1
|
Duan X, Zhou R, Cao L. Endosphere mycobiome in mature rice roots originate from both seedlings and soils. Braz J Microbiol 2024; 55:2805-2814. [PMID: 38802686 PMCID: PMC11405580 DOI: 10.1007/s42770-024-01384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Plant-fungus symbioses have functional relevance during plant growth and development. However, it is still unknown whether the endosphere fungi in mature plants originated from soils or seeds. To elucidate the origination of endosphere fungi in mature rice roots, the fungal communities in surface sterilized roots and shoots of mature rice plants germinated in soils, rhizosphere soils and seedlings germinated under sterile conditions were analyzed by Illumina-based sequencing and compared. Total 62 fungal OTUs shared in the seedlings, shoots and roots, 126 OTUs shared in the rhizosphere soils, shoots and roots. Fungal OTUs coexisted in the four types of samples belonged to genera of Rhizophagus, Trichoderma, Fusarium, Atractiella, Myrmecridium, Sporothrix, Microdochium, Massariosphaeria, and Phialemonium. The principle component analysis (PCA) and NMDS plot suggested that the fungal community structure in rhizosphere soils was different from that in seedlings significantly. Rhizosphere soil, shoot and root contained more similar fungal community. The fungal community in seedling was similar to that in shoot and root of mature plants. The results suggested that endophytic fungal communities in mature rice plants originated from both seedlings and rhizosphere soils, and more fungal taxa originated from rhizosphere soils. Mature rice plants contain mycobiome transmitted vertically from seeds, which suggests that inoculation of endophytic fungi isolated from seedlings might be an effective way to introduce beneficial fungal inoculants into rice plants successfully.
Collapse
Affiliation(s)
- Xianli Duan
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Ruihong Zhou
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Lixiang Cao
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
2
|
Huang F, Ling J, Cui Y, Guo B, Song X. Profiling of the Citrus Leaf Endophytic Mycobiota Reveals Abundant Pathogen-Related Fungal Groups. J Fungi (Basel) 2024; 10:596. [PMID: 39330356 PMCID: PMC11433070 DOI: 10.3390/jof10090596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Plant endophytic microbial communities consist of many latent plant pathogens and, also, many pathogen-related species with reduced virulence. Though with a long history of co-evolution, the diversity and composition of the endophytic mycobiota, especially the pathogen-related fungal groups, has been under-investigated in Citrus (C.). Based on the amplicon sequencing of fungal internal transcribed spacer (ITS), the leaf endophytic mycobiota were profiled on citrus varieties from different citrus-producing regions. The pomelo variety shared significantly distinctive leaf mycobiota when compared to the mandarin and sweet orange; these conform to their host genetic relationships. In addition, a data set of 241 citrus-related fungi, including 171 (71%) pathogens and potential pathogens, was summarized from previous studies. Under the criteria of local BLAST (covered ITS nucleotide ≥ 150 bp, sequence identity ≥ 99%), a total of 935 fungal operational taxonomic units (OTUs) were assigned to 62 pathogen-related fungal groups, representing 14.9% of the relative abundance in the whole community. Of which, the top groups consisted of Colletotrichum gloeosporioides (mean relative abundance, 4.3%), Co. citricola and Co. karstii (2.7%), Zasmidium citri-griseum (2.4%), and Z. fructigenum (1.4%). At the genus level, the ratio of the pathogen-related fungal groups in 64% of fungal genera (16 out of 25) exceeded 50%, which are the solely or mainly occurring fungi of their genus in citrus. Our study suggests that the leaf endophytic compartment may be an important place for the growth of latent pathogens.
Collapse
Affiliation(s)
- Feng Huang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Jinfeng Ling
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yiping Cui
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Bin Guo
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Xiaobing Song
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| |
Collapse
|
3
|
Thomas G, Kay WT, Fones HN. Life on a leaf: the epiphyte to pathogen continuum and interplay in the phyllosphere. BMC Biol 2024; 22:168. [PMID: 39113027 PMCID: PMC11304629 DOI: 10.1186/s12915-024-01967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024] Open
Abstract
Epiphytic microbes are those that live for some or all of their life cycle on the surface of plant leaves. Leaf surfaces are a topologically complex, physicochemically heterogeneous habitat that is home to extensive, mixed communities of resident and transient inhabitants from all three domains of life. In this review, we discuss the origins of leaf surface microbes and how different biotic and abiotic factors shape their communities. We discuss the leaf surface as a habitat and microbial adaptations which allow some species to thrive there, with particular emphasis on microbes that occupy the continuum between epiphytic specialists and phytopathogens, groups which have considerable overlap in terms of adapting to the leaf surface and between which a single virulence determinant can move a microbial strain. Finally, we discuss the recent findings that the wheat pathogenic fungus Zymoseptoria tritici spends a considerable amount of time on the leaf surface, and ask what insights other epiphytic organisms might provide into this pathogen, as well as how Z. tritici might serve as a model system for investigating plant-microbe-microbe interactions on the leaf surface.
Collapse
Affiliation(s)
| | - William T Kay
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
4
|
Buivydaitė Ž, Winding A, Sapkota R. Transmission of mycoviruses: new possibilities. Front Microbiol 2024; 15:1432840. [PMID: 38993496 PMCID: PMC11236713 DOI: 10.3389/fmicb.2024.1432840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Mycoviruses are viruses that infect fungi. In recent years, an increasing number of mycoviruses have been reported in a wide array of fungi. With the growing interest of scientists and society in reducing the use of agrochemicals, the debate about mycoviruses as an effective next-generation biocontrol has regained momentum. Mycoviruses can have profound effects on the host phenotype, although most viruses have neutral or no effect. We speculate that understanding multiple transmission modes of mycoviruses is central to unraveling the viral ecology and their function in regulating fungal populations. Unlike plant virus transmission via vegetative plant parts, seeds, pollen, or vectors, a widely held view is that mycoviruses are transmitted via vertical routes and only under special circumstances horizontally via hyphal contact depending on the vegetative compatibility groups (i.e., the ability of different fungal strains to undergo hyphal fusion). However, this view has been challenged over the past decades, as new possible transmission routes of mycoviruses are beginning to unravel. In this perspective, we discuss emerging studies with evidence suggesting that such novel routes of mycovirus transmission exist and are pertinent to understanding the full picture of mycovirus ecology and evolution.
Collapse
Affiliation(s)
| | | | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
5
|
Mizuno T, Sato H, Itioka T. Foraging ants affect community composition and diversity of phyllosphere fungi on a myrmecophilous plants, Mallotus japonicus. Ecol Evol 2024; 14:e11423. [PMID: 38751826 PMCID: PMC11094773 DOI: 10.1002/ece3.11423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/06/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Many microorganisms inhabit the aboveground parts of plants (i.e. the phyllosphere), which mainly comprise leaves. Understanding the structure of phyllosphere microbial communities and their drivers is important because they influence host plant fitness and ecosystem functions. Despite the high prevalence of ant-plant associations, few studies have used quantitative community data to investigate the effects of ants on phyllosphere microbial communities. In the present study, we investigated the effects of ants on the phyllosphere fungal communities of Mallotus japonicus using high-throughput sequencing. Mallotus japonicus is a myrmecophilous plants that bears extrafloral nectaries, attracting several ant species, but does not provide specific ant species with nest sites like myrmecophytes do. We experimentally excluded ants with sticky resins from the target plants and collected leaf discs to extract fungal DNA. The ribosomal DNA internal transcribed spacer 1 (ITS1) regions of the phyllosphere fungi were amplified and sequenced to obtain fungal community data. Our results showed that the exclusion of ants changed the phyllosphere fungal community composition; however, the effect of ants on OTU richness was not clear. These results indicate that ants can change the community of phyllosphere fungi, even if the plant is not a myrmecophyte.
Collapse
Affiliation(s)
- Takafumi Mizuno
- Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Hirotoshi Sato
- Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Takao Itioka
- Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| |
Collapse
|
6
|
Su P, Kang H, Peng Q, Wicaksono WA, Berg G, Liu Z, Ma J, Zhang D, Cernava T, Liu Y. Microbiome homeostasis on rice leaves is regulated by a precursor molecule of lignin biosynthesis. Nat Commun 2024; 15:23. [PMID: 38167850 PMCID: PMC10762202 DOI: 10.1038/s41467-023-44335-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
In terrestrial ecosystems, plant leaves provide the largest biological habitat for highly diverse microbial communities, known as the phyllosphere microbiota. However, the underlying mechanisms of host-driven assembly of these ubiquitous communities remain largely elusive. Here, we conduct a large-scale and in-depth assessment of the rice phyllosphere microbiome aimed at identifying specific host-microbe links. A genome-wide association study reveals a strong association between the plant genotype and members of four bacterial orders, Pseudomonadales, Burkholderiales, Enterobacterales and Xanthomonadales. Some of the associations are specific to a distinct host genomic locus, pathway or even gene. The compound 4-hydroxycinnamic acid (4-HCA) is identified as the main driver for enrichment of bacteria belonging to Pseudomonadales. 4-HCA can be synthesized by the host plant's OsPAL02 from the phenylpropanoid biosynthesis pathway. A knockout mutant of OsPAL02 results in reduced Pseudomonadales abundance, dysbiosis of the phyllosphere microbiota and consequently higher susceptibility of rice plants to disease. Our study provides a direct link between a specific plant metabolite and rice phyllosphere homeostasis opening possibilities for new breeding strategies.
Collapse
Affiliation(s)
- Pin Su
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qianze Peng
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya City, Sanya, 572024, China
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, 14469, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, 14476, Germany
| | - Zhuoxin Liu
- Longping Branch, College of Biology, Hunan University, Changsha, 410082, China
| | - Jiejia Ma
- Longping Branch, College of Biology, Hunan University, Changsha, 410082, China
| | - Deyong Zhang
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya City, Sanya, 572024, China.
- College of Tropical Crops, Hainan University, Haikou, 570228, China.
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria.
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Yong Liu
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
7
|
Hawkes CV, Allen X, Balint-Kurti P, Cowger C. Manipulating the plant mycobiome to enhance resilience: Ecological and evolutionary opportunities and challenges. PLoS Pathog 2023; 19:e1011816. [PMID: 38096141 PMCID: PMC10721032 DOI: 10.1371/journal.ppat.1011816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Affiliation(s)
- Christine V. Hawkes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Xavious Allen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Peter Balint-Kurti
- Plant Science Research Unit, USDA-ARS, Raleigh, North Carolina, United States of America
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Christina Cowger
- Plant Science Research Unit, USDA-ARS, Raleigh, North Carolina, United States of America
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
8
|
Durodola B, Blumenstein K, Akinbobola A, Kolehmainen A, Chano V, Gailing O, Terhonen E. Beyond the surface: exploring the mycobiome of Norway spruce under drought stress and with Heterobasidion parviporum. BMC Microbiol 2023; 23:350. [PMID: 37978432 PMCID: PMC10655427 DOI: 10.1186/s12866-023-03099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
The mycobiome, comprising fungi inhabiting plants, potentially plays a crucial role in tree health and survival amidst environmental stressors like climate change and pathogenic fungi. Understanding the intricate relationships between trees and their microbial communities is essential for developing effective strategies to bolster the resilience and well-being of forest ecosystems as we adopt more sustainable forest management practices. The mycobiome can be considered an integral aspect of a tree's biology, closely linked to its genotype. To explore the influence of host genetics and environmental factors on fungal composition, we examined the mycobiome associated with phloem and roots of Norway spruce (Picea abies (L.) Karst.) cuttings under varying watering conditions. To test the "mycobiome-associated-fitness" hypothesis, we compared seedlings artificially inoculated with Heterobasidion parviporum and control plants to evaluate mycobiome interaction on necrosis development. We aimed to 1) identify specific mycobiome species for the Norway spruce genotypes/families within the phloem and root tissues and their interactions with H. parviporum and 2) assess stability in the mycobiome species composition under abiotic disturbances (reduced water availability). The mycobiome was analyzed by sequencing the ribosomal ITS2 region. Our results revealed significant variations in the diversity and prevalence of the phloem mycobiome among different Norway spruce genotypes, highlighting the considerable impact of genetic variation on the composition and diversity of the phloem mycobiome. Additionally, specific mycobiome genera in the phloem showed variations in response to water availability, indicating the influence of environmental conditions on the relative proportion of certain fungal genera in Norway spruce trees. In the root mycobiome, key fungi such as Phialocephala fortinii and Paraphaeosphaeria neglecta were identified as conferring inhibitory effects against H. parviporum growth in Norway spruce genotypes. Furthermore, certain endophytes demonstrated greater stability in root ecosystems under low water conditions than ectomycorrhizal fungi. This knowledge can contribute to developing sustainable forest management practices that enhance the well-being of trees and their ecosystems, ultimately bolstering forest resilience.
