like” microbiota were found. Overall, these findings highlight the importance of the microbiota and the necessity for a better understanding of its changes contributing to depressive symptoms, potentially leading to new approaches to alleviate depressive symptoms via alterations of the gut microbiota.
Collapse
|
26
|
Díaz-Perdigones CM, Muñoz-Garach A, Álvarez-Bermúdez MD, Moreno-Indias I, Tinahones FJ. Gut microbiota of patients with type 2 diabetes and gastrointestinal intolerance to metformin differs in composition and functionality from tolerant patients. Biomed Pharmacother 2021; 145:112448. [PMID: 34844104 DOI: 10.1016/j.biopha.2021.112448] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/30/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Metformin modifies the gut microbiome in type 2 diabetes and gastrointestinal tolerance to metformin could be mediated by the gut microbiome. METHODS We enrolled 35 patients with type 2 diabetes not receiving treatment with metformin due to suspected gastrointestinal intolerance. Metformin was reintroduced at 425 mg, increasing 425 mg every two weeks until reaching 1700 mg per day. According to the occurrence of metformin-related gastrointestinal symptoms, patients were classified into three groups: early intolerance, non-tolerant, and tolerant. Gut microbiota was profiled with 16 S rRNA. This sequencing aimed to determine the differences in the baseline gut microbiota in all groups and prospectively in the tolerant and non-tolerant groups. RESULTS The classification resulted in 15 early intolerant, 10 tolerant, and 10 non-tolerant subjects. Early tolerance was characterized by a higher abundance of Subdoligranulum; while Veillonella and Serratia were higher in the non-tolerant group. The tolerant group showed enrichment of Megamonas, Megamonas rupellensis, and Phascolarctobacterium spp; Ruminococcus gnavus was lower in the longitudinal analysis. At the end point Prevotellaceae, Prevotella stercorea, Megamonas funiformis, Bacteroides xylanisolvens, and Blautia producta had a higher relative abundance in the tolerant group compared to the non-tolerant group. Subdoligranulum, Ruminococcus torques_1, Phascolarctobacterium faecium, and Eubacterium were higher in the non-tolerant group. The PICRUSt analysis showed a lower activity of the amino acid biosynthesis pathways and a higher sugar degradation pathway in the intolerant groups. CONCLUSIONS Gut microbiota of subjects with gastrointestinal intolerance depicted taxonomic and functional differences compared to tolerant patients, and this changed differently after metformin administration.
Collapse
Affiliation(s)
- Cristina Ma Díaz-Perdigones
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain; University of Málaga, Program in Biomedicine, Translational Research and New Technologies, Spain
| | - Araceli Muñoz-Garach
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain
| | - María Dolores Álvarez-Bermúdez
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain; University of Málaga, Program in Biomedicine, Translational Research and New Technologies, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | - Isabel Moreno-Indias
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain.
| | - Francisco J Tinahones
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain; University of Málaga, Program in Biomedicine, Translational Research and New Technologies, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain.
| |
Collapse
|
27
|
Song X, Zhao Z, Zhao Y, Wang Z, Wang C, Yang G, Li S. Lactobacillus plantarum DP189 prevents cognitive dysfunction in D-galactose/AlCl 3 induced mouse model of Alzheimer's disease via modulating gut microbiota and PI3K/Akt/GSK-3β signaling pathway. Nutr Neurosci 2021; 25:2588-2600. [PMID: 34755592 DOI: 10.1080/1028415x.2021.1991556] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Probiotic intervention has beneficial effects on host brain function and behavior via regulating microbiota-gut-brain axis; however, the underlying mechanism is not yet understood. Herein, we investigated that the effects of Lactobacillus plantarum DP189 (DP189) administration in preventing cognitive dysfunction and pathology of Alzheimer's disease (AD) in D-galactose (D-gal) and AlCl3-induced AD model mice. After L. plantarum DP189 intervention for 10 weeks, we assessed cognitive behavior, neurotransmitter expression, histological changes, microbial communities, and the mechanisms underlying the disease in AD model mice. The results showed that L. plantarum DP189 intervention prevented cognitive dysfunction by behavioral test. Increased levels of serotonin, dopamine, and gamma-aminobutyric acid positively affected the pathological processes by ameliorating neuronal damage, beta-amyloid deposition, and tau pathology. L. plantarum DP189 intervention simultaneously modulated the gut microbial communities to alleviate gut dysbiosis. Moreover, L. plantarum DP189 inhibited tau hyperphosphorylation by regulating the PI3 K/Akt/GSK-3β pathway. These findings indicated that L. plantarum DP189 intervention is a promising therapeutic strategy to prevent the onset and development of AD.
Collapse
Affiliation(s)
- Xinping Song
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China.,College of Agriculture, Yanbian university, Yanji, People's Republic of China
| | - Zijian Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China
| | - Yujuan Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China
| | - Zhiguo Wang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Chao Wang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China
| | - Ge Yang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China
| | - Shengyu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China
| |
Collapse
|
28
|
Consistent Prebiotic Effects of Carrot RG-I on the Gut Microbiota of Four Human Adult Donors in the SHIME ® Model despite Baseline Individual Variability. Microorganisms 2021; 9:microorganisms9102142. [PMID: 34683463 PMCID: PMC8538933 DOI: 10.3390/microorganisms9102142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022] Open
Abstract
The human gut microbiome is currently recognized to play a vital role in human biology and development, with diet as a major modulator. Therefore, novel indigestible polysaccharides that confer a health benefit upon their fermentation by the microbiome are under investigation. Based on the recently demonstrated prebiotic potential of a carrot-derived pectin extract enriched for rhamnogalacturonan I (cRG-I), the current study aimed to assess the impact of cRG-I upon repeated administration using the M-SHIME technology (3 weeks at 3g cRG-I/d). Consistent effects across four simulated adult donors included enhanced levels of acetate (+21.1 mM), propionate (+17.6 mM), and to a lesser extent butyrate (+4.1 mM), coinciding with a marked increase of OTUs related to Bacteroides dorei and Prevotella species with versatile enzymatic potential likely allowing them to serve as primary degraders of cRG-I. These Bacteroidetes members are able to produce succinate, explaining the consistent increase of an OTU related to the succinate-converting Phascolarctobacterium faecium (+0.47 log10(cells/mL)). While the Bifidobacteriaceae family remained unaffected, a specific OTU related to Bifidobacterium longum increased significantly upon cRG-I treatment (+1.32 log10(cells/mL)). Additional monoculture experiments suggested that Bifidobacterium species are unable to ferment cRG-I structures as such and that B. longum probably feeds on arabinan and galactan side chains of cRG-I, released by aforementioned Bacteroidetes members. Overall, this study confirms the prebiotic potential of cRG-I and additionally highlights the marked consistency of the microbial changes observed across simulated subjects, suggesting the involvement of a specialized consortium in cRG-I fermentation by the human gut microbiome.
