1
|
Dong XM, Zhang W, Tu M, Zhang SB. Spatial and Temporal Regulation of Flower Coloration in Cymbidium lowianum. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39834034 DOI: 10.1111/pce.15398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Flower color is a crucial trait that attracts pollinators and determines the ornamental value of floral crops. Cymbidium lowianum, one of the most important breeding parent of Cymbidium hybrids, has two flower morphs (normal and albino) that differ in flower lip color. However, the molecular mechanisms underlying flower color formation in C. lowianum are not well understood. In this study, comparative metabolomic analysis between normal and albino flower lip tissues indicated that cyanidin-3-O-glucoside content was significantly higher in red epichiles than in other lip tissues. This finding suggests that cyanidin-3-O-glucoside is responsible for color variation and differentiation in the lip in C. lowianum. We also found that red coloration in C. lowianum flower is correlated with high levels of F3'H expression; further, anthocyanins, carotenoids and chlorophyll coordinate to influence sepal and petal coloration during flower development. In transgenic Arabidopsis lines, overexpression of F3'H increased anthocyanin concentration, overexpression of BCH increased carotenoid concentration, whereas overexpression of HEMG and CHLI both increased chlorophyll concentration. Identification and assessment of several transcription factors revealed that MYB308-1 activates BCH, MYB111 and PIF4-2 activate HEMG and CHLI expression during flower development. Importantly, MYB14-1 shows interaction with PIF4-2, and appears to act as a connector between anthocyanin and chlorophyll biosynthesis by either activating F3'H expression or inhibiting CHLI expression. These results indicate that, in C. lowianum, variation in flower color and differentiation of lip color patterns are primarily regulated by the types and concentrations of flavonoids; further, carotenoids and chlorophyll also influence flower coloration during development.
Collapse
Affiliation(s)
- Xiu-Mei Dong
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
| | - Wei Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
| | - Mengling Tu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
| |
Collapse
|
2
|
Ying J, Wen S, Cai Y, Ye Y, Li L, Qian R. Decoding anthocyanin biosynthesis regulation in Asparagus officinalis peel coloration: Insights from integrated metabolomic and transcriptomic analyses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108980. [PMID: 39102766 DOI: 10.1016/j.plaphy.2024.108980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Asparagus is a key global vegetable crop with significant economic importance. Purple asparagus, rich in anthocyanins, stands out for its nutritional value. Despite its prominence, the molecular mechanisms driving purple peel coloration in asparagus remain unclear. This study focuses on three asparagus varieties with distinct peel colors to analyze anthocyanins in both the metabolome and transcriptome, unraveling the regulatory mechanisms. Our findings identify 30 anthocyanins, categorized into five major anthocyanin aglycones across diverse asparagus peel colors. Notably, among the 30 differentially expressed metabolites (DEMs), 18 anthocyanins displayed significantly up-regulated expression in the 'Purple Passion' variety. Key contributors include Cyanidin-3-O-rutinoside-5-O-glucoside and Cyanidin-3-O-sophoroside. Cyanidin-3-O-glucoside is most abundant in 'Purple Passion', while Petunidin-glucoside-galactoside is the least. Analysis of differentially expressed genes (DEGs) displayed 21 structural genes in anthocyanin synthesis, with F3H, DFR, ANS, and one of three UFGTs showing significantly higher expression in the 'Purple Passion' compared to 'Grande' and 'Erasmus'. Additionally, transcription factors (TFs), including 38 MYB, 33 bHLH, and 13 bZIP, also display differential expression in this variety. Validation through real-time qPCR supports the idea that increased expression of anthocyanin structural genes contribute to anthocyanin accumulation. Transient overexpression of AoMYB17 in tobacco further showed that it had the vital function of increasing anthocyanin content. This study sheds light on the mechanisms behind anthocyanin coloration in three distinct asparagus peels. Therefore, it lays the foundation for potential genetic enhancements, aiming to develop new purple-fleshed asparagus germplasms with heightened anthocyanin content.
Collapse
Affiliation(s)
- Jiali Ying
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China.
| | - Shuangshuang Wen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China
| | - Yunfei Cai
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China
| | - Youju Ye
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China
| | - Lebin Li
- Wenzhou Shenlu Seeds Co., Ltd, Wenzhou, 325005, Zhejiang, China
| | - Renjuan Qian
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China.
| |
Collapse
|
3
|
Riglet L, Zardilis A, Fairnie ALM, Yeo MT, Jönsson H, Moyroud E. Hibiscus bullseyes reveal mechanisms controlling petal pattern proportions that influence plant-pollinator interactions. SCIENCE ADVANCES 2024; 10:eadp5574. [PMID: 39270029 PMCID: PMC11397502 DOI: 10.1126/sciadv.adp5574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
Colorful flower patterns are key signals to attract pollinators. To produce such motifs, plants specify boundaries dividing petals into subdomains where cells develop distinctive pigmentations, shapes, and textures. While some transcription factors and biosynthetic pathways behind these characteristics are well studied, the upstream processes restricting their activities to specific petal regions remain enigmatic. Here, we unveil that the petal surface of Hibiscus trionum, an emerging model featuring a bullseye on its corolla, is prepatterned as the bullseye boundary position is specified long before it becomes visible. Using a computational model, we explore how pattern proportions are maintained while petals experience a 100-fold size increase. Exploiting transgenic lines and natural variants, we show that plants can regulate boundary position during the prepatterning phase or modulate growth on either side of this boundary later in development to vary bullseye proportions. Such modifications are functionally relevant, as buff-tailed bumblebees can reliably identify food sources based on bullseye size and prefer certain pattern proportions.
Collapse
Affiliation(s)
- Lucie Riglet
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Argyris Zardilis
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Alice L M Fairnie
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - May T Yeo
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Henrik Jönsson
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, Lund 223 62, Sweden
| | - Edwige Moyroud
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
4
|
Fattorini R, Khojayori FN, Mellers G, Moyroud E, Herrero E, Kellenberger RT, Walker R, Wang Q, Hill L, Glover BJ. Complex petal spot formation in the Beetle Daisy (Gorteria diffusa) relies on spot-specific accumulation of malonylated anthocyanin regulated by paralogous GdMYBSG6 transcription factors. THE NEW PHYTOLOGIST 2024; 243:240-257. [PMID: 38725421 DOI: 10.1111/nph.19804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024]
Abstract
Gorteria diffusa has elaborate petal spots that attract pollinators through sexual deception, but how G. diffusa controls spot development is largely unknown. Here, we investigate how pigmentation is regulated during spot formation. We determined the anthocyanin composition of G. diffusa petals and combined gene expression analysis with protein interaction assays to characterise R2R3-MYBs that likely regulate pigment production in G. diffusa petal spots. We found that cyanidin 3-glucoside pigments G. diffusa ray floret petals. Unlike other petal regions, spots contain a high proportion of malonylated anthocyanin. We identified three subgroup 6 R2R3-MYB transcription factors (GdMYBSG6-1,2,3) that likely activate the production of spot pigmentation. These genes are upregulated in developing spots and induce ectopic anthocyanin production upon heterologous expression in tobacco. Interaction assays suggest that these transcription factors regulate genes encoding three anthocyanin synthesis enzymes. We demonstrate that the elaboration of complex spots in G. diffusa begins with the accumulation of malonylated pigments at the base of ray floret petals, positively regulated by three paralogous R2R3-MYB transcription factors. Our results indicate that the functional diversification of these GdMYBSG6s involved changes in the spatial control of their transcription, and modification of the duration of GdMYBSG6 gene expression contributes towards floral variation within the species.
Collapse
Affiliation(s)
- Róisín Fattorini
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Farahnoz N Khojayori
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Gregory Mellers
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Edwige Moyroud
- Sainsbury Laboratory Cambridge University, Bateman St., Cambridge, CB2 1LR, UK
- Department of Genetics, University of Cambridge, Downing St., Cambridge, CB2 3EH, UK
| | - Eva Herrero
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Roman T Kellenberger
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Rachel Walker
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Qi Wang
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Lionel Hill
- Biomolecular Analysis Facility, John Innes Centre, Colney, Norwich, NR4 7UH, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| |
Collapse
|
5
|
Zhou N, Yan Y, Wen Y, Zhang M, Huang Y. Integrated transcriptome and metabolome analysis unveils the mechanism of color-transition in Edgeworthia chrysantha tepals. BMC PLANT BIOLOGY 2023; 23:567. [PMID: 37968605 PMCID: PMC10652483 DOI: 10.1186/s12870-023-04585-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Edgeworthia chrysantha, a deciduous shrub endemic to China, is known for its high ornamental value, extensive cultivation history, and wide-ranging applications. However, theoretical research on this plant is severely lacking. While its flowering process displays striking color transitions from green (S1) to yellow (S2) and then to white (S3), the scientific exploration of this phenomenon is limited, and the underlying regulatory mechanisms are yet to be elucidated. RESULTS Correlation analysis between phenotypic measurements and pigment content revealed that carotenoids and chlorophyll are the key pigments responsible for the color changes. Metabolomic analysis of carotenoids demonstrated that lutein and β-carotene were present at higher levels in S1, while S2 exhibited increased diversity and quantity of carotenoids compared to other stages. Notably, antheraxanthin, zeaxanthin, lycopene, and α-cryptoxanthin showed significant increases. In S3, apart from the colorless phytoene, other carotenoid metabolites were significantly reduced to extremely low levels. Transcriptomic data indicated that PSY, Z-ISO, crtZ, ZEP, PDS and ZDS are key genes involved in carotenoid biosynthesis and accumulation, while NCED plays a crucial role in carotenoid degradation. SGR was identified as a key gene contributing to the progressive decline in chlorophyll content. Additionally, three transcription factors potentially regulating carotenoid metabolism were also identified. CONCLUSIONS This study represents the first systematic investigation, spanning from phenotypic to molecular levels, of the color-changing phenomenon in E. chrysantha. The study elucidates the crucial pigments, metabolites, genes, and transcription factors responsible for flower color changes during the flowering process, thereby providing preliminary understanding of the intrinsic regulatory mechanisms. These findings establish a theoretical foundation for the genetic improvement of flower color in E. chrysantha.
Collapse
Affiliation(s)
- Ningzhi Zhou
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China
| | - Yujuan Yan
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, China.