Collapse
Affiliation(s)
- Blessing Durodola
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Department of Forest Genetics and Forest Tree Breeding, Büsgen-Institute, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.
| | - Kathrin Blumenstein
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
- Chair of Pathology of Trees, Institute of Forestry, Faculty of Environment and Natural Resources, University of Freiburg, Bertoldstr. 17, 79098, Freiburg, Germany
| | - Adedolapo Akinbobola
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Anna Kolehmainen
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
- Department of Cell Biology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Victor Chano
- Department of Forest Genetics and Forest Tree Breeding, Büsgen-Institute, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, Büsgen-Institute, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Eeva Terhonen
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
- Natural Resources Institute Finland (Luke), Forest Health and Biodiversity, Latokartanonkaari 9, 00790, Helsinki, Finland
| |
Collapse
|
9
|
Ahmed B, Beneš F, Hajšlová J, Fišarová L, Vosátka M, Hijri M. Enhanced production of select phytocannabinoids in medical Cannabis cultivars using microbial consortia. FRONTIERS IN PLANT SCIENCE 2023; 14:1219836. [PMID: 37719209 PMCID: PMC10502174 DOI: 10.3389/fpls.2023.1219836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023]
Abstract
The root microbiome of medical cannabis plants has been largely unexplored due to past legal restrictions in many countries. Microbes that live on and within the tissue of Cannabis sativa L. similar to other plants, provide advantages such as stimulating plant growth, helping it absorb minerals, providing protection against pathogen attacks, and influencing the production of secondary metabolites. To gain insight into the microbial communities of C. sativa cultivars with different tetrahydrocannabinol (THC) and cannabidiol (CBD) profiles, a greenhouse trial was carried out with and without inoculants added to the growth substrate. Illumina MiSeq metabarcoding was used to analyze the root and rhizosphere microbiomes of the five cultivars. Plant biomass production showed higher levels in three of five cultivars inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis and microbial suspension. The blossom dry weight of the cultivar THE was greater when inoculated with R. irregularis and microbial suspension than with no inoculation. Increasing plant biomass and blossom dry weight are two important parameters for producing cannabis for medical applications. In mature Cannabis, 12 phytocannabinoid compounds varied among cultivars and were affected by inoculants. Significant differences (p ≤ 0.01) in concentrations of cannabidivarinic acid (CBDVA), cannabidivarin (CBDV), cannabigerol (CBG), cannabidiol (CBD), and cannabigerolic acid (CBGA) were observed in all Cannabis cultivars when amended with F, K1, and K2 inoculants. We found microbes that were shared among cultivars. For example, Terrimicrobium sp., Actinoplanes sp., and Trichoderma reesei were shared by the cultivars ECC-EUS-THE, CCL-ECC, and EUS-THE, respectively. Actinoplanes sp. is a known species that produces phosphatase enzymes, while Trichoderma reesei is a fungal train that produces cellulase and contributes to organic matter mineralization. However, the role of Terrimicrobium sp. as an anaerobic bacterium remains unknown. This study demonstrated that the use of inoculants had an impact on the production of phytocannabinoids in five Cannabis cultivars. These inoculants could have useful applications for optimizing cannabis cultivation practices and increasing the production of phytocannabinoids.
Collapse
Affiliation(s)
- Bulbul Ahmed
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| | - František Beneš
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Czechia
| | - Jana Hajšlová
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Czechia
| | - Lenka Fišarová
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Miroslav Vosátka
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Mohamed Hijri
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
10
|
Luo K, Zhao G, Chen M, Tian X. Effects of maize resistance and leaf chemical substances on the structure of phyllosphere fungal communities. FRONTIERS IN PLANT SCIENCE 2023; 14:1241055. [PMID: 37645458 PMCID: PMC10461017 DOI: 10.3389/fpls.2023.1241055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
It is well known that plant genotype can regulate phyllosphere fungi at the species level. However, little is known about how plant varieties shape the fungal communities in the phyllosphere. In this study, four types of maize varieties with various levels of resistances to Exserohilum turcicum were subjected to high-throughput sequencing to reveal the properties that influences the composition of phyllosphere fungal communities. The dominant fungi genera for all four maize varieties were Alternaria at different relative abundances, followed by Nigrospora. Hierarchical clustering analysis, non-metric multidimensional scaling and similarity analysis confirmed that the fungal communities in the phyllosphere of the four varieties were significantly different and clustered into the respective maize variety they inhabited. The findings from Redundancy Analysis (RDA) indicated that both maize resistance and leaf chemical constituents, including nitrogen, phosphorus, tannins, and flavonoids, were the major drivers in determining the composition of phyllosphere fungal communities. Among these factors, maize resistance was found to be the most influential, followed by phosphorus. The co-occurrence network of the fungal communities in the phyllosphere of highly resistant variety had higher complexity, integrity and stability compared to others maize varieties. In a conclusion, maize variety resistance and leaf chemical constituents play a major role in shaping the phyllosphere fungal community. The work proposes a link between the assembled fungal communities within the phyllosphere with maize variety that is resistant to pathogenic fungi infection.
Collapse
Affiliation(s)
- Kun Luo
- Hunan Agricultural University, Changsha, Hunan, China
| | - Gonghua Zhao
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Mengfei Chen
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xueliang Tian
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
11
|
Sun X, Sharon O, Sharon A. Distinct Features Based on Partitioning of the Endophytic Fungi of Cereals and Other Grasses. Microbiol Spectr 2023; 11:e0061123. [PMID: 37166321 PMCID: PMC10269846 DOI: 10.1128/spectrum.00611-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023] Open
Abstract
Endophytic fungi form a significant part of the plant mycobiome. Defining core members is crucial to understanding the assembly mechanism of fungal endophytic communities (FECs) and identifying functionally important community members. We conducted a meta-analysis of FECs in stems of wheat and five wild cereal species and generated a landscape of the fungal endophytic assemblages in this group of plants. The analysis revealed that several Ascomycota members and basidiomycetous yeasts formed an important compartment of the FECs in these plants. We observed a weak spatial autocorrelation at the regional scale and high intrahost variations in the FECs, suggesting a space-related heterogeneity. Accordingly, we propose that the heterogeneity among subcommunities should be a criterion to define the core endophytic members. Analysis of the subcommunities and meta-communities showed that the core and noncore members had distinct roles in various assembly processes, such as stochasticity, universal dynamics, and network characteristics, within each host. The distinct features identified between the community partitions of endophytes aid in understanding the principles that govern the assembly and function of natural communities. These findings can assist in designing synthetic microbiomes. IMPORTANCE This study proposes a novel method for diagnosing core microbiotas based on prevalence of community members in a meta-community, which could be determined and supported statistically. Using this approach, the study found stratification in community assembly processes within fungal endophyte communities (FECs) in the stems of wheat and cereal-related wild species. The core and noncore partitions of the FECs exhibited certain degrees of determinism from different aspects. Further analysis revealed abundant and consistent interactions between rare taxa, which might contribute to the determinism process in noncore partitions. Despite minor differences in FEC compositions, wheat FECs showed distinct patterns in community assembly processes compared to wild species, suggesting the effects of domestication on FECs. Overall, our study provided a new approach for identifying core microbiota and provides insights into the community assembly processes within FECs in wheat and related wild species.
Collapse
Affiliation(s)
- Xiang Sun
- School of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Or Sharon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Amir Sharon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Artificial Cultivation Changes Foliar Endophytic Fungal Community of the Ornamental Plant Lirianthe delavayi. Microorganisms 2023; 11:microorganisms11030775. [PMID: 36985348 PMCID: PMC10059682 DOI: 10.3390/microorganisms11030775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Many wild ornamental plant species have been introduced to improve the landscape of cities; however, until now, no study has been performed to explore the composition and function of foliar endophytes associated with cultivated rare plants in cities after their introduction. In this study, we collected the leaves of the healthy ornamental plant Lirianthe delavayi from wild and artificially cultivated habitats in Yunnan and compared their diversity, species composition, and functional predictions of their foliar endophytic fungal community based on high-throughput sequencing technology. In total, 3125 ASVs of fungi were obtained. The alpha diversity indices of wild L. delavayi populations are similar to those of cultivated samples; however, the species compositions of endophytic fungal ASVs were significantly varied in the two habitats. The dominant phylum is Ascomycota, accounting for more than 90% of foliar endophytes in both populations; relatively, artificial cultivation trends to increase the frequency of common phytopathogens of L. delavayi, such as Alternaria, Erysiphe. The relative abundance of 55 functional predictions is different between wild and cultivated L. delavayi leaves (p < 0.05); in particular, chromosome, purine metabolism, and peptidases are significantly increased in wild samples, while flagellar assembly, bacterial chemotaxis, and fatty acid metabolism are significantly enhanced in cultivated samples. Our results indicated that artificial cultivation can greatly change the foliar endophytic fungal community of L. delavayi, which is valuable for understanding the influence of the domestication process on the foliar fungal community associated with rare ornamental plants in urban environments.
Collapse
|
13
|
Zhou R, Duan GL, García-Palacios P, Yang G, Cui HL, Yan M, Yin Y, Yi XY, Li L, Delgado-Baquerizo M, Zhu YG. Environmental factors and host genotype control foliar epiphytic microbial community of wild soybeans across China. Front Microbiol 2023; 14:1065302. [PMID: 36992926 PMCID: PMC10041966 DOI: 10.3389/fmicb.2023.1065302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionThe microbiome inhabiting plant leaves is critical for plant health and productivity. Wild soybean (Glycine soja), which originated in China, is the progenitor of cultivated soybean (Glycine max). So far, the community structure and assembly mechanism of phyllosphere microbial community on G. soja were poorly understood.MethodsHere, we combined a national-scale survey with high-throughput sequencing and microsatellite data to evaluate the contribution of host genotype vs. climate in explaining the foliar microbiome of G. soja, and the core foliar microbiota of G. soja were identified.ResultsOur findings revealed that both the host genotype and environmental factors (i.e., geographic location and climatic conditions) were important factors regulating foliar community assembly of G. soja. Host genotypes explained 0.4% and 3.6% variations of the foliar bacterial and fungal community composition, respectively, while environmental factors explained 25.8% and 19.9% variations, respectively. We further identified a core microbiome thriving on the foliage of all G. soja populations, including bacterial (dominated by Methylobacterium-Methylorubrum, Pantoea, Quadrisphaera, Pseudomonas, and Sphingomonas) and fungal (dominated by Cladosporium, Alternaria, and Penicillium) taxa.ConclusionOur study revealed the significant role of host genetic distance as a driver of the foliar microbiome of the wild progenitor of soya, as well as the effects of climatic changes on foliar microbiomes. These findings would increase our knowledge of assembly mechanisms in the phyllosphere of wild soybeans and suggest the potential to manage the phyllosphere of soya plantations by plant breeding and selecting specific genotypes under climate change.
Collapse
Affiliation(s)
- Rui Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gui-Lan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pablo García-Palacios
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hui-Ling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Yan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Yin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Yun Yi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lv Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- *Correspondence: Yong-Guan Zhu,
| |
Collapse
|
14
|
Kim MS, Park EJ. Composition and variability of core phyllosphere fungal mycobiota on field-grown broccoli. ENVIRONMENTAL MICROBIOME 2023; 18:15. [PMID: 36855218 PMCID: PMC9976476 DOI: 10.1186/s40793-023-00474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Fresh vegetables harbor an assemblage of different microorganisms on their surfaces. The phyllosphere microbiota is important for maintaining plant health and managing crop quality before and after harvest. However, the diversity and ecology of fungal communities are largely unexplored in fresh vegetables. This study investigated the phyllosphere mycobiota of field-grown broccoli florets (n = 66) collected from 22 farms across four regions in Korea, using culturing, amplicon sequencing of the internal transcribed spacer region, and microbial network analysis. RESULTS Microbial network analysis identified core genera (Purpureocillium, Filobasidium, Cystofilobasidium, Papiliotrema, Aureobasidium, and unclassified genera of Capnodiales) specific to the broccoli phyllosphere. The composition and network complexity of core and unique populations varied among farming regions, and was associated with local agro-meteorological conditions. The complexity of microbial associations was higher in mature communities than in immature communities, but complexity was lost upon development of plant pathogenic disease. Broccoli mycobiota were classified according to the dominance of Purpurecillium. While Purpurecillium-type microbiota were prevalent in normal samples, Filobasidium-type microbiota were frequently observed in immature, damaged, or postharvest samples. CONCLUSIONS Together, fungal communities were important components of phyllosphere microbiota on fresh vegetables, and have substantial potential for exploitation to enhance and stabilize plant health and growth.
