1
|
Alam A, Abbas S, Waheed N, Abbas A, Weibo Q, Huang J, Khan KA, Ghramh HA, Ali J, Zhao CR. Genetic Warfare: The Plant Genome's Role in Fending Off Insect Invaders. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e70021. [PMID: 39726337 DOI: 10.1002/arch.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
The plant defense against insects is multiple layers of interactions. They defend through direct defense and indirect defense. Direct defenses include both physical and chemical barriers that hinder insect growth, development, and reproduction. In contrast, indirect defenses do not affect insects directly but instead suppress them by releasing volatile compounds that attract the natural enemies of herbivores. Insects overcome plant defenses by deactivating biochemical defenses, suppressing defense signaling through effectors, and altering their behavior through chemical regulation. There is always a genetic war between plants and insects. In this genetic war, plant-insect co-evolution act as both weapons and messengers. Because plants always look for new strategies to avoid insects by developing adaptation. There are molecular processes that regulate the interaction between plants and insect. Here, we examine the genes and proteins involved in plant-insect interactions and explore how their discovery has shaped the current model of the plant genome's role. Plants detect damage-associated and herbivore-associated molecular patterns through receptors, which trigger early signaling pathways involving Ca2+, reactive oxygen species, and MAP kinases. The specific defense mechanisms are activated through gene signaling pathways, including phytohormones, secondary metabolites, and transcription factors. Expanding plant genome approaches to unexplored dimensions in fending off insects should be a future priority in order to develop management strategies.
Collapse
Affiliation(s)
- Aleena Alam
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Sohail Abbas
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Noman Waheed
- College of Animal Sciences and Technology, Jilin Agricultural University, Changchun, PR China
| | - Arzlan Abbas
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Qin Weibo
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Jingxuan Huang
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Khalid Ali Khan
- Center of Bee Research and its products (CBRP), King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| | - Hamed A Ghramh
- Center of Bee Research and its products (CBRP), King Khalid University, Abha, Saudi Arabia
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Jamin Ali
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Chen Ri Zhao
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
2
|
Han Y, Sun Y, Wang H, Li H, Jiang M, Liu X, Cao Y, Wang W, Yin H, Chen J, Sun J, Zhu QH, Zhu S, Zhao T. Biosynthesis and Signaling of Strigolactones Act Synergistically With That of ABA and JA to Enhance Verticillium dahliae Resistance in Cotton (Gossypium hirsutum L.). PLANT, CELL & ENVIRONMENT 2024. [PMID: 39286958 DOI: 10.1111/pce.15148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024]
Abstract
Verticillium wilt (VW) caused by the soil-borne fungal pathogen Verticillium dahliae reduces cotton productivity and quality. Numerous studies have explored the genetic and molecular mechanisms regulating VW resistance in cotton, but the role and mechanism of strigolactone (SL) is still elusive. We investigated the function of SL in cotton's immune response to V. dahliae infection by exogenously applying SL analog, blocking or enhancing biosynthesis of endogenous SLs in combination with comparative transcriptome analysis and by exploring cross-talk between SL and other phytohormones. Silencing GhDWARF27 and applying the SL analog GR24 or overexpressing GhDWARF27 decreased and enhanced V. dahliae resistance, respectively. Transcriptome analysis revealed SL-mediated activation of abscisic acid (ABA) and jasmonic acid (JA) biosynthesis and signaling pathways. Enhanced ABA biosynthesis and signaling led to increased activity of antioxidant enzymes and reduced buildup of excess reactive oxygen species. Enhanced JA biosynthesis and signaling facilitated transcription of JA-dependent disease resistance genes. One of the components of the SL signal transduction pathway, GhD53, was found to interact with GhNCED5 and GhLOX2, the key enzymes of ABA and JA biosynthesis, respectively. We revealed the molecular mechanism underlying SL-enabled V. dahliae resistance and provided potential solutions for improving VW resistance in cotton.
Collapse
Affiliation(s)
- Yifei Han
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yue Sun
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Haoqi Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Huazu Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Meng Jiang
- Institute of Hainan, Zhejiang University, Sanya, China
| | - Xueying Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yuefen Cao
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Wanru Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hong Yin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinhong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Hainan, Zhejiang University, Sanya, China
| | - Jie Sun
- Agricultural College, Shihezi University, Shihezi, China
| | - Qian-Hao Zhu
- Agriculture and Food, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Shuijin Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Hainan, Zhejiang University, Sanya, China
| | - Tianlun Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Hainan, Zhejiang University, Sanya, China
| |
Collapse
|
3
|
Vafina G, Akhiyarova G, Korobova A, Finkina EI, Veselov D, Ovchinnikova TV, Kudoyarova G. The Long-Distance Transport of Jasmonates in Salt-Treated Pea Plants and Involvement of Lipid Transfer Proteins in the Process. Int J Mol Sci 2024; 25:7486. [PMID: 39000596 PMCID: PMC11242760 DOI: 10.3390/ijms25137486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
The adaption of plants to stressful environments depends on long-distance responses in plant organs, which themselves are remote from sites of perception of external stimuli. Jasmonic acid (JA) and its derivatives are known to be involved in plants' adaptation to salinity. However, to our knowledge, the transport of JAs from roots to shoots has not been studied in relation to the responses of shoots to root salt treatment. We detected a salt-induced increase in the content of JAs in the roots, xylem sap, and leaves of pea plants related to changes in transpiration. Similarities between the localization of JA and lipid transfer proteins (LTPs) around vascular tissues were detected with immunohistochemistry, while immunoblotting revealed the presence of LTPs in the xylem sap of pea plants and its increase with salinity. Furthermore, we compared the effects of exogenous MeJA and salt treatment on the accumulation of JAs in leaves and their impact on transpiration. Our results indicate that salt-induced changes in JA concentrations in roots and xylem sap are the source of accumulation of these hormones in leaves leading to associated changes in transpiration. Furthermore, they suggest the possible involvement of LTPs in the loading/unloading of JAs into/from the xylem and its xylem transport.
Collapse
Affiliation(s)
- Gulnara Vafina
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Guzel Akhiyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Alla Korobova
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Ekaterina I Finkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitry Veselov
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Tatiana V Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|
4
|
Ju JF, Yang L, Shen C, Li JC, Hoffmann AA, Huang YX, Zhu F, Ji R, Luo GH, Fang JC. Defence and nutrition synergistically contribute to the distinct tolerance of rice subspecies to the stem borer, Chilo suppressalis. PLANT, CELL & ENVIRONMENT 2024; 47:2426-2442. [PMID: 38497544 DOI: 10.1111/pce.14889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Damage caused by the rice striped stem borer (SSB), Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), is much more severe on indica/xian rice than on japonica/geng rice (Oryza sativa) which matches pest outbreak data in cropping regions of China. The mechanistic basis of this difference among rice subspecies remains unclear. Using transcriptomic, metabolomic and genetic analyses in combination with insect bioassay experiments, we showed that japonica and indica rice utilise different defence responses to repel SSB, and that SSB exploited plant nutrition deficiencies in different ways in the subspecies. The more resistant japonica rice induced patterns of accumulation of methyl jasmonate (MeJA-part of a defensive pathway) and vitamin B1 (VB1-a nutrition pathway) distinct from indica cultivars. Using gene-edited rice plants and SSB bioassays, we found that MeJA and VB1 jointly affected the performance of SSB by disrupting juvenile hormone levels. In addition, genetic variants of key biosynthesis genes in the MeJA and VB1 pathways (OsJMT and OsTH1, respectively) differed between japonica and indica rice and contributed to performance differences; in indica rice, SSB avoided the MeJA defence pathway and hijacked the VB1 nutrition-related pathway to promote development. The findings highlight important genetic and mechanistic differences between rice subspecies affecting SSB damage which could be exploited in plant breeding for resistance.
Collapse
Affiliation(s)
- Jia-Fei Ju
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lei Yang
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chen Shen
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian-Cai Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yu-Xuan Huang
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Feng Zhu
- Jiangsu Plant Protection and Quarantine Station, Nanjing, China
| | - Rui Ji
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guang-Hua Luo
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ji-Chao Fang
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
5
|
Li LL, Li Z, Lou Y, Meiners SJ, Kong CH. (-)-Loliolide is a general signal of plant stress that activates jasmonate-related responses. THE NEW PHYTOLOGIST 2023; 238:2099-2112. [PMID: 36444519 DOI: 10.1111/nph.18644] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/24/2022] [Indexed: 05/04/2023]
Abstract
The production of defensive metabolites in plants can be induced by signaling chemicals released by neighboring plants. Induction is mainly known from volatile aboveground signals, with belowground signals and their underlying mechanisms largely unknown. We demonstrate that (-)-loliolide triggers defensive metabolite responses to competitors, herbivores, and pathogens in seven plant species. We further explore the transcriptional responses of defensive pathways to verify the signaling role of (-)-loliolide in wheat and rice models with well-known defensive metabolites and gene systems. In response to biotic and abiotic stressors, (-)-loliolide is produced and secreted by roots. This, in turn, induces the production of defensive compounds including phenolic acids, flavonoids, terpenoids, alkaloids, benzoxazinoids, and cyanogenic glycosides, regardless of plant species. (-)-Loliolide also triggers the expression of defense-related genes, accompanied by an increase in the concentration of jasmonic acid and hydrogen peroxide (H2 O2 ). Transcriptome profiling and inhibitor incubation indicate that (-)-loliolide-induced defense responses are regulated through pathways mediated by jasmonic acid, H2 O2 , and Ca 2+ . These findings argue that (-)-loliolide functions as a common belowground signal mediating chemical defense in plants. Such perception-dependent plant chemical defenses will yield critical insights into belowground signaling interactions.
Collapse
Affiliation(s)
- Lei-Lei Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zheng Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yonggen Lou
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Scott J Meiners
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, 61920, USA
| | - Chui-Hua Kong
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
6
|
Yan M, Zhang C, Li H, Zhang L, Ren Y, Chen Y, Cai H, Zhang S. Root pruning improves maize water-use efficiency by root water absorption. FRONTIERS IN PLANT SCIENCE 2023; 13:1023088. [PMID: 36684736 PMCID: PMC9845614 DOI: 10.3389/fpls.2022.1023088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Root systems are an important component of plants that impact crop water-use efficiency (WUE) and yield. This study examined the effects of root pruning on maize yield, WUE, and water uptake under pot and hydroponic conditions. The pot experiment showed that root pruning significantly decreased root/shoot ratio. Both small root pruning (cut off about 1/5 of the root system, RP1) and large root pruning (cut off about 1/3 of the root system, RP2) improved WUE and root hydraulic conductivity (Lpr) in the residual root system. Compared with that in the un-cut control, at the jointing stage, RP1 and RP2 increased Lpr by 43.9% and 31.5% under well-watered conditions and 27.4% and 19.8% under drought stress, respectively. RP1 increased grain yield by 12.9% compared with that in the control under well-watered conditions, whereas both pruning treatments did not exhibit a significant effect on yield under drought stress. The hydroponic experiment demonstrated that root pruning did not reduce leaf water potential but increased residual root hydraulic conductivity by 26.2% at 48 h after root pruning under well-watered conditions. The foregoing responses may be explained by the upregulation of plasma membrane intrinsic protein gene and increases in abscisic acid and jasmonic acid in roots. Increased auxin and salicylic acid contributed to the compensated lateral root growth. In conclusion, root pruning improved WUE in maize by root water uptake.