Collapse
|
29
|
Chen YR, Jing QL, Chen FL, Zheng H, Chen LD, Yang ZC. Desulfovibrio is not always associated with adverse health effects in the Guangdong Gut Microbiome Project. PeerJ 2021; 9:e12033. [PMID: 34466295 PMCID: PMC8380029 DOI: 10.7717/peerj.12033] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/30/2021] [Indexed: 01/08/2023] Open
Abstract
Desulfovibrio (DSV) is frequently found in the human intestine but limited knowledge is available regarding the relationship between DSV and host health. In this study, we analyzed large-scale cohort data from the Guangdong Gut Microbiome Project to study the ecology of DSV and the associations of DSV and host health parameters. Phylogenetic analysis showed that Desulfovibrio piger might be the most common and abundant DSV species in the GGMP. Predominant sub-OTUs of DSV were positively associated with bacterial community diversity. The relative abundance of DSV was positively correlated with beneficial genera, including Oscillospira, Coprococcus,Ruminococcus,Akkermansia, Roseburia,Faecalibacterium, andBacteroides, and was negatively associated with harmful genera, such as Clostridium,Escherichia,Klebsiella, and Ralstonia. Moreover, the relative abundance of DSV was negatively correlated with body mass index, waist size, triglyceride levels, and uric acid levels. This suggests that DSV is associated with healthy hosts in some human populations.
Collapse
Affiliation(s)
- Yi-Ran Chen
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Qin-Long Jing
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Fang-Lan Chen
- Department of Intensive Care Unit, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Huimin Zheng
- Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Li-Dan Chen
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong, China
| | - Zhi-Cong Yang
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Thapa S, Sheu JC, Venkatachalam A, Runge JK, Luna RA, Calarge CA. Gut microbiome in adolescent depression. J Affect Disord 2021; 292:500-507. [PMID: 34146902 PMCID: PMC8282757 DOI: 10.1016/j.jad.2021.05.107] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/02/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVES To examine the association of major depressive disorder (MDD) and selective serotonin reuptake inhibitor (SSRI) use with gut microbiome in older adolescents and younger adults. METHODS Fifteen to 20-year-old participants within a month of starting an SSRI and unmedicated controls were enrolled in a longitudinal study. They underwent a diagnostic evaluation comprising self-completed and rater-administered questionnaires and clinical interview. They also provided a stool sample, which was stored at -80°C until DNA extraction. Microbial DNA was extracted with the MoBio PowerSoil kit, and the V4 region of the 16S rRNA was amplified and sequenced. Raw sequence data was processed with the LotuS pipeline. Only samples with no antibiotic exposure in the last 6 months and with >1000 quality filtered reads were included in the analysis. RESULTS 160 participants (57.5% female, mean age 20.0±1.9 years, 29% taking SSRIs) were enrolled, comprising 110 MDD patients (60% in acute episode), 27 healthy controls, and 23 psychiatric controls. No significant group differences were observed in bacterial richness or alpha and beta diversity. Differential abundance analysis of bacterial taxa found no significant group differences at the phylum and genus levels. Neither being in a major depressive episode vs. remission nor using SSRIs was associated with differential bacterial composition. CONCLUSIONS In this sizeable sample of older adolescents, neither MDD nor SSRI use was associated with differences in gut bacterial microbiome. In this age group, the bi-directional interaction between the gut bacteria and brain may be more nuanced than in adults, requiring further investigation.
Collapse
Affiliation(s)
- Santosh Thapa
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Jessica C Sheu
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Alamelu Venkatachalam
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Jessica K Runge
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Ruth Ann Luna
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Chadi A Calarge
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
31
|
Tian J, Wang X, Zhang X, Chen X, Rui X, Zhang Q, Dong M, Li W. Simulated digestion and fecal fermentation behaviors of exopolysaccharides from Paecilomyces cicadae TJJ1213 and its effects on human gut microbiota. Int J Biol Macromol 2021; 188:833-843. [PMID: 34389385 DOI: 10.1016/j.ijbiomac.2021.08.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
This study aimed to explore the in vitro simulated digestion and fecal fermentation behaviors of two purified exopolysaccharide fractions (EPS1 and EPS2) from Paecilomyces cicadae TJJ1213 and its effects on human gut microbiota composition. Results showed that EPS1 and EPS2 could not be digested by saliva-gastrointestinal. After fecal fermentation, however, the molecular weight of EPS1 and EPS2 significantly decreased, and the molar ratios of the monosaccharide composition remarkably changed, indicating that EPS1 and EPS2 could be degraded and consumed by human gut microbiota. Notably, EPS1 and EPS2 could significantly modulate the composition, via increasing the relative abundances of Bacteroides and Phascolarctobacterium and decreasing the pathogenic bacteria Escherichia-Shigella, Klebsiella and Fusobacterium. In addition, EPS1 and EPS2 also could promote the production of short-chain fatty acids during fermentation for 24 h. These results suggest that EPS from Paecilomyces cicadae TJJ1213 can be used as a functional food to improve health and prevent diseases by promoting gut health.