Collapse
Affiliation(s)
- Min-Soo Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, 99 Daehak-ro, Yuseon-gu, Daejeon, 34134, Republic of Korea.
| | - Eun-Jin Park
- Department of Food Bioengineering, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, Republic of Korea.
| |
Collapse
|
15
|
Sapkota R, Jørgensen LN, Boeglin L, Nicolaisen M. Fungal Communities of Spring Barley from Seedling Emergence to Harvest During a Severe Puccinia hordei Epidemic. MICROBIAL ECOLOGY 2023; 85:617-627. [PMID: 35229200 DOI: 10.1007/s00248-022-01985-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
All plant tissues from leaves, stems, and roots are hosting a wide diversity of fungal species. Our understanding of the assembly of this diversity of fungi during the plant growth cycle is limited. Here, we characterized the mycobiome of three spring barley cultivars grown in Zealand, Denmark, at weekly intervals during a growth season from seedling emergence to senescence and seed maturity. A notable proportion of members of the fungal communities were shared among different plant organs, but community dynamics were tissue-specific. A severe attack of Puccinia hordei occurring during the vegetative stage had profound effects on the mycobiome, and P. hordei biomass displaced that of other taxa. Plant tissue type was the most important factor determining the mycobiome, but also plant age was contributing significantly. Using a random forest model, we found that specific members of the mycobiome were responding differently to plant age, for instance, Olpidium and Articulospora in roots, Dioszegia and Sporobolomyces in leaves, Pyrenophora in stems, and Epicoccum in heads. A co-occurrence network analysis revealed complex interactions among fungal OTUs, and network connectivity was changing as per plant growth stage and plant tissue type. This study contributes to the understanding of assembly of fungal communities in cereals by providing a detailed description of fungal communities associated with barley. This knowledge will be vital for microbiome assisted plant health management and our study will serve as an important baseline for future efforts to harness microbiota in cereal health.
Collapse
Affiliation(s)
- Rumakanta Sapkota
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
- Department of Environmental Science, Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Lise Nistrup Jørgensen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Laure Boeglin
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark.
| |
Collapse
|
16
|
Wu PH, Chang HX, Shen YM. Effects of synthetic and environmentally friendly fungicides on powdery mildew management and the phyllosphere microbiome of cucumber. PLoS One 2023; 18:e0282809. [PMID: 36888572 PMCID: PMC9994715 DOI: 10.1371/journal.pone.0282809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Modern agricultural practices rely on synthetic fungicides to control plant disease, but the application of these fungicides has raised concerns regarding human and environmental health for many years. As a substitute, environmentally friendly fungicides have been increasingly introduced as alternatives to synthetic fungicides. However, the impact of these environmentally friendly fungicides on plant microbiomes has received limited attention. In this study, we used amplicon sequencing to compare the bacterial and fungal microbiomes in the leaves of powdery mildew-infected cucumber after the application of two environmentally friendly fungicides (neutralized phosphorous acid (NPA) and sulfur) and one synthetic fungicide (tebuconazole). The phyllosphere α-diversity of both the bacterial and fungal microbiomes showed no significant differences among the three fungicides. For phyllosphere β-diversity, the bacterial composition exhibited no significant differences among the three fungicides, but fungal composition was altered by the synthetic fungicide tebuconazole. While all three fungicides significantly reduced disease severity and the incidence of powdery mildew, NPA and sulfur had minimal impacts on the phyllosphere fungal microbiome relative to the untreated control. Tebuconazole altered the phyllosphere fungal microbiome by reducing the abundance of fungal OTUs such as Dothideomycetes and Sordariomycetes, which included potentially beneficial endophytic fungi. These results indicated that treatments with the environmentally friendly fungicides NPA and sulfur have fewer impacts on the phyllosphere fungal microbiome while maintaining the same control efficacy as the synthetic fungicide tebuconazole.
Collapse
Affiliation(s)
- Ping-Hu Wu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City, Taiwan
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City, Taiwan
| | - Yuan-Min Shen
- Master Program for Plant Medicine, National Taiwan University, Taipei City, Taiwan
- * E-mail:
| |
Collapse
|
17
|
Zhan C, Matsumoto H, Liu Y, Wang M. Pathways to engineering the phyllosphere microbiome for sustainable crop production. NATURE FOOD 2022; 3:997-1004. [PMID: 37118297 DOI: 10.1038/s43016-022-00636-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/12/2022] [Indexed: 04/30/2023]
Abstract
Current disease resistance breeding, which is largely dependent on the exploitation of resistance genes in host plants, faces the serious challenges of rapidly evolving phytopathogens. The phyllosphere is the largest biological surface on Earth and an untapped reservoir of functional microbiomes. The phyllosphere microbiome has the potential to defend against plant diseases. However, the mechanisms of how the microbiota assemble and function in the phyllosphere remain largely elusive, and this restricts the exploitation of the targeted beneficial microbes in the field. Here we review the endogenous and exogenous cues impacting microbiota assembly in the phyllosphere and how the phyllosphere microbiota in turn facilitate the disease resistance of host plants. We further construct a holistic framework by integrating of holo-omics, genetic manipulation, culture-dependent characterization and emerging artificial intelligence techniques, such as deep learning, to engineer the phyllosphere microbiome for sustainable crop production.
Collapse
Affiliation(s)
- Chengfang Zhan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Haruna Matsumoto
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yufei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Mengcen Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
18
|
Francioli D, Cid G, Hajirezaei MR, Kolb S. Response of the wheat mycobiota to flooding revealed substantial shifts towards plant pathogens. FRONTIERS IN PLANT SCIENCE 2022; 13:1028153. [PMID: 36518495 PMCID: PMC9742542 DOI: 10.3389/fpls.2022.1028153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Rainfall extremes are intensifying as a result of climate change, leading to increased flood risk. Flooding affects above- and belowground ecosystem processes, representing a substantial threat to crop productivity under climate change. Plant-associated fungi play important roles in plant performance, but their response to abnormal rain events is unresolved. Here, we established a glasshouse experiment to determine the effects of flooding stress on the spring wheat-mycobiota complex. Since plant phenology could be an important factor in the response to hydrological stress, flooding was induced only once and at different plant growth stages, such as tillering, booting and flowering. We assessed the wheat mycobiota response to flooding in three soil-plant compartments (phyllosphere, roots and rhizosphere) using metabarcoding. Key soil and plant traits were measured to correlate physiological plant and edaphic changes with shifts in mycobiota structure and functional guilds. Flooding reduced plant fitness, and caused dramatic shifts in mycobiota assembly across the entire plant. Notably, we observed a functional transition consisting of a decline in mutualist abundance and richness with a concomitant increase in plant pathogens. Indeed, fungal pathogens associated with important cereal diseases, such as Gibberella intricans, Mycosphaerella graminicola, Typhula incarnata and Olpidium brassicae significantly increased their abundance under flooding. Overall, our study demonstrate the detrimental effect of flooding on the wheat mycobiota complex, highlighting the urgent need to understand how climate change-associated abiotic stressors alter plant-microbe interactions in cereal crops.
Collapse
Affiliation(s)
- Davide Francioli
- Institute of Crop Science, Faculty of Agricultural Sciences, University of Hohenheim, Stuttgart, Germany
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research e.V. (ZALF), Müncheberg, Germany
| | - Geeisy Cid
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Mohammad-Reza Hajirezaei
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research e.V. (ZALF), Müncheberg, Germany
- Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
19
|
Chen KH, Marcón F, Duringer J, Blount A, Mackowiak C, Liao HL. Leaf Mycobiome and Mycotoxin Profile of Warm-Season Grasses Structured by Plant Species, Geography, and Apparent Black-Stroma Fungal Structure. Appl Environ Microbiol 2022; 88:e0094222. [PMID: 36226941 PMCID: PMC9642016 DOI: 10.1128/aem.00942-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Grasses harbor diverse fungi, including some that produce mycotoxins or other secondary metabolites. Recently, Florida cattle farmers reported cattle illness, while the cattle were grazing on warm-season grass pastures, that was not attributable to common causes, such as nutritional imbalances or nitrate toxicity. To understand correlations between grass mycobiome and mycotoxin production, we investigated the mycobiomes associated with five prominent, perennial forage and weed grasses [Paspalum notatum Flügge, Cynodon dactylon (L.) Pers., Paspalum nicorae Parodi, Sporobolus indicus (L.) R. Br., and Andropogon virginicus (L.)] collected from six Florida pastures actively grazed by livestock. Black fungal stromata of Myriogenospora and Balansia were observed on P. notatum and S. indicus leaves and were investigated. High-throughput amplicon sequencing was applied to delineate leaf mycobiomes. Mycotoxins from P. notatum leaves were inspected using liquid chromatography-mass spectrometry (LC-MS/MS). Grass species, cultivars, and geographic localities interactively affected fungal community assemblies of asymptomatic leaves. Among the grass species, the greatest fungal richness was detected in the weed S. indicus. The black fungal structures of P. notatum leaves were dominated by the genus Myriogenospora, while those of S. indicus were codominated by the genus Balansia and a hypermycoparasitic fungus of the genus Clonostachys. When comparing mycotoxins detected in P. notatum leaves with and without M. atramentosa, emodin, an anthraquinone, was the only compound which was significantly different (P < 0.05). Understanding the leaf mycobiome and the mycotoxins it may produce in warm-season grasses has important implications for how these associations lead to secondary metabolite production and their subsequent impact on animal health. IMPORTANCE The leaf mycobiome of forage grasses can have a major impact on their mycotoxin contents of forage and subsequently affect livestock health. Despite the importance of the cattle industry in warm-climate regions, such as Florida, studies have been primarily limited to temperate forage systems. Our study provides a holistic view of leaf fungi considering epibiotic, endophytic, and hypermycoparasitic associations with five perennial, warm-season forage and weed grasses. We highlight that plant identity and geographic location interactively affect leaf fungal community composition. Yeasts appeared to be an overlooked fungal group in healthy forage mycobiomes. Furthermore, we detected high emodin quantities in the leaves of a widely planted forage species (P. notatum) whenever epibiotic fungi occurred. Our study demonstrated the importance of identifying fungal communities, ecological roles, and secondary metabolites in perennial, warm-season grasses and their potential for interfering with livestock health.
Collapse
Affiliation(s)
- Ko-Hsuan Chen
- The University of Florida, North Florida Research and Education Center, Quincy, Florida, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Florencia Marcón
- Department of Agronomy, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Jennifer Duringer
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | - Ann Blount
- The University of Florida, North Florida Research and Education Center, Quincy, Florida, USA
| | - Cheryl Mackowiak
- The University of Florida, North Florida Research and Education Center, Quincy, Florida, USA
- Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Hui-Ling Liao
- The University of Florida, North Florida Research and Education Center, Quincy, Florida, USA
- Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
20
|
Gouka L, Raaijmakers JM, Cordovez V. Ecology and functional potential of phyllosphere yeasts. TRENDS IN PLANT SCIENCE 2022; 27:1109-1123. [PMID: 35842340 DOI: 10.1016/j.tplants.2022.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/20/2022] [Accepted: 06/14/2022] [Indexed: 05/20/2023]
Abstract
The phyllosphere (i.e., the aerial parts of plants) harbors a rich microbial life, including bacteria, fungi, viruses, and yeasts. Current knowledge of yeasts stems primarily from industrial and medical research on Saccharomyces cerevisiae and Candida albicans, both of which can be found on plant tissues. For most other yeasts found in the phyllosphere, little is known about their ecology and functions. Here, we explore the diversity, dynamics, interactions, and genomics of yeasts associated with plant leaves and how tools and approaches developed for model yeasts can be adopted to disentangle the ecology and natural functions of phyllosphere yeasts. A first genomic survey exemplifies that we have only scratched the surface of the largely unexplored functional potential of phyllosphere yeasts.