Collapse
Affiliation(s)
- Minfei Yan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Cong Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Hongbing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Li Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yuanyuan Ren
- Geography and Environmental Engineering Department, Baoji University of Arts and Sciences, Baoji, China
| | - Yinglong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- The University of Western Australia Institute of Agriculture, and University of Western Australia School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Huanjie Cai
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest Agriculture and Forestry University, Yangling, China
| | - Suiqi Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Kawaguchi K, Nakaune M, Ma JF, Kojima M, Takebayashi Y, Sakakibara H, Otagaki S, Matsumoto S, Shiratake K. Plant Hormone and Inorganic Ion Concentrations in the Xylem Exudate of Grafted Plants Depend on the Scion-Rootstock Combination. PLANTS (BASEL, SWITZERLAND) 2022; 11:2594. [PMID: 36235460 PMCID: PMC9571263 DOI: 10.3390/plants11192594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In grafted plants, inorganic ions and plant hormones in the xylem exudate transported from the rootstock to the scion directly or indirectly affect the scion, thereby improving the traits. Therefore, the concentration of these components in the xylem exudate of grafted plants may be an indicator for rootstock selection. On the other hand, few reports have presented a comprehensive analysis of substances transferred from the rootstock to the scion in plants grafted onto different rootstocks, primarily commercial cultivars. In this study, we measured inorganic ions and plant hormones in the xylem exudate from the rootstock to the scion in various grafted plants of tomato and eggplant. The results revealed that the concentrations of inorganic ions and plant hormones in the xylem exudate significantly differed depending on the type of rootstock. In addition, we confirmed the concentration of the inorganic ions and plant hormones in the xylem exudate of plants grafted onto the same tomato rootstock cultivars as rootstock with tomato or eggplant as the scions. As a result, the concentrations of inorganic ions and plant hormones in the xylem exudate were significantly different in the grafted plants with eggplant compared with tomato as the scion. These results suggest that signals from the scion (shoot) control the inorganic ions and plant hormones transported from the rootstock (root).
Collapse
Affiliation(s)
- Kohei Kawaguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Makoto Nakaune
- Saitama Agricultural Technology Research Center, Sugahiro, Kumagaya 360-0102, Japan
| | - Jian Feng Ma
- Research Institute for Bioresources, Okayama University, Chuo, Kurashiki 710-0046, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
8
|
Li X, Hu D, Cai L, Wang H, Liu X, Du H, Yang Z, Zhang H, Hu Z, Huang F, Kan G, Kong F, Liu B, Yu D, Wang H. CALCIUM-DEPENDENT PROTEIN KINASE38 regulates flowering time and common cutworm resistance in soybean. PLANT PHYSIOLOGY 2022; 190:480-499. [PMID: 35640995 PMCID: PMC9434205 DOI: 10.1093/plphys/kiac260] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/03/2022] [Indexed: 06/02/2023]
Abstract
Photoperiod-sensitive plants such as soybean (Glycine max) often face threats from herbivorous insects throughout their whole growth period and especially during flowering; however, little is known about the relationship between plant flowering and insect resistance. Here, we used gene editing, multiple omics, genetic diversity and evolutionary analyses to confirm that the calcium-dependent protein kinase GmCDPK38 plays a dual role in coordinating flowering time regulation and insect resistance of soybean. Haplotype 2 (Hap2)-containing soybeans flowered later and were more resistant to the common cutworm (Spodoptera litura Fabricius) than those of Hap3. gmcdpk38 mutants with Hap3 knocked out exhibited similar flowering and resistance phenotypes as Hap2. Knocking out GmCDPK38 altered numerous flowering- and resistance-related phosphorylated proteins, genes, and metabolites. For example, the S-adenosylmethionine synthase GmSAMS1 was post-translationally upregulated in the gmcdpk38 mutants. GmCDPK38 has abundant genetic diversity in wild soybeans and was likely selected during soybean domestication. We found that Hap2 was mostly distributed at low latitudes and had a higher frequency in cultivars than in wild soybeans, while Hap3 was widely selected at high latitudes. Overall, our results elucidated that the two distinct traits (flowering time and insect resistance) are mediated by GmCDPK38.
Collapse
Affiliation(s)
- Xiao Li
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Dezhou Hu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Linyan Cai
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Huiqi Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Liu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiping Du
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhongyi Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Huairen Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenbin Hu
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Guizhen Kan
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Baohui Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Mall M, Shanker K, Samad A, Kalra A, Sundaresan V, Shukla AK. Stress responsiveness of vindoline accumulation in Catharanthus roseus leaves is mediated through co-expression of allene oxide cyclase with pathway genes. PROTOPLASMA 2022; 259:755-773. [PMID: 34459997 DOI: 10.1007/s00709-021-01701-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Vindoline is an important alkaloid produced in Catharanthus roseus leaves. It is the more important monomer of the scarce and costly anticancer bisindole alkaloids, vincristine, and vinblastine, as unlike catharanthine (the other monomer), its biosynthesis is restricted to the leaves. Here, biotic (bacterial endophyte, phytoplasma, virus) and abiotic (temperature, salinity, SA, MeJa) factors were studied for their effect on vindoline accumulation in C. roseus. Variations in vindoline pathway-related gene expression were reflected in changes in vindoline content. Since allene oxide cyclase (CrAOC) is involved in jasmonate biosynthesis and MeJa modulates many vindoline pathway genes, the correlation between CrAOC expression and vindoline content was studied. It was taken up for full-length cloning, tissue-specific expression profiling, in silico analyses, and upstream genomic region analysis for cis-regulatory elements. Co-expression analysis of CrAOC with vindoline metabolism-related genes under the influence of aforementioned abiotic/biotic factors indicated its stronger direct correlation with the tabersonine-to-vindoline genes (t16h, omt, t3o, t3r, nmt, d4h, dat) as compared to the pre-tabersonine genes (tdc, str, sgd). Its expression was inversely related to that of downstream-acting peroxidase (prx) (except under temperature stress). Direct/positive relationship of CrAOC expression with vindoline content established it as a key gene modulating vindoline accumulation in C. roseus.
Collapse
Affiliation(s)
- Maneesha Mall
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India
| | - Karuna Shanker
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India
| | - Abdul Samad
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India
| | - Alok Kalra
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India
| | - Velusamy Sundaresan
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Allalasandra, GKVK Post, Bengaluru, 560065, Karnataka, India
| | - Ashutosh K Shukla
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India.
| |
Collapse
|
10
|
Fernandes LB, Ghag SB. Molecular insights into the jasmonate signaling and associated defense responses against wilt caused by Fusarium oxysporum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 174:22-34. [PMID: 35121482 DOI: 10.1016/j.plaphy.2022.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Biotic and abiotic stress factors drastically limit plant growth and development as well as alter the physiological, biochemical and cellular processes. This negatively impacts plant productivity, ultimately leading to agricultural and economical loss. Plant defense mechanisms elicited in response to these stressors are crucially regulated by the intricate crosstalk between defense hormones such as jasmonic acid (JA), salicylic acid and ethylene. These hormones orchestrate adaptive responses by modulating the gene regulatory networks leading to sequential changes in the root architecture, cell wall composition, secondary metabolite production and expression of defense-related genes. Fusarium wilt is a widespread vascular disease in plants caused by the soil-borne ascomycete Fusarium oxysporum and is known to attack several economically important plant cultivars. JA along with its conjugated forms methyl jasmonate and jasmonic acid isoleucine critically tunes plant defense mechanisms by regulating the expression of JA-associated genes imparting resistance phenotype. However, it should be noted that some members of F. oxysporum utilize the JA signaling pathway for disease development leading to susceptibility in plants. Therefore, JA signaling pathway becomes one of the important targets amenable for modulation to develop resistance response against Fusarium wilt in plants. In this review, we have emphasized on the physiological and molecular aspects of JA and its significant role in mounting an early defense response against Fusarium wilt disease. Further, utilization of the inherent JA signaling pathway and/or exogenous application of JA in generating Fusarium wilt resistant plants is discussed.
Collapse
Affiliation(s)
- Lizelle B Fernandes
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz East, Mumbai, India
| | - Siddhesh B Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz East, Mumbai, India.
| |
Collapse
|
11
|
Martínez-Medina A, Mbaluto CM, Maedicke A, Weinhold A, Vergara F, van Dam NM. Leaf herbivory counteracts nematode-triggered repression of jasmonate-related defenses in tomato roots. PLANT PHYSIOLOGY 2021; 187:1762-1778. [PMID: 34618073 PMCID: PMC8566281 DOI: 10.1093/plphys/kiab368] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 05/17/2023]
Abstract
Shoot herbivores may influence the communities of herbivores associated with the roots via inducible defenses. However, the molecular mechanisms and hormonal signaling underpinning the systemic impact of leaf herbivory on root-induced responses against nematodes remain poorly understood. By using tomato (Solanum lycopersicum) as a model plant, we explored the impact of leaf herbivory by Manduca sexta on the performance of the root knot nematode Meloidogyne incognita. By performing glasshouse bioassays, we found that leaf herbivory reduced M. incognita performance in the roots. By analyzing the root expression profile of a set of oxylipin-related marker genes and jasmonate root content, we show that leaf herbivory systemically activates the 13-Lipoxigenase (LOX) and 9-LOX branches of the oxylipin pathway in roots and counteracts the M. incognita-triggered repression of the 13-LOX branch. By using untargeted metabolomics, we also found that leaf herbivory counteracts the M. incognita-mediated repression of putative root chemical defenses. To explore the signaling involved in this shoot-to-root interaction, we performed glasshouse bioassays with grafted plants compromised in jasmonate synthesis or perception, specifically in their shoots. We demonstrated the importance of an intact shoot jasmonate perception, whereas having an intact jasmonate biosynthesis pathway was not essential for this shoot-to-root interaction. Our results highlight the impact of leaf herbivory on the ability of M. incognita to manipulate root defenses and point to an important role for the jasmonate signaling pathway in shoot-to-root signaling.