Collapse
Affiliation(s)
- Juanjuan Tian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaomeng Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xueliang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaohong Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qiuqin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
32
|
Effect of High-Fat Diet on the Intestinal Flora in Letrozole-Induced Polycystic Ovary Syndrome Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6674965. [PMID: 34257691 PMCID: PMC8257354 DOI: 10.1155/2021/6674965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
Aim The aim of this study was to explore whether letrozole and high-fat diets (HFD) can induce obese insulin-resistant polycystic ovary syndrome (PCOS) with intestinal flora dysbiosis in a rat model. We compared the changes in the intestinal flora of letrozole-induced rats fed with HFD or normal chow, to explore the effects of HFD and letrozole independently and synergistically on the intestinal flora. Methods Five-week-old female Sprague Dawley (SD) rats were divided into four groups: control (C) group fed with regular diet; L1 group administered with letrozole and fed with regular diet; L2 group received letrozole and fed with HFD; and HFD group fed with HFD. At the end of the experiment, ovarian morphology, hormones, metabolism, oxidative stress, and inflammatory status of all rats were studied. 16S rDNA high-throughput sequencing was used to profile microbial communities, and various multivariate analysis approaches were used to quantitate microbial composition, abundance, and diversity. Results Compared to the C group, the increased plasma fasting insulin and glucose, HOMA-IR, triglyceride, testosterone, and malondialdehyde were significantly higher in the L2 group, while high-density lipoprotein cholesterol was significantly lower in the L1 group and L2 group. The indices of Chao1 and the Abundance-based Coverage Estimator (ACE) (α-diversity) in the L2 and HFD groups were significantly lower than that in the C group. Bray–Curtis dissimilarity based principal coordinate analysis (PCoA) plots and analysis of similarities (ANOSIM) test showed obvious separations between the L2 group and C group, between the HFD group and C group, and between the L2 and HFD groups. At the phylum level, Firmicutes and ratio of Firmicutes and Bacteroidetes (F/B ratio) were increased in the L2 group; Bacteroidetes was decreased in the L2 and HFD groups. No significant differences in bacterial abundance between the C group and L1 group were observed at the phylum level. Based on linear discriminant analysis (LDA) effect size (LEfSe) analysis, the bacterial genera (the relative abundance > 0.1%, LDA > 3, p < 0.05) were selected as candidate bacterial signatures. They showed that the abundance of Vibrio was significantly increased in the L1 group; Bacteroides and Phascolarctobacterium were enriched in the HFD group, and Bacteroides, Phascolarctobacterium, Blautia, Parabacteroides, Akkermansia [Ruminococcus]_torques_group, and Anaerotruncus were enriched in the L2 group. Conclusion The effect of letrozole on intestinal flora was not significant as HFD. HFD could destroy the balance of intestinal flora and aggravate the intestinal flora dysbiosis in PCOS. Letrozole-induced rats fed with HFD have many characteristics like human PCOS, including some metabolic disorders and intestinal flora dysbiosis. The dysbiosis was characterized by an increased Firmicutes/Bacteroidetes ratio, an expansion of Firmicutes, a contraction of Bacteroidetes, and the decreased microbial richness. Beta-diversity also showed significant differences in intestinal microflora, compared with control rats.
Collapse
|
33
|
Barcik W, Chiacchierini G, Bimpisidis Z, Papaleo F. Immunology and microbiology: how do they affect social cognition and emotion recognition? Curr Opin Immunol 2021; 71:46-54. [PMID: 34058687 DOI: 10.1016/j.coi.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/01/2021] [Indexed: 12/25/2022]
Abstract
Social interactions profoundly influence animals' life. The quality of social interactions and many everyday life decisions are determined by a proper perception, processing and reaction to others' emotions. Notably, alterations in these social processes characterize a number of neurodevelopmental disorders, including autism spectrum disorders and schizophrenia. Increasing evidences support an implication of immune system vulnerability and inflammatory processes in disparate behavioral functions and the aforementioned neurodevelopmental disorders. In this review, we show a possible unifying view on how immune responses, within and outside the brain, and the communication between the immune system and brain responses might influence emotion recognition and related social responses. In particular, we highlight the importance of combining genetics, immunology and microbiology factors in understanding social behaviors. We underline the importance of better disentangling the whole machinery between brain-immune system interactions to better address the complexity of social processes.
Collapse
Affiliation(s)
- Weronika Barcik
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Giulia Chiacchierini
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Zisis Bimpisidis
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy; Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milano, Italy.
| |
Collapse
|
34
|
Zwart SR, Mulavara AP, Williams TJ, George K, Smith SM. The role of nutrition in space exploration: Implications for sensorimotor, cognition, behavior and the cerebral changes due to the exposure to radiation, altered gravity, and isolation/confinement hazards of spaceflight. Neurosci Biobehav Rev 2021; 127:307-331. [PMID: 33915203 DOI: 10.1016/j.neubiorev.2021.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/16/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Multi-year crewed space exploration missions are now on the horizon; therefore, it is important that we understand and mitigate the physiological effects of spaceflight. The spaceflight hazards-radiation, isolation, confinement, and altered gravity-have the potential to contribute to neuroinflammation and produce long-term cognitive and behavioral effects-while the fifth hazard, distance from earth, limits capabilities to mitigate these risks. Accumulated evidence suggests that nutrition has an important role in optimizing cognition and reducing the risk of neurodegenerative diseases caused by neuroinflammation. Here we review the nutritional perspective of how these spaceflight hazards affect the astronaut's brain, behavior, performance, and sensorimotor function. We also assess potential nutrient/nutritional countermeasures that could prevent or mitigate spaceflight risks and ensure that crewmembers remain healthy and perform well during their missions. Just as history has taught us the importance of nutrition in terrestrial exploration, we must understand the role of nutrition in the development and mitigation of spaceflight risks before humans can successfully explore beyond low-Earth orbit.
Collapse
Affiliation(s)
- Sara R Zwart
- Univerity of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | | | - Thomas J Williams
- NASA Johnson Space Center, Mail Code SK3, 2101 NASA Parkway, Houston, TX, 77058, USA
| | - Kerry George
- KBR, 2400 E NASA Parkway, Houston, TX, 77058, USA
| | - Scott M Smith
- NASA Johnson Space Center, Mail Code SK3, 2101 NASA Parkway, Houston, TX, 77058, USA
| |
Collapse
|
35
|
Jiang C, Peces M, Andersen MH, Kucheryavskiy S, Nierychlo M, Yashiro E, Andersen KS, Kirkegaard RH, Hao L, Høgh J, Hansen AA, Dueholm MS, Nielsen PH. Characterizing the growing microorganisms at species level in 46 anaerobic digesters at Danish wastewater treatment plants: A six-year survey on microbial community structure and key drivers. WATER RESEARCH 2021; 193:116871. [PMID: 33578056 DOI: 10.1016/j.watres.2021.116871] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is a key technology at many wastewater treatment plants (WWTPs) for converting primary and surplus activated sludge to methane-rich biogas. However, the limited number of surveys and the lack of comprehensive datasets have hindered a deeper understanding of the characteristics and associations between key variables and the microbial community composition. Here, we present a six-year survey of 46 anaerobic digesters, located at 22 WWTPs in Denmark, which is the first and largest known study of the microbial ecology of AD at WWTPs at a regional scale. For three types of AD (mesophilic, mesophilic with thermal hydrolysis pretreatment, and thermophilic), we present the typical value range of 12 key parameters including operational variables and performance parameters. High-resolution bacterial and archaeal community analyses were carried out at species level using amplicon sequencing of >1,000 samples and the new ecosystem-specific MiDAS 3 reference database. We detected 42 phyla, 1,600 genera, and 3,584 species in the bacterial community, where 70% of the genera and 93% of the species represented environmental taxa that were only classified based on MiDAS 3 de novo placeholder taxonomy. More than 40% of the bacterial species were found not to grow in the mesophilic and thermophilic digesters and were only present due to immigration with the feed sludge. Ammonium concentration was the main driver shaping the bacterial community while temperature and pH were main drivers for the archaea in the three types of ADs. Sub-setting for the growing microbes improved significantly the correlation analyses and revealed the main drivers for the presence of specific species. Within mesophilic digesters, feed sludge composition and other key parameters (organic loading rate, biogas yield, and ammonium concentration) correlated with specific growing species. This survey provides a comprehensive insight into community structure at species level, providing a foundation for future studies of the ecological significance/characteristics and function of the many novel or poorly described taxa.