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China.
| | - Yafeng Wen
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China
| | - Minhuan Zhang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, China
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha, 410004, China
| | - Yu Huang
- Nanning University, Nanning, 530200, China.
| |
Collapse
|
6
|
Zhang X, Xu S, Pan X, Wu Z, Ding L, Teng N. Low LdMYB12 expression contributes to petal spot deficiency in Lilium davidii var. unicolor. Mol Genet Genomics 2023; 298:1545-1557. [PMID: 37910265 DOI: 10.1007/s00438-023-02080-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
Petal spots are widespread in plants, they are important for attracting pollinators and as economic traits in crop breeding. However, the genetic and developmental control of petal spots has seldom been investigated. To further clarify the development of petal spots formation, we performed comparative transcriptome analysis of Lilium davidii var. unicolor and Lilium davidii petals at the full-bloom stage. In comparison with the parental species L. davidii, petals of the lily variety L. davidii var. unicolor do not have the distinct anthocyanin spots. We show that among 7846 differentially expressed genes detected, LdMYB12 was identified as a candidate gene contributing to spot formation in lily petals. The expression level of LdMYB12 in the petals of L. davidii was higher than that in L. davidii var. unicolor petals. Moreover, overexpression of LdMYB12 led to the appearance of spots on the petals of L. davidii var. unicolor, accompanied by increased expression of anthocyanin synthesis-related genes. Taken together, these results indicate that abnormal expression of LdMYB12 contributes to petal spot deficiency in L. davidii var. unicolor.
Collapse
Affiliation(s)
- Xinqi Zhang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd. Jiangsu Graduate Workstation/Nanjing Agricultural University Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing, 210043, China
| | - Sujuan Xu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd. Jiangsu Graduate Workstation/Nanjing Agricultural University Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing, 210043, China
| | - Xue Pan
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd. Jiangsu Graduate Workstation/Nanjing Agricultural University Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing, 210043, China
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd. Jiangsu Graduate Workstation/Nanjing Agricultural University Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing, 210043, China
| | - Liping Ding
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd. Jiangsu Graduate Workstation/Nanjing Agricultural University Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing, 210043, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd. Jiangsu Graduate Workstation/Nanjing Agricultural University Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing, 210043, China.
| |
Collapse
|
7
|
Zhu J, Wang Y, Wang Q, Li B, Wang X, Zhou X, Zhang H, Xu W, Li S, Wang L. The combination of DNA methylation and positive regulation of anthocyanin biosynthesis by MYB and bHLH transcription factors contributes to the petal blotch formation in Xibei tree peony. HORTICULTURE RESEARCH 2023; 10:uhad100. [PMID: 37427034 PMCID: PMC10327543 DOI: 10.1093/hr/uhad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/05/2023] [Indexed: 07/11/2023]
Abstract
Xibei tree peony is a distinctive cultivar group that features red-purple blotches in petals. Interestingly, the pigmentations of blotches and non-blotches are largely independent of one another. The underlying molecular mechanism had attracted lots of attention from investigators, but was still uncertain. Our present work demonstrates the factors that are closely related to blotch formation in Paeonia rockii 'Shu Sheng Peng Mo'. Non-blotch pigmentation is prevented by the silencing of anthocyanin structural genes, among which PrF3H, PrDFR, and PrANS are the three major genes. We characterized two R2R3-MYBs as the key transcription factors that control the early and late anthocyanin biosynthetic pathways. PrMYBa1, which belongs to MYB subgroup 7 (SG7) was found to activate the early biosynthetic gene (EBG) PrF3H by interacting with SG5 member PrMYBa2 to form an 'MM' complex. The SG6 member PrMYBa3 interacts with two SG5 (IIIf) bHLHs to synergistically activate the late biosynthetic genes (LBGs) PrDFR and PrANS, which is essential for anthocyanin accumulation in petal blotches. The comparison of methylation levels of the PrANS and PrF3H promoters between blotch and non-blotch indicated a correlation between hypermethylation and gene silencing. The methylation dynamics of PrANS promoter during flower development revealed a potential early demethylating reaction, which may have contributed to the particular expression of PrANS solely in the blotch area. We suggest that the formation of petal blotch may be highly associated with the cooperation of transcriptional activation and DNA methylation of structural gene promoters.
Collapse
Affiliation(s)
- Jin Zhu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhou Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianyu Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Zhou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hechen Zhang
- Horticulture Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Yuan Y, Li X, Yao X, Fu X, Cheng J, Shan H, Yin X, Kong H. Mechanisms underlying the formation of complex color patterns on Nigella orientalis (Ranunculaceae) petals. THE NEW PHYTOLOGIST 2023; 237:2450-2466. [PMID: 36527229 DOI: 10.1111/nph.18681] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Complex color patterns on petals are widespread in flowering plants, yet the mechanisms underlying their formation remain largely unclear. Here, by conducting detailed morphological, anatomical, biochemical, optical, transcriptomic, and functional studies, we investigated the cellular bases, chromogenic substances, reflectance spectra, developmental processes, and underlying mechanisms of complex color pattern formation on Nigella orientalis petals. We found that the complexity of the N. orientalis petals in color pattern is reflected at multiple levels, with the amount and arrangement of different pigmented cells being the key. We also found that biosynthesis of the chromogenic substances of different colors is sequential, so that one color/pattern is superimposed on another. Expression and functional studies further revealed that a pair of R2R3-MYB genes function cooperatively to specify the formation of the eyebrow-like horizontal stripe and the Mohawk haircut-like splatters. Specifically, while NiorMYB113-1 functions to draw a large splatter region, NiorMYB113-2 functions to suppress the production of anthocyanins from the region where a gap will form, thereby forming the highly specialized pattern. Our results provide a detailed portrait for the spatiotemporal dynamics of the coloration of N. orientalis petals and help better understand the mechanisms underlying complex color pattern formation in plants.
Collapse
Affiliation(s)
- Yi Yuan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xuan Li
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xu Yao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xuehao Fu
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Jie Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xiaofeng Yin
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| |
Collapse
|
9
|
Ji N, Wang Q, Li S, Wen J, Wang L, Ding X, Zhao S, Feng H. Metabolic profile and transcriptome reveal the mystery of petal blotch formation in rose. BMC PLANT BIOLOGY 2023; 23:46. [PMID: 36670355 PMCID: PMC9854060 DOI: 10.1186/s12870-023-04057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Petal blotch is a unique ornamental trait in angiosperm families, and blotch in rose petal is rare and has great esthetic value. However, the cause of the formation of petal blotch in rose is still unclear. The influence of key enzyme genes and regulatory genes in the pigment synthesis pathways needs to be explored and clarified. RESULTS In this study, the rose cultivar 'Sunset Babylon Eyes' with rose-red to dark red blotch at the base of petal was selected as the experimental material. The HPLC-DAD and UPLC-TQ-MS analyses indicated that only cyanidin 3,5-O-diglucoside (Cy3G5G) contributed to the blotch pigmentation of 'Sunset Babylon Eyes', and the amounts of Cy3G5G varied at different developmental stages. Only flavonols but no flavone were found in blotch and non-blotch parts. As a consequence, kaempferol and its derivatives as well as quercetin and its derivatives may act as background colors during flower developmental stages. Despite of the differences in composition, the total content of carotenoids in blotch and non-blotch parts were similar, and carotenoids may just make the petals show a brighter color. Transcriptomic data, quantitative real-time PCR and promoter sequence analyses indicated that RC7G0058400 (F3'H), RC6G0470600 (DFR) and RC7G0212200 (ANS) may be the key enzyme genes for the early formation and color deepening of blotch at later stages. As for two transcription factor, RC7G0019000 (MYB) and RC1G0363600 (WRKY) may bind to the promoters of critical enzyme genes, or RC1G0363600 (WRKY) may bind to the promoter of RC7G0019000 (MYB) to activate the anthocyanin accumulation in blotch parts of 'Sunset Babylon Eyes'. CONCLUSIONS Our findings provide a theoretical basis for the understanding of the chemical and molecular mechanism for the formation of petal blotch in rose.
Collapse
Affiliation(s)
- Naizhe Ji
- Beijing Key Lab of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China
| | - Qianyu Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Wen
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohao Ding
- College of Food Science, Fuyang Normal University, Fuyang, China
| | - Shiwei Zhao
- Beijing Key Lab of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China.
| | - Hui Feng
- Beijing Key Lab of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China.
| |
Collapse
|
10
|
Zhu L, Ding Y, Wang S, Wang Z, Dai L. Genome-Wide Identification, Characterization, and Expression Analysis of CHS Gene Family Members in Chrysanthemum nankingense. Genes (Basel) 2022; 13:2145. [PMID: 36421820 PMCID: PMC9690667 DOI: 10.3390/genes13112145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 09/10/2023] Open
Abstract
The chalcone synthase (CHS) gene family catalyzes the first committed step in the biosynthesis of flavonoids and plays key roles in various biological processes in plants. However, systematic studies of the CHS gene family in chrysanthemum remain unknown to date. In this study, 16 CnCHS genes were identified by searching the complete genome sequence of Chrysanthemum nankingense. Most contained two exons and one intron with Chal-sti-synt_N and Chal-sti-synt_C domains. A phylogenetic tree of CnCHSs indicated divergence into three major groups, including I, II, and III. Analyses of the genes and promoters of these genes indicated that there are many cis-acting elements that respond to light, phytohormones, stress, and developmental stages. The CnCHS genes have extensive patterns of expression in various tissues and stages of flower development. Tandemly repeated and segmental repeat genes were expressed at higher levels in different tissues than most of the CnCHS genes that have been identified. CnCHS10 is expressed at higher levels in various flower organs than in vegetative tissues, particularly in disc floret petals and pistils. Our study provides valuable information for the systematic analysis of the CnCHS gene family, which also contributes to further research on flavonoid synthesis and petal colors of chrysanthemum.
Collapse
Affiliation(s)
- Lili Zhu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou 450046, China
| | - Yuqing Ding
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shunxiang Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhimin Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou 450046, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liping Dai
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou 450046, China
| |
Collapse
|
11
|
Cheng C, Guo Z, Li H, Mu X, Wang P, Zhang S, Yang T, Cai H, Wang Q, Lü P, Zhang J. Integrated metabolic, transcriptomic and chromatin accessibility analyses provide novel insights into the competition for anthocyanins and flavonols biosynthesis during fruit ripening in red apple. FRONTIERS IN PLANT SCIENCE 2022; 13:975356. [PMID: 36212335 PMCID: PMC9540549 DOI: 10.3389/fpls.2022.975356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Fruit ripening is accompanied by a wide range of metabolites and global changes in gene expression that are regulated by various factors. In this study, we investigated the molecular differences in red apple 'Hongmantang' fruits at three ripening stages (PS1, PS5 and PS9) through a comprehensive analysis of metabolome, transcriptome and chromatin accessibility. Totally, we identified 341 and 195 differentially accumulated metabolites (DAMs) in comparison I (PS5_vs_PS1) and comparison II (PS9_vs_PS5), including 57 and 23 differentially accumulated flavonoids (DAFs), respectively. Intriguingly, among these DAFs, anthocyanins and flavonols showed opposite patterns of variation, suggesting a possible competition between their biosynthesis. To unveil the underlying mechanisms, RNA-Seq and ATAC-Seq analyses were performed. A total of 852 DEGs significantly enriched in anthocyanin metabolism and 128 differential accessible regions (DARs) significantly enriched by MYB-related motifs were identified as up-regulated in Comparison I but down-regulated in Comparison II. Meanwhile, the 843 DEGs significantly enriched in phenylalanine metabolism and the 364 DARs significantly enriched by bZIP-related motifs showed opposite trends. In addition, four bZIPs and 14 MYBs were identified as possible hub genes regulating the biosynthesis of flavonols and anthocyanins. Our study will contribute to the understanding of anthocyanins and flavonols biosynthesis competition in red apple fruits during ripening.