Collapse
Affiliation(s)
- Ainhoa Martínez-Medina
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburgerstraße 159, 07743 Jena, Germany
- Plant-Microorganism Interactions, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA‐CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
- Author for communication:
| | - Crispus M Mbaluto
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburgerstraße 159, 07743 Jena, Germany
| | - Anne Maedicke
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburgerstraße 159, 07743 Jena, Germany
| | - Alexander Weinhold
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburgerstraße 159, 07743 Jena, Germany
| | - Fredd Vergara
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburgerstraße 159, 07743 Jena, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburgerstraße 159, 07743 Jena, Germany
| |
Collapse
|
12
|
Joshi K, Baumgardner JL, MacPhail M, Acharya SR, Blotevogel E, Dayan FE, Nachappa P, Nalam VJ. The Source of Rag5-Mediated Resistance to Soybean Aphids Is Located in the Stem. FRONTIERS IN PLANT SCIENCE 2021; 12:689986. [PMID: 34335657 PMCID: PMC8322969 DOI: 10.3389/fpls.2021.689986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The soybean aphid (Aphis glycines) continues to threaten soybean production in the United States. A suite of management strategies, such as planting aphid-resistant cultivars, has been successful in controlling soybean aphids. Several Rag genes (resistance against A. glycines) have been identified, and two are currently being deployed in commercial soybean cultivars. However, the mechanisms underlying Rag-mediated resistance are yet to be identified. In this study, we sought to determine the nature of resistance conferred by the Rag5 gene using behavioral, molecular biology, physiological, and biochemical approaches. We confirmed previous findings that plants carrying the Rag5 gene were resistant to soybean aphids in whole plant assays, and this resistance was absent in detached leaf assays. Analysis of aphid feeding behaviors using the electrical penetration graph technique on whole plants and detached leaves did not reveal differences between the Rag5 plants and Williams 82, a susceptible cultivar. In reciprocal grafting experiments, aphid populations were lower in the Rag5/rag5 (Scion/Root stock) chimera, suggesting that Rag5-mediated resistance is derived from the shoots. Further evidence for the role of stems comes from poor aphid performance in detached stem plus leaf assays. Gene expression analysis revealed that biosynthesis of the isoflavone kaempferol is upregulated in both leaves and stems in resistant Rag5 plants. Moreover, supplementing with kaempferol restored resistance in detached stems of plants carrying Rag5. This study demonstrates for the first time that Rag5-mediated resistance against soybean aphids is likely derived from stems.
Collapse
Affiliation(s)
- Kumud Joshi
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States
| | - Joshua L. Baumgardner
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Madison MacPhail
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Shailesh R. Acharya
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Elizabeth Blotevogel
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Franck E. Dayan
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Vamsi J. Nalam
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
13
|
Mbaluto CM, Ahmad EM, Mädicke A, Grosser K, van Dam NM, Martínez-Medina A. Induced Local and Systemic Defense Responses in Tomato Underlying Interactions Between the Root-Knot Nematode Meloidogyne incognita and the Potato Aphid Macrosiphum euphorbiae. FRONTIERS IN PLANT SCIENCE 2021; 12:632212. [PMID: 33936126 PMCID: PMC8081292 DOI: 10.3389/fpls.2021.632212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/11/2021] [Indexed: 05/05/2023]
Abstract
Plants mediate interactions between different herbivores that attack simultaneously or sequentially aboveground (AG) and belowground (BG) organs. The local and systemic activation of hormonal signaling pathways and the concomitant accumulation of defense metabolites underlie such AG-BG interactions. The main plant-mediated mechanisms regulating these reciprocal interactions via local and systemic induced responses remain poorly understood. We investigated the impact of root infection by the root-knot nematode (RKN) Meloidogyne incognita at different stages of its infection cycle, on tomato leaf defense responses triggered by the potato aphid Macrosiphum euphorbiae. In addition, we analyzed the reverse impact of aphid leaf feeding on the root responses triggered by the RKN. We focused specifically on the signaling pathways regulated by the phytohormones jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), and indole-3-acetic acid (IAA) as well as steroidal glycoalkaloids as induced defense compounds. We found that aphid feeding did not induce AG hormonal signaling, but it repressed steroidal glycoalkaloids related responses in leaves, specifically when feeding on plants in the vegetative stage. Root infection by the RKN impeded the aphid-triggered repression of the steroidal glycoalkaloids-related response AG. In roots, the RKN triggered the SA pathway during the entire infection cycle and the ABA pathway specifically during its reproduction stage. RKN infection also elicited the steroidal glycoalkaloids related gene expression, specifically when it was in the galling stage. Aphid feeding did not systemically alter the RKN-induced defense responses in roots. Our results point to an asymmetrical interaction between M. incognita and Ma. euphorbiae when co-occurring in tomato plants. Moreover, the RKN seems to determine the root defense response regardless of a later occurring attack by the potato aphid AG.
Collapse
Affiliation(s)
- Crispus M. Mbaluto
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena, Jena, Germany
| | - Esraa M. Ahmad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Anne Mädicke
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena, Jena, Germany
| | - Katharina Grosser
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena, Jena, Germany
| | - Nicole M. van Dam
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena, Jena, Germany
| | - Ainhoa Martínez-Medina
- Plant-Microorganism Interaction, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
14
|
Baluška F, Mancuso S. Individuality, self and sociality of vascular plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190760. [PMID: 33550947 DOI: 10.1098/rstb.2019.0760] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vascular plants are integrated into coherent bodies via plant-specific synaptic adhesion domains, action potentials (APs) and other means of long-distance signalling running throughout the plant bodies. Plant-specific synapses and APs are proposed to allow plants to generate their self identities having unique ways of sensing and acting as agents with their own goals guiding their future activities. Plants move their organs with a purpose and with obvious awareness of their surroundings and require APs to perform and control these movements. Self-identities allow vascular plants to act as individuals enjoying sociality via their self/non-self-recognition and kin recognition. Flowering plants emerge as cognitive and intelligent organisms when the major strategy is to attract and control their animal pollinators as well as seed dispersers by providing them with food enriched with nutritive and manipulative/addictive compounds. Their goal in interactions with animals is manipulation for reproduction, dispersal and defence. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
| | - Stefano Mancuso
- Department of Agrifood Production and Environmental Sciences, University of Florence, Florence, Italy
| |
Collapse
|
15
|
Mbaluto CM, Ahmad EM, Fu M, Martínez-Medina A, van Dam NM. The impact of Spodoptera exigua herbivory on Meloidogyne incognita-induced root responses depends on the nematodes' life cycle stages. AOB PLANTS 2020; 12:plaa029. [PMID: 32665829 PMCID: PMC7336558 DOI: 10.1093/aobpla/plaa029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/17/2020] [Indexed: 05/22/2023]
Abstract
Induced responses to above-ground and below-ground herbivores may interact via systemic signalling in plants. We investigated whether the impact of above-ground herbivory on root-knot nematode-induced responses depends on the nematode's life cycle stages. Tomato plants were infected with the nematode (Meloidogyne incognita) for 5, 15 or 30 days before receiving Spodoptera exigua caterpillars above-ground. We collected root materials after 24 h of caterpillar feeding. We investigated phytohormones and α-tomatine levels, and the expression of defence and glycoalkaloid metabolism (GAME) marker genes in tomato roots. Nematode infection alone increased the endogenous root levels of jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), α-tomatine and the expression of the GLYCOALKALOID METABOLISM 1 (GAME1) gene mostly at 30 days post-nematode inoculation. Caterpillar feeding alone upregulated Lipoxygenase D and downregulated Basic-β-1-glucanase and GAME1 expression in roots. On nematode-infected plants, caterpillar feeding decreased JA levels, but it increased the expression of Leucine aminopeptidase A. The induction patterns of ABA and SA suggest that caterpillars cause cross-talk between the JA-signalling pathway and the SA and ABA pathways. Our results show that caterpillar feeding attenuated the induction of the JA pathway triggered by nematodes, mostly in the nematodes' reproduction stage. These results generate a better understanding of the molecular and chemical mechanisms underlying frequent nematode-plant-caterpillar interactions in natural and agricultural ecosystems.
Collapse
Affiliation(s)
- Crispus M Mbaluto
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena, Jena, Germany
| | - Esraa M Ahmad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Melody Fu
- Faculty of Land and Food Systems, University of British Columbia, BC, Canada
| | - Ainhoa Martínez-Medina
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Plant-Microorganism Interaction Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Nicole M van Dam
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena, Jena, Germany
| |
Collapse
|
16
|
Qi J, Zhao X, Li Z. iTRAQ-Based Quantitative Proteomic Analysis of the Arabidopsis Mutant opr3-1 in Response to Exogenous MeJA. Int J Mol Sci 2020; 21:ijms21020571. [PMID: 31963133 PMCID: PMC7013738 DOI: 10.3390/ijms21020571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 02/08/2023] Open
Abstract
Jasmonates (JAs) regulate the defense of biotic and abiotic stresses, growth, development, and many other important biological processes in plants. The comprehensive proteomic profiling of plants under JAs treatment provides insights into the regulation mechanism of JAs. Isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic analysis was performed on the Arabidopsis wild type (Ws) and JA synthesis deficiency mutant opr3-1. The effects of exogenous MeJA treatment on the proteome of opr3-1, which lacks endogenous JAs, were investigated. A total of 3683 proteins were identified and 126 proteins were differentially regulated between different genotypes and treatment groups. The functional classification of these differentially regulated proteins showed that they were involved in metabolic processes, responses to abiotic stress or biotic stress, the defense against pathogens and wounds, photosynthesis, protein synthesis, and developmental processes. Exogenous MeJA treatment induced the up-regulation of a large number of defense-related proteins and photosynthesis-related proteins, it also induced the down-regulation of many ribosomal proteins in opr3-1. These results were further verified by a quantitative real-time PCR (qRT-PCR) analysis of 15 selected genes. Our research provides the basis for further understanding the molecular mechanism of JAs’ regulation of plant defense, photosynthesis, protein synthesis, and development.
Collapse
|
17
|
Singh J, Fabrizio J, Desnoues E, Silva JP, Busch W, Khan A. Root system traits impact early fire blight susceptibility in apple (Malus × domestica). BMC PLANT BIOLOGY 2019; 19:579. [PMID: 31870310 PMCID: PMC6929320 DOI: 10.1186/s12870-019-2202-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/12/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND Although it is known that resistant rootstocks facilitate management of fire blight disease, incited by Erwinia amylovora, the role of rootstock root traits in providing systemic defense against E. amylovora is unclear. In this study, the hypothesis that rootstocks of higher root vigor provide higher tolerance to fire blight infection in apples is tested. Several apple scion genotypes grafted onto a single rootstock genotype and non-grafted 'M.7' rootstocks of varying root vigor are used to assess phenotypic and molecular relationships between root traits of rootstocks and fire blight susceptibility of apple scion cultivars. RESULTS It is observed that different root traits display significant (p < 0.05) negative correlations with fire blight susceptibility. In fact, root surface area partially dictates differential levels of fire blight susceptibility of 'M.7' rootstocks. Furthermore, contrasting changes in gene expression patterns of diverse molecular pathways accompany observed differences in levels of root-driven fire blight susceptibility. It is noted that a singular co-expression gene network consisting of genes from defense, carbohydrate metabolism, protein kinase activity, oxidation-reduction, and stress response pathways modulates root-dependent fire blight susceptibility in apple. In particular, WRKY75 and UDP-glycotransferase are singled-out as hub genes deserving of further detailed analysis. CONCLUSIONS It is proposed that low root mass may incite resource-limiting conditions to activate carbohydrate metabolic pathways, which reciprocally interact with plant immune system genes to elicit differential levels of fire blight susceptibility.