Collapse
Affiliation(s)
- Chenjing Jiang
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark; Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, SOA, Hangzhou, China
| | - Miriam Peces
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Martin Hjorth Andersen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Sergey Kucheryavskiy
- Section of Chemical Engineering, Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Erika Yashiro
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Kasper Skytte Andersen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Rasmus Hansen Kirkegaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Liping Hao
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | | | - Morten Simonsen Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
36
|
Complete Genome Sequence of Phascolarctobacterium faecium G 104, Isolated from the Stools of a Healthy Lean Donor. Microbiol Resour Announc 2021; 10:10/4/e01054-20. [PMID: 33509983 PMCID: PMC7844068 DOI: 10.1128/mra.01054-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phascolarctobacterium faecium is a strict anaerobe belonging to the Firmicutes phylum that is found abundantly in the human gastrointestinal tract. Here, we report the complete genome sequence of P. faecium G 104, a strain isolated from a fresh stool sample from a healthy lean donor. Phascolarctobacterium faecium is a strict anaerobe belonging to the Firmicutes phylum that is found abundantly in the human gastrointestinal tract. Here, we report the complete genome sequence of P. faecium G 104, a strain isolated from a fresh stool sample from a healthy lean donor.
Collapse
|
37
|
Zhong F, Wen X, Yang M, Lai HY, Momma H, Cheng L, Sun X, Nagatomi R, Huang C. Effect of an 8-week Exercise Training on Gut Microbiota in Physically Inactive Older Women. Int J Sports Med 2020; 42:610-623. [PMID: 33321523 DOI: 10.1055/a-1301-7011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Exercise can alter the composition of gut microbiota. However, studies examining the effects of exercise on gut microbiota in the elderly are lacking. This study aims to investigate whether an 8-week exercise training affect gut microbiota in physically inactive elderly women. Fourteen women were randomly assigned to either exercise group or control group. Repeated-measures analysis of variance was used to reveal changes in gut microbiota. Alpha diversity did not change significantly. A tendency to form 2 clusters was observed for operational taxonomic units (OTU) after intervention. At phylum, class, and order levels, a significant difference was observed between two groups for Fusobacteria (F=5.257, P=0.045), Betaproteobacteria (F=5.149, P=0.047), and Bifidobacteriales (F=7.624, P=0.020). A significant interaction was observed between two groups for Actinobacteria (F=8.434, P=0.016). At family and genus levels, a significant main effect of groups was observed in Bifidobacteriaceae (F=7.624, P=0.020), Bifidobacterium (F=7.404, P=0.022), and Gemmiger (F=5.881, P=0.036). These findings indicate that an 8-week exercise training may induce partial changes in relative abundance and OTU clustering of gut microbiota in physically inactive elderly women. Also, exercise may increase the abundance of bacteria associated with anti-inflammation such as Verrucomicrobia, reduce the abundance of bacteria associated with pro-inflammation such as Proteobacteria.
Collapse
Affiliation(s)
- Fei Zhong
- Department of Sports and Exercise Science, Zhejiang University, Hangzhou, China
| | - Xu Wen
- Department of Sports and Exercise Science, Zhejiang University, Hangzhou, China
| | - Min Yang
- Department of Nutrition and Food Hygiene, Zhejiang University, Hangzhou, China
| | - Hsin-Yi Lai
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.,College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haruki Momma
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Lei Cheng
- Department of Ecology, Zhejiang University, Hangzhou, China
| | - Xiaomin Sun
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Cong Huang
- Department of Sports and Exercise Science, Zhejiang University, Hangzhou, China.,Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
38
|
Oduaran OH, Tamburini FB, Sahibdeen V, Brewster R, Gómez-Olivé FX, Kahn K, Norris SA, Tollman SM, Twine R, Wade AN, Wagner RG, Lombard Z, Bhatt AS, Hazelhurst S. Gut microbiome profiling of a rural and urban South African cohort reveals biomarkers of a population in lifestyle transition. BMC Microbiol 2020; 20:330. [PMID: 33129264 PMCID: PMC7603784 DOI: 10.1186/s12866-020-02017-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Comparisons of traditional hunter-gatherers and pre-agricultural communities in Africa with urban and suburban Western North American and European cohorts have clearly shown that diet, lifestyle and environment are associated with gut microbiome composition. Yet, little is known about the gut microbiome composition of most communities in the very diverse African continent. South Africa comprises a richly diverse ethnolinguistic population that is experiencing an ongoing epidemiological transition and concurrent spike in the prevalence of obesity, largely attributed to a shift towards more Westernized diets and increasingly inactive lifestyle practices. To characterize the microbiome of African adults living in more mainstream lifestyle settings and investigate associations between the microbiome and obesity, we conducted a pilot study, designed collaboratively with community leaders, in two South African cohorts representative of urban and transitioning rural populations. As the rate of overweight and obesity is particularly high in women, we collected single time-point stool samples from 170 HIV-negative women (51 at Soweto; 119 at Bushbuckridge), performed 16S rRNA gene sequencing on these samples and compared the data to concurrently collected anthropometric data. RESULTS We found the overall gut microbiome of our cohorts to be reflective of their ongoing epidemiological transition. Specifically, we find that geographical location was more important for sample clustering than lean/obese status and observed a relatively higher abundance of the Melainabacteria, Vampirovibrio, a predatory bacterium, in Bushbuckridge. Also, Prevotella, despite its generally high prevalence in the cohorts, showed an association with obesity. In comparisons with benchmarked datasets representative of non-Western populations, relatively higher abundance values were observed in our dataset for Barnesiella (log2fold change (FC) = 4.5), Alistipes (log2FC = 3.9), Bacteroides (log2FC = 4.2), Parabacteroides (log2FC = 3.1) and Treponema (log2FC = 1.6), with the exception of Prevotella (log2FC = - 4.7). CONCLUSIONS Altogether, this work identifies putative microbial features associated with host health in a historically understudied community undergoing an epidemiological transition. Furthermore, we note the crucial role of community engagement to the success of a study in an African setting, the importance of more population-specific studies to inform targeted interventions as well as present a basic foundation for future research.
