1
|
Malhotra N, Oh S, Finin P, Medrano J, Andrews J, Goodwin M, Markowitz TE, Lack J, Boshoff HIM, Barry CE. Environmental fungi target thiol homeostasis to compete with Mycobacterium tuberculosis. PLoS Biol 2024; 22:e3002852. [PMID: 39625876 PMCID: PMC11614215 DOI: 10.1371/journal.pbio.3002852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/27/2024] [Indexed: 12/06/2024] Open
Abstract
Mycobacterial species in nature are found in abundance in sphagnum peat bogs where they compete for nutrients with a variety of microorganisms including fungi. We screened a collection of fungi isolated from sphagnum bogs by co-culture with Mycobacterium tuberculosis (Mtb) to look for inducible expression of antitubercular agents and identified 5 fungi that produced cidal antitubercular agents upon exposure to live Mtb. Whole genome sequencing of these fungi followed by fungal RNAseq after Mtb exposure allowed us to identify biosynthetic gene clusters induced by co-culture. Three of these fungi induced expression of patulin, one induced citrinin expression and one induced the production of nidulalin A. The biosynthetic gene clusters for patulin and citrinin have been previously described but the genes involved in nidulalin A production have not been described before. All 3 of these potent electrophiles react with thiols and treatment of Mtb cells with these agents followed by Mtb RNAseq showed that these natural products all induce profound thiol stress suggesting a rapid depletion of mycothiol. The induction of thiol-reactive mycotoxins through 3 different systems in response to exposure to Mtb suggests that fungi have identified this as a highly vulnerable target in a similar microenvironment to that of the caseous human lesion.
Collapse
Affiliation(s)
- Neha Malhotra
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Sangmi Oh
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Peter Finin
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Jessica Medrano
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Jenna Andrews
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Michael Goodwin
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Tovah E. Markowitz
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Helena I. M. Boshoff
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Clifton Earl Barry
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| |
Collapse
|
2
|
Wang M, Lamit LJ, Lilleskov EA, Basiliko N, Moore TR, Bubier JL, Guo G, Juutinen S, Larmola T. Peatland Fungal Community Responses to Nutrient Enrichment: A Story Beyond Nitrogen. GLOBAL CHANGE BIOLOGY 2024; 30:e17562. [PMID: 39492595 DOI: 10.1111/gcb.17562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Anthropogenically elevated inputs of nitrogen (N), phosphorus (P), and potassium (K) can affect the carbon (C) budget of nutrient-poor peatlands. Fungi are intimately tied to peatland C budgets due to their roles in organic matter decomposition and symbioses with primary producers; however, the influence of fertilization on peatland fungal composition and diversity remains unclear. Here, we examined the effect of fertilization over 10 years on fungal diversity, composition, and functional guilds along an acrotelm (10-20 cm), mesotelm (30-40 cm), and catotelm (60-70 cm) depth gradient at the Mer Bleue bog, Canada. Simultaneous N and PK additions decreased the relative abundance of ericoid mycorrhizal fungi and increased ectomycorrhizal fungi and lignocellulose-degrading fungi. Fertilization effects were not more pronounced in the acrotelm relative to the catotelm, nor was there a shift toward nitrophilic taxa after N addition. The direct effect of fertilization significantly decreased the abundance of Sphagnum-associated fungi, primarily owing to the overarching role of limiting nutrients rather than a decline in Sphagnum cover. Increased nutrient loading may threaten peatland C stocks if lignocellulose-degrading fungi become abundant and accelerate decomposition of recalcitrant organic matter. Additionally, future changes in plant communities, strong water table fluctuations, and peat subsidence after long-term nutrient loading may also influence fungal functional guilds and depth-dependencies of fungal community structure.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, Jilin, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, Jilin, China
| | - Louis J Lamit
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Erik A Lilleskov
- USDA Forest Service, Northern Research Station, Houghton, Michigan, USA
| | - Nathan Basiliko
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada
- Vale Living With Lakes Centre, Laurentian University, Sudbury, Ontario, Canada
| | - Tim R Moore
- Department of Geography, McGill University, Montreal, Quebec, Canada
| | - Jill L Bubier
- Department of Environmental Studies, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - Galen Guo
- Vale Living With Lakes Centre, Laurentian University, Sudbury, Ontario, Canada
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Sari Juutinen
- Finnish Meteorological Institute, Climate System Research, Helsinki, Finland
| | - Tuula Larmola
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
3
|
Ishak S, Rondeau-Leclaire J, Faticov M, Roy S, Laforest-Lapointe I. Boreal moss-microbe interactions are revealed through metagenome assembly of novel bacterial species. Sci Rep 2024; 14:22168. [PMID: 39333734 PMCID: PMC11437008 DOI: 10.1038/s41598-024-73045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Moss-microbe interactions contribute to ecosystem processes in boreal forests. Yet, how host-specific characteristics and the environment drive the composition and metabolic potential of moss microbiomes is still poorly understood. In this study, we use shotgun metagenomics to identify the taxonomy and metabolic potential of the bacteria of four moss species of the boreal forests of Northern Québec, Canada. To characterize moss bacterial community composition and diversity, we assembled the genomes of 110 potentially novel bacterial species. Our results highlight that moss genus, species, gametophyte section, and to a lesser extent soil pH and soil temperature, drive moss-associated bacterial community composition and diversity. In the brown gametophyte section, two Stigonema spp. showed partial pathway completeness for photosynthesis and nitrogen fixation, while all brown-associated Hyphomicrobiales had complete assimilatory nitrate reduction pathways and many nearly complete carbon fixation pathways. Several brown-associated species showed partial to complete pathways for coenzyme M and F420 biosynthesis, important for methane metabolism. In addition, green-associated Hyphomicrobiales (Methylobacteria spp.) displayed potential for the anoxygenic photosystem II pathway. Overall, our findings demonstrate how host-specific characteristics and environmental factors shape the composition and metabolic potential of moss bacteria, highlighting their roles in carbon fixation, nitrogen cycling, and methane metabolism in boreal forests.
