1
|
Creydt M, Vuralhan-Eckert J, Fromm J, Fischer M. Effects of elevated CO 2 concentration on leaves and berries of black elder (Sambucus nigra) using UHPLC-ESI-QTOF-MS/MS and gas exchange measurements. JOURNAL OF PLANT PHYSIOLOGY 2019; 234-235:71-79. [PMID: 30669102 DOI: 10.1016/j.jplph.2019.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/02/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
The effect of elevated CO2 concentration on leaves of black elder (Sambucus nigra) was investigated based on leaf gas exchange, chlorophyll content as well as on the analysis of the underlying metabolite profile of the fruits. The measurements were carried out once a month over a period of time of 4 months. The CO2 uptake rate, the transpiration rate and stomatal conductance were significantly higher in plants under ambient CO2, in comparison to plants grown under elevated CO2 concentrations. On the other hand, at the initial phase of the experiments, the photosynthesis rate was higher in CO2 loaded plants compared to plants grown under normal conditions. Remarkably, after about one month a habituation effect could be observed leading to a decrease of the photosynthetic efficiency approaching again the normal level. To understand the observed effects on a molecular level, non-targeted fingerprinting analysis was performed on the ripe elder berries using LC-qToF-ESI-MS(/MS). Differences in the composition of various phenols, triglycerides and PC (36:5) as well as a stigmasterole-derivate could be detected. In contrast, central metabolic pathways such as photosynthesis, the tricarboxylic acid cycle as well as the biosynthesis of essential amino acids obviously are not considerably affected.
Collapse
Affiliation(s)
- M Creydt
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - J Vuralhan-Eckert
- Centre for Wood Science, University of Hamburg, Leuschnerstrasse 91d, 21031, Hamburg, Germany
| | - J Fromm
- Centre for Wood Science, University of Hamburg, Leuschnerstrasse 91d, 21031, Hamburg, Germany
| | - M Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany.
| |
Collapse
|
2
|
Arab L, Seegmueller S, Kreuzwieser J, Eiblmeier M, Rennenberg H. Atmospheric pCO 2 impacts leaf structural and physiological traits in Quercus petraea seedlings. PLANTA 2019; 249:481-495. [PMID: 30259170 DOI: 10.1007/s00425-018-3016-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Atmospheric p CO 2 impacts Quercus petraea biomass production and cell wall composition of the leaves in favor of cellulose at the expense of lignin, and enhances foliar non-structural carbohydrate levels and sucrose contents in a pCO 2 concentration-dependent manner. Sessile oak (Quercus petraea Liebl.) was grown for ca. half a year from seeds at ambient control (525 ppm), 750, 900, and 1000 ppm atmospheric pCO2 under controlled conditions. Increasing pCO2 enhanced biomass production, modified the cell wall composition of the leaves in favor of cellulose at the expense of lignin, and enhanced the foliar non-structural carbohydrate level, in particular the sucrose content; as well as total N content of leaves by increased levels of all major N fractions, i.e., soluble proteins, total amino acids, and structural N. The enhanced total amino acid level was largely due to 2-ketoglutarate and oxalo acetate-derived compounds. Increasing pCO2 alleviated oxidative stress in the leaves as indicated by reduced H2O2 contents. High in vitro glutathione reductase activity at reduced H2O2 contents suggests enhanced ROS scavenging, but increased lipid peroxidation may also have contributed, as indicated by a negative correlation between malone dialdehyde and H2O2 contents. Almost all these effects were at least partially reversed, when pCO2 exceeded 750 or 900 ppm. Apparently, the interaction of atmospheric pCO2 with leaf structural and physiological traits of Q. petraea seedlings is characterized by a dynamic response depending on the pCO2 level.
Collapse
Affiliation(s)
- Leila Arab
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Georges-Köhler-Allee 53/54, 79110, Freiburg, Germany.