Collapse
Affiliation(s)
- O. H. Oduaran
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - F. B. Tamburini
- Department of Genetics, Stanford University, Stanford, CA USA
| | - V. Sahibdeen
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - R. Brewster
- School of Medicine, Stanford University, Stanford, CA USA
| | - F. X. Gómez-Olivé
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- INDEPTH Network, East Legon, Accra, Ghana
| | - K. Kahn
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- INDEPTH Network, East Legon, Accra, Ghana
| | - S. A. Norris
- SAMRC Developmental Pathways for Health Research Unit, Department of Paediatrics, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Development and Health, University of Southampton, Southampton, UK
| | - S. M. Tollman
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- INDEPTH Network, East Legon, Accra, Ghana
| | - R. Twine
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - A. N. Wade
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - R. G. Wagner
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- INDEPTH Network, East Legon, Accra, Ghana
| | - Z. Lombard
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - A. S. Bhatt
- Department of Genetics, Stanford University, Stanford, CA USA
- School of Medicine, Stanford University, Stanford, CA USA
- Department of Medicine (Hematology), Stanford University, Stanford, CA USA
| | - S. Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
39
|
Fecal Short-Chain Fatty Acid Concentrations Increase in Newly Paired Male Marmosets (Callithrix jacchus). mSphere 2020; 5:5/5/e00794-20. [PMID: 32938699 PMCID: PMC7494834 DOI: 10.1128/msphere.00794-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This study addressed a knowledge gap about longitudinal changes in the gut microbiome metabolites during animal pairing. This research in the laboratory common marmoset can control for the confounding factors such as diet and other environmental conditions. Phascolarctobacterium showed the highest contribution to the sex-biased transmission of the female to the male after pairing. Here, we observed the sex difference in the increase in short-chain fatty acid concentration in the feces of newly paired marmosets, which may be caused by the sex-biased gut microbiome transmission after pairing. The role by which the gut microbiome influences host health (e.g., energy equilibrium and immune system) may be partly mediated by short-chain fatty acids, which are bacterial fermentation products from the dietary fibers. However, little is known about longitudinal changes in gut microbiome metabolites during cohabitation alongside social contact. In common marmosets (Callithrix jacchus), the gut microbiome community is influenced by social contact, as newly paired males and females develop convergent microbial profiles. Here, we monitored the dynamics of short-chain fatty acid concentrations in common marmoset feces from the prepairing (PRE) to postpairing (POST) stages. In males, we observed that the concentrations of acetate, propionate, isobutyrate, and isovalerate significantly increased in the POST stage compared to the PRE stage. However, no significant changes were found in females. We further found that the propionate concentration was significantly positively correlated with the abundance of Phascolarctobacterium in the male feces. Thus, the sex difference in the changes in the concentrations of short-chain fatty acids might be related to sex-biased gut microbiome transmission after pairing. We suggest that the significant changes in the gut microbiomes and some short-chain fatty acids of the common marmoset during cohabitation may contribute to physiological homeostasis during pairing. IMPORTANCE This study addressed a knowledge gap about longitudinal changes in the gut microbiome metabolites during animal pairing. This research in the laboratory common marmoset can control for the confounding factors such as diet and other environmental conditions. Phascolarctobacterium showed the highest contribution to the sex-biased transmission of the female to the male after pairing. Here, we observed the sex difference in the increase in short-chain fatty acid concentration in the feces of newly paired marmosets, which may be caused by the sex-biased gut microbiome transmission after pairing.
Collapse
|
40
|
Zhang T, Zhao W, Xie B, Liu H. Effects of Auricularia auricula and its polysaccharide on diet-induced hyperlipidemia rats by modulating gut microbiota. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
41
|
Fontana A, Manchia M, Panebianco C, Paribello P, Arzedi C, Cossu E, Garzilli M, Montis MA, Mura A, Pisanu C, Congiu D, Copetti M, Pinna F, Carpiniello B, Squassina A, Pazienza V. Exploring the Role of Gut Microbiota in Major Depressive Disorder and in Treatment Resistance to Antidepressants. Biomedicines 2020; 8:biomedicines8090311. [PMID: 32867257 PMCID: PMC7554953 DOI: 10.3390/biomedicines8090311] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Major depressive disorder (MDD) is a common severe psychiatric illness, exhibiting sub-optimal response to existing pharmacological treatments. Although its etiopathogenesis is still not completely understood, recent findings suggest that an altered composition of the gut microbiota might play a role. Here we aimed to explore potential differences in the composition of the gut microbiota between patients with MDD and healthy controls (HC) and to identify possible signatures of treatment response by analyzing two groups of MDD patients characterized as treatment-resistant (TR) or responders (R) to antidepressants. Stool samples were collected from 34 MDD patients (8 TR, 19 R and 7 untreated) and 20 HC. Microbiota was characterized using the 16S metagenomic approach. A penalized logistic regression analysis algorithm was applied to identify bacterial populations that best discriminate the diagnostic groups. Statistically significant differences were identified for the families of Paenibacillaceae and Flavobacteriaceaea, for the genus Fenollaria, and the species Flintibacter butyricus, Christensenella timonensis, and Eisenbergiella massiliensis among others. The phyla Proteobacteria, Tenericutes and the family Peptostreptococcaceae were more abundant in TR, whereas the phylum Actinobacteria was enriched in R patients. Moreover, a number of bacteria only characterized the microbiota of TR patients, and many others were only detected in R. Our results confirm that dysbiosis is a hallmark of MDD and suggest that microbiota of TR patients significantly differs from responders to antidepressants. This finding further supports the relevance of an altered composition of the gut microbiota in the etiopathogenesis of MDD, suggesting a role in response to antidepressants.
Collapse
Affiliation(s)
- Andrea Fontana
- Unit of Biostatistics, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (A.F.); (M.C.)
| | - Mirko Manchia
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, 09042 Cagliari, Italy; (M.M.); (P.P.); (C.A.); (E.C.); (M.G.); (M.A.M.); (A.M.); (F.P.); (B.C.)
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09042 Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Concetta Panebianco
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy;
| | - Pasquale Paribello
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, 09042 Cagliari, Italy; (M.M.); (P.P.); (C.A.); (E.C.); (M.G.); (M.A.M.); (A.M.); (F.P.); (B.C.)
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09042 Cagliari, Italy
| | - Carlo Arzedi
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, 09042 Cagliari, Italy; (M.M.); (P.P.); (C.A.); (E.C.); (M.G.); (M.A.M.); (A.M.); (F.P.); (B.C.)
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09042 Cagliari, Italy
| | - Eleonora Cossu
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, 09042 Cagliari, Italy; (M.M.); (P.P.); (C.A.); (E.C.); (M.G.); (M.A.M.); (A.M.); (F.P.); (B.C.)