Collapse
Affiliation(s)
- Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Ziwei Guo
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Hua Li
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaopeng Mu
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Pengfei Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Shuai Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Tingzhen Yang
- Fruit Research Institute, Shanxi Agricultural University, Jinzhong, China
| | - Huacheng Cai
- Fruit Research Institute, Shanxi Agricultural University, Jinzhong, China
| | - Qian Wang
- Fruit Research Institute, Shanxi Agricultural University, Jinzhong, China
| | - Peitao Lü
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiancheng Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
12
|
Luan Y, Tang Y, Wang X, Xu C, Tao J, Zhao D. Tree Peony R2R3-MYB Transcription Factor PsMYB30 Promotes Petal Blotch Formation by Activating the Transcription of the Anthocyanin Synthase Gene. PLANT & CELL PHYSIOLOGY 2022; 63:1101-1116. [PMID: 35713501 DOI: 10.1093/pcp/pcac085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Petal blotches are commonly observed in many angiosperm families and not only influence plant-pollinator interactions but also confer high ornamental value. Tree peony (Paeonia suffruticosa Andr.) is an important cut flower worldwide, but few studies have focused on its blotch formation. In this study, anthocyanins were found to be the pigment basis for blotch formation of P. suffruticosa, and peonidin-3,5-di-O-glucoside (Pn3G5G) was the most important component of anthocyanins, while the dihydroflavonol-4-reductase gene was the key factor contributing to blotch formation. Then, the R2R3-myeloblastosis (MYB) transcription factor PsMYB30 belonging to subgroup 1 was proven as a positive anthocyanin regulator with transcriptional activation and nuclear expression. Furthermore, silencing PsMYB30 in P. suffruticosa petals reduced blotch size by 37.9%, faded blotch color and decreased anthocyanin and Pn3G5G content by 23.6% and 32.9%, respectively. Overexpressing PsMYB30 increased anthocyanin content by 14.5-fold in tobacco petals. In addition, yeast one-hybrid assays, dual-luciferase assays and electrophoretic mobility shift assays confirmed that PsMYB30 could bind to the promoter of the anthocyanin synthase (ANS) gene and enhance its expression. Altogether, a novel MYB transcription factor, PsMYB30, was identified to promote petal blotch formation by activating the expression of PsANS involved in anthocyanin biosynthesis, which provide new insights for petal blotch formation in plants.
Collapse
Affiliation(s)
- Yuting Luan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yuhan Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xin Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Cong Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
13
|
Shi Q, Yuan M, Wang S, Luo X, Luo S, Fu Y, Li X, Zhang Y, Li L. PrMYB5 activates anthocyanin biosynthetic PrDFR to promote the distinct pigmentation pattern in the petal of Paeonia rockii. FRONTIERS IN PLANT SCIENCE 2022; 13:955590. [PMID: 35991417 PMCID: PMC9382232 DOI: 10.3389/fpls.2022.955590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Paeonia rockii is well-known for its distinctive large dark-purple spot at the white petal base and has been considered to be the main genetic source of spotted tree peony cultivars. In this study, the petal base and petal background of Paeonia ostii (pure white petals without any spot), P. rockii, and other three tree peony cultivars were sampled at four blooming stages from the small bell-like bud stage to the initial blooming stage. There is a distinct difference between the pigmentation processes of spots and petal backgrounds; the spot pigmentation was about 10 days earlier than the petal background. Moreover, the cyanin and peonidin type anthocyanin accumulation at the petal base mainly contributed to the petal spot formation. Then, we identified a C1 subgroup R2R3-MYB transcription factor, PrMYB5, predominantly transcribing at the petal base. This is extremely consistent with PrDFR and PrANS expression, the contents of anthocyanins, and spot formation. Furthermore, PrMYB5 could bind to and activate the promoter of PrDFR in yeast one-hybrid and dual-luciferase assays, which was further verified in overexpression of PrMYB5 in tobacco and PrMYB5-silenced petals of P. rockii by comparing the color change, anthocyanin contents, and gene expression. In summary, these results shed light on the mechanism of petal spot formation in P. rockii and speed up the molecular breeding process of tree peony cultivars with novel spot pigmentation patterns.
Collapse
Affiliation(s)
- Qianqian Shi
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Meng Yuan
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Shu Wang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Xiaoning Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Sha Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yaqi Fu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Xiang Li
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yanlong Zhang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
14
|
Qi F, Liu Y, Luo Y, Cui Y, Lu C, Li H, Huang H, Dai S. Functional analysis of the ScAG and ScAGL11 MADS-box transcription factors for anthocyanin biosynthesis and bicolour pattern formation in Senecio cruentus ray florets. HORTICULTURE RESEARCH 2022; 9:uhac071. [PMID: 35734379 PMCID: PMC9209810 DOI: 10.1093/hr/uhac071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
Cineraria (Senecio cruentus) is an ornamental plant with pure colour and bicolour cultivars, widely used for landscaping. Anthocyanin biosynthesis influences coloration patterns in cineraria. However, how anthocyanins accumulate and distribute in cineraria is poorly understood. This study investigated the molecular mechanisms underlying anthocyanin biosynthesis and bicolour formation in cineraria using pure colour and bicolour cultivars. Transcriptome and gene expression analysis showed that five genes, ScCHS2, ScF3H1, ScDFR3, ScANS, and ScbHLH17, were inhibited in the white cultivar and colourless regions of bicolour cultivars. In contrast, two MADS-box genes, ScAG and ScAGL11, showed significantly higher expression in the colourless regions of bicolour cultivars. ScAG and ScAGL11 were localized in the nucleus and co-expressed with the bicolour trait. Further functional analysis verified that ScAG inhibits anthocyanin accumulation in tobacco (Nicotiana tabacum). However, virus-induced gene silencing (VIGS) experiments showed that silencing of ScAG and ScAGL11 increases anthocyanin content in cineraria leaves. Similar results were observed when ScAG and ScAGL11 were silenced in the cineraria capitulum, accompanied by the smaller size of the colourless region, specifically in the ScAG/ScAGL11-silenced plants. The expression of ScCHS2, ScDFR3, and ScF3H1 increased in silenced cineraria leaves and capitulum. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments demonstrated that ScAG interacts with ScAGL11. Moreover, ScAG directly inhibited the transcription of ScF3H1 while ScAGL11 inhibited ScDFR3 expression by binding to their promoters separately. The findings reported herein indicate that ScAG and ScAGL11 negatively regulate anthocyanin biosynthesis in cineraria ray florets, and their differential expression in ray florets influences the bicolour pattern appearance.
Collapse
Affiliation(s)
- Fangting Qi
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yuting Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yiliu Luo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yumeng Cui
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Chenfei Lu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Hao Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - He Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
15
|
Wong DCJ, Perkins J, Peakall R. Anthocyanin and Flavonol Glycoside Metabolic Pathways Underpin Floral Color Mimicry and Contrast in a Sexually Deceptive Orchid. FRONTIERS IN PLANT SCIENCE 2022; 13:860997. [PMID: 35401591 PMCID: PMC8983864 DOI: 10.3389/fpls.2022.860997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 06/10/2023]
Abstract
Sexually deceptive plants secure pollination by luring specific male insects as pollinators using a combination of olfactory, visual, and morphological mimicry. Flower color is a key component to this attraction, but its chemical and genetic basis remains poorly understood. Chiloglottis trapeziformis is a sexually deceptive orchid which has predominantly dull green-red flowers except for the central black callus projecting from the labellum lamina. The callus mimics the female of the pollinator and the stark color contrast between the black callus and dull green or red lamina is thought to enhance the visibility of the mimic. The goal of this study was to investigate the chemical composition and genetic regulation of temporal and spatial color patterns leading to visual mimicry, by integrating targeted metabolite profiling and transcriptomic analysis. Even at the very young bud stage, high levels of anthocyanins were detected in the dark callus, with peak accumulation by the mature bud stage. In contrast, anthocyanin levels in the lamina peaked as the buds opened and became reddish-green. Coordinated upregulation of multiple genes, including dihydroflavonol reductase and leucoanthocyanidin dioxygenase, and the downregulation of flavonol synthase genes (FLS) in the callus at the very young bud stage underpins the initial high anthocyanin levels. Conversely, within the lamina, upregulated FLS genes promote flavonol glycoside over anthocyanin production, with the downstream upregulation of flavonoid O-methyltransferase genes further contributing to the accumulation of methylated flavonol glycosides, whose levels peaked in the mature bud stage. Finally, the peak anthocyanin content of the reddish-green lamina of the open flower is underpinned by small increases in gene expression levels and/or differential upregulation in the lamina in select anthocyanin genes while FLS patterns showed little change. Differential expression of candidate genes involved in specific transport, vacuolar acidification, and photosynthetic pathways may also assist in maintaining the distinct callus and contrasting lamina color from the earliest bud stage through to the mature flower. Our findings highlight that flower color in this sexually deceptive orchid is achieved by complex tissue-specific coordinated regulation of genes and biochemical pathways across multiple developmental stages.
Collapse
|
16
|
Zhao D, Zhao L, Liu Y, Zhang A, Xiao S, Dai X, Yuan R, Zhou Z, Cao Q. Metabolomic and Transcriptomic Analyses of the Flavonoid Biosynthetic Pathway for the Accumulation of Anthocyanins and Other Flavonoids in Sweetpotato Root Skin and Leaf Vein Base. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2574-2588. [PMID: 35175040 DOI: 10.1021/acs.jafc.1c05388] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sweetpotato [Ipomoea batatas (L.) Lam.] is a major tuberous root crop that is rich in flavonoids. Here, we discovered a spontaneous mutation in the color of the leaf vein base (LVB) and root skin (RS) in the Zheshu 81 cultivar. The flavonoid and anthocyanin metabolites and molecular mechanism were analyzed using metabolome and transcriptome data. Compared to the wild type, 13 differentially accumulated metabolites (DAMs) in the LVB and 59 DAMs in the RS were all significantly downregulated. Moreover, all the anthocyanin metabolites decreased significantly. The differentially expressed genes (DEGs) encoding the key enzymes in the later enzymatic reaction of anthocyanin and flavonoid were significantly downregulated in the mutant. The expression trends of the transcription factor MYB were evidently related to the anthocyanin content. These results offer insights into the coloration in the LVB and RS and a theoretical basis for determining the regulation of flavonoid and anthocyanin synthesis in sweetpotato.