Collapse
Affiliation(s)
- Sarah Ishak
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada.
| | | | - Maria Faticov
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada
| | - Sébastien Roy
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Isabelle Laforest-Lapointe
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada.
| |
Collapse
|
4
|
Malhotra N, Oh S, Finin P, Medrano J, Andrews J, Goodwin M, Markowitz TE, Lack J, Boshoff HIM, Barry CE. Environmental sphagnum-associated fungi target thiol homeostasis to compete with Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614403. [PMID: 39372785 PMCID: PMC11451587 DOI: 10.1101/2024.09.23.614403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Mycobacterial species in nature are found in abundance in sphagnum peat bogs where they compete for nutrients with a variety of microorganisms including fungi. We screened a collection of fungi isolated from sphagnum bogs by co-culture with Mycobacterium tuberculosis (Mtb) to look for inducible expression of antitubercular agents and identified five fungi that produced cidal antitubercular agents upon exposure to live Mtb. Whole genome sequencing of these fungi followed by fungal RNAseq after Mtb exposure allowed us to identify biosynthetic gene clusters induced by co-culture. Three of these fungi induced expression of patulin, one induced citrinin expression and one induced the production of nidulalin A. The biosynthetic gene clusters for patulin and citrinin have been previously described but the genes involved in nidulalin A production have not been described before. All three of these potent electrophiles react with thiols and treatment of Mtb cells with these agents followed by Mtb RNAseq showed that these natural products all induce profound thiol stress suggesting a rapid depletion of mycothiol. The induction of thiol-reactive mycotoxins through three different systems in response to exposure to Mtb suggests that fungi have identified this as a highly vulnerable target in a similar microenvironment to that of the caseous human lesion.
Collapse
Affiliation(s)
- Neha Malhotra
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, MD USA
- Current affiliation: Center for Neural Circuits and Behavior, Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Sangmi Oh
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, MD USA
| | - Peter Finin
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, MD USA
| | - Jessica Medrano
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, MD USA
- Current affiliation: Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jenna Andrews
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, MD USA
- Current affiliation: Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| | - Michael Goodwin
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, MD USA
| | - Tovah E. Markowitz
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, USA
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, USA
| | | | | |
Collapse
|
5
|
Gao H, Guo Z, He X, Yang J, Jiang L, Yang A, Xiao X, Xu R. Stress mitigation mechanism of rice leaf microbiota amid atmospheric deposition of heavy metals. CHEMOSPHERE 2024; 362:142680. [PMID: 38908447 DOI: 10.1016/j.chemosphere.2024.142680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
Leaf microbiota have been extensively applied in the biological control of plant diseases, but their crucial roles in mitigating atmospheric heavy metal (HM) deposition and promoting plant growth remain poorly understood. This study demonstrates that elevated atmospheric HM deposition on rice leaves significantly shapes distinct epiphytic and endophytic microbiota across all growth stages. HM stress consistently leads to the dominance of epiphytic Pantoea and endophytic Microbacterium in rice leaves, particularly during the booting and filling stages. Leaf-bound HMs stimulate the differentiation of specialized microbial communities in both endophytic and epiphytic compartments, thereby regulating leaf microbial interactions. Metagenomic binning retrieved high-quality genomes of keystone leaf microorganisms, indicating their potential for essential metabolic functions. Notably, Pantoea and Microbacterium show significant HM resistance, plant growth-promoting capabilities, and diverse element cycling functions. They possess genes associated with metal(loid) resistance, such as ars and czc, suggesting their ability to detoxify arsenic(As) and cadmium(Cd). They also support carbon, nitrogen, and sulfur cycling, with genes linked to carbon fixation, nitrogen fixation, and sulfur reduction. Additionally, these bacteria may enhance plant stress resistance and growth by producing antioxidants, phytohormones, and other beneficial compounds, potentially improving HM stress tolerance and nutrient availability in rice plants. This study shows that atmospheric HMs affect rice leaf microbial communities, prompting plants to seek microbial help to combat stress. The unique composition and metabolic potential of rice leaf microbiota offer a novel perspective for mitigating adverse stress induced by atmospheric HM deposition. This contributes to the utilization of leaf microbiota to alleviate the negative impact of heavy metal deposition on rice development and food security.