Collapse
Affiliation(s)
- Linda Gouka
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands; Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
| |
Collapse
|
21
|
Wei N, Yue X. Distribution of Core Root Microbiota of Tibetan Hulless Barley along an Altitudinal and Geographical Gradient in the Tibetan Plateau. Microorganisms 2022; 10:1737. [PMID: 36144339 PMCID: PMC9504843 DOI: 10.3390/microorganisms10091737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
The Tibetan Plateau is regarded as the third pole of the earth and is one of the least explored places on the planet. Tibetan hull-less barley (Hordeum vulgare L. var. nudum) is the only cereal crop grown widely in the Tibetan Plateau as a staple food. Extensive and long-term cropping of barley may influence the soil’s chemical and biological properties, including microbial communities. However, microbiota associated with hull-less barley is largely unexplored. This study aimed to reveal the composition and diversity of bacterial and fungal communities associated with the hull-less barley at different elevations in the Tibetan Plateau. The core bacterial and fungal taxa of Tibetan hull-less barley were identified, with Bacillaceae, Blastocatellaceae, Comamonadaceae, Gemmatimonadaceae, Planococcaceae, Pyrinomonadaceae, Sphingomonadaceae, and Nitrospiraceae being the most abundant bacterial taxa and Ceratobasidiaceae, Chaetomiaceae, Cladosporiaceae, Didymellaceae, Entolomataceae, Microascaceae, Mortierellaceae, and Nectriaceae being the most abundant fungal taxa (relative abundance > 1%). Both bacterial and fungal diversities of hull-less barley were affected by altitude and soil properties such as total carbon, total nitrogen, and available phosphorus and potassium. Both bacterial and fungal diversities showed a significant negative correlation with altitude, indicating that the lower elevations provide a conducive environment for the survival and maintenance of hull-less barley-associated microbiota. Our results also suggest that the high altitude-specific microbial taxa may play an important role in the adaptation of the hull-less barley to the earth’s third pole.
Collapse
Affiliation(s)
- Na Wei
- Institutions of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, China
| | - Xiaofeng Yue
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
22
|
Molnár A, Geml J, Geiger A, Leal CM, Kgobe G, Tóth AM, Villangó S, Mézes L, Czeglédi M, Lőrincz G, Zsófi Z. Exploring Relationships among Grapevine Chemical and Physiological Parameters and Leaf and Berry Mycobiome Composition. PLANTS 2022; 11:plants11151924. [PMID: 35893628 PMCID: PMC9331551 DOI: 10.3390/plants11151924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022]
Abstract
Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Here, we assessed the influence of scion cultivar on the diversity and composition of fungal communities in the berries and leaves of three different cultivars. We generated DNA metabarcoding data, and statistically compared the richness, relative abundance, and composition of several functional groups of fungi among cultivars, which are partly explained by measured differences in chemical composition of leaves and berries and physiological traits of leaves. Fungal communities in leaves and berries show contrasting patterns among cultivars. The richness and relative abundance of fungal functional groups statistically differ among berry and leaf samples, but less so among cultivars. Community composition of the dominant functional groups of fungi, i.e., plant pathogens in leaves and saprotrophs in berries, differs significantly among cultivars. We also detect cultivar-level differences in the macro- and microelement content of the leaves, and in acidity and sugar concentration of berries. Our findings suggest that there appears to be a relatively diverse set of fungi that make up the grapevine mycobiome at the sampled terroir that spans several cultivars, and that both berry and leaf mycobiomes are likely influenced by the chemical characteristics of berries and leaves, e.g., pH and the availability of nutrients and simple carbohydrates. Finally, the correlation between fungal community composition and physiological variables in leaves is noteworthy, and merits further research to explore causality. Our findings offer novel insights into the microbial dynamics of grapevine considering plant chemistry and physiology, with implications for viticulture.
Collapse
Affiliation(s)
- Anna Molnár
- Food and Wine Research Institute, Research and Development Center, Eszterházy Károly Catholic University, Leányka u. 6, 3300 Eger, Hungary; (A.M.); (A.G.); (L.M.); (M.C.)
| | - József Geml
- Food and Wine Research Institute, Research and Development Center, Eszterházy Károly Catholic University, Leányka u. 6, 3300 Eger, Hungary; (A.M.); (A.G.); (L.M.); (M.C.)
- ELKH–EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Leányka u. 6, 3300 Eger, Hungary;
- Correspondence: ; Tel.: +36-365204004406
| | - Adrienn Geiger
- Food and Wine Research Institute, Research and Development Center, Eszterházy Károly Catholic University, Leányka u. 6, 3300 Eger, Hungary; (A.M.); (A.G.); (L.M.); (M.C.)
- Doctoral School of Environmental Sciences, Hungarian University of Agricultural and Life Sciences, Páter K. u. 1, 2100 Gödöllő, Hungary;
| | - Carla Mota Leal
- ELKH–EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Leányka u. 6, 3300 Eger, Hungary;
- Doctoral School of Environmental Sciences, Hungarian University of Agricultural and Life Sciences, Páter K. u. 1, 2100 Gödöllő, Hungary;
| | - Glodia Kgobe
- Doctoral School of Environmental Sciences, Hungarian University of Agricultural and Life Sciences, Páter K. u. 1, 2100 Gödöllő, Hungary;
| | - Adrienn Mária Tóth
- Institute for Viticulture and Enology, Faculty of Natural Sciences, Eszterházy Károly Catholic University, Leányka u. 6, 3300 Eger, Hungary; (A.M.T.); (S.V.); (G.L.); (Z.Z.)
| | - Szabolcs Villangó
- Institute for Viticulture and Enology, Faculty of Natural Sciences, Eszterházy Károly Catholic University, Leányka u. 6, 3300 Eger, Hungary; (A.M.T.); (S.V.); (G.L.); (Z.Z.)
| | - Lili Mézes
- Food and Wine Research Institute, Research and Development Center, Eszterházy Károly Catholic University, Leányka u. 6, 3300 Eger, Hungary; (A.M.); (A.G.); (L.M.); (M.C.)
| | - Márk Czeglédi
- Food and Wine Research Institute, Research and Development Center, Eszterházy Károly Catholic University, Leányka u. 6, 3300 Eger, Hungary; (A.M.); (A.G.); (L.M.); (M.C.)
| | - György Lőrincz
- Institute for Viticulture and Enology, Faculty of Natural Sciences, Eszterházy Károly Catholic University, Leányka u. 6, 3300 Eger, Hungary; (A.M.T.); (S.V.); (G.L.); (Z.Z.)
| | - Zsolt Zsófi
- Institute for Viticulture and Enology, Faculty of Natural Sciences, Eszterházy Károly Catholic University, Leányka u. 6, 3300 Eger, Hungary; (A.M.T.); (S.V.); (G.L.); (Z.Z.)
| |
Collapse
|
23
|
Gouka L, Vogels C, Hansen LH, Raaijmakers JM, Cordovez V. Genetic, Phenotypic and Metabolic Diversity of Yeasts From Wheat Flag Leaves. FRONTIERS IN PLANT SCIENCE 2022; 13:908628. [PMID: 35873980 PMCID: PMC9301128 DOI: 10.3389/fpls.2022.908628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The phyllosphere, the aboveground part of a plant, is a harsh environment with diverse abiotic and biotic stresses, including oscillating nutrient availability and temperature as well as exposure to UV radiation. Microbial colonization of this dynamic environment requires specific adaptive traits, including tolerance to fluctuating temperatures, the production of secondary metabolites and pigments to successfully compete with other microorganisms and to withstand abiotic stresses. Here, we isolated 175 yeasts, comprising 15 different genera, from the wheat flag leaf and characterized a selection of these for various adaptive traits such as substrate utilization, tolerance to different temperatures, biofilm formation, and antagonism toward the fungal leaf pathogen Fusarium graminearum. Collectively our results revealed that the wheat flag leaf is a rich resource of taxonomically and phenotypically diverse yeast genera that exhibit various traits that can contribute to survival in the harsh phyllosphere environment.
Collapse
Affiliation(s)
- Linda Gouka
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Caroline Vogels
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Lars H. Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jos M. Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- Institute of Biology, Leiden, Netherlands
| | - Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
24
|
Francioli D, Cid G, Hajirezaei MR, Kolb S. Leaf bacterial microbiota response to flooding is controlled by plant phenology in wheat (Triticum aestivum L.). Sci Rep 2022; 12:11197. [PMID: 35778470 PMCID: PMC9249782 DOI: 10.1038/s41598-022-15133-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
Leaf microbiota mediates foliar functional traits, influences plant fitness, and contributes to various ecosystem functions, including nutrient and water cycling. Plant phenology and harsh environmental conditions have been described as the main determinants of leaf microbiota assembly. How climate change may modulate the leaf microbiota is unresolved and thus, we have a limited understanding on how environmental stresses associated with climate change driven weather events affect composition and functions of the microbes inhabiting the phyllosphere. Thus, we conducted a pot experiment to determine the effects of flooding stress on the wheat leaf microbiota. Since plant phenology might be an important factor in the response to hydrological stress, flooding was induced at different plant growth stages (tillering, booting and flowering). Using a metabarcoding approach, we monitored the response of leaf bacteria to flooding, while key soil and plant traits were measured to correlate physiological plant and edaphic factor changes with shifts in the bacterial leaf microbiota assembly. In our study, plant growth stage represented the main driver in leaf microbiota composition, as early and late plants showed distinct bacterial communities. Overall, flooding had a differential effect on leaf microbiota dynamics depending at which developmental stage it was induced, as a more pronounced disruption in community assembly was observed in younger plants.
Collapse
Affiliation(s)
- Davide Francioli
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research E.V. (ZALF), Müncheberg, Germany.
| | - Geeisy Cid
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Mohammad-Reza Hajirezaei
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research E.V. (ZALF), Müncheberg, Germany.,Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
25
|
Leaf-Associated Epiphytic Fungi of Gingko biloba, Pinus bungeana and Sabina chinensis Exhibit Delicate Seasonal Variations. J Fungi (Basel) 2022; 8:jof8060631. [PMID: 35736114 PMCID: PMC9225447 DOI: 10.3390/jof8060631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Plant-leaf surface on Earth harbors complex microbial communities that influence plant productivity and health. To gain a detailed understanding of the assembly and key drivers of leaf microbial communities, especially for leaf-associated fungi, we investigated leaf-associated fungal communities in two seasons for three plant species at two sites by high-throughput sequencing. The results reveal a strong impact of growing season and plant species on fungal community composition, exhibiting clear temporal patterns in abundance and diversity. For the deciduous tree Gingko biloba, the number of enriched genera in May was much higher than that in October. The number of enriched genera in the two evergreen trees Pinus bungeana and Sabina chinensis was slightly higher in October than in May. Among the genus-level biomarkers, the abundances of Alternaria, Cladosporium and Filobasidium were significantly higher in October than in May in the three tree species. Additionally, network correlations between the leaf-associated fungi of G. biloba were more complex in May than those in October, containing extra negative associations, which was more obvious than the network correlation changes of leaf-associated fungi of the two evergreen plant species. Overall, the fungal diversity and community composition varied significantly between different growing seasons and host plant species.
Collapse
|
26
|
Xu N, Zhao Q, Zhang Z, Zhang Q, Wang Y, Qin G, Ke M, Qiu D, Peijnenburg WJGM, Lu T, Qian H. Phyllosphere Microorganisms: Sources, Drivers, and Their Interactions with Plant Hosts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4860-4870. [PMID: 35435673 DOI: 10.1021/acs.jafc.2c01113] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The leaves of plants are colonized by various microorganisms. In comparison to the rhizosphere, less is known about the characteristics and ecological functions of phyllosphere microorganisms. Phyllosphere microorganisms mainly originate from soil, air, and seeds. The composition of phyllosphere microorganisms is mainly affected by ecological and abiotic factors. Phyllosphere microorganisms execute multiple ecological functions by influencing leaf functions and longevity, seed mass, fruit development, and homeostasis of host growth. A plant can respond to phyllosphere microorganisms by secondary metabolite secretion and its immune system. Meanwhile, phyllosphere microorganisms play an important role in ecological stability and environmental safety assessment. However, as a result of the instability of the phyllosphere environment and the poor cultivability of phyllosphere microorganisms in the current research, there are still many limitations, such as the lack of insight into the mechanisms of plant-microorganism interactions, the roles of phyllosphere microorganisms in plant growth processes, the responses of phyllosphere microorganisms to plant metabolites, etc. This review summarizes the latest progress made in the research of the phyllosphere in recent years. This is beneficial for deepening our understanding of phyllosphere microorganisms and promoting the research of plant-atmosphere interactions, plant pathogens, and plant biological control.