Collapse
Affiliation(s)
- Donglan Zhao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Lingxiao Zhao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Yang Liu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - An Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Shizhuo Xiao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Xibin Dai
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Rui Yuan
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Zhilin Zhou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Qinghe Cao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| |
Collapse
|
17
|
Khan IA, Cao K, Guo J, Li Y, Wang Q, Yang X, Wu J, Fang W, Wang L. Identification of key gene networks controlling anthocyanin biosynthesis in peach flower. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111151. [PMID: 35151460 DOI: 10.1016/j.plantsci.2021.111151] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Flavonoids, particularly anthocyanin is the main pigment that determined the red color of peach flowers, and help the plant to attract pollinators, protect the reproductive organs of flower from photo-oxidative effects of light and various non-communicable diseases. Through weightage gene coexpression network analysis (WGCNA) we identified a network of 15 hub genes that co-expressed throughout peach flower development including 5 genes coded for the key enzymes (CHI, F3'H, DFR, LAR and UFGT) of flavonoid biosynthetic pathway and 1 gene Prupe.1G111700 identified as R2R3 family transcription factor MYB108. Over expression of PpMYB108 significantly increased anthocyanin biosynthesis in Tobacco flowers. Moreover, the expression correlation between PpMYB108 and PpDFR, suggests that PpMYB108 play the role of transcriptional activator for PpDFR. This was further supported by a 6 bp insertion of MYB biding site in the core promoter region of PpDFR in red flower. The positive interaction of PpMYB108 with PpDFR promoter from red flower was confirmed in yeast one hybrid assay. These findings may be helpful in peach breeding programs as well as in identifying anthocyanin related genes in other species.
Collapse
Affiliation(s)
- Irshad Ahmad Khan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| | - Jian Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China; State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Qi Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xuanwen Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jinlong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Weichao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| |
Collapse
|
18
|
Combined transcriptome and metabolome integrated analysis of Acer mandshuricum to reveal candidate genes involved in anthocyanin accumulation. Sci Rep 2021; 11:23148. [PMID: 34848790 PMCID: PMC8633053 DOI: 10.1038/s41598-021-02607-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/18/2021] [Indexed: 12/28/2022] Open
Abstract
The red color formation of Acer mandshuricum leaves is caused by the accumulation of anthocyanins primarily, but the molecular mechanism researches which underlie anthocyanin biosynthesis in A. mandshuricum were still lacking. Therefore, we combined the transcriptome and metabolome and analyzed the regulatory mechanism and accumulation pattern of anthocyanins in three different leaf color states. In our results, 26 anthocyanins were identified. Notably, the metabolite cyanidin 3-O-glucoside was found that significantly correlated with the color formation, was the predominant metabolite in anthocyanin biosynthesis of A. mandshuricum. By the way, two key structural genes ANS (Cluster-20561.86285) and BZ1 (Cluster-20561.99238) in anthocyanidin biosynthesis pathway were significantly up-regulated in RL, suggesting that they might enhance accumulation of cyanidin 3-O-glucoside which is their downstream metabolite, and contributed the red formation of A. mandshuricum leaves. Additionally, most TFs (e.g., MYBs, bZIPs and bHLHs) were detected differentially expressed in three leaf color stages that could participate in anthocyanin accumulation. This study sheds light on the anthocyanin molecular regulation of anthocyanidin biosynthesis and accumulation underlying the different leaf color change periods in A. mandshuricum, and it could provide basic theory and new insight for the leaf color related genetic improvement of A. mandshuricum.
Collapse
|
19
|
Lin RC, Rausher MD. R2R3-MYB genes control petal pigmentation patterning in Clarkia gracilis ssp. sonomensis (Onagraceae). THE NEW PHYTOLOGIST 2021; 229:1147-1162. [PMID: 32880946 DOI: 10.1111/nph.16908] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Petal pigmentation patterning is widespread in flowering plants. The genetics of these pattern elements has been of great interest for understanding the evolution of phenotypic diversification. Here, we investigate the genetic changes responsible for the evolution of an unpigmented petal element on a colored background. We used transcriptome analysis, gene expression assays, cosegregation in F2 plants and functional tests to identify the gene(s) involved in petal coloration in Clarkia gracilis ssp. sonomensis. We identified an R2R3-MYB transcription factor (CgsMYB12) responsible for anthocyanin pigmentation of the basal region ('cup') in the petal of C. gracilis ssp. sonomensis. A functional mutation in CgsMYB12 creates a white cup on a pink petal background. Additionally, we found that two R2R3-MYB genes (CgsMYB6 and CgsMYB11) are also involved in petal background pigmentation. Each of these three R2R3-MYB genes exhibits a different spatiotemporal expression pattern. The functionality of these R2R3-MYB genes was confirmed through stable transformation of Arabidopsis. Distinct spatial patterns of R2R3-MYB expression have created the possibility that pigmentation in different sections of the petal can evolve independently. This finding suggests that recent gene duplication has been central to the evolution of petal pigmentation patterning in C. gracilis ssp. sonomensis.
Collapse
Affiliation(s)
- Rong-Chien Lin
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
20
|
Chromosome-level genome assembly of a parent species of widely cultivated azaleas. Nat Commun 2020; 11:5269. [PMID: 33077749 PMCID: PMC7572368 DOI: 10.1038/s41467-020-18771-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/11/2020] [Indexed: 11/15/2022] Open
Abstract
Azaleas (Ericaceae) comprise one of the most diverse ornamental plants, renowned for their cultural and economic importance. We present a chromosome-scale genome assembly for Rhododendron simsii, the primary ancestor of azalea cultivars. Genome analyses unveil the remnants of an ancient whole-genome duplication preceding the radiation of most Ericaceae, likely contributing to the genomic architecture of flowering time. Small-scale gene duplications contribute to the expansion of gene families involved in azalea pigment biosynthesis. We reconstruct entire metabolic pathways for anthocyanins and carotenoids and their potential regulatory networks by detailed analysis of time-ordered gene co-expression networks. MYB, bHLH, and WD40 transcription factors may collectively regulate anthocyanin accumulation in R. simsii, particularly at the initial stages of flower coloration, and with WRKY transcription factors controlling progressive flower coloring at later stages. This work provides a cornerstone for understanding the underlying genetics governing flower timing and coloration and could accelerate selective breeding in azalea. Azaleas are one of the most diverse ornamental plants and have cultural and economic importance. Here, the authors report a chromosome-scale genome assembly for the primary ancestor of the azalea cultivar Rhododendro simsi and identify transcription factors that may function in flower coloration at different stages.
Collapse
|
21
|
Takahashi S, Ozawa S, Sonoike K, Sasaki K, Nishihara M. Morphological and cytological observations of corolla green spots reveal the presence of functional chloroplasts in Japanese gentian. PLoS One 2020; 15:e0237173. [PMID: 32845897 PMCID: PMC7449470 DOI: 10.1371/journal.pone.0237173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022] Open
Abstract
Gentian is an important ornamental flower in Japan. The corolla of the majority of cultivated Japanese gentians have green spots, which are rarely encountered in flowers of other angiosperms. Little information is available on the functional traits of the green spots. In this study, we characterized the green spots in the Japanese gentian corolla using a number of microscopic techniques. Opto-digital microscopy revealed that a single visible green spot is composed of approximately 100 epidermal cells. The epidermal cells of a green spot formed a dome-like structure and the cell lumen contained many green structures that were granular and approximately 5 μm in diameter. The green structures emitted red autofluorescence when irradiated with 488 nm excitation light. Transmission electron microscopy revealed that the green structures contained typical thylakoids and grana, thus indicating they are chloroplasts. No grana were observed and the thylakoids had collapsed in the plastids of epidermal cells surrounding green spots. To estimate the rate of photosynthetic electron transfer of the green spots, we measured chlorophyll fluorescence using the MICROSCOPY version of an Imaging-PAM (pulse-amplitude-modulated) fluorometer. Under actinic light of 449 μmol m-2 s-1, substantial electron flow through photosystem II was observed. Observation of green spot formation during corolla development revealed that immature green spots formed at an early bud stage and developed to maturity associated with chloroplast degradation in the surrounding epidermal cells. These results confirmed that the Japanese gentian corolla contains functional chloroplasts in restricted areas of epidermal cells and indicated that a sophisticated program for differential regulation of chloroplast formation and degradation is operative in the epidermis.
Collapse
Affiliation(s)
| | - Suguru Ozawa
- Iwate Agricultural Research Center, Kitakami, Iwate, Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
22
|
Zhao A, Cui Z, Li T, Pei H, Sheng Y, Li X, Zhao Y, Zhou Y, Huang W, Song X, Peng T, Wang J. mRNA and miRNA Expression Analysis Reveal the Regulation for Flower Spot Patterning in Phalaenopsis 'Panda'. Int J Mol Sci 2019; 20:ijms20174250. [PMID: 31480267 PMCID: PMC6747512 DOI: 10.3390/ijms20174250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022] Open
Abstract
Phalaenopsis cultivar ‘Panda’ is a beautiful and valuable ornamental for its big flower and unique big spots on the petals and sepals. Although anthocyanins are known as the main pigments responsible for flower colors in Phalaenopsis, and the anthocyanins biosynthetic pathway in Phalaenopsis is generally well known, the detailed knowledge of anthocynins regulation within the spot and non-spot parts in ‘Panda’ flower is limited. In this study, transcriptome and small RNA libraries analysis from spot and non-spot sepal tissues of ‘Panda’ were performed, and we found PeMYB7, PeMYB11, and miR156g, miR858 is associated with the purple spot patterning in its sepals. Transcriptome analyses showed a total 674 differentially expressed genes (DEGs), with 424 downregulated and 250 upregulated (Non-spot-VS-Spot), and 10 candidate DEGs involved in anthocyanin biosynthetic pathway. The qPCR analysis confirmed that seven candidate structure genes (PeANS, PeF3′H, PeC4H, PeF3H, PeF3H1, Pe4CL2, and PeCHI) have significantly higher expressing levels in spot tissues than non-spot tissues. A total 1552 differentially expressed miRNAs (DEMs) were detected with 676 downregulated and 876 upregulated. However, microRNA data showed no DEMs targeting on anthocyanin biosynthesis structure gene, while a total 40 DEMs target transcription factor (TF) genes, which expressed significantly different level in spot via non-spot sepal, including 2 key MYB regulator genes. These results indicated that the lack of anthocyanidins in non-spot sepal may not directly be caused by microRNA suppressing anthocyanidin synthesis genes rather than the MYB genes. Our findings will help in understanding the role of miRNA molecular mechanisms in the spot formation pattern of Phalaenopsis, and would be useful to provide a reference to similar research in other species.