Collapse
Affiliation(s)
- Hanbing Gao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Xiao He
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Jinbo Yang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Li Jiang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Aiping Yang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
6
|
Baev V, Gecheva G, Apostolova E, Gozmanova M, Yahubyan G. Exploring the Metatranscriptome of Bacterial Communities of Two Moss Species Thriving in Different Environments-Terrestrial and Aquatic. PLANTS (BASEL, SWITZERLAND) 2024; 13:1210. [PMID: 38732425 PMCID: PMC11085137 DOI: 10.3390/plants13091210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Mosses host diverse bacterial communities essential for their fitness, nutrient acquisition, stress tolerance, and pathogen defense. Understanding the microbiome's taxonomic composition is the first step, but unraveling their functional capabilities is crucial for grasping their ecological significance. Metagenomics characterizes microbial communities by composition, while metatranscriptomics explores gene expression, providing insights into microbiome functionality beyond the structure. Here, we present for the first time a metatranscriptomic study of two moss species, Hypnum cupressiforme (Hedw.) and Platyhypnidium riparioides (Hedw.) Dixon., renowned as key biomonitors of atmospheric and water pollution. Our investigation extends beyond taxonomic profiling and offers a profound exploration of moss bacterial communities. Pseudomonadota and Actinobacteria are the dominant bacterial phyla in both moss species, but their proportions differ. In H. cupressiforme, Actinobacteria make up 62.45% and Pseudomonadota 32.48%, while in P. riparioides, Actinobacteria account for only 25.67% and Pseudomonadota 69.08%. This phylum-level contrast is reflected in genus-level differences. Our study also shows the expression of most genes related to nitrogen cycling across both microbiomes. Additionally, functional annotation highlights disparities in pathway prevalence, including carbon dioxide fixation, photosynthesis, and fatty acid biosynthesis, among others. These findings hint at potential metabolic distinctions between microbial communities associated with different moss species, influenced by their specific genotypes and habitats. The integration of metatranscriptomic data holds promise for enhancing our understanding of bryophyte-microbe partnerships, opening avenues for novel applications in conservation, bioremediation, and sustainable agriculture.
Collapse
Affiliation(s)
- Vesselin Baev
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (E.A.); (M.G.)
| | - Gana Gecheva
- Department of Ecology and Environmental Conservation, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria;
| | - Elena Apostolova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (E.A.); (M.G.)
| | - Mariyana Gozmanova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (E.A.); (M.G.)
| | - Galina Yahubyan
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (E.A.); (M.G.)
| |
Collapse
|
7
|
Kilner CL, Carrell AA, Wieczynski DJ, Votzke S, DeWitt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gibert JP. Temperature and CO 2 interactively drive shifts in the compositional and functional structure of peatland protist communities. GLOBAL CHANGE BIOLOGY 2024; 30:e17203. [PMID: 38433341 DOI: 10.1111/gcb.17203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Microbes affect the global carbon cycle that influences climate change and are in turn influenced by environmental change. Here, we use data from a long-term whole-ecosystem warming experiment at a boreal peatland to answer how temperature and CO2 jointly influence communities of abundant, diverse, yet poorly understood, non-fungi microbial Eukaryotes (protists). These microbes influence ecosystem function directly through photosynthesis and respiration, and indirectly, through predation on decomposers (bacteria and fungi). Using a combination of high-throughput fluid imaging and 18S amplicon sequencing, we report large climate-induced, community-wide shifts in the community functional composition of these microbes (size, shape, and metabolism) that could alter overall function in peatlands. Importantly, we demonstrate a taxonomic convergence but a functional divergence in response to warming and elevated CO2 with most environmental responses being contingent on organismal size: warming effects on functional composition are reversed by elevated CO2 and amplified in larger microbes but not smaller ones. These findings show how the interactive effects of warming and rising CO2 levels could alter the structure and function of peatland microbial food webs-a fragile ecosystem that stores upwards of 25% of all terrestrial carbon and is increasingly threatened by human exploitation.
Collapse
Affiliation(s)
- Christopher L Kilner
- Department of Biology, Duke University, Durham, North Carolina, USA
- Bird Conservancy of the Rockies, Fort Collins, Colorado, USA
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Samantha Votzke
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Katrina DeWitt
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Andrea Yammine
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Jonathan Shaw
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Dale A Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jean P Gibert
- Department of Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
8
|
Herndon E, Richardson J, Carrell AA, Pierce E, Weston D. Sulfur speciation in Sphagnum peat moss modified by mutualistic interactions with cyanobacteria. THE NEW PHYTOLOGIST 2024; 241:1998-2008. [PMID: 38135655 DOI: 10.1111/nph.19476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Peat moss (Sphagnum spp.) develops mutualistic interactions with cyanobacteria by providing carbohydrates and S compounds in exchange for N-rich compounds, potentially facilitating N inputs into peatlands. Here, we evaluate how colonization of Sphagnum angustifolium hyaline cells by Nostoc muscorum modifies S abundance and speciation at the scales of individual cells and across whole leaves. For the first time, S K-edge X-ray Absorption Spectroscopy was used to identify bulk and micron-scale S speciation across isolated cyanobacteria colonies, and in colonized and uncolonized leaves. Uncolonized leaves contained primarily reduced organic S and oxidized sulfonate- and sulfate-containing compounds. Increasing Nostoc colonization resulted in an enrichment of S and changes in speciation, with increases in sulfate relative to reduced S and sulfonate. At the scale of individual hyaline cells, colonized cells exhibited localized enrichment of reduced S surrounded by diffuse sulfonate, similar to observations of cyanobacteria colonies cultured in the absence of leaves. We infer that colonization stimulates plant S uptake and the production of sulfate-containing metabolites that are concentrated in stem tissues. Sulfate compounds that are produced in response to colonization become depleted in colonized cells where they may be converted into reduced S metabolites by cyanobacteria.