Collapse
Affiliation(s)
- Jugpreet Singh
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Jack Fabrizio
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Elsa Desnoues
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Julliany Pereira Silva
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Wolfgang Busch
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, and Integrative Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA.
| |
Collapse
|
18
|
Ray R, Li D, Halitschke R, Baldwin IT. Using natural variation to achieve a whole-plant functional understanding of the responses mediated by jasmonate signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:414-425. [PMID: 30927293 DOI: 10.1111/tpj.14331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
The dramatic advances in our understanding of the molecular biology and biochemistry of jasmonate (JA) signaling have been the subject of several excellent recent reviews that have highlighted the phytohormonal function of this signaling pathway. Here, we focus on the responses mediated by JA signaling which have consequences for a plant's Darwinian fitness, i.e. the organism-level function of JA signaling. The most diverse module in the signaling cascade, the JAZ proteins, and their interactions with other proteins and transcription factors, allow this canonical signaling cascade to mediate a bewildering array of traits in different tissues at different times; the functional coherence of these diverse responses are best appreciated in an organismal/ecological context. From published work, it appears that jasmonates can function as the 'Swiss Army knife' of plant signaling, mediating many different biotic and abiotic stress and developmental responses that allow plants to contextualize their responses to their frequently changing local environments and optimize their fitness. We propose that a deeper analysis of the natural variation in both within-plant and within-population JA signaling components is a profitable means of attaining a coherent whole-plant functional perspective of this signaling cascade, and provide examples of this approach from the Nicotiana attenuata system.
Collapse
Affiliation(s)
- Rishav Ray
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| |
Collapse
|
19
|
Yang H, Wang Y, Li L, Li F, He Y, Wu J, Wei C. Transcriptomic and Phytochemical Analyses Reveal Root-Mediated Resource-Based Defense Response to Leaf Herbivory by Ectropis oblique in Tea Plant ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5465-5476. [PMID: 30916943 DOI: 10.1021/acs.jafc.9b00195] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Leaf herbivory on tea plants ( Camellia sinensis) by tea geometrids ( Ectropis oblique) severely threaten the yield and quality of tea. In previous work, we found that local defense response was induced in damaged leaves by geometrids at the transcriptome level. Here, we investigated the systemic response triggered in undamaged roots and the potential role of roots in response to leaf herbivory. Comparative transcriptome analysis and carbohydrate dynamics indicated that leaf herbivory activated systemic carbon reallocation to enhance resource investment for local secondary metabolism. The crucial role of jasmonic acid and the involvement of other potential hormone signals for local and systemic signaling networks were supported by phytohormone quantification and dynamic expression analysis of phytohormone-related genes. This work represents a deep understanding of the interaction of tea plants and geometrids from the perspective of systems biology and reveals that tea plants have evolved an intricate root-mediated resource-based resistance strategy to cope with geometrid attack.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianqiang Wu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
| | | |
Collapse
|
20
|
Abstract
Diverse molecular processes regulate the interactions between plants and insect herbivores. Here, we review genes and proteins that are involved in plant-herbivore interactions and discuss how their discovery has structured the current standard model of plant-herbivore interactions. Plants perceive damage-associated and, possibly, herbivore-associated molecular patterns via receptors that activate early signaling components such as Ca2+, reactive oxygen species, and MAP kinases. Specific defense reprogramming proceeds via signaling networks that include phytohormones, secondary metabolites, and transcription factors. Local and systemic regulation of toxins, defense proteins, physical barriers, and tolerance traits protect plants against herbivores. Herbivores counteract plant defenses through biochemical defense deactivation, effector-mediated suppression of defense signaling, and chemically controlled behavioral changes. The molecular basis of plant-herbivore interactions is now well established for model systems. Expanding molecular approaches to unexplored dimensions of plant-insect interactions should be a future priority.
Collapse
Affiliation(s)
- Matthias Erb
- Institute of Plant Sciences, University of Bern, 3000 Bern, Switzerland;
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
21
|
Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, Wang C. The Crosstalks Between Jasmonic Acid and Other Plant Hormone Signaling Highlight the Involvement of Jasmonic Acid as a Core Component in Plant Response to Biotic and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:1349. [PMID: 31681397 PMCID: PMC6813250 DOI: 10.3389/fpls.2019.01349] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/27/2019] [Indexed: 05/19/2023]
Abstract
Plant hormones play central roles in plant growth, developmental processes, and plant response to biotic and abiotic stresses. On the one hand, plant hormones may allocate limited resources to the most serious stresses; on the other hand, the crosstalks among multiple plant hormone signaling regulate the balance between plant growth and defense. Many studies have reported the mechanism of crosstalks between jasmonic acid (JA) and other plant hormones in plant growth and stress responses. Based on these studies, this paper mainly reviews the crosstalks between JA and other plant hormone signaling in regulating the balance between plant growth and defense response. The suppressor proteins JASMONATE ZIM DOMAIN PROTEIN (JAZ) and MYC2 as the key components in the crosstalks are also highlighted in the review. We conclude that JA interacts with other hormone signaling pathways [such as auxin, ethylene (ET), abscisic acid (ABA), salicylic acid (SA), brassinosteroids (BRs), and gibberellin (GA)] to regulate plant growth, abiotic stress tolerance, and defense resistance against hemibiotrophic pathogens such as Magnaporthe oryzae and Pseudomonas syringae. Notably, JA may act as a core signal in the phytohormone signaling network.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
- *Correspondence: Jing Yang,
| | - Guihua Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Chunqin Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Lin Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Guangyu Han
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yaling Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Changmi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of the Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
22
|
Cecchini NM, Roychoudhry S, Speed DJ, Steffes K, Tambe A, Zodrow K, Konstantinoff K, Jung HW, Engle NL, Tschaplinski TJ, Greenberg JT. Underground Azelaic Acid-Conferred Resistance to Pseudomonas syringae in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:86-94. [PMID: 30156481 DOI: 10.1094/mpmi-07-18-0185-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Local interactions between individual plant organs and diverse microorganisms can lead to whole plant immunity via the mobilization of defense signals. One such signal is the plastid lipid-derived oxylipin azelaic acid (AZA). Arabidopsis lacking AZI1 or EARLI1, related lipid transfer family proteins, exhibit reduced AZA transport among leaves and cannot mount systemic immunity. AZA has been detected in roots as well as leaves. Therefore, the present study addresses the effects on plants of AZA application to roots. AZA but not the structurally related suberic acid inhibits root growth when directly in contact with roots. Treatment of roots with AZA also induces resistance to Pseudomonas syringae in aerial tissues. These effects of AZA on root growth and disease resistance depend, at least partially, on AZI1 and EARLI1. AZI1 in roots localizes to plastids, similar to its known location in leaves. Interestingly, kinases previously shown to modify AZI1 in vitro, MPK3 and MPK6, are also needed for AZA-induced root-growth inhibition and aboveground immunity. Finally, deuterium-labeled AZA applied to the roots does not move to aerial tissues. Thus, AZA application to roots triggers systemic immunity through an AZI1/EARLI1/MPK3/MPK6-dependent pathway and AZA effects may involve one or more additional mobile signals.
Collapse
Affiliation(s)
- Nicolás M Cecchini
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - Suruchi Roychoudhry
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - DeQuantarius J Speed
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - Kevin Steffes
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - Arjun Tambe
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - Kristin Zodrow
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - Katerina Konstantinoff
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - Ho Won Jung
- 2 Department of Molecular Genetics, Dong-A University, 37 Nakdong-Daero 550beon-gil, Saha-gu, Busan 49315, Korea; and
| | - Nancy L Engle
- 3 Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, U.S.A
| | | | - Jean T Greenberg
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| |
Collapse
|
23
|
Hu Q, Zhu L, Zhang X, Guan Q, Xiao S, Min L, Zhang X. GhCPK33 Negatively Regulates Defense against Verticillium dahliae by Phosphorylating GhOPR3. PLANT PHYSIOLOGY 2018; 178:876-889. [PMID: 30150302 PMCID: PMC6181045 DOI: 10.1104/pp.18.00737] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/16/2018] [Indexed: 05/20/2023]
Abstract
Verticillium wilt, caused by the soil-borne fungus Verticillium dahliae, is a destructive vascular disease in plants. Approximately 200 dicotyledonous plant species in temperate and subtropical regions are susceptible to this notorious pathogen. Previous studies showed that jasmonic acid (JA) plays a crucial role in plant-V. dahliae interactions. V. dahliae infection generally induces significant JA accumulation in local and distal tissues of the plant. Although JA biosynthesis and the associated enzymes have been studied intensively, the precise mechanism regulating JA biosynthesis upon V. dahliae infection remains unknown. Here, we identified the calcium-dependent protein kinase GhCPK33 from upland cotton (Gossypium hirsutum) as a negative regulator of resistance to V. dahliae that directly manipulates JA biosynthesis. Knockdown of GhCPK33 by Agrobacterium tumefaciens-mediated virus-induced gene silencing constitutively activated JA biosynthesis and JA-mediated defense responses and enhanced resistance to V dahliae Further analysis revealed that GhCPK33 interacts with 12-oxophytodienoate reductase3 (GhOPR3) in peroxisomes. GhCPK33 phosphorylates GhOPR3 at threonine-246, leading to decreased stability of GhOPR3, which consequently limits JA biosynthesis. We propose that GhCPK33 is a potential molecular target for improving resistance to Verticillium wilt disease in cotton.
Collapse
Affiliation(s)
- Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Xiangnan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Qianqian Guan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Shenghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Ling Min
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| |
Collapse
|
24
|
Bakhtiari M, Glauser G, Rasmann S. Root JA Induction Modifies Glucosinolate Profiles and Increases Subsequent Aboveground Resistance to Herbivore Attack in Cardamine hirsuta. FRONTIERS IN PLANT SCIENCE 2018; 9:1230. [PMID: 30186300 PMCID: PMC6110943 DOI: 10.3389/fpls.2018.01230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/03/2018] [Indexed: 05/22/2023]
Abstract
Alteration and induction of plant secondary metabolites after herbivore attack have been shown in almost all the studied plant species. Induction can be at the local site of damage, or systemic, such as from roots to shoots. In addition to immediate induction, previous herbivore bouts have been shown to "prime" the plants for a stronger and faster response only after a subsequent attack happens. Whereas several studies revealed a link between root herbivory and increased resistance against aboveground (AG) herbivory, the evidence of root defense priming against subsequent AG herbivory is currently lacking. To address this gap, we induced Cardamine hirsuta roots by applying jasmonic acid (JA), and, after a time lag, we subjected both control and JA-treated plants to AG herbivory by the generalist herbivore Spodoptera littoralis. We addressed the effect of root JA addition on AG herbivore resistance by measuring larval weight gain and tested the effect of root induction on abundance and composition of glucosinolates (GSLs) in shoots, prior, and after subsequent herbivory. We observed a strong positive effect of root induction on the resistance against AG herbivory. The overall abundance and identity of GSLs was globally affected by JA induction and by herbivore feeding, independently, and we found a significant correlation between larval growth and the shoot GSL profiles only after AG herbivory, 11 days after induction in roots. Contrary to expectations of priming, we observed that JA induction in roots altered the GSLs profile in the leaves that was maintained through time. This initial modification was sufficient to maintain a lower caterpillar weight gain, even 11 days post-root induction. Altogether, we show that prior root defense induction increases AG insect resistance by modifying and maintaining variation in GSL profiles during insect feeding.