Collapse
Affiliation(s)
- Anjin Zhao
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China
| | - Zheng Cui
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China
| | - Tingge Li
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China
| | - Huiqin Pei
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China
| | - Yuhui Sheng
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China
| | - Xueqing Li
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China
| | - Ying Zhao
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China
- Research Center for Terrestrial Biodiversity of the South China Sea, College of Forestry, Hainan University, Haikou 570228, China
| | - Yang Zhou
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China
- Research Center for Terrestrial Biodiversity of the South China Sea, College of Forestry, Hainan University, Haikou 570228, China
| | - Wenjun Huang
- Department of Development and Design, Hainan University, Haikou 570228, China
| | - Xiqiang Song
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China
- Research Center for Terrestrial Biodiversity of the South China Sea, College of Forestry, Hainan University, Haikou 570228, China
| | - Ting Peng
- Key Laboratory of Germplasm Innovation on Protection and Conservation of Mountain Plant Resources, Ministry of Education/College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Jian Wang
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plants Germplasm, College of Forestry, Hainan University, Haikou 570228, China.
- Research Center for Terrestrial Biodiversity of the South China Sea, College of Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
23
|
Aizza LCB, Sawaya ACHF, Dornelas MC. Identification of anthocyanins in the corona of two species of Passiflora and their hybrid by ultra-high performance chromatography with electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS). BIOCHEM SYST ECOL 2019. [DOI: 10.1016/j.bse.2019.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Hsu CC, Su CJ, Jeng MF, Chen WH, Chen HH. A HORT1 Retrotransposon Insertion in the PeMYB11 Promoter Causes Harlequin/Black Flowers in Phalaenopsis Orchids. PLANT PHYSIOLOGY 2019; 180:1535-1548. [PMID: 31088902 PMCID: PMC6752922 DOI: 10.1104/pp.19.00205] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/29/2019] [Indexed: 05/09/2023]
Abstract
The harlequin/black flowers in Phalaenopsis orchids contain dark purple spots and various pigmentation patterns, which appeared as a new color in 1996. We analyzed this phenotype by microscopy, HPLC, gene functional characterization, genome structure analysis, and transient overexpression system to obtain a better understanding of the black color formation in Phalaenopsis orchids. Most mesophyll cells of harlequin flowers showed extremely high accumulation of anthocyanins as well as a high expression of Phalaenopsis equestris MYB11 (PeMYB11) as the major regulatory R2R3-MYB transcription factor for regulating the production of the black color. In addition, we analyzed the expression of basic helix-loop-helix factors, WD40 repeat proteins, and MYB27- and MYBx-like repressors for their association with the spot pattern formation. To understand the high expression of PeMYB11 in harlequin flowers, we isolated the promoter sequences of PeMYB11 from red and harlequin flowers. A retrotransposon, named Harlequin Orchid RetroTransposon 1 (HORT1), was identified and inserted in the upstream regulatory region of PeMYB11 The insertion resulted in strong expression of PeMYB11 and thus extremely high accumulation of anthocyanins in the harlequin flowers of the Phalaenopsis Yushan Little Pearl variety. A dual luciferase assay showed that the insertion of HORT1 enhanced PeMYB11 expression by at least 2-fold compared with plants not carrying the insertion. Furthermore, the presence of HORT1 explains the high mutation rates resulting in many variations of pigmentation patterning in harlequin flowers of Phalaenopsis orchids.
Collapse
Affiliation(s)
- Chia-Chi Hsu
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Ching-Jen Su
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Mei-Fen Jeng
- Orchid Research and Development Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Huei Chen
- Orchid Research and Development Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Hwa Chen
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
25
|
Zhang H, Koes R, Shang H, Fu Z, Wang L, Dong X, Zhang J, Passeri V, Li Y, Jiang H, Gao J, Li Y, Wang H, Quattrocchio FM. Identification and functional analysis of three new anthocyanin R2R3-MYB genes in Petunia. PLANT DIRECT 2019; 3:e00114. [PMID: 31245756 PMCID: PMC6508765 DOI: 10.1002/pld3.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/18/2018] [Accepted: 12/26/2018] [Indexed: 05/09/2023]
Abstract
We identified three novel members of the R2R3-MYB clade of anthocyanin regulators in the genome of the purple flowering Petunia inflata S6 wild accession, and we called them ANTHOCYANIN SYNTHESIS REGULATOR (ASR). Two of these genes, ASR1 and ASR2, are inactivated by two different single base mutations in their coding sequence. All three of these genes are absent in the white flowering species P. axillaris N and P. parodii, in the red flowering P. exserta, and in several Petunia hybrida lines, including R27 and W115. P. violacea and other P. hybrida lines (M1, V30, and W59) instead harbor functional copies of the ASR genes. Comparative, functional and phylogenic analysis of anthocyanin R2R3-MYB genes strongly suggest that the ASR genes cluster is a duplication of the genomic fragment containing the other three R2R3-MYB genes with roles in pigmentation that were previously defined, the ANTHOCYANIN4-DEEP PURPLE-PURPLE HAZE (AN4-DPL-PHZ) cluster. An investigation of the genomic fragments containing anthocyanin MYBs in different Petunia accessions reveals that massive rearrangements have taken place, resulting in large differences in the regions surrounding these genes, even in closely related species. Yeast two-hybrid assays showed that the ASR proteins can participate in the WMBW (WRKY, MYB, B-HLH, and WDR) anthocyanin regulatory complex by interacting with the transcription factors AN1 and AN11. All three ASRs can induce anthocyanin synthesis when ectopically expressed in P. hybrida lines, but ASR1 appeared to be the most effective. The expression patterns of ASR1 and ASR2 cover several different petunia tissues with higher expression at early stages of bud development. In contrast, ASR3 is only weakly expressed in the stigma, ovary, and anther filaments. The characterization of these novel ASR MYB genes completes the picture of the MYB members of the petunia anthocyanin regulatory MBW complex and suggests possible mechanisms of the diversification of pigmentation patterns during plant evolution.
Collapse
Affiliation(s)
- Hechen Zhang
- Horticulture Research InstituteHenan Academy of Agricultural SciencesZhengzhouChina
| | - Ronald Koes
- Department of Plant Development and (Epi) GeneticsSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Hongquan Shang
- Horticulture Research InstituteHenan Academy of Agricultural SciencesZhengzhouChina
| | - Zhenzhu Fu
- Horticulture Research InstituteHenan Academy of Agricultural SciencesZhengzhouChina
| | - Limin Wang
- Horticulture Research InstituteHenan Academy of Agricultural SciencesZhengzhouChina
| | - Xiaoyu Dong
- Horticulture Research InstituteHenan Academy of Agricultural SciencesZhengzhouChina
| | - Jing Zhang
- Horticulture Research InstituteHenan Academy of Agricultural SciencesZhengzhouChina
| | - Valentina Passeri
- Department of Plant Development and (Epi) GeneticsSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Yanbang Li
- Department of Plant ScienceSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hui Jiang
- Horticulture Research InstituteHenan Academy of Agricultural SciencesZhengzhouChina
| | - Jie Gao
- Horticulture Research InstituteHenan Academy of Agricultural SciencesZhengzhouChina
| | - Yanmin Li
- Horticulture Research InstituteHenan Academy of Agricultural SciencesZhengzhouChina
| | - Huijuan Wang
- Horticulture Research InstituteHenan Academy of Agricultural SciencesZhengzhouChina
| | - Francesca M. Quattrocchio
- Department of Plant Development and (Epi) GeneticsSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
26
|
Fattorini R, Glover BJ. Joining the dots. NATURE PLANTS 2018; 4:10-11. [PMID: 29292375 DOI: 10.1038/s41477-017-0086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Róisín Fattorini
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
27
|
Jiang P, Rausher M. Two genetic changes in cis-regulatory elements caused evolution of petal spot position in Clarkia. NATURE PLANTS 2018; 4:14-22. [PMID: 29298993 DOI: 10.1038/s41477-017-0085-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
A major premise in evolutionary developmental biology is that regulatory changes, often involving cis-regulatory elements, are responsible for much morphological evolution. This premise is supported by recent investigations of animal development, but information is just beginning to accumulate regarding whether it also applies to the evolution of plant morphology1-4. Here, we identify the genetic differences between species in the genus Clarkia that are responsible for evolutionary change in an ecologically important element of floral colour patterns: spot position. The evolutionary shift in spot position was due to two simple genetic changes that resulted in the appearance of a transcription factor binding site mutation in the R2R3 Myb gene that changes spot formation. These genetic changes caused R2R3 Myb to be activated by a different transcription factor that is expressed in a different position in the petal. These results suggest that the regulatory rewiring paradigm is as applicable to plants as it is to animals, and support the hypothesis that cis-regulatory changes may often play a role in plant morphological evolution.
Collapse
Affiliation(s)
- Peng Jiang
- Biology Department, Duke University, Durham, NC, USA.
| | - Mark Rausher
- Biology Department, Duke University, Durham, NC, USA
| |
Collapse
|
28
|
Martins TR, Jiang P, Rausher MD. How petals change their spots: cis-regulatory re-wiring in Clarkia (Onagraceae). THE NEW PHYTOLOGIST 2017; 216:510-518. [PMID: 27597114 DOI: 10.1111/nph.14163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/26/2016] [Indexed: 05/19/2023]
Abstract
A long-standing question in evolutionary developmental biology is how new traits evolve. Although most floral pigmentation studies have focused on how pigment intensity and composition diversify, few, if any, have explored how a pattern element can shift position. In the present study, we examine the genetic changes underlying shifts in the position of petal spots in Clarkia. Comparative transcriptome analyses were used to identify potential candidate genes responsible for spot formation. Co-segregation analyses in F2 individuals segregating for different spot positions, quantitative PCR, and pyrosequencing, were used to confirm the role of the candidate gene in determining spot position. Transient expression assays were used to identify the expression domain of different alleles. An R2R3Myb transcription factor (CgMyb1) activated spot formation, and different alleles of CgMyb1 were expressed in different domains, leading to spot formation in different petal locations. Reporter assays revealed that promoters from different alleles determine different locations of expression. The evolutionary shift in spot position is due to one or more cis-regulatory changes in the promoter of CgMyb1, indicating that shifts in pattern element position can be caused by changes in a single gene, and that cis-regulatory rewiring can be used to alter the relative position of an existing character.