| | - Stefan Seegmueller
- Forschungsanstalt für Waldökologie und Forstwirtschaft, Hauptstraße 16, 67705, Trippstadt, Germany
| | - Jürgen Kreuzwieser
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Georges-Köhler-Allee 53/54, 79110, Freiburg, Germany
| | - Monika Eiblmeier
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Georges-Köhler-Allee 53/54, 79110, Freiburg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Georges-Köhler-Allee 53/54, 79110, Freiburg, Germany
| |
Collapse
|
3
|
Environmental Conditions and Species Identity Drive Metabolite Levels in Green Leaves and Leaf Litter of 14 Temperate Woody Species. FORESTS 2018. [DOI: 10.3390/f9120775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Research Highlights: Leaf chemistry is a key driver of litter decomposition; however, studies directly comparing metabolites that are important for tree growth and defence across different woody species are scarce. Background and Objectives: Choosing 14 temperate woody species differing in their growth rates, nutrient demand, shade tolerance, and drought sensitivity, we hypothesized that the species would group according to their metabolite profiles based on their ecological background. Materials and Methods: We analysed total N and C, soluble amino acid, protein, and phenolic levels in green leaves and leaf litter of these species, each in two consecutive years. Results: Metabolite levels varied significantly across species and between the sampling years which differed in temperature and precipitation (i.e., colder/drier vs warmer/ wetter). Conclusions: The 14 woody species could not be grouped according to their green leaf or leaf litter metabolite profiles. In litter leaves, most of the variation was explained by total phenolics and total nitrogen levels, and in green leaves by total phenolics and total soluble amino acid levels. Local climate variation between the two consecutive years for green leaves or leaf litter led to significant differences in metabolite levels, although some of them were species-specific.
Collapse
|
4
|
Suseela V, Tharayil N. Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress-induced modifications in plant chemistry. GLOBAL CHANGE BIOLOGY 2018; 24:1428-1451. [PMID: 28986956 DOI: 10.1111/gcb.13923] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/16/2017] [Indexed: 06/07/2023]
Abstract
Decomposition of plant litter is a fundamental ecosystem process that can act as a feedback to climate change by simultaneously influencing both the productivity of ecosystems and the flux of carbon dioxide from the soil. The influence of climate on decomposition from a postsenescence perspective is relatively well known; in particular, climate is known to regulate the rate of litter decomposition via its direct influence on the reaction kinetics and microbial physiology on processes downstream of tissue senescence. Climate can alter plant metabolism during the formative stage of tissues and could shape the final chemical composition of plant litter that is available for decomposition, and thus indirectly influence decomposition; however, these indirect effects are relatively poorly understood. Climatic stress disrupts cellular homeostasis in plants and results in the reprogramming of primary and secondary metabolic pathways, which leads to changes in the quantity, composition, and organization of small molecules and recalcitrant heteropolymers, including lignins, tannins, suberins, and cuticle within the plant tissue matrix. Furthermore, by regulating metabolism during tissue senescence, climate influences the resorption of nutrients from senescing tissues. Thus, the final chemical composition of plant litter that forms the substrate of decomposition is a combined product of presenescence physiological processes through the production and resorption of metabolites. The changes in quantity, composition, and localization of the molecular construct of the litter could enhance or hinder tissue decomposition and soil nutrient cycling by altering the recalcitrance of the lignocellulose matrix, the composition of microbial communities, and the activity of microbial exo-enzymes via various complexation reactions. Also, the climate-induced changes in the molecular composition of litter could differentially influence litter decomposition and soil nutrient cycling. Compared with temperate ecosystems, the indirect effects of climate on litter decomposition in the tropics are not well understood, which underscores the need to conduct additional studies in tropical biomes. We also emphasize the need to focus on how climatic stress affects the root chemistry as roots contribute significantly to biogeochemical cycling, and on utilizing more robust analytical approaches to capture the molecular composition of tissue matrix that fuel microbial metabolism.