Collapse
Affiliation(s)
- Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Qianqiu Zhao
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, Xinjiang 830011, People's Republic of China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Yan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Guoyan Qin
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Danyan Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300 RA Leiden, Netherlands
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Post Office Box 1, 3720 BA Bilthoven, Netherlands
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| |
Collapse
|
27
|
Redondo MA, Oliva J, Elfstrand M, Boberg J, Capador-Barreto HD, Karlsson B, Berlin A. Host genotype interacts with aerial spore communities and influences the needle mycobiome of Norway spruce. Environ Microbiol 2022; 24:3640-3654. [PMID: 35315253 PMCID: PMC9544151 DOI: 10.1111/1462-2920.15974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
The factors shaping the composition of the tree mycobiome are still under investigation. We tested the effects of host genotype, site, host phenotypic traits, and air fungal spore communities on the assembly of the fungi inhabiting Norway spruce needles. We used Norway spruce clones and spore traps within the collection sites and characterized both needle and air mycobiome communities by high‐throughput sequencing of the ITS2 region. The composition of the needle mycobiome differed between Norway spruce clones, and clones with high genetic similarity had a more similar mycobiome. The needle mycobiome also varied across sites and was associated with the composition of the local air mycobiome and climate. Phenotypic traits such as diameter at breast height or crown health influenced the needle mycobiome to a lesser extent than host genotype and air mycobiome. Altogether, our results suggest that the needle mycobiome is mainly driven by the host genotype in combination with the composition of the local air spore communities. Our work highlights the role of host intraspecific variation in shaping the mycobiome of trees and provides new insights on the ecological processes structuring fungal communities inhabiting woody plants.
Collapse
Affiliation(s)
- Miguel A Redondo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Box 7026, 750 07, Sweden
| | - Jonàs Oliva
- Department of Crop and Forest Sciences, University of Lleida, Alcalde Rovira Roure 191, Lleida, 25198, Spain.,Joint Research Unit CTFC-AGROTECNIO, Alcalde Rovira Roure 191, Lleida, 25198, Spain
| | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Box 7026, 750 07, Sweden
| | - Johanna Boberg
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Box 7026, 750 07, Sweden
| | - Hernán D Capador-Barreto
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Box 7026, 750 07, Sweden
| | - Bo Karlsson
- Skogforsk, Svalöv, Ekebo 2250, 268 90, Sweden
| | - Anna Berlin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Box 7026, 750 07, Sweden
| |
Collapse
|
28
|
Likar M, Grašič M, Stres B, Regvar M, Gaberščik A. Original Leaf Colonisers Shape Fungal Decomposer Communities of Phragmites australis in Intermittent Habitats. J Fungi (Basel) 2022; 8:284. [PMID: 35330286 PMCID: PMC8951327 DOI: 10.3390/jof8030284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/29/2023] Open
Abstract
Common reed (Phragmites australis) has high biomass production and is primarily subjected to decomposition processes affected by multiple factors. To predict litter decomposition dynamics in intermittent lakes, it is critical to understand how communities of fungi, as the primary decomposers, form under different habitat conditions. This study reports the shotgun metagenomic sequencing of the initial fungal communities on common reed leaves decomposing under different environmental conditions. We demonstrate that a complex network of fungi forms already on the plant persists into the decomposition phase. Phragmites australis leaves contained at least five fungal phyla, with abundant Ascomycota (95.7%) and Basidiomycota (4.1%), identified as saprotrophs (48.6%), pathotrophs (22.5%), and symbiotrophs (12.6%). Most of the correlations between fungi in fresh and decomposing leaves were identified as co-occurrences (positive correlations). The geographic source of litter and leaf age did not affect the structure and diversity of fungal communities. Keystone taxa were mostly moisture-sensitive. Our results suggest that habitat has a strong effect on the formation of the fungal communities through keystone taxa. Nevertheless, it can also alter the proportions of individual fungal groups in the community through indirect effects on competition between the fungal taxa and their exploitation of favourable conditions.
Collapse
Affiliation(s)
- Matevž Likar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.G.); (M.R.); (A.G.)
| | - Mateja Grašič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.G.); (M.R.); (A.G.)
| | - Blaž Stres
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Marjana Regvar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.G.); (M.R.); (A.G.)
| | - Alenka Gaberščik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.G.); (M.R.); (A.G.)
| |
Collapse
|
29
|
Li H, Luo L, Tang B, Guo H, Cao Z, Zeng Q, Chen S, Chen Z. Dynamic changes of rhizosphere soil bacterial community and nutrients in cadmium polluted soils with soybean-corn intercropping. BMC Microbiol 2022; 22:57. [PMID: 35168566 PMCID: PMC8845239 DOI: 10.1186/s12866-022-02468-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Soybean-corn intercropping is widely practised by farmers in Southwest China. Although rhizosphere microorganisms are important in nutrient cycling processes, the differences in rhizosphere microbial communities between intercropped soybean and corn and their monoculture are poorly known. Additionally, the effects of cadmium (Cd) pollution on these differences have not been examined. Therefore, a field experiment was conducted in Cd-polluted soil to determine the effects of monocultures and soybean-corn intercropping systems on Cd concentrations in plants, on rhizosphere bacterial communities, soil nutrients and Cd availability. Plants and soils were examined five times in the growing season, and Illumina sequencing of 16S rRNA genes was used to analyze the rhizosphere bacterial communities. RESULTS Intercropping did not alter Cd concentrations in corn and soybean, but changed soil available Cd (ACd) concentrations and caused different effects in the rhizosphere soils of the two crop species. However, there was little difference in bacterial community diversity for the same crop species under the two planting modes. Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria and Firmicutes were the dominant phyla in the soybean and corn rhizospheres. In ecological networks of bacterial communities, intercropping soybean (IS) had more module hubs and connectors, whereas intercropped corn (IC) had fewer module hubs and connectors than those of corresponding monoculture crops. Soil organic matter (SOM) was the key factor affecting soybean rhizosphere bacterial communities, whereas available nutrients (N, P, K) were the key factors affecting those in corn rhizosphere. During the cropping season, the concentration of soil available phosphorus (AP) in the intercropped soybean-corn was significantly higher than that in corresponding monocultures. In addition, the soil available potassium (AK) concentration was higher in intercropped soybean than that in monocropped soybean. CONCLUSIONS Intercropped soybean-corn lead to an increase in the AP concentration during the growing season, and although crop absorption of Cd was not affected in the Cd-contaminated soil, soil ACd concentration was affected. Intercropped soybean-corn also affected the soil physicochemical properties and rhizosphere bacterial community structure. Thus, intercropped soybean-corn was a key factor in determining changes in microbial community composition and networks. These results provide a basic ecological framework for soil microbial function in Cd-contaminated soil.
Collapse
Affiliation(s)
- Han Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Luyun Luo
- Yangtze Normal University, Chongqing, China.
| | - Bin Tang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Huanle Guo
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China.
| | - Zhongyang Cao
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Qiang Zeng
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Songlin Chen
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhihui Chen
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China.
| |
Collapse
|
30
|
Wang P, Dai J, Luo L, Liu Y, Jin D, Zhang Z, Li X, Fu W, Tang T, Xiao Y, Hu Y, Liu E. Scale-Dependent Effects of Growth Stage and Elevational Gradient on Rice Phyllosphere Bacterial and Fungal Microbial Patterns in the Terrace Field. FRONTIERS IN PLANT SCIENCE 2022; 12:766128. [PMID: 35095946 PMCID: PMC8794795 DOI: 10.3389/fpls.2021.766128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The variation of phyllosphere bacterial and fungal communities along elevation gradients may provide a potential link with temperature, which corresponds to an elevation over short geographic distances. At the same time, the plant growth stage is also an important factor affecting phyllosphere microorganisms. Understanding microbiological diversity over changes in elevation and among plant growth stages is important for developing crop growth ecological theories. Thus, we investigated variations in the composition of the rice phyllosphere bacterial and fungal communities at five sites along an elevation gradient from 580 to 980 m above sea level (asl) in the Ziquejie Mountain at the seedling, heading, and mature stages, using high-throughput Illumina sequencing methods. The results revealed that the dominant bacterial phyla were Proteobacteria, Actinobacteria, and Bacteroidetes, and the dominant fungal phyla were Ascomycota and Basidiomycota, which varied significantly at different elevation sites and growth stages. Elevation had a greater effect on the α diversity of phyllosphere bacteria than on that phyllosphere fungi. Meanwhile, the growth stage had a great effect on the α diversity of both phyllosphere bacteria and fungi. Our results also showed that the composition of bacterial and fungal communities varied significantly along elevation within the different growth stages, in terms of both changes in the relative abundance of species, and that the variations in bacterial and fungal composition were well correlated with variations in the average elevation. A total of 18 bacterial and 24 fungal genera were significantly correlated with elevational gradient, displaying large differences at the various growth stages. Soluble protein (SP) shared a strong positive correlation with bacterial and fungal communities (p < 0.05) and had a strong significant negative correlation with Serratia, Passalora, unclassified_Trichosphaeriales, and antioxidant enzymes (R > 0.5, p < 0.05), and significant positive correlation with the fungal genera Xylaria, Gibberella, and Penicillium (R > 0.5, p < 0.05). Therefore, it suggests that elevation and growth stage might alter both the diversity and abundance of phyllosphere bacterial and fungal populations.
Collapse
Affiliation(s)
- Pei Wang
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| | - Jianping Dai
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Luyun Luo
- Yangtze Normal University, Chongqing, China
| | - Yong Liu
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Decai Jin
- Chinese Academy of Sciences Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhuo Zhang
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiaojuan Li
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Wei Fu
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Tao Tang
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Youlun Xiao
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yang Hu
- Zhejiang Academy of Forestry, Hangzhou, China
| | - Erming Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| |
Collapse
|
31
|
Noel ZA, Longley R, Benucci GMN, Trail F, Chilvers MI, Bonito G. Non-target impacts of fungicide disturbance on phyllosphere yeasts in conventional and no-till management. ISME COMMUNICATIONS 2022; 2:19. [PMID: 36404932 PMCID: PMC9674006 DOI: 10.1038/s43705-022-00103-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Fungicides reduce fungal pathogen populations and are essential to food security. Understanding the impacts of fungicides on crop microbiomes is vital to minimizing unintended consequences while maintaining their use for plant protection. However, fungicide disturbance of plant microbiomes has received limited attention, and has not been examined in different agricultural management systems. We used amplicon sequencing of fungi and prokaryotes in maize and soybean microbiomes before and after foliar fungicide application in leaves and roots from plots under long-term no-till and conventional tillage management. We examined fungicide disturbance and resilience, which revealed consistent non-target effects and greater resiliency under no-till management. Fungicides lowered pathogen abundance in maize and soybean and decreased the abundance of Tremellomycetes yeasts, especially Bulleribasidiaceae, including core microbiome members. Fungicide application reduced network complexity in the soybean phyllosphere, which revealed altered co-occurrence patterns between yeast species of Bulleribasidiaceae, and Sphingomonas and Hymenobacter in fungicide treated plots. Results indicate that foliar fungicides lower pathogen and non-target fungal abundance and may impact prokaryotes indirectly. Treatment effects were confined to the phyllosphere and did not impact belowground microbial communities. Overall, these results demonstrate the resilience of no-till management to fungicide disturbance, a potential novel ecosystem service provided by no-till agriculture.