Collapse
Affiliation(s)
- Elizabeth Herndon
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | | | - Alyssa A Carrell
- Biological Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Eric Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - David Weston
- Biological Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| |
Collapse
|
9
|
Wang Y, Xue D, Chen X, Qiu Q, Chen H. Structure and Functions of Endophytic Bacterial Communities Associated with Sphagnum Mosses and Their Drivers in Two Different Nutrient Types of Peatlands. MICROBIAL ECOLOGY 2024; 87:47. [PMID: 38407642 PMCID: PMC10896819 DOI: 10.1007/s00248-024-02355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Sphagnum mosses are keystone plant species in the peatland ecosystems that play a crucial role in the formation of peat, which shelters a broad diversity of endophytic bacteria with important ecological functions. In particular, methanotrophic and nitrogen-fixing endophytic bacteria benefit Sphagnum moss hosts by providing both carbon and nitrogen. However, the composition and abundance of endophytic bacteria from different species of Sphagnum moss in peatlands of different nutrient statuses and their drivers remain unclear. This study used 16S rRNA gene amplicon sequencing to examine endophytic bacterial communities in Sphagnum mosses and measured the activity of methanotrophic microbial by the 13C-CH4 oxidation rate. According to the results, the endophytic bacterial community structure varied among Sphagnum moss species and Sphagnum capillifolium had the highest endophytic bacterial alpha diversity. Moreover, chlorophyll, phenol oxidase, carbon contents, and water retention capacity strongly shaped the communities of endophytic bacteria. Finally, Sphagnum palustre in Hani (SP) had a higher methane oxidation rate than S. palustre in Taishanmiao. This result is associated with the higher average relative abundance of Methyloferula an obligate methanotroph in SP. In summary, this work highlights the effects of Sphagnum moss characteristics on the endophytic bacteriome. The endophytic bacteriome is important for Sphagnum moss productivity, as well as for carbon and nitrogen cycles in Sphagnum moss peatlands.
Collapse
Affiliation(s)
- Yue Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Xue
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China.
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China.
| | - Xuhui Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Qiu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Huai Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China.
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China.
| |
Collapse
|
10
|
Berg G, Dorador C, Egamberdieva D, Kostka JE, Ryu CM, Wassermann B. Shared governance in the plant holobiont and implications for one health. FEMS Microbiol Ecol 2024; 100:fiae004. [PMID: 38364305 PMCID: PMC10876113 DOI: 10.1093/femsec/fiae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
The holobiont Holobiont theory is more than 80 years old, while the importance of microbial communities for plant holobionts was already identified by Lorenz Hiltner more than a century ago. Both concepts are strongly supported by results from the new field of microbiome research. Here, we present ecological and genetic features of the plant holobiont that underpin principles of a shared governance between hosts and microbes and summarize the relevance of plant holobionts in the context of global change. Moreover, we uncover knowledge gaps that arise when integrating plant holobionts in the broader perspective of the holobiome as well as one and planetary health concepts. Action is needed to consider interacting holobionts at the holobiome scale, for prediction and control of microbiome function to improve human and environmental health outcomes.
Collapse
Affiliation(s)
- Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Cristina Dorador
- Department of Biotechnology, Universidad de Antofagasta & Centre for Biotechnology and Bioengineering (CeBiB), Angamos 601, Antofagasta, Chile
| | - Dilfuza Egamberdieva
- Institute of Fundamental and Applied Research, National Research University, TIIAME, Kari Niyazi street 39, Tashkent 100000, Uzbekistan
- Medical School, Central Asian University, Milliy bog street 264, Tashkent 111221, Uzbekistan
| | - Joel E Kostka
- Schools of Biological Sciences and Earth & Atmospheric Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, United States
| | - Choong-Min Ryu
- Biosystems and Bioengineering, University of Science and Technology KRIBB School, 125 Gwahangro, Yuseong, Daejeon 34141, South Korea
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, 125 Gwahangro, Yuseong, Daejeon 34141, South Korea
| | - Birgit Wassermann
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria
| |
Collapse
|
11
|
Coe K, Carter B, Slate M, Stanton D. Moss functional trait ecology: Trends, gaps, and biases in the current literature. AMERICAN JOURNAL OF BOTANY 2024; 111:e16288. [PMID: 38366744 DOI: 10.1002/ajb2.16288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 02/18/2024]
Abstract
Functional traits are critical tools in plant ecology for capturing organism-environment interactions based on trade-offs and making links between organismal and ecosystem processes. While broad frameworks for functional traits have been developed for vascular plants, we lack the same for bryophytes, despite an escalation in the number of studies on bryophyte functional trait in the last 45 years and an increased recognition of the ecological roles bryophytes play across ecosystems. In this review, we compiled data from 282 published articles (10,005 records) that focused on functional traits measured in mosses and sought to examine trends in types of traits measured, capture taxonomic and geographic breadth of trait coverage, reveal biases in coverage in the current literature, and develop a bryophyte-function index (BFI) to describe the completeness of current trait coverage and identify global gaps to focus research efforts. The most commonly measured response traits (those related to growth/reproduction in individual organisms) and effect traits (those that directly affect community/ecosystem scale processes) fell into the categories of morphology (e.g., leaf area, shoot height) and nutrient storage/cycling, and our BFI revealed that these data were most commonly collected from temperate and boreal regions of Europe, North America, and East Asia. However, fewer than 10% of known moss species have available functional trait information. Our synthesis revealed a need for research on traits related to ontogeny, sex, and intraspecific plasticity and on co-measurement of traits related to water relations and bryophyte-mediated soil processes.