Collapse
Affiliation(s)
- Talline R Martins
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, NV, 89557, USA
| | - Peng Jiang
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
29
|
Su S, Xiao W, Guo W, Yao X, Xiao J, Ye Z, Wang N, Jiao K, Lei M, Peng Q, Hu X, Huang X, Luo D. The CYCLOIDEA-RADIALIS module regulates petal shape and pigmentation, leading to bilateral corolla symmetry in Torenia fournieri (Linderniaceae). THE NEW PHYTOLOGIST 2017; 215:1582-1593. [PMID: 28691160 DOI: 10.1111/nph.14673] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/24/2017] [Indexed: 05/04/2023]
Abstract
The diverse pigmentation patterns of flower corollas probably result from pollinator-mediated selection. Previous studies demonstrated that R2R3-MYB factors may have been recruited in the regulation of corolla pigmentation. However, how R2R3-MYBs became so diverse in their regulation of different pigmentation patterns remains unclear. Here, we studied a Lamiales species, Torenia fournieri, which has elaborate zygomorphic flowers with dorsal-ventral asymmetries in corolla pigmentation. We found recent gene duplication events in CYCLOIDEA-like (CYC-like) and RADIALIS-like (RAD-like) genes, and functionally analyzed three dorsal-specific expression factors: TfCYC1, TfCYC2, and TfRAD1. We found that the CYC-RAD module coordinates petal shape and corolla pigmentation, as ectopic expression of TfCYC2 or TfRAD1 disrupted the asymmetric corolla pigmentation pattern and produced strongly dorsalized flowers. Dorsal petal identity was lost when TfCYC2 was down-regulated or when TfRAD1 was knocked out. In T. fournieri, the diversified CYC and RAD genes have evolved regulatory loops, and TfCYC2 binds directly to the regulatory regions of an R2R3-MYB factor gene, TfMYB1, which might lead to its asymmetric expression and ultimately establish the asymmetric pigmentation pattern. These findings support the existence of a regulatory module that integrates dorsal-ventral patterning and asymmetric corolla pigmentation in T. fournieri.
Collapse
Affiliation(s)
- Shihao Su
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wuxiu Guo
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xinran Yao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Junqing Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziqing Ye
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Na Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Keyuan Jiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Mengqi Lei
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qincheng Peng
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaohe Hu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xia Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Da Luo
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
30
|
Biochemical and Comparative Transcriptomic Analyses Identify Candidate Genes Related to Variegation Formation in Paeonia rockii. Molecules 2017; 22:molecules22081364. [PMID: 28817092 PMCID: PMC6152351 DOI: 10.3390/molecules22081364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022] Open
Abstract
Paeonia rockii is a wild tree peony species with large and dark purple variegations at the base of its petals. It is the genetic resource for various variegation patterns in tree peony cultivars, which is in contrast to the pure white petals of Paeonia ostii. However, the molecular mechanism underlying the formation of variegation in this plant is still unknown. Here, we conducted Illumina transcriptome sequencing for P. rockii, P. ostii (with pure white petals) and their F1 individuals (with purple-red variegation). A total of 181,866 unigenes were generated, including a variety of unigenes involved in anthocyanin biosynthesis and sequestration and the regulation of anthocyanin biosynthesis. The dark purple or purple-red variegation patterns mainly occurred due to the proportions of cyanidin (Cy)- and peonidin (Pn)-based anthocyanins. The variegations of P. rockii exhibited a “Cy > Pn” phenotype, whereas the F1 progeny showed a “Pn > Cy” phenotype. The CHS, DFR, ANS, and GST genes might play key roles in variegation pigmentation in P. rockii according to gene expression and interaction network analysis. Two R2R3-MYB transcription factors (c131300.graph_c0 and c133735.graph_c0) regulated variegation formation by controlling CHS, ANS and GST genes. Our results indicated that the various variegation patterns were caused by transcriptional regulation of anthocyanin biosynthesis genes, and the transcription profiles of the R2R3-MYBs provided clues to elucidate the mechanisms underlying this trait. The petal transcriptome data produced in this study will provide a valuable resource for future association investigations of the genetic regulation of various variegation patterns in tree peonies.
Collapse
|
31
|
Liao IT, Shan H, Xu G, Zhang R. Bridging evolution and development in plants. THE NEW PHYTOLOGIST 2016; 212:827-830. [PMID: 27874986 DOI: 10.1111/nph.14294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- Irene T Liao
- Department of Biology, Duke University, Durham, NC, USA
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guixia Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Jin X, Huang H, Wang L, Sun Y, Dai S. Transcriptomics and Metabolite Analysis Reveals the Molecular Mechanism of Anthocyanin Biosynthesis Branch Pathway in Different Senecio cruentus Cultivars. FRONTIERS IN PLANT SCIENCE 2016; 7:1307. [PMID: 27656188 PMCID: PMC5012328 DOI: 10.3389/fpls.2016.01307] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/15/2016] [Indexed: 05/23/2023]
Abstract
The cyanidin (Cy), pelargonidin (Pg), and delphinidin (Dp) pathways are the three major branching anthocyanin biosynthesis pathways that regulate flavonoid metabolic flux and are responsible for red, orange, and blue flower colors, respectively. Different species have evolved to develop multiple regulation mechanisms that form the branched pathways. In the current study, five Senecio cruentus cultivars with different colors were investigated. We found that the white and yellow cultivars do not accumulate anthocyanin and that the blue, pink, and carmine cultivars mainly accumulate Dp, Pg, and Cy in differing densities. Subsequent transcriptome analysis determined that there were 43 unigenes encoding anthocyanin biosynthesis genes in the blue cultivar. We also combined chemical and transcriptomic analyses to investigate the major metabolic pathways that are related to the observed differences in flower pigmentation in the series of S. cruentus. The results showed that mutations of the ScbHLH17 and ScCHI1/2 coding regions abolish anthocyanin formation in the white and the yellow cultivars; the competition of the ScF3'H1, ScF3'5'H, and ScDFR1/2 genes for naringenin determines the differences in branching metabolic flux of the Cy, Dp, and Pg pathways. Our findings provide new insights into the regulation of anthocyanin branching and also supplement gene resources (including ScF3'5 'H, ScF3'H, and ScDFRs) for flower color modification of ornamentals.
Collapse
Affiliation(s)
- Xuehua Jin
- College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
- Faculty of Architecture and City Planning, Kunming University of Science and TechnologyKunming, China
| | - He Huang
- College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Lu Wang
- College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Yi Sun
- College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Silan Dai
- College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| |
Collapse
|
33
|
Casimiro-Soriguer I, Narbona E, Buide ML, del Valle JC, Whittall JB. Transcriptome and Biochemical Analysis of a Flower Color Polymorphism in Silene littorea (Caryophyllaceae). FRONTIERS IN PLANT SCIENCE 2016; 7:204. [PMID: 26973662 PMCID: PMC4770042 DOI: 10.3389/fpls.2016.00204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/06/2016] [Indexed: 05/23/2023]
Abstract
Flower color polymorphisms are widely used as model traits from genetics to ecology, yet determining the biochemical and molecular basis can be challenging. Anthocyanin-based flower color variations can be caused by at least 12 structural and three regulatory genes in the anthocyanin biosynthetic pathway (ABP). We use mRNA-Seq to simultaneously sequence and estimate expression of these candidate genes in nine samples of Silene littorea representing three color morphs (dark pink, light pink and white) across three developmental stages in hopes of identifying the cause of flower color variation. We identified 29 putative paralogs for the 15 candidate genes in the ABP. We assembled complete coding sequences for 16 structural loci and nine of ten regulatory loci. Among these 29 putative paralogs, we identified 622 SNPs, yet only nine synonymous SNPs in Ans had allele frequencies that differentiated pigmented petals (dark pink and light pink) from white petals. These Ans allele frequency differences were further investigated with an expanded sequencing survey of 38 individuals, yet no SNPs consistently differentiated the color morphs. We also found one locus, F3h1, with strong differential expression between pigmented and white samples (>42x). This may be caused by decreased expression of Myb1a in white petal buds. Myb1a in S. littorea is a regulatory locus closely related to Subgroup 7 Mybs known to regulate F3h and other loci in the first half of the ABP in model species. We then compare the mRNA-Seq results with petal biochemistry which revealed cyanidin as the primary anthocyanin and five flavonoid intermediates. Concentrations of three of the flavonoid intermediates were significantly lower in white petals than in pigmented petals (rutin, quercetin and isovitexin). The biochemistry results for rutin, quercetin, luteolin and apigenin are consistent with the transcriptome results suggesting a blockage at F3h, possibly caused by downregulation of Myb1a.
Collapse
Affiliation(s)
- Inés Casimiro-Soriguer
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide UniversitySeville, Spain
- Department of Plant Biology and Ecology, University of SevilleSeville, Spain
| | - Eduardo Narbona
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide UniversitySeville, Spain
| | - M. L. Buide
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide UniversitySeville, Spain
| | - José C. del Valle
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide UniversitySeville, Spain
| | - Justen B. Whittall
- Department of Biology, Santa Clara University, College of Arts and SciencesSanta Clara, CA, USA
| |
Collapse
|
34
|
Competition between anthocyanin and flavonol biosynthesis produces spatial pattern variation of floral pigments between Mimulus species. Proc Natl Acad Sci U S A 2016; 113:2448-53. [PMID: 26884205 DOI: 10.1073/pnas.1515294113] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flower color patterns have long served as a model for developmental genetics because pigment phenotypes are visually striking, yet generally not required for plant viability, facilitating the genetic analysis of color and pattern mutants. The evolution of novel flower colors and patterns has played a key role in the adaptive radiation of flowering plants via their specialized interactions with different pollinator guilds (e.g., bees, butterflies, birds), motivating the search for allelic differences affecting flower color pattern in closely related plant species with different pollinators. We have identified LIGHT AREAS1 (LAR1), encoding an R2R3-MYB transcription factor, as the causal gene underlying the spatial pattern variation of floral anthocyanin pigmentation between two sister species of monkeyflower: the bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated Mimulus cardinalis. We demonstrated that LAR1 positively regulates FLAVONOL SYNTHASE (FLS), essentially eliminating anthocyanin biosynthesis in the white region (i.e., light areas) around the corolla throat of M. lewisii flowers by diverting dihydroflavonol into flavonol biosynthesis from the anthocyanin pigment pathway. FLS is preferentially expressed in the light areas of the M. lewisii flower, thus prepatterning the corolla. LAR1 expression in M. cardinalis flowers is much lower than in M. lewisii, explaining the unpatterned phenotype and recessive inheritance of the M. cardinalis allele. Furthermore, our gene-expression analysis and genetic mapping results suggest that cis-regulatory change at the LAR1 gene played a critical role in the evolution of different pigmentation patterns between the two species.