Collapse
Affiliation(s)
- Vidya Suseela
- Department of Plant & Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Nishanth Tharayil
- Department of Plant & Environmental Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
5
|
Top SM, Preston CM, Dukes JS, Tharayil N. Climate Influences the Content and Chemical Composition of Foliar Tannins in Green and Senesced Tissues of Quercus rubra. FRONTIERS IN PLANT SCIENCE 2017; 8:423. [PMID: 28559896 PMCID: PMC5432568 DOI: 10.3389/fpls.2017.00423] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/13/2017] [Indexed: 05/17/2023]
Abstract
Environmental stresses not only influence production of plant metabolites but could also modify their resorption during leaf senescence. The production-resorption dynamics of polyphenolic tannins, a class of defense compound whose ecological role extends beyond tissue senescence, could amplify the influence of climate on ecosystem processes. We studied the quantity, chemical composition, and tissue-association of tannins in green and freshly-senesced leaves of Quercus rubra exposed to different temperature (Warming and No Warming) and precipitation treatments (Dry, Ambient, Wet) at the Boston-Area Climate Experiment (BACE) in Massachusetts, USA. Climate influenced not only the quantity of tannins, but also their molecular composition and cell-wall associations. Irrespective of climatic treatments, tannin composition in Q. rubra was dominated by condensed tannins (CTs, proanthocyanidins). When exposed to Dry and Ambient*Warm conditions, Q. rubra produced higher quantities of tannins that were less polymerized. In contrast, under favorable conditions (Wet), tannins were produced in lower quantities, but the CTs were more polymerized. Further, even as the overall tissue tannin content declined, the content of hydrolysable tannins (HTs) increased under Wet treatments. The molecular composition of tannins influenced their content in senesced litter. Compared to the green leaves, the content of HTs decreased in senesced leaves across treatments, whereas the CT content was similar between green and senesced leaves in Wet treatments that produced more polymerized tannins. The content of total tannins in senesced leaves was higher in Warming treatments under both dry and ambient precipitation treatments. Our results suggest that, though climate directly influenced the production of tannins in green tissues (and similar patterns were observed in the senesced tissue), the influence of climate on tannin content of senesced tissue was partly mediated by the effect on the chemical composition of tannins. These different climatic impacts on leaves over the course of a growing season may alter forest dynamics, not only in decomposition and nutrient cycling dynamics, but also in herbivory dynamics.
Collapse
Affiliation(s)
- Sara M. Top
- Plant and Environmental Sciences, Clemson UniversityClemson, SC, USA
- *Correspondence: Sara M. Top
| | | | - Jeffrey S. Dukes
- Department of Forestry and Natural Resources, Purdue UniversityWest Lafayette, IN, USA
- Department of Biological Sciences, Purdue UniversityWest Lafayette, IN, USA
- Department of Biology, University of Massachusetts BostonBoston, MA, USA
| | - Nishanth Tharayil
- Plant and Environmental Sciences, Clemson UniversityClemson, SC, USA
- Nishanth Tharayil
| |
Collapse
|
6
|
Suseela V, Tharayil N, Xing B, Dukes JS. Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in Quercus rubra. GLOBAL CHANGE BIOLOGY 2015; 21:4177-95. [PMID: 26179236 DOI: 10.1111/gcb.13033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/05/2015] [Accepted: 05/28/2015] [Indexed: 05/07/2023]
Abstract
The process of nutrient retranslocation from plant leaves during senescence subsequently affects both plant growth and soil nutrient cycling; changes in either of these could potentially feed back to climate change. Although elemental nutrient resorption has been shown to respond modestly to temperature and precipitation, we know remarkably little about the influence of increasing intensities of drought and warming on the resorption of different classes of plant metabolites. We studied the effect of warming and altered precipitation on the production and resorption of metabolites in Quercus rubra. The combination of warming and drought produced a higher abundance of compounds that can help to mitigate climatic stress by functioning as osmoregulators and antioxidants, including important intermediaries of the tricarboxylic acid (TCA) cycle, amino acids including proline and citrulline, and polyamines such as putrescine. Resorption efficiencies (REs) of extractable metabolites surprisingly had opposite responses to drought and warming; drought treatments generally increased RE of metabolites compared to ambient and wet treatments, while warming decreased RE. However, RE of total N differed markedly from that of extractable metabolites such as amino acids; for instance, droughted plants resorbed a smaller fraction of elemental N from their leaves than plants exposed to the ambient control. In contrast, plants in drought treatment resorbed amino acids more efficiently (>90%) than those in ambient (65-77%) or wet (42-58%) treatments. Across the climate treatments, the RE of elemental N correlated negatively with tissue tannin concentration, indicating that polyphenols produced in leaves under climatic stress could interfere with N resorption. Thus, senesced leaves from drier conditions might have a lower nutritive value to soil heterotrophs during the initial stages of litter decomposition despite a higher elemental N content of these tissues. Our results suggest that N resorption may be controlled not only by plant demand, but also by climatic influences on the production and resorption of plant metabolites. As climate-carbon models incorporate increasingly sophisticated nutrient cycles, these results highlight the need to adequately understand plant physiological responses to climatic variables.
Collapse
Affiliation(s)
- Vidya Suseela
- School of Agricultural, Forest and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Nishanth Tharayil
- School of Agricultural, Forest and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jeffrey S Dukes
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|