Collapse
Affiliation(s)
- Kirsten Coe
- Department of Biology, Middlebury, VT, 05753, USA
| | - Benjamin Carter
- Department of Biological Sciences, San Jose State University, San Jose, CA, 95192, USA
| | - Mandy Slate
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
- Present address: Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel Stanton
- Department of Ecology Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
12
|
Pacheco-Cancino PA, Carrillo-López RF, Sepulveda-Jauregui A, Somos-Valenzuela MA. Sphagnum mosses, the impact of disturbances and anthropogenic management actions on their ecological role in CO 2 fluxes generated in peatland ecosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e16972. [PMID: 37882506 DOI: 10.1111/gcb.16972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023]
Abstract
Mosses of the genus Sphagnum are the dominant vegetation in most pristine peatlands in temperate and high-latitude regions. They play a crucial role in carbon sequestration, being responsible for ca. 50% of carbon accumulation through their active participation in peat formation. They have a significant influence on the dynamics of CO2 emissions due to an efficient maximum potential photosynthetic rate, lower respiration rates, and the production of a recalcitrant litter whose decomposition is gradual. However, various anthropogenic disturbances and land use management actions that favor its reestablishment have the potential to modify the dynamics of these CO2 emissions. Therefore, the objective of this review is to discuss the role of Sphagnum in CO2 emissions generated in peatland ecosystems, and to understand the impacts of anthropogenic practices favorable and detrimental to Sphagnum on these emissions. Based on our review, increased Sphagnum cover reduces CO2 emissions and fosters C sequestration, but drainage transforms peatlands dominated by Sphagnum into a persistent source of CO2 due to lower gross primary productivity of the moss and increased respiration rates. Sites with moss removal used as donor material for peatland restoration emit twice as much CO2 as adjacent undisturbed natural sites, and those with commercial Sphagnum extraction generate almost neutral CO2 emissions, yet both can recover their sink status in the short term. The reintroduction of fragments and natural recolonization of Sphagnum in transitional peatlands, can reduce emissions, recover, or increase the CO2 sink function in the short and medium term. Furthermore, Sphagnum paludiculture is seen as a sustainable alternative for the use of transitional peatlands, allowing moss production strips to become CO2 sink, however, it is necessary to quantify the emissions of all the components of the field of production (ditches, causeway), and the biomass harvested from the moss to establish a final closing balance of C.
Collapse
Affiliation(s)
- Patricio A Pacheco-Cancino
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Temuco, Región de La Araucanía, Chile
- Doctorate in Agri-Food and Environmental Sciences, Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Temuco, Región de La Araucanía, Chile
| | - Rubén F Carrillo-López
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Temuco, Región de La Araucanía, Chile
| | - Armando Sepulveda-Jauregui
- Gaia Antarctic Research Center (CIGA), Universidad de Magallanes, Punta Arenas, Región de Magallanes y Antartica Chilena, Chile
- Network for Extreme Environment Research (NEXER), Universidad de Magallanes, Punta Arenas, Región de Magallanes y Antartica Chilena, Chile
| | - Marcelo A Somos-Valenzuela
- Department of Forest Sciences, Faculty of Agricultural and Environmental Science, Universidad de La Frontera, Temuco, Región de La Araucanía, Chile
| |
Collapse
|
13
|
Tang T, Martinenghi LD, Hounmanou YMG, Leisner JJ. Distribution and ecology of the generalist lactic acid bacterium Carnobacterium maltaromaticum in different freshwater habitats: Metabolic and antagonistic abilities. Environ Microbiol 2023; 25:3556-3576. [PMID: 37750577 DOI: 10.1111/1462-2920.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023]
Abstract
We explored the distribution, metabolic and antagonistic activities of Carnobacterium maltaromaticum, isolated from freshwater locations in Denmark during winter or early spring. This species was widely distributed in such habitats although it was relatively rare in low pH locations. Isolates possessed a diverse metabolism, potentially enabling functional capacities independent of habitat. The intraspecies competition showed a relatively high degree of mostly low-intensity interactions, which overall were not correlated with phylogeny or location. Only a few isolates exhibited broad-spectrum inhibition activity, targeting species from other genera and families, including one isolate that exhibited a broad inhibitory activity due to H2 O2 production. Bioinformatic analyses revealed that the frequency of bacteriocinogenic systems was low, and only one unmodified bacteriocin, piscicolin 126, correlated with phenotypic antagonistic activity. Furthermore, most potential bacteriocin gene complexes were not complete. Overall, this study showed C. maltaromaticum to be a generalist (nomadic) species with a constant presence in freshwater habitats, especially those with pH values >5. General metabolic properties did not suggest a strong degree of adaptation to the freshwater environment, and bacteriocin-mediated antagonistic activities appeared to play a minimal ecological role.