Collapse
Affiliation(s)
- Zachary A. Noel
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
- Present Address: Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849 USA
| | - Reid Longley
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 USA
| | | | - Frances Trail
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Martin I. Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
32
|
Snelders NC, Petti GC, van den Berg GCM, Seidl MF, Thomma BPHJ. An ancient antimicrobial protein co-opted by a fungal plant pathogen for in planta mycobiome manipulation. Proc Natl Acad Sci U S A 2021; 118:e2110968118. [PMID: 34853168 PMCID: PMC8670511 DOI: 10.1073/pnas.2110968118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
Microbes typically secrete a plethora of molecules to promote niche colonization. Soil-dwelling microbes are well-known producers of antimicrobials that are exploited to outcompete microbial coinhabitants. Also, plant pathogenic microbes secrete a diversity of molecules into their environment for niche establishment. Upon plant colonization, microbial pathogens secrete so-called effector proteins that promote disease development. While such effectors are typically considered to exclusively act through direct host manipulation, we recently reported that the soil-borne, fungal, xylem-colonizing vascular wilt pathogen Verticillium dahliae exploits effector proteins with antibacterial properties to promote host colonization through the manipulation of beneficial host microbiota. Since fungal evolution preceded land plant evolution, we now speculate that a subset of the pathogen effectors involved in host microbiota manipulation evolved from ancient antimicrobial proteins of terrestrial fungal ancestors that served in microbial competition prior to the evolution of plant pathogenicity. Here, we show that V. dahliae has co-opted an ancient antimicrobial protein as effector, named VdAMP3, for mycobiome manipulation in planta. We show that VdAMP3 is specifically expressed to ward off fungal niche competitors during resting structure formation in senescing mesophyll tissues. Our findings indicate that effector-mediated microbiome manipulation by plant pathogenic microbes extends beyond bacteria and also concerns eukaryotic members of the plant microbiome. Finally, we demonstrate that fungal pathogens can exploit plant microbiome-manipulating effectors in a life stage-specific manner and that a subset of these effectors has evolved from ancient antimicrobial proteins of fungal ancestors that likely originally functioned in manipulation of terrestrial biota.
Collapse
Affiliation(s)
- Nick C Snelders
- Cluster of Excellence on Plant Sciences, Institute for Plant Sciences, University of Cologne, Cologne D-50674, Germany
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Utrecht 3584CH, The Netherlands
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen 6708PB, The Netherlands
| | - Gabriella C Petti
- Cluster of Excellence on Plant Sciences, Institute for Plant Sciences, University of Cologne, Cologne D-50674, Germany
| | - Grardy C M van den Berg
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen 6708PB, The Netherlands
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Utrecht 3584CH, The Netherlands
| | - Bart P H J Thomma
- Cluster of Excellence on Plant Sciences, Institute for Plant Sciences, University of Cologne, Cologne D-50674, Germany;
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen 6708PB, The Netherlands
| |
Collapse
|
33
|
Ahmed B, Smart LB, Hijri M. Microbiome of Field Grown Hemp Reveals Potential Microbial Interactions With Root and Rhizosphere Soil. Front Microbiol 2021; 12:741597. [PMID: 34867858 PMCID: PMC8634612 DOI: 10.3389/fmicb.2021.741597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022] Open
Abstract
Hemp (Cannabis sativa L.) is a crop bred and grown for the production of fiber, grain, and floral extracts that contribute to health and wellness. Hemp plants interact with a myriad of microbiota inhabiting the phyllosphere, endosphere, rhizoplane, and rhizosphere. These microbes offer many ecological services, particularly those of below ground biotopes which are involved in nutrient cycling, uptake, and alleviating biotic and abiotic stress. The microbiota communities of the hemp rhizosphere in the field are not well documented. To discover core microbiota associated with field grown hemp, we cultivated single C. sativa cultivar, “TJ’s CBD,” in six different fields in New York and sampled hemp roots and their rhizospheric soil. We used Illumina MiSeq amplicon sequencing targeting 16S ribosomal DNA of bacteria and ITS of fungi to study microbial community structure of hemp roots and rhizospheres. We found that Planctobacteria and Ascomycota dominated the taxonomic composition of hemp associated microbial community. We identified potential core microbiota in each community (bacteria: eight bacterial amplicon sequence variant – ASV, identified as Gimesia maris, Pirellula sp. Lacipirellula limnantheis, Gemmata sp. and unclassified Planctobacteria; fungi: three ASVs identified as Fusarium oxysporum, Gibellulopsis piscis, and Mortierella minutissima). We found 14 ASVs as hub taxa [eight bacterial ASVs (BASV) in the root, and four bacterial and two fungal ASVs in the rhizosphere soil], and 10 BASV connected the root and rhizosphere soil microbiota to form an extended microbial communication in hemp. The only hub taxa detected in both the root and rhizosphere soil microbiota was ASV37 (Caulifigura coniformis), a bacterial taxon. The core microbiota and Network hub taxa can be studied further for biocontrol activities and functional investigations in the formulation of hemp bioinoculants. This study documented the microbial diversity and community structure of hemp grown in six fields, which could contribute toward the development of bioinoculants for hemp that could be used in organic farming.
Collapse
Affiliation(s)
- Bulbul Ahmed
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada.,Horticulture Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, United States
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, United States
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada.,African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
34
|
Johnston-Monje D, Gutiérrez JP, Lopez-Lavalle LAB. Seed-Transmitted Bacteria and Fungi Dominate Juvenile Plant Microbiomes. Front Microbiol 2021; 12:737616. [PMID: 34745040 PMCID: PMC8569520 DOI: 10.3389/fmicb.2021.737616] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Plant microbiomes play an important role in agricultural productivity, but there is still much to learn about their provenance, diversity, and organization. In order to study the role of vertical transmission in establishing the bacterial and fungal populations of juvenile plants, we used high-throughput sequencing to survey the microbiomes of seeds, spermospheres, rhizospheres, roots, and shoots of the monocot crops maize (B73), rice (Nipponbare), switchgrass (Alamo), Brachiaria decumbens, wheat, sugarcane, barley, and sorghum; the dicot crops tomato (Heinz 1706), coffee (Geisha), common bean (G19833), cassava, soybean, pea, and sunflower; and the model plants Arabidopsis thaliana (Columbia-0) and Brachypodium distachyon (Bd21). Unsterilized seeds were planted in either sterile sand or farm soil inside hermetically sealed jars, and after as much as 60 days of growth, DNA was extracted to allow for amplicon sequence-based profiling of the bacterial and fungal populations that developed. Seeds of most plants were dominated by Proteobacteria and Ascomycetes, with all containing operational taxonomic units (OTUs) belonging to Pantoea and Enterobacter. All spermospheres also contained DNA belonging to Pseudomonas, Bacillus, and Fusarium. Despite having only seeds as a source of inoculum, all plants grown on sterile sand in sealed jars nevertheless developed rhizospheres, endospheres, and phyllospheres dominated by shared Proteobacteria and diverse fungi. Compared to sterile sand-grown seedlings, growth on soil added new microbial diversity to the plant, especially to rhizospheres; however, all 63 seed-transmitted bacterial OTUs were still present, and the most abundant bacteria (Pantoea, Enterobacter, Pseudomonas, Klebsiella, and Massilia) were the same dominant seed-transmitted microbes observed in sterile sand-grown plants. While most plant mycobiome diversity was observed to come from soil, judging by read abundance, the dominant fungi (Fusarium and Alternaria) were also vertically transmitted. Seed-transmitted fungi and bacteria appear to make up the majority of juvenile crop plant microbial populations by abundance, and based on occupancy, there seems to be a pan-angiosperm seed-transmitted core bacterial microbiome. Further study of these seed-transmitted microbes will be important to understand their role in plant growth and health, as well as their fate during the plant life cycle and may lead to innovations for agricultural inoculant development.
Collapse
Affiliation(s)
- David Johnston-Monje
- MaxPlanck Tandem Group in Plant Microbial Ecology, Universidad del Valle, Cali, Colombia.,International Center for Tropical Agriculture, Palmira, Colombia.,Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | |
Collapse
|
35
|
de Medeiros Azevedo T, Aburjaile FF, Ferreira-Neto JRC, Pandolfi V, Benko-Iseppon AM. The endophytome (plant-associated microbiome): methodological approaches, biological aspects, and biotech applications. World J Microbiol Biotechnol 2021; 37:206. [PMID: 34708327 DOI: 10.1007/s11274-021-03168-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
Similar to other organisms, plants establish interactions with a variety of microorganisms in their natural environment. The plant microbiome occupies the host plant's tissues, either internally or on its surfaces, showing interactions that can assist in its growth, development, and adaptation to face environmental stresses. The advance of metagenomics and metatranscriptomics approaches has strongly driven the study and recognition of plant microbiome impacts. Research in this regard provides comprehensive information about the taxonomic and functional aspects of microbial plant communities, contributing to a better understanding of their dynamics. Evidence of the plant microbiome's functional potential has boosted its exploitation to develop more ecological and sustainable agricultural practices that impact human health. Although microbial inoculants' development and use are promising to revolutionize crop production, interdisciplinary studies are needed to identify new candidates and promote effective practical applications. On the other hand, there are challenges in understanding and analyzing complex data generated within a plant microbiome project's scope. This review presents aspects about the complex structuring and assembly of the microbiome in the host plant's tissues, metagenomics, and metatranscriptomics approaches for its understanding, covering descriptions of recent studies concerning metagenomics to characterize the microbiome of non-model plants under different aspects. Studies involving bio-inoculants, isolated from plant microbial communities, capable of assisting in crops' productivity, are also reviewed.
Collapse
Affiliation(s)
- Thamara de Medeiros Azevedo
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Flávia Figueira Aburjaile
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - José Ribamar Costa Ferreira-Neto
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Valesca Pandolfi
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil.
| |
Collapse
|
36
|
Deng S, Liu Y, Deng Z, Huang Y. Isolation of actinobacterial endophytes from wheat sprouts as biocontrol agents to control seed pathogenic fungi. Arch Microbiol 2021; 203:6163-6171. [DOI: 10.1007/s00203-021-02581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
|
37
|
Kudjordjie EN, Sapkota R, Nicolaisen M. Arabidopsis assemble distinct root-associated microbiomes through the synthesis of an array of defense metabolites. PLoS One 2021; 16:e0259171. [PMID: 34699568 PMCID: PMC8547673 DOI: 10.1371/journal.pone.0259171] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/13/2021] [Indexed: 11/19/2022] Open
Abstract
Plant associated microbiomes are known to confer fitness advantages to the host. Understanding how plant factors including biochemical traits influence host associated microbiome assembly could facilitate the development of microbiome-mediated solutions for sustainable plant production. Here, we examined microbial community structures of a set of well-characterized Arabidopsis thaliana mutants disrupted in metabolic pathways for the production of glucosinolates, flavonoids, or a number of defense signalling molecules. A. thaliana lines were grown in a natural soil and maintained under greenhouse conditions for 4 weeks before collection of roots for bacterial and fungal community profiling. We found distinct relative abundances and diversities of bacterial and fungal communities assembled in the individual A. thaliana mutants compared to their parental lines. Bacterial and fungal genera were mostly enriched than depleted in secondary metabolite and defense signaling mutants, except for flavonoid mutations on fungi communities. Bacterial genera Azospirillum and Flavobacterium were significantly enriched in most of the glucosinolate, flavonoid and signalling mutants while the fungal taxa Sporobolomyces and Emericellopsis were enriched in several glucosinolates and signalling mutants. Whilst the present study revealed marked differences in microbiomes of Arabidopsis mutants and their parental lines, it is suggestive that unknown enzymatic and pleiotropic activities of the mutated genes could contribute to the identified host-associated microbiomes. Notwithstanding, this study revealed interesting gene-microbiota links, and thus represents valuable resource data for selecting candidate A. thaliana mutants for analyzing the links between host genetics and the associated microbiome.
Collapse
Affiliation(s)
- Enoch Narh Kudjordjie
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Rumakanta Sapkota
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Mogens Nicolaisen
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Slagelse, Denmark
- * E-mail:
| |
Collapse
|
38
|
Błaszczyk L, Salamon S, Mikołajczak K. Fungi Inhabiting the Wheat Endosphere. Pathogens 2021; 10:1288. [PMID: 34684238 PMCID: PMC8539314 DOI: 10.3390/pathogens10101288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/22/2023] Open
Abstract
Wheat production is influenced by changing environmental conditions, including climatic conditions, which results in the changing composition of microorganisms interacting with this cereal. The group of these microorganisms includes not only endophytic fungi associated with the wheat endosphere, both pathogenic and symbiotic, but also those with yet unrecognized functions and consequences for wheat. This paper reviews the literature in the context of the general characteristics of endophytic fungi inhabiting the internal tissues of wheat. In addition, the importance of epigenetic regulation in wheat-fungus interactions is recognized and the current state of knowledge is demonstrated. The possibilities of using symbiotic endophytic fungi in modern agronomy and wheat cultivation are also proposed. The fact that the current understanding of fungal endophytes in wheat is based on a rather small set of experimental conditions, including wheat genotypes, plant organs, plant tissues, plant development stage, or environmental conditions, is recognized. In addition, most of the research to date has been based on culture-dependent methods that exclude biotrophic and slow-growing species and favor the detection of fast-growing fungi. Additionally, only a few reports of studies on the entire wheat microbiome using high-throughput sequencing techniques exist. Conducting comprehensive research on the mycobiome of the endosphere of wheat, mainly in the context of the possibility of using this knowledge to improve the methods of wheat management, mainly the productivity and health of this cereal, is needed.