Collapse
Affiliation(s)
- Moe Bakhtiari
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, Neuchâtel, Switzerland
| | - Sergio Rasmann
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
25
|
Meier AR, Hunter MD. Arbuscular mycorrhizal fungi mediate herbivore-induction of plant defenses differently above and belowground. OIKOS 2018. [DOI: 10.1111/oik.05402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Amanda R. Meier
- Dept of Ecology and Evolutionary Biology, Univ. of Michigan; Ann Arbor MI 48109-1048 USA
| | - Mark D. Hunter
- Dept of Ecology and Evolutionary Biology, Univ. of Michigan; Ann Arbor MI 48109-1048 USA
| |
Collapse
|
26
|
Brütting C, Crava CM, Schäfer M, Schuman MC, Meldau S, Adam N, Baldwin IT. Cytokinin transfer by a free-living mirid to Nicotiana attenuata recapitulates a strategy of endophytic insects. eLife 2018; 7:e36268. [PMID: 30014847 PMCID: PMC6059766 DOI: 10.7554/elife.36268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/05/2018] [Indexed: 11/13/2022] Open
Abstract
Endophytic insects provide the textbook examples of herbivores that manipulate their host plant's physiology, putatively altering source/sink relationships by transferring cytokinins (CK) to create 'green islands' that increase the nutritional value of infested tissues. However, unambiguous demonstrations of CK transfer are lacking. Here we show that feeding by the free-living herbivore Tupiocoris notatus on Nicotiana attenuata is characterized by stable nutrient levels, increased CK levels and alterations in CK-related transcript levels in attacked leaves, in striking similarity to endophytic insects. Using 15N-isotope labeling, we demonstrate that the CK N6-isopentenyladenine (IP) is transferred from insects to plants via their oral secretions. In the field, T. notatus preferentially attacks leaves with transgenically increased CK levels; plants with abrogated CK-perception are less tolerant of T. notatus feeding damage. We infer that this free-living insect uses CKs to manipulate source/sink relationships to increase food quality and minimize the fitness consequences of its feeding.
Collapse
Affiliation(s)
- Christoph Brütting
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Cristina Maria Crava
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Martin Schäfer
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Meredith C Schuman
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
- German Centre for Integrative Biodiversity ResearchLeipzigGermany
| | - Stefan Meldau
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Nora Adam
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
- German Centre for Integrative Biodiversity ResearchLeipzigGermany
| | - Ian T Baldwin
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| |
Collapse
|
27
|
Adam N, Kallenbach M, Meldau S, Veit D, van Dam NM, Baldwin IT, Schuman MC. Functional variation in a key defense gene structures herbivore communities and alters plant performance. PLoS One 2018; 13:e0197221. [PMID: 29874269 PMCID: PMC5991399 DOI: 10.1371/journal.pone.0197221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/28/2018] [Indexed: 11/19/2022] Open
Abstract
Plant genetic diversity structures animal communities and affects plant population productivity. However, few studies have investigated which traits are involved and the mechanisms mediating these effects. We studied the consequences of varying the expression of a single biosynthetic gene in jasmonate (JA) defense hormones, which are essential for defense against herbivores but constrain plant growth, in experimental mesocosm populations of wild tobacco (Nicotiana attenuata) plants under attack from three native herbivores. Empoasca leafhoppers preferentially attack JA-deficient N. attenuata plants in nature, and the specialist Tupiocoris notatus mirids avoid Empoasca-damaged plants. However, in experimental mesocosm populations having equal numbers of wild-type (WT) and JA-deficient plants that are silenced in the expression of the biosynthetic gene lipoxygenase 3 (LOX3), Empoasca sp. attacked both genotypes. Empoasca sp. damage, rather than JA, determined T. notatus damage, which was reduced in mixed populations. The growth of specialist Manduca sexta larvae was reduced on WT vs. asLOX3 monocultures, but differed in mixtures depending on caterpillar density. However, seed capsule number remained similar for WT and asLOX3 plants in mixtures, not in monocultures, in two experimental scenarios reflecting high and low caterpillar attack. At high caterpillar density, WT plants growing in mixtures produced more seed capsules than those growing in monocultures while seed production of asLOX3 plants did not differ by population type. However, at low caterpillar density, asLOX3 plants growing in mixed populations produced more seed capsules than those growing in monoculture, while seed capsule production did not differ for WT by population type. Thus, mixed populations had a more stable output of seed capsules under the two scenarios. This may result from a balance between JA-mediated herbivore defense and plant competitive ability in mixed populations.
Collapse
Affiliation(s)
- Nora Adam
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Mario Kallenbach
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Stefan Meldau
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Daniel Veit
- Technical Service, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| |
Collapse
|
28
|
Li R, Llorca LC, Schuman MC, Wang Y, Wang L, Joo Y, Wang M, Vassão DG, Baldwin IT. ZEITLUPE in the Roots of Wild Tobacco Regulates Jasmonate-Mediated Nicotine Biosynthesis and Resistance to a Generalist Herbivore. PLANT PHYSIOLOGY 2018; 177:833-846. [PMID: 29720557 PMCID: PMC6001341 DOI: 10.1104/pp.18.00315] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/25/2018] [Indexed: 05/26/2023]
Abstract
The jasmonate (JA) phytohormone signaling system is an important mediator of plant defense against herbivores. Plants deficient in JA signaling are more susceptible to herbivory as a result of deficiencies in defensive trait expression. Recent studies have implicated the circadian clock in regulating JA-mediated defenses, but the molecular mechanisms linking the clock to JA signaling are unclear. Here, we report that wild tobacco (Nicotiana attenuata) plants rendered deficient in the clock component ZEITLUPE (ZTL) by RNA interference have attenuated resistance to the generalist herbivore Spodoptera littoralis This effect can be attributed in part to reduced concentrations of nicotine, an abundant JA-regulated toxin produced in N. attenuata roots and transported to shoots. RNA interference targeting ZTL dramatically affects the root circadian clock and reduces the expression of nicotine biosynthetic genes. Protein-protein interaction experiments demonstrate that ZTL regulates JA signaling by directly interacting with JASMONATE ZIM domain (JAZ) proteins in a CORONATINE-INSENSITIVE1- and jasmonoyl-isoleucine conjugate-independent manner, thereby regulating a JAZ-MYC2 module that is required for nicotine biosynthesis. Our study reveals new functions for ZTL and proposes a mechanism by which a clock component directly influences JA signaling to regulate plant defense against herbivory.
Collapse
Affiliation(s)
- Ran Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Lucas Cortés Llorca
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Yang Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Lanlan Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ming Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Daniel Giddings Vassão
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| |
Collapse
|
29
|
Expressing OsMPK4 Impairs Plant Growth but Enhances the Resistance of Rice to the Striped Stem Borer Chilo suppressalis. Int J Mol Sci 2018; 19:ijms19041182. [PMID: 29652796 PMCID: PMC5979284 DOI: 10.3390/ijms19041182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/25/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022] Open
Abstract
Mitogen-activated protein kinases (MPKs) play a central role not only in plant growth and development, but also in plant responses to abiotic and biotic stresses, including pathogens. Yet, their role in herbivore-induced plant defenses and their underlying mechanisms remain largely unknown. Here, we cloned a rice MPK gene, OsMPK4, whose expression was induced by mechanical wounding, infestation of the striped stem borer (SSB) Chilo suppressalis, and treatment with jasmonic acid (JA), but not by treatment with salicylic acid (SA). The overexpression of OsMPK4 (oe-MPK4) enhanced constitutive and/or SSB-induced levels of JA, jasmonoyl-l-isoleucine (JA-Ile), ethylene (ET), and SA, as well as the activity of elicited trypsin proteinase inhibitors (TrypPIs), and reduced SSB performance. On the other hand, compared to wild-type plants, oe-MPK4 lines in the greenhouse showed growth retardation. These findings suggest that OsMPK4, by regulating JA-, ET-, and SA-mediated signaling pathways, functions as a positive regulator of rice resistance to the SSB and a negative regulator of rice growth.
Collapse
|
30
|
De Ollas C, Arbona V, Gómez-Cadenas A, Dodd IC. Attenuated accumulation of jasmonates modifies stomatal responses to water deficit. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2103-2116. [PMID: 29432619 PMCID: PMC6018964 DOI: 10.1093/jxb/ery045] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/31/2017] [Indexed: 05/23/2023]
Abstract
To determine whether drought-induced root jasmonate [jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile)] accumulation affected shoot responses to drying soil, near-isogenic wild-type (WT) tomato (Solanum lycopersicum cv. Castlemart) and the def-1 mutant (which fails to accumulate jasmonates during water deficit) were self- and reciprocally grafted. Rootstock hydraulic conductance was entirely rootstock dependent and significantly lower in def-1, yet def-1 scions maintained a higher leaf water potential as the soil dried due to their lower stomatal conductance (gs). Stomatal sensitivity to drying soil (the slope of gsversus soil water content) was low in def-1 self-grafts but was normalized by grafting onto WT rootstocks. Although soil drying increased 12-oxo-phytodienoic acid (OPDA; a JA precursor and putative antitranspirant) concentrations in def-1 scions, foliar JA accumulation was negligible and foliar ABA accumulation reduced compared with WT scions. A WT rootstock increased drought-induced ABA and JA accumulation in def-1 scions, but decreased OPDA accumulation. Xylem-borne jasmonates were biologically active, since supplying exogenous JA via the transpiration stream to detached leaves decreased transpiration of WT seedlings but had the opposite effect in def-1. Thus foliar accumulation of both ABA and JA at WT levels is required for both maximum (well-watered) gs and stomatal sensitivity to drying soil.