Collapse
Affiliation(s)
- Taya Tang
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Laura Daniela Martinenghi
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yaovi Mahuton Gildas Hounmanou
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jørgen J Leisner
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
14
|
Calderón Celis F, González-Álvarez I, Fabjanowicz M, Godin S, Ouerdane L, Lauga B, Łobiński R. Unveiling the Pool of Metallophores in Native Environments and Correlation with Their Potential Producers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17302-17311. [PMID: 37921623 DOI: 10.1021/acs.est.3c04582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
For many organisms, metallophores are essential biogenic ligands that ensure metal scavenging and acquisition from their environment. Their identification is challenging in highly organic matter rich environments like peatlands due to low solubilization and metal scarcity and high matrix complexity. In contrast to common approaches based on sample modification by spiking of metal isotope tags, we have developed a two-dimensional (2D) Solid-phase extraction-Liquid chromatography-mass spectrometry (SPE-LC-MS) approach for the highly sensitive (LOD 40 fmol per g of soil), high-resolution direct detection and identification of metallophores in both their noncomplexed (apo) and metal-complexed forms in native environments. The characterization of peat collected in the Bernadouze (France) peatland resulted in the identification of 53 metallophores by a database mass-based search, 36 among which are bacterial. Furthermore, the detection of the characteristic (natural) metal isotope patterns in MS resulted in the detection of both Fe and Cu potential complexes. A taxonomic-based inference method was implemented based on literature and public database (antiSMASH database version 3.0) searches, enabling to associate over 40% of the identified bacterial metallophores with potential producers. In some cases, low completeness with the MIBiG reference BCG might be indicative of alternative producers in the ecosystem. Thus, coupling of metallophore detection and producers' inference could pave a new way to investigate poorly documented environment searching for new metallophores and their producers yet unknown.
Collapse
Affiliation(s)
| | | | - Magdalena Fabjanowicz
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Simon Godin
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Laurent Ouerdane
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Béatrice Lauga
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Ryszard Łobiński
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
- Chair of Analytical Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
15
|
Seward J, Bräuer S, Beckett P, Roy-Léveillée P, Emilson E, Watmough S, Basiliko N. Recovery of Smelter-Impacted Peat and Sphagnum Moss: a Microbial Perspective. MICROBIAL ECOLOGY 2023; 86:2894-2903. [PMID: 37632540 DOI: 10.1007/s00248-023-02289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Peatlands store approximately one-half of terrestrial soil carbon and one-tenth of non-glacial freshwater. Some of these important ecosystems are located near heavy metal emitting smelters. To improve the understanding of smelter impacts and potential recovery after initial pollution controls in the 1970s (roughly 50 years of potential recovery), we sampled peatlands along a distance gradient of 134 km from a smelter in Sudbury, Ontario, Canada, an area with over a century of nickel (Ni) and copper (Cu) mining activity. This work is aimed at evaluating potential shifts in bacterial and archaeal community structures in Sphagnum moss and its underlying peat within smelter-impacted poor fens. In peat, total Ni and Cu concentrations were higher (0.062-0.067 and 0.110-0.208 mg/g, respectively) at sites close to the smelter and exponentially dropped with distance from the smelter. This exponential decrease in Ni concentrations was also observed in Sphagnum. 16S rDNA amplicon sequencing showed that peat and Sphagnum moss host distinct microbiomes with peat accommodating a more diverse community structure. The microbiomes of Sphagnum were dominated by Proteobacteria (62.5%), followed by Acidobacteria (11.9%), with no observable trends with distance from the smelter. Dominance of Acidobacteria (32.4%) and Proteobacteria (29.6%) in peat was reported across all sites. No drift in taxonomy was seen across the distance gradient or from the reference sites, suggesting a potential microbiome recovery toward that of the reference peatlands microbiomes after decades of pollution controls. These results advance the understanding of peat and Sphagnum moss microbiomes, as well as depict the sensitivities and the resilience of peatland ecosystems.
Collapse
Affiliation(s)
- James Seward
- Vale Living with Lakes Centre and the School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.