Collapse
Affiliation(s)
- Lidia Błaszczyk
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszyńska Street, 60-479 Poznań, Poland; (S.S.); (K.M.)
| | | | | |
Collapse
|
39
|
Bashir I, War AF, Rafiq I, Reshi ZA, Rashid I, Shouche YS. Phyllosphere microbiome: Diversity and functions. Microbiol Res 2021; 254:126888. [PMID: 34700185 DOI: 10.1016/j.micres.2021.126888] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022]
Abstract
Phyllosphere or aerial surface of plants represents the globally largest and peculiar microbial habitat that inhabits diverse and rich communities of bacteria, fungi, viruses, cyanobacteria, actinobacteria, nematodes, and protozoans. These hyperdiverse microbial communities are related to the host's specific functional traits and influence the host's physiology and the ecosystem's functioning. In the last few years, significant advances have been made in unravelling several aspects of phyllosphere microbiology, including diversity and microbial community composition, dynamics, and functional interactions. This review highlights the current knowledge about the assembly, structure, and composition of phyllosphere microbial communities across spatio-temporal scales, besides functional significance of different microbial communities to the plant host and the surrounding environment. The knowledge will help develop strategies for modelling and manipulating these highly beneficial microbial consortia for furthering scientific inquiry into their interactions with the host plants and also for their useful and economic utilization.
Collapse
Affiliation(s)
- Iqra Bashir
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India.
| | - Aadil Farooq War
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Iflah Rafiq
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Irfan Rashid
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | | |
Collapse
|
40
|
Faticov M, Abdelfattah A, Roslin T, Vacher C, Hambäck P, Blanchet FG, Lindahl BD, Tack AJM. Climate warming dominates over plant genotype in shaping the seasonal trajectory of foliar fungal communities on oak. THE NEW PHYTOLOGIST 2021; 231:1770-1783. [PMID: 33960441 DOI: 10.1111/nph.17434] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/15/2021] [Indexed: 05/13/2023]
Abstract
Leaves interact with a wealth of microorganisms. Among these, fungi are highly diverse and are known to contribute to plant health, leaf senescence and early decomposition. However, patterns and drivers of the seasonal dynamics of foliar fungal communities are poorly understood. We used a multifactorial experiment to investigate the influence of warming and tree genotype on the foliar fungal community on the pedunculate oak Quercus robur across one growing season. Fungal species richness increased, evenness tended to decrease, and community composition strongly shifted during the growing season. Yeasts increased in relative abundance as the season progressed, while putative fungal pathogens decreased. Warming decreased species richness, reduced evenness and changed community composition, especially at the end of the growing season. Warming also negatively affected putative fungal pathogens. We only detected a minor imprint of tree genotype and warming × genotype interactions on species richness and community composition. Overall, our findings demonstrate that warming plays a larger role than plant genotype in shaping the seasonal dynamics of the foliar fungal community on oak. These warming-induced shifts in the foliar fungal community may have a pronounced impact on plant health, plant-fungal interactions and ecosystem functions.
Collapse
Affiliation(s)
- Maria Faticov
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, A-8010, Austria
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, PO Box 7044, Uppsala, SE-756 51, Sweden
| | | | - Peter Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| | - F Guillaume Blanchet
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K 2R1, Canada
- Département de Mathématique, Faculté des Sciences, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K 2R1, Canada
- Département des Sciences de la Santé Communautaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Björn D Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, PO Box 7014, Uppsala, SE-750 07, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| |
Collapse
|
41
|
Zhu T, Yao J, Liu H, Zhou CH, Liu YZ, Wang ZW, Quan ZX, Li B, Yang J, Huang WC, Nie M. Cross-phytogroup assessment of foliar epiphytic mycobiomes. Environ Microbiol 2021; 23:6210-6222. [PMID: 34347355 DOI: 10.1111/1462-2920.15703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
The foliar surface forms one of the largest aboveground habitats on Earth and maintains plant-fungus relationships that greatly affect ecosystem functioning. Despite many studies with particular plant species, the foliar epiphytic mycobiome has not been studied across a large number of plant species from different taxa. Using high-throughput sequencing, we assessed epiphytic mycobiomes on leaf surfaces of 592 plant species in a botanical garden. Plants of angiosperms, gymnosperms, and pteridophytes were involved. Plant taxonomy, leaf side, growing environment, and evolutionary relationships were considered. We found that pteridophytes showed the higher fungal species diversity, stronger mutualistic fungal interactions, and a greater percentage of putative pathogens than gymnosperms and angiosperms. Plant taxonomic group, leaf side, and growing environment were significantly associated with the foliar epiphytic mycobiome, but the similarity of the mycobiomes among plants was not directly related to the distance of the host evolutionary tree. Our results provide a general understanding of the foliar fungal mycobiomes from pteridophytes to angiosperms. These findings will facilitate our understanding of foliar fungal epiphytes and their roles in plant communities and ecosystems.
Collapse
Affiliation(s)
- Ting Zhu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jia Yao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hao Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chen-Hao Zhou
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuan-Zhan Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zheng-Wei Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Zhe-Xue Quan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ji Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wei-Chang Huang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
42
|
Reynolds MP, Lewis JM, Ammar K, Basnet BR, Crespo-Herrera L, Crossa J, Dhugga KS, Dreisigacker S, Juliana P, Karwat H, Kishii M, Krause MR, Langridge P, Lashkari A, Mondal S, Payne T, Pequeno D, Pinto F, Sansaloni C, Schulthess U, Singh RP, Sonder K, Sukumaran S, Xiong W, Braun HJ. Harnessing translational research in wheat for climate resilience. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5134-5157. [PMID: 34139769 PMCID: PMC8272565 DOI: 10.1093/jxb/erab256] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/14/2021] [Indexed: 05/24/2023]
Abstract
Despite being the world's most widely grown crop, research investments in wheat (Triticum aestivum and Triticum durum) fall behind those in other staple crops. Current yield gains will not meet 2050 needs, and climate stresses compound this challenge. However, there is good evidence that heat and drought resilience can be boosted through translating promising ideas into novel breeding technologies using powerful new tools in genetics and remote sensing, for example. Such technologies can also be applied to identify climate resilience traits from among the vast and largely untapped reserve of wheat genetic resources in collections worldwide. This review describes multi-pronged research opportunities at the focus of the Heat and Drought Wheat Improvement Consortium (coordinated by CIMMYT), which together create a pipeline to boost heat and drought resilience, specifically: improving crop design targets using big data approaches; developing phenomic tools for field-based screening and research; applying genomic technologies to elucidate the bases of climate resilience traits; and applying these outputs in developing next-generation breeding methods. The global impact of these outputs will be validated through the International Wheat Improvement Network, a global germplasm development and testing system that contributes key productivity traits to approximately half of the global wheat-growing area.
Collapse
Affiliation(s)
- Matthew P Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Janet M Lewis
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Bhoja R Basnet
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Kanwarpal S Dhugga
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Philomin Juliana
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Hannes Karwat
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Masahiro Kishii
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Margaret R Krause
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond SA 5064, Australia
- Wheat Initiative, Julius Kühn-Institute, Königin-Luise-Str. 19, 14195 Berlin, Germany
| | - Azam Lashkari
- CIMMYT-Henan Collaborative Innovation Center, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Suchismita Mondal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Thomas Payne
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Diego Pequeno
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Francisco Pinto
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Carolina Sansaloni
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Urs Schulthess
- CIMMYT-Henan Collaborative Innovation Center, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Kai Sonder
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Wei Xiong
- CIMMYT-Henan Collaborative Innovation Center, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Hans J Braun
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
43
|
Ahmed B, Hijri M. Potential impacts of soil microbiota manipulation on secondary metabolites production in cannabis. J Cannabis Res 2021; 3:25. [PMID: 34217364 PMCID: PMC8254954 DOI: 10.1186/s42238-021-00082-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/22/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cannabis growing practices and particularly indoor cultivation conditions have a great influence on the production of cannabinoids. Plant-associated microbes may affect nutrient acquisition by the plant. However, beneficial microbes influencing cannabinoid biosynthesis remain largely unexplored and unexploited in cannabis production. OBJECTIVE To summarize study outcomes on bacterial and fungal communities associated with cannabis using high-throughput sequencing technologies and to uncover microbial interactions, species diversity, and microbial network connections that potentially influence secondary metabolite production in cannabis. MATERIALS AND METHOD A mini review was conducted including recent publications on cannabis and their associated microbiota and secondary metabolite production. RESULTS In this review, we provide an overview of the potential role of the soil microbiome in production of cannabinoids, and discussed that manipulation of cannabis-associated microbiome obtained through soil amendment interventions of diversified microbial communities sourced from natural forest soil could potentially help producers of cannabis to improve yields of cannabinoids and enhance the balance of cannabidiol (CBD) and tetrahydrocannabinol (THC) proportions. CONCLUSION Cannabis is one of the oldest cultivated crops in history, grown for food, fiber, and drugs for thousands of years. Extension of genetic variation in cannabis has developed into wide-ranging varieties with various complementary phenotypes and secondary metabolites. For medical or pharmaceutical purposes, the ratio of CBD to THC is key. Therefore, studying soil microbiota associated with cannabis and its potential impact on secondary metabolites production could be useful when selecting microorganisms as bioinoculant agents for enhanced organic cannabinoid production.
Collapse
Affiliation(s)
- Bulbul Ahmed
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco.
| |
Collapse
|
44
|
Assessing the potential to harness the microbiome through plant genetics. Curr Opin Biotechnol 2021; 70:167-173. [PMID: 34126329 DOI: 10.1016/j.copbio.2021.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/07/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022]
Abstract
Microbial communities are influenced by a complex system of host effects, including traits involved in physical barriers, immunity, hormones, metabolisms and nutrient homeostasis. Variation of host control within species is governed by many genes of small effect and is sensitive to biotic and abiotic environments. On the flip side, these host impacts seem targeted on particular microbial species, with that impact percolating through the microbial community. There is not yet evidence that the nature and strength of these interactions differs between fungal and bacterial communities, or among different compartments of the plant. The challenge of deciphering how systems of host traits impact systems of microbial associates is vast but holds promise for developing novel strategies to improve plant health.
Collapse
|
45
|
Abstract
Seagrasses are marine flowering plants that provide critical ecosystem services in coastal environments worldwide. Marine fungi are often overlooked in microbiome and seagrass studies, despite terrestrial fungi having critical functional roles as decomposers, pathogens, or endophytes in global ecosystems. Here, we characterize the distribution of fungi associated with the seagrass Zostera marina, using leaves, roots, and rhizosphere sediment from 16 locations across its full biogeographic range. Using high-throughput sequencing of the ribosomal internal transcribed spacer (ITS) region and 18S rRNA gene, we first measured fungal community composition and diversity. We then tested hypotheses of neutral community assembly theory and the degree to which deviations suggested that amplicon sequence variants (ASVs) were plant selected or dispersal limited. Finally, we identified a core mycobiome and investigated the global distribution of differentially abundant ASVs. We found that the fungal community is significantly different between sites and that the leaf mycobiome follows a weak but significant pattern of distance decay in the Pacific Ocean. Generally, there was evidence for both deterministic and stochastic factors contributing to community assembly of the mycobiome, with most taxa assembling through stochastic processes. The Z. marina core leaf and root mycobiomes were dominated by unclassified Sordariomycetes spp., unclassified Chytridiomycota lineages (including Lobulomycetaceae spp.), unclassified Capnodiales spp., and Saccharomyces sp. It is clear from the many unclassified fungal ASVs and fungal functional guilds that knowledge of marine fungi is still rudimentary. Further studies characterizing seagrass-associated fungi are needed to understand the roles of these microorganisms generally and when associated with seagrasses. IMPORTANCE Fungi have important functional roles when associated with land plants, yet very little is known about the roles of fungi associated with marine plants, like seagrasses. In this study, we report the results of a global effort to characterize the fungi associated with the seagrass Zostera marina across its full biogeographic range. Although we defined a putative global core fungal community, it is apparent from the many fungal sequences and predicted functional guilds that had no matches to existing databases that general knowledge of seagrass-associated fungi and marine fungi is lacking. This work serves as an important foundational step toward future work investigating the functional ramifications of fungi in the marine ecosystem.