Collapse
|
35
|
Mahmood K, Xu Z, El-Kereamy A, Casaretto JA, Rothstein SJ. The Arabidopsis Transcription Factor ANAC032 Represses Anthocyanin Biosynthesis in Response to High Sucrose and Oxidative and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:1548. [PMID: 27790239 PMCID: PMC5063858 DOI: 10.3389/fpls.2016.01548] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/03/2016] [Indexed: 05/04/2023]
Abstract
Production of anthocyanins is one of the adaptive responses employed by plants during stress conditions. During stress, anthocyanin biosynthesis is mainly regulated at the transcriptional level via a complex interplay between activators and repressors of anthocyanin biosynthesis genes. In this study, we investigated the role of a NAC transcription factor, ANAC032, in the regulation of anthocyanin biosynthesis during stress conditions. ANAC032 expression was found to be induced by exogenous sucrose as well as high light (HL) stress. Using biochemical, molecular and transgenic approaches, we show that ANAC032 represses anthocyanin biosynthesis in response to sucrose treatment, HL and oxidative stress. ANAC032 was found to negatively affect anthocyanin accumulation and the expression of anthocyanin biosynthesis (DFR, ANS/LDOX) and positive regulatory (TT8) genes as demonstrated in overexpression line (35S:ANAC032) compared to wild-type under HL stress. The chimeric repressor line (35S:ANAC032-SRDX) exhibited the opposite expression patterns for these genes. The negative impact of ANAC032 on the expression of DFR, ANS/LDOX and TT8 was found to be correlated with the altered expression of negative regulators of anthocyanin biosynthesis, AtMYBL2 and SPL9. In addition to this, ANAC032 also repressed the MeJA- and ABA-induced anthocyanin biosynthesis. As a result, transgenic lines overexpressing ANAC032 (35S:ANAC032) produced drastically reduced levels of anthocyanin pigment compared to wild-type when challenged with salinity stress. However, transgenic chimeric repressor lines (35S:ANAC032-SRDX) exhibited the opposite phenotype. Our results suggest that ANAC032 functions as a negative regulator of anthocyanin biosynthesis in Arabidopsis thaliana during stress conditions.
Collapse
|
36
|
Zhang Y, Cheng Y, Ya H, Xu S, Han J. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes. FRONTIERS IN PLANT SCIENCE 2015; 6:964. [PMID: 26583029 PMCID: PMC4631938 DOI: 10.3389/fpls.2015.00964] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 10/22/2015] [Indexed: 05/06/2023]
Abstract
The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3'H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation.
Collapse
|
37
|
Bailes EJ, Ollerton J, Pattrick JG, Glover BJ. How can an understanding of plant-pollinator interactions contribute to global food security? CURRENT OPINION IN PLANT BIOLOGY 2015; 26:72-79. [PMID: 26116979 DOI: 10.1016/j.pbi.2015.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/29/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Pollination of crops by animals is an essential part of global food production, but evidence suggests that wild pollinator populations may be declining while a number of problems are besetting managed honey bee colonies. Animal-pollinated crops grown today, bred in an environment where pollination was less likely to limit fruit set, are often suboptimal in attracting and sustaining their pollinator populations. Research into plant-pollinator interactions is often conducted in a curiosity-driven, ecological framework, but may inform breeding and biotechnological approaches to enhance pollinator attraction and crop yield. In this article we review key topics in current plant-pollinator research that have potential roles in future crop breeding for enhanced global food security.
Collapse
Affiliation(s)
- Emily J Bailes
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Jeff Ollerton
- Department of Environmental and Geographic Sciences, University of Northampton, Avenue Campus, Northampton NN2 6JD, UK
| | - Jonathan G Pattrick
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
38
|
Hsu CC, Chen YY, Tsai WC, Chen WH, Chen HH. Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp. PLANT PHYSIOLOGY 2015; 168:175-91. [PMID: 25739699 PMCID: PMC4424010 DOI: 10.1104/pp.114.254599] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/27/2015] [Indexed: 05/19/2023]
Abstract
Orchidaceae are well known for their fascinating floral morphologic features, specialized pollination, and distinctive ecological strategies. With their long-lasting flowers of various colors and pigmentation patterning, Phalaenopsis spp. have become important ornamental plants worldwide. In this study, we identified three R2R3-MYB transcription factors PeMYB2, PeMYB11, and PeMYB12. Their expression profiles were concomitant with red color formation in Phalaenopsis spp. flowers. Transient assay of overexpression of three PeMYBs verified that PeMYB2 resulted in anthocyanin accumulation, and these PeMYBs could activate the expression of three downstream structural genes Phalaenopsis spp. Flavanone 3-hydroxylase5, Phalaenopsis spp. Dihydroflavonol 4-reductase1, and Phalaenopsis spp. Anthocyanidin synthase3. In addition, these three PeMYBs participated in the distinct pigmentation patterning in a single flower, which was revealed by virus-induced gene silencing. In the sepals/petals, silencing of PeMYB2, PeMYB11, and PeMYB12 resulted in the loss of the full-red pigmentation, red spots, and venation patterns, respectively. Moreover, different pigmentation patterning was regulated by PeMYBs in the sepals/petals and lip. PeMYB11 was responsive to the red spots in the callus of the lip, and PeMYB12 participated in the full pigmentation in the central lobe of the lip. The differential pigmentation patterning was validated by RNA in situ hybridization. Additional assessment was performed in six Phalaenopsis spp. cultivars with different color patterns. The combined expression of these three PeMYBs in different ratios leads to a wealth of complicated floral pigmentation patterning in Phalaenopsis spp.
Collapse
Affiliation(s)
- Chia-Chi Hsu
- Department of Life Sciences (C.-C.H., Y.-Y.C., H.-H.C.),Institute of Tropical Plant Sciences (W.-C.T.), andOrchid Research and Development Center (W.-C.T., W.-H.C., H.-H.C.), National Cheng Kung University, Tainan 701, Taiwan
| | - You-Yi Chen
- Department of Life Sciences (C.-C.H., Y.-Y.C., H.-H.C.),Institute of Tropical Plant Sciences (W.-C.T.), andOrchid Research and Development Center (W.-C.T., W.-H.C., H.-H.C.), National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Chieh Tsai
- Department of Life Sciences (C.-C.H., Y.-Y.C., H.-H.C.),Institute of Tropical Plant Sciences (W.-C.T.), andOrchid Research and Development Center (W.-C.T., W.-H.C., H.-H.C.), National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Huei Chen
- Department of Life Sciences (C.-C.H., Y.-Y.C., H.-H.C.),Institute of Tropical Plant Sciences (W.-C.T.), andOrchid Research and Development Center (W.-C.T., W.-H.C., H.-H.C.), National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Hwa Chen
- Department of Life Sciences (C.-C.H., Y.-Y.C., H.-H.C.),Institute of Tropical Plant Sciences (W.-C.T.), andOrchid Research and Development Center (W.-C.T., W.-H.C., H.-H.C.), National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
39
|
Albert NW, Griffiths AG, Cousins GR, Verry IM, Williams WM. Anthocyanin leaf markings are regulated by a family of R2R3-MYB genes in the genus Trifolium. THE NEW PHYTOLOGIST 2015; 205:882-93. [PMID: 25329638 DOI: 10.1111/nph.13100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/20/2014] [Indexed: 05/02/2023]
Abstract
Anthocyanin pigments accumulate to form spatially restricted patterns in plants, particularly in flowers, but also occur in vegetative tissues. Spatially restricted anthocyanin leaf markings are poorly characterised in plants, but are common in forage legumes. We hypothesised that the molecular basis for anthocyanin leaf markings in Trifolium spp. is due to the activity of a family of R2R3-MYB genes. R2R3-MYB genes were identified that are associated with the two classic pigmentation loci in T. repens. The R locus patterns 'red leaf', 'red midrib' and 'red fleck' are conditioned by a single MYB gene, RED LEAF. The 'diffuse red leaf' trait is regulated by the RED LEAF DIFFUSE MYB gene. The V locus was identified through mapping two V-linked traits, 'V-broken yellow' (Vby) and 'red leaflet' (Vrl). Two highly similar R2R3-MYB genes, RED V-a and RED V-b, mapped to the V locus and co-segregated with the RED V pigmentation pattern. Functional characterisation of RED LEAF and RED V was performed, confirming their function as anthocyanin regulators and identifying a C-terminal region necessary for transactivation. The mechanisms responsible for generating anthocyanin leaf markings in T. repens provide a valuable system to compare with mechanisms that regulate complex floral pigmentation.
Collapse
Affiliation(s)
- Nick W Albert
- AgResearch Limited, Private Bag 11008, Palmerston North, 4442, New Zealand; Plant & Food Research Limited, Private Bag 11-600, Palmerston North, 4442, New Zealand
| | | | | | | | | |
Collapse
|
40
|
Yuan YW, Sagawa JM, Frost L, Vela JP, Bradshaw HD. Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus). THE NEW PHYTOLOGIST 2014; 204:1013-27. [PMID: 25103615 PMCID: PMC4221532 DOI: 10.1111/nph.12968] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/05/2014] [Indexed: 05/04/2023]
Abstract
A molecular description of the control of floral pigmentation in a multi-species group displaying various flower color patterns is of great interest for understanding the molecular bases of phenotypic diversification and pollinator-mediated speciation. Through transcriptome profiling, mutant analyses and transgenic experiments, we aim to establish a 'baseline' floral anthocyanin regulation model in Mimulus lewisii and to examine the different ways of tinkering with this model in generating the diversity of floral anthocyanin patterns in other Mimulus species. We find one WD40 and one bHLH gene controlling anthocyanin pigmentation in the entire corolla of M. lewisii and two R2R3-MYB genes, PELAN and NEGAN, controlling anthocyanin production in the petal lobe and nectar guide, respectively. The autoregulation of NEGAN might be a critical property to generate anthocyanin spots. Independent losses of PELAN expression (via different mechanisms) explain two natural yellow-flowered populations of M. cardinalis (typically red-flowered). The NEGAN ortholog is the only anthocyanin-activating MYB expressed in the M. guttatus flowers. The mutant lines and transgenic tools available for M. lewisii will enable gene-by-gene replacement experiments to dissect the genetic and developmental bases of more complex floral color patterns, and to test hypotheses on phenotypic evolution in general.