| | - Suzanna Bräuer
- Department of Biology, Appalachian State University, 572 Rivers Street, Boone, NC, 28608, USA
| | - Peter Beckett
- Vale Living with Lakes Centre and the School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada
| | - Pascale Roy-Léveillée
- Department of Geography, Université Laval, Pavillon Abitibi-Price, Quebec, G1V 0A6, Canada
| | - Erik Emilson
- Natural Resources Canada, Great Lakes Forestry Centre, 1219 Queen St. East, Sault Ste. Marie, ON, P6A 2E5, Canada
| | - Shaun Watmough
- School of the Environment, Trent University, Peterborough, Ontario, Canada
| | - Nathan Basiliko
- Department of Natural Resources Management, Lakehead University, 955 Oliver Rd., Thunder Bay, ON, P7B 5E1, Canada
| |
Collapse
|
16
|
Shaw AJ, Duffy AM, Nieto-Lugilde M, Aguero B, Schuette S, Robinson S, Loveland J, Hicks KA, Weston D, Piatkowski B, Kolton M, Koska JE, Healey AL. Clonality, local population structure and gametophyte sex ratios in cryptic species of the Sphagnum magellanicum complex. ANNALS OF BOTANY 2023; 132:77-94. [PMID: 37417448 PMCID: PMC10550268 DOI: 10.1093/aob/mcad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND AND AIMS Sphagnum (peatmoss) comprises a moss (Bryophyta) clade with ~300-500 species. The genus has unparalleled ecological importance because Sphagnum-dominated peatlands store almost a third of the terrestrial carbon pool and peatmosses engineer the formation and microtopography of peatlands. Genomic resources for Sphagnum are being actively expanded, but many aspects of their biology are still poorly known. Among these are the degree to which Sphagnum species reproduce asexually, and the relative frequencies of male and female gametophytes in these haploid-dominant plants. We assess clonality and gametophyte sex ratios and test hypotheses about the local-scale distribution of clones and sexes in four North American species of the S. magellanicum complex. These four species are difficult to distinguish morphologically and are very closely related. We also assess microbial communities associated with Sphagnum host plant clones and sexes at two sites. METHODS Four hundred and five samples of the four species, representing 57 populations, were subjected to restriction site-associated DNA sequencing (RADseq). Analyses of population structure and clonality based on the molecular data utilized both phylogenetic and phenetic approaches. Multi-locus genotypes (genets) were identified using the RADseq data. Sexes of sampled ramets were determined using a molecular approach that utilized coverage of loci on the sex chromosomes after the method was validated using a sample of plants that expressed sex phenotypically. Sex ratios were estimated for each species, and populations within species. Difference in fitness between genets was estimated as the numbers of ramets each genet comprised. Degrees of clonality [numbers of genets/numbers of ramets (samples)] within species, among sites, and between gametophyte sexes were estimated. Sex ratios were estimated for each species, and populations within species. Sphagnum-associated microbial communities were assessed at two sites in relation to Sphagnum clonality and sex. KEY RESULTS All four species appear to engage in a mixture of sexual and asexual (clonal) reproduction. A single ramet represents most genets but two to eight ramets were dsumbers ansd text etected for some genets. Only one genet is represented by ramets in multiple populations; all other genets are restricted to a single population. Within populations ramets of individual genets are spatially clustered, suggesting limited dispersal even within peatlands. Sex ratios are male-biased in S. diabolicum but female-biased in the other three species, although significantly so only in S. divinum. Neither species nor males/females differ in levels of clonal propagation. At St Regis Lake (NY) and Franklin Bog (VT), microbial community composition is strongly differentiated between the sites, but differences between species, genets and sexes were not detected. Within S. divinum, however, female gametophytes harboured two to three times the number of microbial taxa as males. CONCLUSIONS These four Sphagnum species all exhibit similar reproductive patterns that result from a mixture of sexual and asexual reproduction. The spatial patterns of clonally replicated ramets of genets suggest that these species fall between the so-called phalanx patterns, where genets abut one another but do not extensively mix because of limited ramet fragmentation, and the guerrilla patterns, where extensive genet fragmentation and dispersal result in greater mixing of different genets. Although sex ratios in bryophytes are most often female-biased, both male and female biases occur in this complex of closely related species. The association of far greater microbial diversity for female gametophytes in S. divinum, which has a female-biased sex ratio, suggests additional research to determine if levels of microbial diversity are consistently correlated with differing patterns of sex ratio biases.
Collapse
Affiliation(s)
- A Jonathan Shaw
- Department of Biology & L. E. Anderson Bryophyte Herbarium, Duke University, Durham, NC, 27708, USA
| | - Aaron M Duffy
- Department of Biology & L. E. Anderson Bryophyte Herbarium, Duke University, Durham, NC, 27708, USA
| | - Marta Nieto-Lugilde
- Department of Biology & L. E. Anderson Bryophyte Herbarium, Duke University, Durham, NC, 27708, USA
| | - Blanka Aguero
- Department of Biology & L. E. Anderson Bryophyte Herbarium, Duke University, Durham, NC, 27708, USA
| | - Scott Schuette
- Pennsylvania Natural Heritage Program, Western Pennsylvania Conservancy, Pittsburgh, PA, 15222, USA
| | - Sean Robinson
- Department of Biology, SUNY Oneonta, Oneonta, NY, 13820, USA
| | - James Loveland
- Department of Biology, Kenyon College, Gambier, OH 43022, USA
| | - Karen A Hicks
- Department of Biology, Kenyon College, Gambier, OH 43022, USA
| | - David Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Bryan Piatkowski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Max Kolton
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel
| | - Joel E Koska
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Adam L Healey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
17
|
Norby RJ, Baxter T, Živković T, Weston DJ. Shading contributes to Sphagnum decline in response to warming. Ecol Evol 2023; 13:e10542. [PMID: 37732286 PMCID: PMC10507575 DOI: 10.1002/ece3.10542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
Experimental warming of an ombrotrophic bog in northern Minnesota has caused a rapid decline in the productivity and areal cover of Sphagnum mosses, affecting whole-ecosystem carbon balance and biogeochemistry. Direct effects of elevated temperature and the attendant drying are most likely the primary cause of the effects on Sphagnum, but there may also be responses to the increased shading from shrubs, which increased with increasing temperature. To evaluate the independent effects of reduction in light availability and deposition of shrub litter on Sphagnum productivity, small plots with shrubs removed were laid out adjacent to the warming experiment on hummocks and hollows in three blocks and with five levels of shading. Four plots were covered with neutral density shade cloth to simulate shading from shrubs of 30%-90% reduction in light; one plot was left open. Growth of Sphagnum angustifolium/fallax and S. divinum declined linearly with increasing shade in hollows, but there was no response to shade on hummocks, where higher irradiance in the open plots may have been inhibitory. Shading caused etiolation of Sphagnum-they were thin and spindly under the deepest shade. A dense mat of shrub litter, corresponding to the amount of shrub litter produced in response to warming, did not inhibit Sphagnum growth or cause increases in potentially toxic base cations. CO2 exchange and chlorophyll-a fluorescence of S. angustifolium/fallax from the 30% and 90% shade cloth plots were measured in the laboratory. Light response curves indicate that maximal light saturated photosynthesis was 42% greater for S. angustifolium/fallax grown under 30% shade cloth relative to plants grown under 90% shade cloth. The response of Sphagnum growth in response to increasing shade is consistent with the hypothesis that increased shade resulting from shrub expansion in response to experimental warming contributed to reduced Sphagnum growth.