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09042 Cagliari, Italy
| | - Mario Garzilli
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, 09042 Cagliari, Italy; (M.M.); (P.P.); (C.A.); (E.C.); (M.G.); (M.A.M.); (A.M.); (F.P.); (B.C.)
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09042 Cagliari, Italy
| | - Maria Antonietta Montis
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, 09042 Cagliari, Italy; (M.M.); (P.P.); (C.A.); (E.C.); (M.G.); (M.A.M.); (A.M.); (F.P.); (B.C.)
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09042 Cagliari, Italy
| | - Andrea Mura
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, 09042 Cagliari, Italy; (M.M.); (P.P.); (C.A.); (E.C.); (M.G.); (M.A.M.); (A.M.); (F.P.); (B.C.)
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09042 Cagliari, Italy
| | - Claudia Pisanu
- Unit of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy; (C.P.); (D.C.)
| | - Donatella Congiu
- Unit of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy; (C.P.); (D.C.)
| | - Massimiliano Copetti
- Unit of Biostatistics, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (A.F.); (M.C.)
| | - Federica Pinna
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, 09042 Cagliari, Italy; (M.M.); (P.P.); (C.A.); (E.C.); (M.G.); (M.A.M.); (A.M.); (F.P.); (B.C.)
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09042 Cagliari, Italy
| | - Bernardo Carpiniello
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, 09042 Cagliari, Italy; (M.M.); (P.P.); (C.A.); (E.C.); (M.G.); (M.A.M.); (A.M.); (F.P.); (B.C.)
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09042 Cagliari, Italy
| | - Alessio Squassina
- Unit of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy; (C.P.); (D.C.)
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University Campus, S.P. 8, Sestu-Monserrato, Km 0.700, Monserrato, 09042 Cagliari, Italy
- Correspondence: (A.S.); (V.P.)
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy;
- Gastroenterology Unit, Fondazione I.R.C.C.S. “Casa Sollievo della Sofferenza” Hospital, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Italy
- Correspondence: (A.S.); (V.P.)
| |
Collapse
|
42
|
Liu D, Xie B, Liu H, Yao Z, Liu H. Effect of solid waste fermentation substrate on wheat (Triticum aestivum L.) growth in closed artificial ecosystem. LIFE SCIENCES IN SPACE RESEARCH 2020; 26:163-172. [PMID: 32718682 DOI: 10.1016/j.lssr.2020.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/23/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Bioregenerative Life Support System (BLSS) is a closed artificial ecosystem and could provide oxygen, food, water and other substrates for long-term deep space survival. The treatment and recycle of the solid waste are crucial and rate-limiting steps in BLSS, and it's reported that the solid waste such as the inedible plants and human feces could be fermented aerobically and then reused as fertilizer for growing plants in BLSS, which may be an effective way to improve the solid waste recycling rate. However, the recycling performance and the effect on the system need to be evaluated. In this study, the fermented and decomposed solid waste product from the 365d BLSS experiment with human involved in Lunar Palace 1 was utilized, and was added to the Hoagland nutrient solution as a supplementary fertilizer in the weight proportion of 5% and 10%, respectively, for the cultivation of wheat (Group-5% and Group-10%). Then, the effects on wheat germination, morphology, photosynthesis, biomass, the conductivity of the cultured substrates and microorganisms were detected and compared with those of the CK group cultured using only Hoagland nutrient solution. The results showed that this planting method had no inhibitory effect on the wheat germination, root length and yield, and might even promote the vegetative growth of wheat in terms of Vigor index, plant height, leaf area and net photosynthesis rate to some extent. The added solid waste fermentation substrate as well as the planting environment in Lunar Palace 1 both had significant influences on the rhizosphere microorganisms of wheat. The bacteria diversity was more abundant than fungi at phylum level, and the relative abundance varied along with the wheat growth period. The relative abundance of the cellulose degrading microorganisms including Actinobacteria and Ascomycota increased in Group-5% and Group-10% compared with CK group along with the growth of wheat. Moreover, the proper reuse of the fermentation substrate could reduce the use of inorganic salts by 9.8%-11.9% and save 40L•m - 2 of water for wheat cultivation. This research has considerable application significance in future deep space exploration.
Collapse
Affiliation(s)
- Dianlei Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Institute of Environmental Biology and Life Support Technology, Beihang University, Beijing 100191, China.
| | - Beizhen Xie
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Institute of Environmental Biology and Life Support Technology, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | - Hui Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Institute of Environmental Biology and Life Support Technology, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | - Zhikai Yao
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Institute of Environmental Biology and Life Support Technology, Beihang University, Beijing 100191, China.
| | - Hong Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Institute of Environmental Biology and Life Support Technology, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
43
|
Liu Z, Luo G, Du R, Sun W, Li J, Lan H, Chen P, Yuan X, Cao D, Li Y, Liu C, Liang S, Jin X, Yang R, Bi Y, Han Y, Cao P, Zhao W, Ling S, Li Y. Effects of spaceflight on the composition and function of the human gut microbiota. Gut Microbes 2020; 11:807-819. [PMID: 31924114 PMCID: PMC7524348 DOI: 10.1080/19490976.2019.1710091] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Interaction between humans and the gut microbiota is important for human physiology. Here, the gut microbiota was analyzed via metagenomic sequencing, and the fluctuations in the gut microbiota under the conditions of spaceflight were characterized. The composition and function of the gut microbiota were substantially affected by spaceflight; however, individual specificity was uncompromised. We further confirmed the species fluctuations and functional genes from both missions. Resistance and virulence genes in the gut microbiota were affected by spaceflight, but the species attributions remained stable. Spaceflight markedly affected the composition and function of the human gut microbiota, implying that the human gut microbiota is sensitive to spaceflight.