Collapse
Affiliation(s)
- Carlos De Ollas
- Departamento de Ciencias Agrarias del Medio Natural. Universitat Jaume I, Spain
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Vicent Arbona
- Departamento de Ciencias Agrarias del Medio Natural. Universitat Jaume I, Spain
| | | | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
31
|
Erb M. Plant Defenses against Herbivory: Closing the Fitness Gap. TRENDS IN PLANT SCIENCE 2018; 23:187-194. [PMID: 29223923 DOI: 10.1016/j.tplants.2017.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 05/03/2023]
Abstract
Many morphological and chemical features of plants are classified as plant defenses against herbivores. By definition, plant defenses should increase a plant's fitness (i.e., its contribution to the gene pool of the next generation) as a function of herbivory. Over the past years, substantial progress has been made in understanding and manipulating the mechanistic basis of many putative plant defense traits. However, most plant defenses are still characterized by proximate variables such as herbivore performance or plant damage rather than actual fitness. Determining fitness benefits as a function of herbivory therefore remains a major knowledge gap that must be filled to understand the ecology and evolution of plant defenses.
Collapse
Affiliation(s)
- Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
32
|
Sperotto RA, Buffon G, Schwambach J, Ricachenevsky FK. Crops Responses to Mite Infestation: It's Time to Look at Plant Tolerance to Meet the Farmers' Needs. FRONTIERS IN PLANT SCIENCE 2018; 9:556. [PMID: 29740472 PMCID: PMC5928466 DOI: 10.3389/fpls.2018.00556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/09/2018] [Indexed: 05/03/2023]
Affiliation(s)
- Raul A. Sperotto
- Graduate Program in Biotechnology, University of Taquari Valley, Lajeado, Brazil
- Biological Sciences and Health Center, University of Taquari Valley, Lajeado, Brazil
- *Correspondence: Raul A. Sperotto
| | - Giseli Buffon
- Graduate Program in Biotechnology, University of Taquari Valley, Lajeado, Brazil
| | - Joséli Schwambach
- Graduate Program in Biotechnology, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Felipe K. Ricachenevsky
- Graduate Program in Agrobiology, Federal University of Santa Maria, Santa Maria, Brazil
- Graduate Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
33
|
Bozorov TA, Dinh ST, Baldwin IT. JA but not JA-Ile is the cell-nonautonomous signal activating JA mediated systemic defenses to herbivory in Nicotiana attenuata. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:552-571. [PMID: 28422432 DOI: 10.1111/jipb.12545] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 04/17/2017] [Indexed: 05/20/2023]
Abstract
The whole-plant activation of defense responses to wounding and herbivory requires systemic signaling in which jasmonates (JAs) play a pivotal role. To examine the nature of the slower cell-nonautonomous as compared to the rapid cell-autonomous signal in mediating systemic defenses in Nicotiana attenuata, reciprocal stem grafting-experiments were used with plants silenced for the JA biosynthetic gene ALLENE OXIDE CYCLASE (irAOC) or plants transformed to create JA sinks by ectopically expressing Arabidopsis JA-O-methyltransferase (ovJMT). JA-impaired irAOC plants were defective in the cell-nonautonomous signaling pathway but not in JA transport. Conversely, ovJMT plants abrogated the production of a graft-transmissible JA signal. Both genotypes displayed unaltered cell-autonomous signaling. Defense responses (17-hydroxygeranyllinalool diterpene glycosides, nicotine, and proteinase inhibitors) and metabolite profiles were differently induced in irAOC and ovJMT scions in response to graft-transmissible signals from elicited wild type stocks. The performance of Manduca sexta larvae on the scions of different graft combinations was consistent with the patterns of systemic defense metabolite elicitations. Taken together, we conclude that JA and possibly MeJA, but not JA-Ile, either directly functions as a long-distance transmissible signal or indirectly interacts with long distance signal(s) to activate systemic defense responses.
Collapse
Affiliation(s)
- Tohir A Bozorov
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany
- Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Yukori-Yuz, 111226, Kibray, Tashkent Region, Uzbekistan
| | - Son Truong Dinh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany
- Department of Plant Biotechnology, Faculty of Biotechnology - Vietnam National University of Agriculture, Ngo Xuan Quang Street, 100000, Hanoi, Vietnam
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| |
Collapse
|
34
|
Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants. Proc Natl Acad Sci U S A 2017; 114:E6703-E6709. [PMID: 28739895 DOI: 10.1073/pnas.1704536114] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cuscuta spp. (i.e., dodders) are stem parasites that naturally graft to their host plants to extract water and nutrients; multiple adjacent hosts are often parasitized by one or more Cuscuta plants simultaneously, forming connected plant clusters. Metabolites, proteins, and mRNAs are known to be transferred from hosts to Cuscuta, and Cuscuta bridges even facilitate host-to-host virus movement. Whether Cuscuta bridges transmit ecologically meaningful signals remains unknown. Here we show that, when host plants are connected by Cuscuta bridges, systemic herbivory signals are transmitted from attacked plants to unattacked plants, as revealed by the large transcriptomic changes in the attacked local leaves, undamaged systemic leaves of the attacked plants, and leaves of unattacked but connected hosts. The interplant signaling is largely dependent on the jasmonic acid pathway of the damaged local plants, and can be found among conspecific or heterospecific hosts of different families. Importantly, herbivore attack of one host plant elevates defensive metabolites in the other systemic Cuscuta bridge-connected hosts, resulting in enhanced resistance against insects even in several consecutively Cuscuta-connected host plants over long distances (> 100 cm). By facilitating plant-to-plant signaling, Cuscuta provides an information-based means of countering the resource-based fitness costs to their hosts.
Collapse
|
35
|
Dugé de Bernonville T, Carqueijeiro I, Lanoue A, Lafontaine F, Sánchez Bel P, Liesecke F, Musset K, Oudin A, Glévarec G, Pichon O, Besseau S, Clastre M, St-Pierre B, Flors V, Maury S, Huguet E, O'Connor SE, Courdavault V. Folivory elicits a strong defense reaction in Catharanthus roseus: metabolomic and transcriptomic analyses reveal distinct local and systemic responses. Sci Rep 2017; 7:40453. [PMID: 28094274 PMCID: PMC5240345 DOI: 10.1038/srep40453] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/06/2016] [Indexed: 11/22/2022] Open
Abstract
Plants deploy distinct secondary metabolisms to cope with environment pressure and to face bio-aggressors notably through the production of biologically active alkaloids. This metabolism-type is particularly elaborated in Catharanthus roseus that synthesizes more than a hundred different monoterpene indole alkaloids (MIAs). While the characterization of their biosynthetic pathway now reaches completion, still little is known about the role of MIAs during biotic attacks. As a consequence, we developed a new plant/herbivore interaction system by challenging C. roseus leaves with Manduca sexta larvae. Transcriptomic and metabolic analyses demonstrated that C. roseus respond to folivory by both local and systemic processes relying on the activation of specific gene sets and biosynthesis of distinct MIAs following jasmonate production. While a huge local accumulation of strictosidine was monitored in attacked leaves that could repel caterpillars through its protein reticulation properties, newly developed leaves displayed an increased biosynthesis of the toxic strictosidine-derived MIAs, vindoline and catharanthine, produced by up-regulation of MIA biosynthetic genes. In this context, leaf consumption resulted in a rapid death of caterpillars that could be linked to the MIA dimerization observed in intestinal tracts. Furthermore, this study also highlights the overall transcriptomic control of the plant defense processes occurring during herbivory.
Collapse
Affiliation(s)
- Thomas Dugé de Bernonville
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Inês Carqueijeiro
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Arnaud Lanoue
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Florent Lafontaine
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Paloma Sánchez Bel
- Metabolic Integration and Cell Signaling Group, Plant Physiology Section, Department of CAMN, Universitat Jaume I, Spain
| | - Franziska Liesecke
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Karine Musset
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| | - Audrey Oudin
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Gaëlle Glévarec
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Olivier Pichon
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Sébastien Besseau
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Marc Clastre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Benoit St-Pierre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Victor Flors
- Metabolic Integration and Cell Signaling Group, Plant Physiology Section, Department of CAMN, Universitat Jaume I, Spain
| | - Stéphane Maury
- Université d'Orléans, CoST, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA 1207, USC1328 INRA, Orléans, France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| | - Sarah E O'Connor
- The John Innes Centre, Department of Biological Chemistry, Norwich NR4 7UH, United Kingdom
| | - Vincent Courdavault
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| |
Collapse
|
36
|
Adam N, Erler T, Kallenbach M, Kaltenpoth M, Kunert G, Baldwin IT, Schuman MC. Sex ratio of mirid populations shifts in response to hostplant co-infestation or altered cytokinin signaling . JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:44-59. [PMID: 27862998 PMCID: PMC5234700 DOI: 10.1111/jipb.12507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/08/2016] [Indexed: 05/11/2023]
Abstract
Herbivore species sharing a host plant often compete. In this study, we show that host plant-mediated interaction between two insect herbivores - a generalist and a specialist - results in a sex ratio shift of the specialist's offspring. We studied demographic parameters of the specialist Tupiocoris notatus (Hemiptera: Miridae) when co-infesting the host plant Nicotiana attenuata (Solanaceae) with the generalist leafhopper Empoasca sp. (Hemiptera: Cicadellidae). We show that the usually female-biased sex ratio of T. notatus shifts toward a higher male proportion in the offspring on plants co-infested by Empoasca sp. This sex ratio change did not occur after oviposition, nor is it due differential mortality of female and male nymphs. Based on pyrosequencing and PCR of bacterial 16S rRNA amplicons, we concluded that sex ratio shifts were unlikely to be due to infection with Wolbachia or other known sex ratio-distorting endosymbionts. Finally, we used transgenic lines of N. attenuata to evaluate if the sex ratio shift could be mediated by changes in general or specialized host plant metabolites. We found that the sex ratio shift occurred on plants deficient in two cytokinin receptors (irCHK2/3). Thus, cytokinin-regulated traits can alter the offspring sex ratio of the specialist T. notatus.