Collapse
Affiliation(s)
- Yao-Wu Yuan
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Janelle M. Sagawa
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Laura Frost
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - James P. Vela
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
41
|
Li Q, Wang J, Sun HY, Shang X. Flower color patterning in pansy (Viola × wittrockiana Gams.) is caused by the differential expression of three genes from the anthocyanin pathway in acyanic and cyanic flower areas. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:134-141. [PMID: 25270164 DOI: 10.1016/j.plaphy.2014.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 09/23/2014] [Indexed: 05/20/2023]
Abstract
The petals of pansy (Viola × wittrockiana Gams.) 'Mengdie' exhibit a cyanic blotched pigmentation pattern. The accumulation of anthocyanins, cyanidin and delphinidin, was detected in the upper epidermal cells of the cyanic blotches. In order to elucidate the mechanism by which cyanic blotches are formed in pansy petal, the expression level of genes involved in anthocyanin synthesis was measured and compared between cyanic blotches and acyanic areas of the flower. The use of primers in conserved regions allowed the successful isolation of six cDNA clones encoding putative anthocyanin enzymes from pansy petals. The clones isolated encoded chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS). The transcription patterns of seven genes (VwCHS, VwCHI, VwF3H, VwF3'H, VwDFR, VwF3'5'H, and VwANS) in cyanic blotches and acyanic areas of the petals at seven stages of flower development were determined by real-time quantitative PCR. Transcription of VwF3'5'H, VwDFR and VwANS was significantly increased in cyanic blotches at stages III-V of flower development, implicating these genes in the pigmentation of Viola × wittrockiana Gams. petals.
Collapse
Affiliation(s)
- Qin Li
- Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources, Hainan University, Ministry of Education, Haikou 570228, China; College of Horticulture & Landscape Architecture, Hainan University, Haikou 570228, China
| | - Jian Wang
- Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources, Hainan University, Ministry of Education, Haikou 570228, China; College of Horticulture & Landscape Architecture, Hainan University, Haikou 570228, China.
| | - Hai-Yan Sun
- Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources, Hainan University, Ministry of Education, Haikou 570228, China; College of Horticulture & Landscape Architecture, Hainan University, Haikou 570228, China
| | - Xiao Shang
- Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources, Hainan University, Ministry of Education, Haikou 570228, China; College of Horticulture & Landscape Architecture, Hainan University, Haikou 570228, China
| |
Collapse
|
42
|
Crawford DJ, Doyle JJ, Soltis DE, Soltis PS, Wendel JF. Contemporary and future studies in plant speciation, morphological/floral evolution and polyploidy: honouring the scientific contributions of Leslie D. Gottlieb to plant evolutionary biology. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130341. [PMID: 24958916 PMCID: PMC4071516 DOI: 10.1098/rstb.2013.0341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Daniel J Crawford
- Department of Ecology and Evolutionary Biology, and Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
| | - Jeffrey J Doyle
- L. H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL 17 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 17 32611, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
43
|
Moyle LC, Jewell CP, Kostyun JL. Fertile approaches to dissecting mechanisms of premating and postmating prezygotic reproductive isolation. CURRENT OPINION IN PLANT BIOLOGY 2014; 18:16-23. [PMID: 24457825 DOI: 10.1016/j.pbi.2013.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/13/2013] [Accepted: 12/20/2013] [Indexed: 05/11/2023]
Abstract
In sexually reproducing organisms, speciation involves the evolution of mechanisms that confer reproductive isolation between diverging lineages. Here we discuss recent research on the molecular basis of traits that mediate these barriers during premating and postmating, prezygotic stages of reproduction. In some cases, the specific loci underlying the expression of reproductive barriers are known, most notably when premating isolation is due to flower color or scent differences, and when postmating isolation is due to divergent gamete signaling. In addition, emerging work in molecular biology and genomics is revealing the mechanistic basis of prezygotic reproductive traits within species, and therefore establishing clear candidates for future work examining their potential role in reproductive isolation between species.
Collapse
Affiliation(s)
- Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - Cathleen P Jewell
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jamie L Kostyun
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
44
|
Deng X, Bashandy H, Ainasoja M, Kontturi J, Pietiäinen M, Laitinen RAE, Albert VA, Valkonen JPT, Elomaa P, Teeri TH. Functional diversification of duplicated chalcone synthase genes in anthocyanin biosynthesis of Gerbera hybrida. THE NEW PHYTOLOGIST 2014; 201:1469-1483. [PMID: 24266452 DOI: 10.1111/nph.12610] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/17/2013] [Indexed: 05/19/2023]
Abstract
• Chalcone synthase (CHS) is the key enzyme in the first committed step of the flavonoid biosynthetic pathway and catalyzes the stepwise condensation of 4-coumaroyl-CoA and malonyl-CoA to naringenin chalcone. In plants, CHS is often encoded by a small family of genes that are temporally and spatially regulated. Our earlier studies have shown that GCHS4 is highly activated by ectopic expression of an MYB-type regulator GMYB10 in gerbera (Gerbera hybrida). • The tissue- and development-specific expression patterns of three gerbera CHS genes were examined. Virus-induced gene silencing (VIGS) was used to knock down GCHS1 and GCHS4 separately in gerbera inflorescences. • Our data show that GCHS4 is the only CHS encoding gene that is expressed in the cyanidin-pigmented vegetative tissues of gerbera cv Terraregina. GCHS3 expression is pronounced in the pappus bristles of the flowers. Expression of both GCHS1 and GCHS4 is high in the epidermal cells of gerbera petals, but only GCHS1 is contributing to flavonoid biosynthesis. • Gerbera contains a family of three CHS encoding genes showing different spatial and temporal regulation. GCHS4 expression in gerbera petals is regulated post-transcriptionally, at the level of either translation elongation or protein stability.
Collapse
Affiliation(s)
- Xianbao Deng
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| | - Hany Bashandy
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
- Department of Genetics, Cairo University, 13 Gamaa St., Giza, 12619, Egypt
| | - Miia Ainasoja
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| | - Juha Kontturi
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| | - Milla Pietiäinen
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| | - Roosa A E Laitinen
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Jari P T Valkonen
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| | - Paula Elomaa
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| | - Teemu H Teeri
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| |
Collapse
|
45
|
Yamagishi M, Toda S, Tasaki K. The novel allele of the LhMYB12 gene is involved in splatter-type spot formation on the flower tepals of Asiatic hybrid lilies (Lilium spp.). THE NEW PHYTOLOGIST 2014; 201:1009-1020. [PMID: 24180488 DOI: 10.1111/nph.12572] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/27/2013] [Indexed: 05/21/2023]
Abstract
Many angiosperm families develop spatially regulated anthocyanin spots on their flowers. The Asiatic hybrid lily (Lilium spp.) cv 'Latvia' develops splatter-type spots on its tepals. The splatters arise simply from the deposition of anthocyanin pigments in the tepal epidermis. To determine how splatter development was regulated, we analysed the transcription of anthocyanin biosynthesis genes, and isolated and characterized an R2R3-MYB gene specific to splatter pigmentation. All anthocyanin biosynthesis genes were expressed in splatter-containing regions of tepals, but not in other regions, indicating that splatter pigmentation is caused by the transcriptional regulation of biosynthesis genes. Previously characterized LhMYB12 regulators were not involved in splatter pigmentation, but, instead, a new allele of the LhMYB12 gene, LhMYB12-Lat, isolated in this study, contributed to splatter development. In 'Latvia' and other lily plants expressing splatters, LhMYB12-Lat was preferentially transcribed in the splatter-containing region of tepals. Progeny segregation analysis showed that LhMYB12-Lat genotype and splatter phenotype were co-segregated among the F1 population, indicating that LhMYB12-Lat determines the presence or absence of splatters. LhMYB12-Lat contributes to splatter development, but not to full-tepal pigmentation and raised spot pigmentation. As a result of its unique sequences and different transcription profiles, this new allele of LhMYB12 should be a novel R2R3-MYB specifically associating with splatter spot development.
Collapse
Affiliation(s)
- Masumi Yamagishi
- Research Faculty of Agriculture, Hokkaido University, N9W9 Kita-ku, Sapporo, 060-8589, Japan
| | - Shinya Toda
- School of Agriculture, Hokkaido University, N9W9 Kita-ku, Sapporo, 060-8589, Japan
| | - Keisuke Tasaki
- Research Faculty of Agriculture, Hokkaido University, N9W9 Kita-ku, Sapporo, 060-8589, Japan
| |
Collapse
|
46
|
Bjarnholt N, Li B, D'Alvise J, Janfelt C. Mass spectrometry imaging of plant metabolites--principles and possibilities. Nat Prod Rep 2014; 31:818-37. [PMID: 24452137 DOI: 10.1039/c3np70100j] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to the end of 2013 New mass spectrometry imaging (MSI) techniques are gaining importance in the analysis of plant metabolite distributions, and significant technological improvements have been introduced in the past decade. This review provides an introduction to the different MSI techniques and their applications in plant science. The most common methods for sample preparation are described, and the review also features a comprehensive table of published studies in MSI of plant material. A number of significant works are highlighted for their contributions to advance the understanding of plant biology through applications of plant metabolite imaging. Particular attention is given to the possibility for imaging of surface metabolites since this is highly dependent on the methods and techniques which are applied in imaging studies.
Collapse
Affiliation(s)
- Nanna Bjarnholt
- Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 17, 1870 Frederiksberg C, Copenhagen, Denmark
| | | | | | | |
Collapse
|
47
|
Albert NW, Davies KM, Schwinn KE. Gene regulation networks generate diverse pigmentation patterns in plants. PLANT SIGNALING & BEHAVIOR 2014; 9:e29526. [PMID: 25763693 PMCID: PMC4205132 DOI: 10.4161/psb.29526] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/08/2014] [Indexed: 05/18/2023]
Abstract
The diversity of pigmentation patterns observed in plants occurs due to the spatial distribution and accumulation of colored compounds, which may also be associated with structural changes to the tissue. Anthocyanins are flavonoids that provide red/purple/blue coloration to plants, often forming complex patterns such as spots, stripes, and vein-associated pigmentation, particularly in flowers. These patterns are determined by the activity of MYB-bHLH-WDR (MBW) transcription factor complexes, which activate the anthocyanin biosynthesis genes, resulting in anthocyanin pigment accumulation. Recently, we established that the MBW complex controlling anthocyanin synthesis acts within a gene regulation network that is conserved within at least the Eudicots. This network involves hierarchy, reinforcement, and feedback mechanisms that allow for stringent and responsive regulation of the anthocyanin biosynthesis genes. The gene network and mobile nature of the WDR and R3-MYB proteins provide exciting new opportunities to explore the basis of pigmentation patterning, and to investigate the evolutionary history of the MBW components in land plants.
Collapse
Affiliation(s)
- Nick W Albert
- The New Zealand Institute for Plant & Food Research Limited; Palmerston North; New Zealand
- AgResearch Limited; Palmerston North, New Zealand
| | - Kevin M Davies
- The New Zealand Institute for Plant & Food Research Limited; Palmerston North; New Zealand
| | - Kathy E Schwinn
- The New Zealand Institute for Plant & Food Research Limited; Palmerston North; New Zealand
| |
Collapse
|
48
|
Glover BJ, Walker RH, Moyroud E, Brockington SF. How to spot a flower. THE NEW PHYTOLOGIST 2013; 197:687-689. [PMID: 23293952 DOI: 10.1111/nph.12112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Rachel H Walker
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Edwige Moyroud
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Samuel F Brockington
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|