Collapse
|
46
|
Zhu J, Sun X, Zhang ZD, Tang QY, Gu MY, Zhang LJ, Hou M, Sharon A, Yuan HL. Effect of Ionizing Radiation on the Bacterial and Fungal Endophytes of the Halophytic Plant Kalidium schrenkianum. Microorganisms 2021; 9:microorganisms9051050. [PMID: 34068093 PMCID: PMC8152737 DOI: 10.3390/microorganisms9051050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/23/2022] Open
Abstract
Endophytic bacteria and fungi colonize plants that grow in various types of terrestrial and aquatic ecosystems. Our study investigates the communities of endophytic bacteria and fungi of halophyte Kalidium schrenkianum growing in stressed habitats with ionizing radiation. The geochemical factors and radiation (at low, medium, high level and control) both affected the structure of endophytic communities. The bacterial class Actinobacteria and the fungal class Dothideomycetes predominated the endophytic communities of K. schrenkianum. Aerial tissues of K. schrenkianum had higher fungal diversity, while roots had higher bacterial diversity. Radiation had no significant effect on the abundance of bacterial classes. Soil pH, total nitrogen, and organic matter showed significant effects on the diversity of root endophytes. Radiation affected bacterial and fungal community structure in roots but not in aerial tissues, and had a strong effect on fungal co-occurrence networks. Overall, the genetic diversity of both endophytic bacteria and fungi was higher in radioactive environments, however negative correlations were found between endophytic bacteria and fungi in the plant. The genetic diversity of both endophytic bacteria and fungi was higher in radioactive environments. Our findings suggest that radiation affects root endophytes, and that the endophytes associated with aerial tissues and roots of K. schrenkianum follow different mechanisms for community assembly and different paradigms in stress response.
Collapse
Affiliation(s)
- Jing Zhu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China;
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Special Environmental Microbiology, Urumqi 830091, China; (Z.-D.Z.); (Q.-Y.T.); (M.-Y.G.); (L.-J.Z.); (M.H.)
| | - Xiang Sun
- School of Life Sciences, Hebei University, Baoding 071002, China
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
- Correspondence: (X.S.); (H.-L.Y.)
| | - Zhi-Dong Zhang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Special Environmental Microbiology, Urumqi 830091, China; (Z.-D.Z.); (Q.-Y.T.); (M.-Y.G.); (L.-J.Z.); (M.H.)
| | - Qi-Yong Tang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Special Environmental Microbiology, Urumqi 830091, China; (Z.-D.Z.); (Q.-Y.T.); (M.-Y.G.); (L.-J.Z.); (M.H.)
| | - Mei-Ying Gu
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Special Environmental Microbiology, Urumqi 830091, China; (Z.-D.Z.); (Q.-Y.T.); (M.-Y.G.); (L.-J.Z.); (M.H.)
| | - Li-Juan Zhang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Special Environmental Microbiology, Urumqi 830091, China; (Z.-D.Z.); (Q.-Y.T.); (M.-Y.G.); (L.-J.Z.); (M.H.)
| | - Min Hou
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Special Environmental Microbiology, Urumqi 830091, China; (Z.-D.Z.); (Q.-Y.T.); (M.-Y.G.); (L.-J.Z.); (M.H.)
| | - Amir Sharon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Hong-Li Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China;
- Correspondence: (X.S.); (H.-L.Y.)
| |
Collapse
|
47
|
Fort T, Pauvert C, Zanne AE, Ovaskainen O, Caignard T, Barret M, Compant S, Hampe A, Delzon S, Vacher C. Maternal effects shape the seed mycobiome in Quercus petraea. THE NEW PHYTOLOGIST 2021; 230:1594-1608. [PMID: 33341934 DOI: 10.1111/nph.17153] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
The tree seed mycobiome has received little attention despite its potential role in forest regeneration and health. The aim of the present study was to analyze the processes shaping the composition of seed fungal communities in natural forests as seeds transition from the mother plant to the ground for establishment. We used metabarcoding approaches and confocal microscopy to analyze the fungal communities of seeds collected in the canopy and on the ground in four natural populations of sessile oak (Quercus petraea). Ecological processes shaping the seed mycobiome were inferred using joint species distribution models. Fungi were present in seed internal tissues, including the embryo. The seed mycobiome differed among oak populations and trees within the same population. Its composition was largely influenced by the mother, with weak significant environmental influences. The models also revealed several probable interactions among fungal pathogens and mycoparasites. Our results demonstrate that maternal effects, environmental filtering and biotic interactions all shape the seed mycobiome of sessile oak. They provide a starting point for future research aimed at understanding how maternal genes and environments interact to control the vertical transmission of fungal species that could then influence seed dispersal and germination, and seedling recruitment.
Collapse
Affiliation(s)
- Tania Fort
- INRAE, BIOGECO, Univ. Bordeaux, Pessac, 33615, France
| | | | - Amy E Zanne
- Department of Biological Sciences, George Washington University, 800 22nd St., Washington, DC, 20052, USA
| | - Otso Ovaskainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65, Helsinki, 00014, Finland
- Center for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | | | - Matthieu Barret
- INRAE, IRHS, SFR 4207 QuaSaV, Institut Agro, Univ. Angers, Angers, 49000, France
| | - Stéphane Compant
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, Tulln, 3430, Austria
| | - Arndt Hampe
- INRAE, BIOGECO, Univ. Bordeaux, Pessac, 33615, France
| | | | | |
Collapse
|
48
|
Straumfors A, Mundra S, Foss OAH, Mollerup SK, Kauserud H. The airborne mycobiome and associations with mycotoxins and inflammatory markers in the Norwegian grain industry. Sci Rep 2021; 11:9357. [PMID: 33931660 PMCID: PMC8087811 DOI: 10.1038/s41598-021-88252-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Grain dust exposure is associated with respiratory symptoms among grain industry workers. However, the fungal assemblage that contribute to airborne grain dust has been poorly studied. We characterized the airborne fungal diversity at industrial grain- and animal feed mills, and identified differences in diversity, taxonomic compositions and community structural patterns between seasons and climatic zones. The fungal communities displayed strong variation between seasons and climatic zones, with 46% and 21% of OTUs shared between different seasons and climatic zones, respectively. The highest species richness was observed in the humid continental climate of the southeastern Norway, followed by the continental subarctic climate of the eastern inland with dryer, short summers and snowy winters, and the central coastal Norway with short growth season and lower temperature. The richness did not vary between seasons. The fungal diversity correlated with some specific mycotoxins in settled dust and with fibrinogen in the blood of exposed workers, but not with the personal exposure measurements of dust, glucans or spore counts. The study contributes to a better understanding of fungal exposures in the grain and animal feed industry. The differences in diversity suggest that the potential health effects of fungal inhalation may also be different.
Collapse
Affiliation(s)
- Anne Straumfors
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, P.O. Box 5330, 0304, Majorstuen, Oslo, Norway.
| | - Sunil Mundra
- Department of Biology, College of Science, United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, Abu Dhabi, UAE
| | - Oda A H Foss
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, P.O. Box 5330, 0304, Majorstuen, Oslo, Norway
| | - Steen K Mollerup
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, P.O. Box 5330, 0304, Majorstuen, Oslo, Norway
| | - Håvard Kauserud
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
49
|
Kinnunen-Grubb M, Sapkota R, Vignola M, Nunes IM, Nicolaisen M. Breeding selection imposed a differential selective pressure on the wheat root-associated microbiome. FEMS Microbiol Ecol 2021; 96:5911094. [PMID: 32970821 DOI: 10.1093/femsec/fiaa196] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Plants-microbiome associations are the result of millions of years of co-evolution. Due to breeding-accelerated plant evolution in non-native and highly managed soil, plant-microbe links could have been lost. We hypothesized that post-domestication breeding of wheat changed the root-associated microbiome. To test this, we analyzed root-associated fungal and bacterial communities shortly after emergence of seedlings representing a transect of wheat evolution including modern wheat, landraces and ancestors. Numbers of observed microbial taxa were highest in landraces bred in low-input agricultural systems, and lowest in ancestors that had evolved in native soils. The microbial communities of modern cultivars were different from those of landraces and ancestors. Old wheat accessions enriched Acidobacteria and Actinobacteria, while modern cultivars enriched OTUs from Candidatus Saccharibacteria, Verrucomicrobia and Firmicutes. The fungal pathogens Fusarium, Neoascochyta and Microdochium enriched in modern cultivars. Both bacterial and fungal communities followed a neutral assembly model when bulk soil was considered as the source community, but accessions of the ancient Triticum turgidum and T. monococcum created a more isolated environment in their roots. In conclusion, wheat root-associated microbiomes have dramatically changed through a transect of breeding history.
Collapse
Affiliation(s)
- Marta Kinnunen-Grubb
- Novozymes A/S, Microbiomics and Microbe Discovery Denmark, Biologiens Vej 2, 2800 Kgs. Lyngby, Denmark
| | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Marta Vignola
- School of Engineering, University of Glasgow, 78 Oakfield Ave, Glasgow G12 8LS, United Kingdom
| | - Inês Marques Nunes
- Novozymes A/S, Microbiomics and Microbe Discovery Denmark, Biologiens Vej 2, 2800 Kgs. Lyngby, Denmark
| | - Mogens Nicolaisen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| |
Collapse
|
50
|
Latz MAC, Kerrn MH, Sørensen H, Collinge DB, Jensen B, Brown JKM, Madsen AM, Jørgensen HJL. Succession of the fungal endophytic microbiome of wheat is dependent on tissue-specific interactions between host genotype and environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143804. [PMID: 33340856 DOI: 10.1016/j.scitotenv.2020.143804] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
Fungi living inside plants affect many aspects of plant health, but little is known about how plant genotype influences the fungal endophytic microbiome. However, a deeper understanding of interactions between plant genotype and biotic and abiotic environment in shaping the plant microbiome is of significance for modern agriculture, with implications for disease management, breeding and the development of biocontrol agents. For this purpose, we analysed the fungal wheat microbiome from seed to plant to seeds and studied how different potential sources of inoculum contributed to shaping of the microbiome. We conducted a large-scale pot experiment with related wheat cultivars over one growth-season in two environments (indoors and outdoors) to disentangle the effects of host genotype, abiotic environment (temperature, humidity, precipitation) and fungi present in the seed stock, air and soil on the succession of the endophytic fungal communities in roots, flag leaves and seeds at harvest. The communities were studied with ITS1 metabarcoding and environmental climate factors were monitored during the experimental period. Host genotype, tissue type and abiotic factors influenced fungal communities significantly. The effect of host genotype was mostly limited to leaves and roots, and was location-independent. While there was a clear effect of plant genotype, the relatedness between cultivars was not reflected in the microbiome. For the phyllosphere microbiome, location-dependent weather conditions factors largely explained differences in abundance, diversity, and presence of genera containing pathogens, whereas the root communities were less affected by abiotic factors. Our findings suggest that airborne fungi are the primary inoculum source for fungal communities in aerial plant parts whereas vertical transmission is likely to be insignificant. In summary, our study demonstrates that host genotype, environment and presence of fungi in the environment shape the endophytic fungal community in wheat over a growing season.
Collapse
Affiliation(s)
- Meike A C Latz
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| | - Mads Herbert Kerrn
- Data Science Lab, Department of Mathematical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Helle Sørensen
- Data Science Lab, Department of Mathematical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - David B Collinge
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| | - Birgit Jensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| | - James K M Brown
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Anne Mette Madsen
- The National Research Centre for the Working Environment, 2100 Copenhagen, Denmark.
| | - Hans Jørgen Lyngs Jørgensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| |
Collapse
|