Collapse
Affiliation(s)
- Nora Adam
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Theresa Erler
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Mario Kallenbach
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Martin Kaltenpoth
- Max Planck Research Group Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Grit Kunert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
37
|
Crava CM, Brütting C, Baldwin IT. Transcriptome profiling reveals differential gene expression of detoxification enzymes in a hemimetabolous tobacco pest after feeding on jasmonate-silenced Nicotiana attenuata plants. BMC Genomics 2016; 17:1005. [PMID: 27931186 PMCID: PMC5146904 DOI: 10.1186/s12864-016-3348-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/25/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The evolutionary arms race between plants and insects has driven the co-evolution of sophisticated defense mechanisms used by plants to deter herbivores and equally sophisticated strategies that enable phytophagous insects to rapidly detoxify the plant's defense metabolites. In this study, we identify the genetic determinants that enable the mirid, Tupiocoris notatus, to feed on its well-defended host plant, Nicotiana attenuata, an outstanding model for plant-insect interaction studies. RESULTS We used an RNAseq approach to evaluate the global gene expression of T. notatus after feeding on a transgenic N. attenuata line which does not accumulate jasmonic acid (JA) after herbivory, and consequently accumulates very low levels of defense metabolites. Using Illumina sequencing, we generated a de novo assembled transcriptome which resulted in 63,062 contigs (putative transcript isoforms) contained in 42,610 isotigs (putative identified genes). Differential expression analysis based on RSEM-estimated transcript abundances identified 82 differentially expressed (DE) transcripts between T. notatus fed on wild-type and the defenseless plants. The same analysis conducted with Corset-estimated transcript abundances identified 59 DE clusters containing 85 transcripts. In both analyses, a larger number of DE transcripts were found down-regulated in mirids feeding on JA-silenced plants (around 70%). Among these down-regulated transcripts we identified seven transcripts possibly involved in the detoxification of N. attenuata defense metabolite, specifically, one glutathione-S-transferase (GST), one UDP-glucosyltransferase (UGT), five cytochrome P450 (P450s), and six serine proteases. Real-time quantitative PCR confirmed the down-regulation for six transcripts (encoding GST, UGT and four P450s) and revealed that their expression was only slightly decreased in mirids feeding on another N. attenuata transgenic line specifically silenced in the accumulation of diterpene glycosides, one of the many classes of JA-mediated defenses in N. attenuata. CONCLUSIONS The results provide a transcriptional overview of the changes in a specialist hemimetabolous insect associated with feeding on host plants depleted in chemical defenses. Overall, the analysis reveals that T. notatus responses to host plant defenses are narrow and engages P450 detoxification pathways. It further identifies candidate genes which can be tested in future experiments to understand their role in shaping the T. notatus-N. attenuata interaction.
Collapse
Affiliation(s)
- Cristina M. Crava
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell strasse 8, D-07745 Jena, Germany
- Present Address: Department of Sustainable Ecosystems and Bio-resources, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige, Italy
| | - Christoph Brütting
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell strasse 8, D-07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell strasse 8, D-07745 Jena, Germany
| |
Collapse
|
38
|
Mechanisms and ecological implications of plant-mediated interactions between belowground and aboveground insect herbivores. Ecol Res 2016. [DOI: 10.1007/s11284-016-1410-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Agut B, Gamir J, Jaques JA, Flors V. Systemic resistance in citrus to Tetranychus urticae induced by conspecifics is transmitted by grafting and mediated by mobile amino acids. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5711-5723. [PMID: 27683726 PMCID: PMC5066491 DOI: 10.1093/jxb/erw335] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recent research suggests that systemic signalling and communication between roots and leaves plays an important role in plant defence against herbivores. In the present study, we show that the oviposition of the two-spotted spider mite Tetranychus urticae in the systemic leaves of citrus rootstock Citrus aurantium (sour orange) was reduced by 50% when a lower leaf was previously infested with conspecifics. Metabolomic and gene expression analysis of the root efflux revealed a strong accumulation of glutamic acid (Glu) that triggered the expression of the citrus putative glutamate receptor (GRL) in the shoots. Additionally, uninfested sour orange systemic leaves showed increased expression of glutamate receptors and higher amounts of jasmonic acid (JA) and 12-oxo-phytodienoic acid in plants that were previously infested. Glu perception in the shoots induced the JA pathway, which primed LOX-2 gene expression when citrus plants were exposed to a second infestation. The spider mite-susceptible citrus rootstock Cleopatra mandarin (C. unshiu) also expressed systemic resistance, although the resistance was less effective than the resistance in sour orange. Surprisingly, the mobile signal in Cleopatra mandarin was not Glu, which suggests a strong genotype-dependency for systemic signalling in citrus. When the cultivar Clemenules (C. clementina) was grafted onto sour orange, there was a reduction in symptomatic leaves and T. urticae populations compared to the same cultivar grafted onto Cleopatra mandarin. Thus, systemic resistance is transmitted from the roots to the shoots in citrus and is dependent on rootstock resistance.
Collapse
Affiliation(s)
- Blas Agut
- Metabolic Integration and Cell Signalling Group, Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Campus del Riu Sec, E-12071-Castelló de la Plana, Spain
| | - Jordi Gamir
- Unit of Plant Biology, Université de Fribourg, Avenue de l'Europe 20, 1700 Fribourg, Suïssa
| | - Josep A Jaques
- Unitat Associada d'Entomologia IVIA-UJI, Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Campus del Riu Sec, E-12071-Castelló de la Plana, Spain
| | - Victor Flors
- Metabolic Integration and Cell Signalling Group, Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Campus del Riu Sec, E-12071-Castelló de la Plana, Spain
| |
Collapse
|
40
|
Groen SC. Signalling in systemic plant defence - roots put in hard graft. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5585-5587. [PMID: 27738093 PMCID: PMC5066500 DOI: 10.1093/jxb/erw349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Simon C Groen
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
41
|
Biere A, Goverse A. Plant-Mediated Systemic Interactions Between Pathogens, Parasitic Nematodes, and Herbivores Above- and Belowground. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:499-527. [PMID: 27359367 DOI: 10.1146/annurev-phyto-080615-100245] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Plants are important mediators of interactions between aboveground (AG) and belowground (BG) pathogens, arthropod herbivores, and nematodes (phytophages). We highlight recent progress in our understanding of within- and cross-compartment plant responses to these groups of phytophages in terms of altered resource dynamics and defense signaling and activation. We review studies documenting the outcome of cross-compartment interactions between these phytophage groups and show patterns of cross-compartment facilitation as well as cross-compartment induced resistance. Studies involving soilborne pathogens and foliar nematodes are scant. We further highlight the important role of defense signaling loops between shoots and roots to activate a full resistance complement. Moreover, manipulation of such loops by phytophages affects systemic interactions with other plant feeders. Finally, cross-compartment-induced changes in root defenses and root exudates extend systemic defense loops into the rhizosphere, enhancing or reducing recruitment of microbes that induce systemic resistance but also affecting interactions with root-feeding phytophages.
Collapse
Affiliation(s)
- Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, 6708 PB Wageningen, The Netherlands;
| | - Aska Goverse
- Lab of Nematology, Department of Plant Sciences, Wageningen University, 6700 PB Wageningen, The Netherlands
| |
Collapse
|
42
|
Lortzing T, Steppuhn A. Jasmonate signalling in plants shapes plant-insect interaction ecology. CURRENT OPINION IN INSECT SCIENCE 2016; 14:32-39. [PMID: 27436644 DOI: 10.1016/j.cois.2016.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 05/11/2023]
Abstract
The phytohormone jasmonic acid (JA) regulates the induction of direct and indirect defences against herbivores. By now, the biochemical pathway of JA-signalling has been well resolved, allowing the use of an interdisciplinary toolbox and spurring the mechanistic investigation of plant-insect interactions. Recent advances show that JA-mediated plant responses are involved in the competitive and trophic interactions between various organisms throughout at least four trophic levels and therefore likely shape natural communities. Moreover, JA-mediated responses can be primed or suppressed by various environmental factors that are related to herbivory or not. Yet, to integrate the complex interactions at the physiological and ecological levels into community ecology, an examination of the often onetime discoveries for general rules and new bioinformatic approaches are required.
Collapse
Affiliation(s)
- Tobias Lortzing
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology/Freie Universität Berlin, Haderslebener Str. 9, Berlin 12163, Germany.
| | - Anke Steppuhn
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology/Freie Universität Berlin, Haderslebener Str. 9, Berlin 12163, Germany.
| |
Collapse
|
43
|
Li D, Baldwin IT, Gaquerel E. Beyond the Canon: Within-Plant and Population-Level Heterogeneity in Jasmonate Signaling Engaged by Plant-Insect Interactions. PLANTS 2016; 5:plants5010014. [PMID: 27135234 PMCID: PMC4844416 DOI: 10.3390/plants5010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 11/16/2022]
Abstract
Plants have evolved sophisticated communication and defense systems with which they interact with insects. Jasmonates are synthesized from the oxylipin pathway and act as pivotal cellular orchestrators of many of the metabolic and physiological processes that mediate these interactions. Many of these jasmonate-dependent responses are tissue-specific and translate from modulations of the canonical jasmonate signaling pathway. Here we provide a short overview of within-plant heterogeneities in jasmonate signaling and dependent responses in the context of plant-insect interactions as illuminated by examples from recent work with the ecological model, Nicotiana attenuata. We then discuss means of manipulating jasmonate signaling by creating tissue-specific jasmonate sinks, and the micrografting of different transgenic plants. The metabolic phenotyping of these manipulations provides an integrative understanding of the functional significance of deviations from the canonical model of this hormonal pathway. Additionally, natural variation in jasmonate biosynthesis and signaling both among and within species can explain polymorphisms in resistance to insects in nature. In this respect, insect-guided explorations of population-level variations in jasmonate metabolism have revealed more complexity than previously realized and we discuss how different "omic" techniques can be used to exploit the natural variation that occurs in this important signaling pathway.
Collapse
Affiliation(s)
- Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany.
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany.
| | - Emmanuel Gaquerel
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, Heidelberg 69120, Germany.
| |
Collapse
|
44
|
Cheng T, Chen J, Ef AA, Wang P, Wang G, Hu X, Shi J. Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress. PLANTA 2015; 243:1081. [PMID: 26232921 DOI: 10.1007/s00425-016-2494-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
NO acts as the essential signal to enhance poplar tolerance to chilling stress via antioxidant enzyme activities and protein S -nitrosylation modification, NO signal is also strictly controlled by S -nitrosoglutathione reductase and nitrate reductase to avoid the over-accumulation of reactive nitrogen species. Poplar (Populus trichocarpa) are fast growing woody plants with both ecological and economic value; however, the mechanisms by which poplar adapts to environmental stress are poorly understood. In this study, we used isobaric tags for relative and absolute quantification proteomic approach to characterize the response of poplar exposed to cold stress. We identified 114 proteins that were differentially expressed in plants exposed to cold stress. In particular, some of the proteins are involved in reactive oxygen species (ROS) and reactive nitrogen species (RNS) metabolism. Further physiological analysis showed that nitric oxide (NO) signaling activated a series of downstream defense responses. We further demonstrated that NO activated antioxidant enzyme activities and S-nitrosoglutathione reductase (GSNOR) activities, which would reduce ROS and RNS toxicity and thereby enhance poplar tolerance to cold stress. Suppressing NO accumulation or GSNOR activity aggravated cold damage to poplar leaves. Moreover, our results showed that RNS can suppress the activities of GSNOR and NO nitrate reductase (NR) by S-nitrosylation to fine-tune the NO signal and modulate ROS levels by modulating the S-nitrosylation of ascorbate peroxidase protein. Hence, our data demonstrate that NO signaling activates multiple pathways that enhance poplar tolerances to cold stress, and that NO signaling is strictly controlled through protein post-translational modification by S-nitrosylation.