Collapse
Affiliation(s)
- Zizhong Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Gui Luo
- Department of Rheumatology, Chinese PLA General Hospital, Beijing, China
| | - Ruikai Du
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Haiyun Lan
- Key Lab of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Pu Chen
- Key Lab of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Xinxin Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dengchao Cao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Caizhi Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shuai Liang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoyan Jin
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ping Cao
- Key Lab of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Wei Zhao
- Key Lab of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China,CONTACT Shukuan Ling Key Lab of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China,Yingxian Li
| |
Collapse
|
44
|
Meng C, Wang W, Hao Z, Liu H. Investigation on the influence of isolated environment on human psychological and physiological health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:136972. [PMID: 32036130 DOI: 10.1016/j.scitotenv.2020.136972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Crewmembers are working and living in isolated environment lacking natural light and perception. Although their health problems have been documented, the mechanism has not been thoroughly investigated. The aim of the present study is to investigate the psychological and physiological influences of isolated environment on crewmember's health. On account of complexity of the isolated environment, it is necessary to have a manually controllable system to simulate research platform-Bioregenerative Life Support System (BLSS). Symptom checklist 90 (SCL-90) was used to complete emotional status test. Urine samples were collected for metabonomics and hormone secretion analysis. Fecal samples were collected for intestinal microorganisms analysis. Crewmembers (n = 4) followed strict daily schedule during the experimental period. Five emotional factors were significantly (P < 0.05) increased, differential metabolites were enriched in tryptophan metabolism pathway, the relative abundance of Prevotella decreased significantly (P < 0.0001) when crewmembers in isolated environment without natural light. Hormone (melatonin, cortisol) secretion rhythm also changed. Significant positive correlation (r = 0.805, P < 0.05) between cortisol secretion and anxiety was observed. In conclusion, natural light simulation in an isolated environment may have a positive effect on the physiological and psychological health of the crewmember.
Collapse
Affiliation(s)
- Chen Meng
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100083, China
| | - Wei Wang
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100083, China
| | - Zikai Hao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100083, China
| | - Hong Liu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China; Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
45
|
Ma S, Yeom J, Lim YH. Dairy Propionibacterium freudenreichii ameliorates acute colitis by stimulating MUC2 expression in intestinal goblet cell in a DSS-induced colitis rat model. Sci Rep 2020; 10:5523. [PMID: 32218552 PMCID: PMC7099060 DOI: 10.1038/s41598-020-62497-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/09/2020] [Indexed: 12/21/2022] Open
Abstract
An intact mucus layer is important in managing inflammatory bowel disease (IBD). Dairy Propionibacterium freudenreichii has probiotic potential, produces propionic acid and is known to promote health. The aim of this study was to evaluate the effects of P. freudenreichii on the improvement of colitis. LS 174T goblet cells and a dextran sodium sulfate (DSS)-induced colitis rat model were used to investigate the P. freudenreichii-induced stimulation of mucin production in vitro and in vivo, respectively. The mRNA and protein expression levels of MUC2, a main component of intestinal mucus, increased in the supernatant of P. freudenreichii culture (SPFC)-treated LS 174 cells. The SPFC and live P. freudenreichii (LPF) reduced the disease activity index (DAI) in the rats with DSS-induced colitis. After treatment with SPFC or LPF, the mRNA levels of typical pro-inflammatory cytokines decreased and the inflammatory state was histologically improved in the rats with DSS-induced colitis. The SPFC and LPF treatments increased the gene and protein expression levels of MUC2 in the rats with DSS-induced colitis compared with the expression levels in the negative control rats, and immunohistochemistry (IHC) showed an increase of the intestinal MUC2 level. In addition, SPFC and LPF augmented the level of propionate in the faeces of the rats with DSS-induced colitis. In conclusion, P. freudenreichii might improve acute colitis by restoring goblet cell number and stimulating the expression of MUC2 in intestinal goblet cells.
Collapse
Affiliation(s)
- Seongho Ma
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Jiah Yeom
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Young-Hee Lim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea. .,Department of Public Health Science (Brain Korea 21 PLUS program), Graduate School, Korea University, Seoul, 02841, Republic of Korea. .,Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea.
| |
Collapse
|
46
|
Abstract
Investigation of gut microbiome composition and diversity with respect to human personality. Analyses targeted bacterial genera linked to behaviour in animal and human psychiatric studies. Bacterial genera were modelled (using negative binomial regression) with respect to personality. Genera linked to autism are also related to social behaviour in the general population. Sociability is associated with higher diversity, and anxiety and stress with reduced diversity.
The gut microbiome has a measurable impact on the brain, influencing stress, anxiety, depressive symptoms and social behaviour. This microbiome–gut–brain axis may be mediated by various mechanisms including neural, immune and endocrine signalling. To date, the majority of research has been conducted in animal models, while the limited number of human studies has focused on psychiatric conditions. Here the composition and diversity of the gut microbiome is investigated with respect to human personality. Using regression models to control for possible confounding factors, the abundances of specific bacterial genera are shown to be significantly predicted by personality traits. Diversity analyses of the gut microbiome reveal that people with larger social networks tend to have a more diverse microbiome, suggesting that social interactions may shape the microbial community of the human gut. In contrast, anxiety and stress are linked to reduced diversity and an altered microbiome composition. Together, these results add a new dimension to our understanding of personality and reveal that the microbiome–gut–brain axis may also be relevant to behavioural variation in the general population as well as to cases of psychiatric disorders.
Collapse
|
47
|
Zhang W, Liu H, Li Z, Liu H. Synergistic effects of edible plants with light environment on the emotion and sleep of humans in long-duration isolated environment. LIFE SCIENCES IN SPACE RESEARCH 2020; 24:42-49. [PMID: 31987479 DOI: 10.1016/j.lssr.2019.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/22/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
The emotion and sleep-related problems of humans who are on mission of deep-space and deep-sea exploration are topics of special interest because of the isolated environment. Effective regulatory approaches should be developed to manage the positive emotions and sleep quality in a long-duration isolated environment. The results reported that emotion and sleep were closely linked to each other because plants could significantly regulate humans' emotion and sleep through their own color and fragrance. Additionally, the light conditions prevailing in that location also had significant influence on humans' emotion and sleep. There have been few reports on the synergistic effects of plants with light environment on humans' physical and mental health. In this research, three species of edible plants and three color temperature levels that were commonly used in people's living environment were selected. Then orthogonal tests were conducted in the cabins of "Lunar Palace I" in the middle of the third phase of the "Lunar Palace 365″ experiment, and salivary cortisol levels, emotion, and sleep conditions of the volunteers were measured. The results showed that in the long-duration isolated environment, strawberry had a better effect than purple rape and coriander on improving positive emotion. Exposure to coriander before bedtime might help people to rapidly go to sleep, increase sleep integrity, and sleep efficiency in the isolated environment. Moreover, there appeared to be a positive synergistic effect of edible plants with light environment on micro-awakening index and sleep efficiency. These results provided a scientific basis for improving the physiological and psychological health of people in the long-duration isolated environment by changing the light environment with appropriate plants.