Collapse
Affiliation(s)
- Tielong Cheng
- Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China
| | - Abd Allah Ef
- Department of Plant Production, Faculty of Food & Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Pengkai Wang
- Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China
| | - Guangping Wang
- Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China
| | - Xiangyang Hu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China.
| | - Jisen Shi
- Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China.
| |
Collapse
|
45
|
Cheng T, Chen J, Ef AA, Wang P, Wang G, Hu X, Shi J. Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress. PLANTA 2015; 242:1361-90. [PMID: 26232921 DOI: 10.1007/s00425-015-2374-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/14/2015] [Indexed: 05/20/2023]
Abstract
NO acts as the essential signal to enhance poplar tolerance to chilling stress via antioxidant enzyme activities and protein S -nitrosylation modification, NO signal is also strictly controlled by S -nitrosoglutathione reductase and nitrate reductase to avoid the over-accumulation of reactive nitrogen species. Poplar (Populus trichocarpa) are fast growing woody plants with both ecological and economic value; however, the mechanisms by which poplar adapts to environmental stress are poorly understood. In this study, we used isobaric tags for relative and absolute quantification proteomic approach to characterize the response of poplar exposed to cold stress. We identified 114 proteins that were differentially expressed in plants exposed to cold stress. In particular, some of the proteins are involved in reactive oxygen species (ROS) and reactive nitrogen species (RNS) metabolism. Further physiological analysis showed that nitric oxide (NO) signaling activated a series of downstream defense responses. We further demonstrated that NO activated antioxidant enzyme activities and S-nitrosoglutathione reductase (GSNOR) activities, which would reduce ROS and RNS toxicity and thereby enhance poplar tolerance to cold stress. Suppressing NO accumulation or GSNOR activity aggravated cold damage to poplar leaves. Moreover, our results showed that RNS can suppress the activities of GSNOR and NO nitrate reductase (NR) by S-nitrosylation to fine-tune the NO signal and modulate ROS levels by modulating the S-nitrosylation of ascorbate peroxidase protein. Hence, our data demonstrate that NO signaling activates multiple pathways that enhance poplar tolerances to cold stress, and that NO signaling is strictly controlled through protein post-translational modification by S-nitrosylation.
Collapse
Affiliation(s)
- Tielong Cheng
- Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China
| | - Abd Allah Ef
- Department of Plant Production, Faculty of Food & Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Pengkai Wang
- Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China
| | - Guangping Wang
- Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China
| | - Xiangyang Hu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China.
| | - Jisen Shi
- Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China.
| |
Collapse
|
46
|
Garcia-Abellan JO, Fernandez-Garcia N, Lopez-Berenguer C, Egea I, Flores FB, Angosto T, Capel J, Lozano R, Pineda B, Moreno V, Olmos E, Bolarin MC. The tomato res mutant which accumulates JA in roots in non-stressed conditions restores cell structure alterations under salinity. PHYSIOLOGIA PLANTARUM 2015; 155:296-314. [PMID: 25582191 DOI: 10.1111/ppl.12320] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 05/21/2023]
Abstract
Jasmonic acid (JA) regulates a wide spectrum of plant biological processes, from plant development to stress defense responses. The role of JA in plant response to salt stress is scarcely known, and even less known is the specific response in root, the main plant organ responsible for ionic uptake and transport to the shoot. Here we report the characterization of the first tomato (Solanum lycopersicum) mutant, named res (restored cell structure by salinity), that accumulates JA in roots prior to exposure to stress. The res tomato mutant presented remarkable growth inhibition and displayed important morphological alterations and cellular disorganization in roots and leaves under control conditions, while these alterations disappeared when the res mutant plants were grown under salt stress. Reciprocal grafting between res and wild type (WT) (tomato cv. Moneymaker) indicated that the main organ responsible for the development of alterations was the root. The JA-signaling pathway is activated in res roots prior to stress, with transcripts levels being even higher in control condition than in salinity. Future studies on this mutant will provide significant advances in the knowledge of JA role in root in salt-stress tolerance response, as well as in the energy trade-off between plant growth and response to stress.
Collapse
Affiliation(s)
- José O Garcia-Abellan
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Nieves Fernandez-Garcia
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Carmen Lopez-Berenguer
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Isabel Egea
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Francisco B Flores
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Trinidad Angosto
- Agro-Food Biotechnology Research Centre (BITAL), University of Almería, La Cañada de San Urbano, 04120, Almería, Spain
| | - Juan Capel
- Agro-Food Biotechnology Research Centre (BITAL), University of Almería, La Cañada de San Urbano, 04120, Almería, Spain
| | - Rafael Lozano
- Agro-Food Biotechnology Research Centre (BITAL), University of Almería, La Cañada de San Urbano, 04120, Almería, Spain
| | - Benito Pineda
- Department of Plant Biotechnology and In Vitro Culture, IBMCP-UPV/CSIC, Camino de Vera s/n, 46022, Valencia, Spain
| | - Vicente Moreno
- Department of Plant Biotechnology and In Vitro Culture, IBMCP-UPV/CSIC, Camino de Vera s/n, 46022, Valencia, Spain
| | - Enrique Olmos
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Maria C Bolarin
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| |
Collapse
|
47
|
Ling Z, Zhou W, Baldwin IT, Xu S. Insect herbivory elicits genome-wide alternative splicing responses in Nicotiana attenuata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:228-43. [PMID: 26306554 DOI: 10.1111/tpj.12997] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 05/06/2023]
Abstract
Changes in gene expression and alternative splicing (AS) are involved in many responses to abiotic and biotic stresses in eukaryotic organisms. In response to attack and oviposition by insect herbivores, plants elicit rapid changes in gene expression which are essential for the activation of plant defenses; however, the herbivory-induced changes in AS remain unstudied. Using mRNA sequencing, we performed a genome-wide analysis on tobacco hornworm (Manduca sexta) feeding-induced AS in both leaves and roots of Nicotiana attenuata. Feeding by M. sexta for 5 h reduced total AS events by 7.3% in leaves but increased them in roots by 8.0% and significantly changed AS patterns in leaves and roots of existing AS genes. Feeding by M. sexta also resulted in increased (in roots) and decreased (in leaves) transcript levels of the serine/arginine-rich (SR) proteins that are involved in the AS machinery of plants and induced changes in SR gene expression that were jasmonic acid (JA)-independent in leaves but JA-dependent in roots. Changes in AS and gene expression elicited by M. sexta feeding were regulated independently in both tissues. This study provides genome-wide evidence that insect herbivory induces changes not only in the levels of gene expression but also in their splicing, which might contribute to defense against and/or tolerance of herbivory.
Collapse
Affiliation(s)
- Zhihao Ling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Wenwu Zhou
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Shuqing Xu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| |
Collapse
|
48
|
Machado RAR, Arce CCM, Ferrieri AP, Baldwin IT, Erb M. Jasmonate-dependent depletion of soluble sugars compromises plant resistance to Manduca sexta. THE NEW PHYTOLOGIST 2015; 207:91-105. [PMID: 25704234 DOI: 10.1111/nph.13337] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/18/2015] [Indexed: 05/07/2023]
Abstract
Jasmonates regulate plant secondary metabolism and herbivore resistance. How they influence primary metabolites and how this may affect herbivore growth and performance are not well understood. We profiled sugars and starch of jasmonate biosynthesis-deficient and jasmonate-insensitive Nicotiana attenuata plants and manipulated leaf carbohydrates through genetic engineering and in vitro complementation to assess how jasmonate-dependent sugar accumulation affects the growth of Manduca sexta caterpillars. We found that jasmonates reduce the constitutive and herbivore-induced concentration of glucose and fructose in the leaves across different developmental stages. Diurnal, jasmonate-dependent inhibition of invertase activity was identified as a likely mechanism for this phenomenon. Contrary to our expectation, both in planta and in vitro approaches showed that the lower sugar concentrations led to increased M. sexta growth. As a consequence, jasmonate-dependent depletion of sugars rendered N. attenuata plants more susceptible to M. sexta attack. In conclusion, jasmonates are important regulators of leaf carbohydrate accumulation and this determines herbivore growth. Jasmonate-dependent resistance is reduced rather than enhanced through the suppression of glucose and fructose concentrations, which may contribute to the evolution of divergent resistance strategies of plants in nature.
Collapse
Affiliation(s)
- Ricardo A R Machado
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Carla C M Arce
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Entomology, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, 36570-000, Viçosa, Brazil
| | - Abigail P Ferrieri
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Matthias Erb
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013, Bern, Switzerland
| |
Collapse
|
49
|
Schmidt L, Hummel GM, Thiele B, Schurr U, Thorpe MR. Leaf wounding or simulated herbivory in young N. attenuata plants reduces carbon delivery to roots and root tips. PLANTA 2015; 241:917-28. [PMID: 25528149 DOI: 10.1007/s00425-014-2230-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
MAIN CONCLUSION In Nicotiana attenuata seedlings, simulated herbivo ry by the specialist Manduca sexta decreases root growth and partitioning of recent photoassimilates to roots in contrast to increased partitioning reported for older plants. Root elongation rate in Nicotiana attenuata has been shown to decrease after leaf herbivory, despite reports of an increased proportion of recently mobilized photoassimilate being delivered towards the root system in many species after similar treatments. To study this apparent contradiction, we measured the distribution of recent photoassimilate within root tissues after wounding or simulated herbivory of N. attenuata leaves. We found no contradiction: herbivory reduced carbon delivery to root tips. However, the speed of phloem transport in both shoot and root, and the delivery of recently assimilated carbon to the entire root system, declined after wounding or simulated herbivory, in contrast with the often-reported increase in root partitioning. We conclude that the herbivory response in N. attenuata seedlings is to favor the shoot and not bunker carbon in the root system.
Collapse
Affiliation(s)
- Lilian Schmidt
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany,
| | | | | | | | | |
Collapse
|
50
|
Pozo MJ, López-Ráez JA, Azcón-Aguilar C, García-Garrido JM. Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. THE NEW PHYTOLOGIST 2015; 205:1431-1436. [PMID: 25580981 DOI: 10.1111/nph.13252] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/10/2014] [Indexed: 05/04/2023]
Abstract
For survival, plants have to efficiently adjust their phenotype to environmental challenges, finely coordinating their responses to balance growth and defence. Such phenotypic plasticity can be modulated by their associated microbiota. The widespread mycorrhizal symbioses modify plant responses to external stimuli, generally improving the resilience of the symbiotic system to environmental stresses. Phytohormones, central regulators of plant development and immunity, are instrumental in orchestrating plant responses to the fluctuating environment, but also in the regulation of mycorrhizal symbioses. Exciting advances in the molecular regulation of phytohormone signalling are providing mechanistic insights into how plants coordinate their responses to environmental cues and mycorrhizal functioning. Here, we summarize how these mechanisms permit the fine-tuning of the symbiosis according to the ever-changing environment.
Collapse
Affiliation(s)
- María J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Juan A López-Ráez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Concepción Azcón-Aguilar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - José M García-Garrido
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Granada, Spain
| |
Collapse
|