Collapse
Affiliation(s)
- Wenzhu Zhang
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China
| | - Hui Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China; School of Aviation Science and Engineering, Beihang University, Beijing 100083, China.
| | - Zhaoming Li
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China. mailto:
| |
Collapse
|
48
|
Berding K, Donovan SM. Dietary Patterns Impact Temporal Dynamics of Fecal Microbiota Composition in Children With Autism Spectrum Disorder. Front Nutr 2020; 6:193. [PMID: 31998741 PMCID: PMC6968728 DOI: 10.3389/fnut.2019.00193] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Environmental factors such as diet are known influencers on gastrointestinal (GI) microbiota variability and some diseases are associated with microbial stability. Whether microbial variability is related to symptoms of Autism Spectrum Disorder (ASD) and how diet impacts microbial stability in ASD is unknown. Herein, temporal variability in stool microbiota in relation to dietary habits in 2–7 years-old children with ASD (ASD, n = 26) and unaffected controls (CONT, n = 32) was investigated. Fecal samples were collected at baseline, 6-weeks and 6-months. Bacterial composition was assessed using 16S rRNA sequencing. Short fatty acid (SCFA) concentrations were analyzed by gas chromatography. Nutrient intake was assessed using a 3-day food diary and dietary patterns (DP) were empirically derived from a food frequency questionnaire. Social deficit scores (SOCDEF) were assessed using the Pervasive Developmental Disorder Behavior Inventory-Screening Version (PDDBI-SV). GI symptoms were assessed using the GI severity index. Overall, temporal variability in microbial structure, and membership did not differ between the groups. In children with ASD, abundances of Clostridiaceae, Streptophyta, and Clostridiaceae Clostridium, varied significantly, and concentrations of all SCFAs decreased over time. Variability in community membership was negatively correlated with median SOCDEF scores. Additionally, Clostridiales, Lactococcus, Turicibacter, Dorea, and Phascolarctobacterium were components of a more stable microbiota community in children with ASD. DP1, characterized by vegetables, starchy vegetables, legumes, nuts and seeds, fruit, grains, juice and dairy, was associated with changes in species diversity, abundance of Erysipelotricaceae, Clostridiaceae Clostridium, and Oscillospira and concentrations of propionate, butyrate, isobutyrate and isovalerate in children with ASD. DP2 characterized by fried, protein and starchy foods, “Kid's meals,” condiments, and snacks was associated with variations in microbiota structure, abundance of Clostridiaceae Clostridium, and Oscillospira and changes in all SCFA concentrations. However, no association between microbial stability and SOCDEF or GI severity scores were observed. In conclusion, microbiota composition varies over time in children with ASD, might be related to social deficit scores and can be impacted by diet. Future studies investigating the physiological effect of the changes in specific microbial taxa and metabolites are needed to delineate the impact on ASD symptomology.
Collapse
Affiliation(s)
- Kirsten Berding
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Sharon M Donovan
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States.,Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, United States
| |
Collapse
|
49
|
Li ZM, Liu H, Zhang WZ, Liu H. Psychophysiological and cognitive effects of strawberry plants on people in isolated environments. J Zhejiang Univ Sci B 2020; 21:53-63. [PMID: 31898442 PMCID: PMC6964991 DOI: 10.1631/jzus.b1900331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/25/2019] [Indexed: 11/11/2022]
Abstract
In manned deep-space exploration, extremely isolated environments may adversely affect the mood and cognition of astronauts. Horticultural plants and activities have been proven to be effective in improving their physical, psychological, and cognitive states. To assess the effects of applying horticultural plants and activities in isolated environments, this study investigated the influence of viewing strawberry plants on the mood of people in a laboratory experiment as indicated by heart rate, salivary cortisol, and psychological scales. The results showed that heart rate and salivary cortisol were significantly decreased after viewing strawberry plants for 15 min. "Tension" and "confusion" scored using the Profile of Mood States negative mood subscales, and anxiety levels measured using the State-Trait Anxiety Inventory scale were also significantly reduced. This study further explored the impact of viewing strawberry plants on cognition. A notable reduction of the subjects' reaction time after 15-min plant viewing was observed. Based on these findings, a long-duration isolated experiment in a bioregenerative life support system-"Lunar Palace I"-was conducted. A similar trend was obtained that crew members' mood states were improved by viewing the strawberry plants, but no significant change was observed. This study provided some experimental evidence for the benefits of interacting with strawberry plants in isolated environments.
Collapse
Affiliation(s)
- Zhao-ming Li
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100083, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100083, China
- School of Aviation Science and Engineering, Beihang University, Beijing 100083, China
| | - Wen-zhu Zhang
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100083, China
| | - Hong Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
50
|
Liang R, Zhang S, Peng X, Yang W, Xu Y, Wu P, Chen J, Cai Y, Zhou J. Characteristics of the gut microbiota in professional martial arts athletes: A comparison between different competition levels. PLoS One 2019; 14:e0226240. [PMID: 31881037 PMCID: PMC6934331 DOI: 10.1371/journal.pone.0226240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
Recent evidence suggests that athletes have microbial features distinct from those of sedentary individuals. However, the characteristics of the gut microbiota in athletes competing at different levels have not been assessed. The aim of this study was to investigate whether the gut microbiome is significantly different between higher-level and lower-level athletes. Faecal microbiota communities were analysed with hypervariable tag sequencing of the V3–V4 region of the 16S rRNA gene among 28 professional martial arts athletes, including 12 higher-level and 16 lower-level athletes. The gut microbial richness and diversity (the Shannon diversity index (p = 0.019) and Simpson diversity index (p = 0.001)) were significantly higher in the higher-level athletes than in the lower-level athletes. Moreover, the genera Parabacteroides, Phascolarctobacterium, Oscillibacter and Bilophila were enriched in the higher-level athletes, whereas Megasphaera was abundant in the lower-level athletes. Interestingly, the abundance of the genus Parabacteroides was positively correlated with the amount of time participants exercised during an average week. Further analysis of the functional prediction revealed that histidine metabolism and carbohydrate metabolism pathways were markedly over-represented in the gut microbiota of the higher-level athletes. Collectively, this study provides the first insight into the gut microbiota characteristics of professional martial arts athletes. The higher-level athletes had increased diversity and higher metabolic capacity of the gut microbiome for it may positively influence athletic performance.
Collapse
Affiliation(s)
- Ru Liang
- Institute of Management, Beijing Sport University, Beijing, China
| | - Shu Zhang
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiangji Peng
- Institute of Martial Arts and Traditional Ethnic Sports, Beijing Sport University, Beijing, China
| | - Wanna Yang
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing, China
| | - Yanwei Xu
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Ping Wu
- Realbio Genomics Institute, Shanghai, China
| | - Junhui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yongjiang Cai
- Health Management Center, Peking University Shenzhen Hospital, Shenzhen, China
- * E-mail: (ZJ); (CY)
| | - Jiyuan Zhou
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- * E-mail: (ZJ); (CY)
| |
Collapse
|