Collapse
Affiliation(s)
- Richard J Norby
- Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee USA
| | - Taylor Baxter
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee USA
| | - Tatjana Živković
- Department of Biology Dalhousie University Halifax Nova Scotia Canada
- Biological Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - David J Weston
- Biological Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| |
Collapse
|
18
|
Song T, Liu Y, Kolton M, Wilson RM, Keller JK, Rolando JL, Chanton JP, Kostka JE. Porewater constituents inhibit microbially mediated greenhouse gas production (GHG) and regulate the response of soil organic matter decomposition to warming in anoxic peat from a Sphagnum-dominated bog. FEMS Microbiol Ecol 2023; 99:fiad060. [PMID: 37280172 DOI: 10.1093/femsec/fiad060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023] Open
Abstract
Northern peatlands store approximately one-third of terrestrial soil carbon. Climate warming is expected to stimulate the microbially mediated degradation of peat soil organic matter (SOM), leading to increasing greenhouse gas (GHG; carbon dioxide, CO2; methane, CH4) production and emission. Porewater dissolved organic matter (DOM) plays a key role in SOM decomposition; however, the mechanisms controlling SOM decomposition and its response to warming remain unclear. The temperature dependence of GHG production and microbial community dynamics were investigated in anoxic peat from a Sphagnum-dominated peatland. In this study, peat decomposition, which was quantified by GHG production and carbon substrate utilization is limited by terminal electron acceptors (TEA) and DOM, and these controls of microbially mediated SOM degradation are temperature-dependent. Elevated temperature led to a slight decrease in microbial diversity, and stimulated the growth of specific methanotrophic and syntrophic taxa. These results confirm that DOM is a major driver of decomposition in peatland soils contains inhibitory compounds, but the inhibitory effect is alleviated by warming.
Collapse
Affiliation(s)
- Tianze Song
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Yutong Liu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States
- Department of Civil & Environmental Engineering, Pennsylvania State University, University Park, University Park, PA 16802, United States
| | - Max Kolton
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion, University of the Negev, Beer Sheva, 8499000, Israel
| | - Rachel M Wilson
- Department of Earth, Ocean & Atmospheric Science, Florida State University, Tallahassee, FL 32304, United States
| | - Jason K Keller
- Schmid College of Science and Technology, Chapman University, 1 University Dr, Orange, CA 92866, United States
| | - Jose L Rolando
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Jeffrey P Chanton
- Department of Earth, Ocean & Atmospheric Science, Florida State University, Tallahassee, FL 32304, United States
| | - Joel E Kostka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30318, United States
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
19
|
Petro C, Carrell AA, Wilson RM, Duchesneau K, Noble-Kuchera S, Song T, Iversen CM, Childs J, Schwaner G, Chanton JP, Norby RJ, Hanson PJ, Glass JB, Weston DJ, Kostka JE. Climate drivers alter nitrogen availability in surface peat and decouple N 2 fixation from CH 4 oxidation in the Sphagnum moss microbiome. GLOBAL CHANGE BIOLOGY 2023; 29:3159-3176. [PMID: 36999440 DOI: 10.1111/gcb.16651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/20/2022] [Indexed: 05/03/2023]
Abstract
Peat mosses (Sphagnum spp.) are keystone species in boreal peatlands, where they dominate net primary productivity and facilitate the accumulation of carbon in thick peat deposits. Sphagnum mosses harbor a diverse assemblage of microbial partners, including N2 -fixing (diazotrophic) and CH4 -oxidizing (methanotrophic) taxa that support ecosystem function by regulating transformations of carbon and nitrogen. Here, we investigate the response of the Sphagnum phytobiome (plant + constituent microbiome + environment) to a gradient of experimental warming (+0°C to +9°C) and elevated CO2 (+500 ppm) in an ombrotrophic peatland in northern Minnesota (USA). By tracking changes in carbon (CH4 , CO2 ) and nitrogen (NH4 -N) cycling from the belowground environment up to Sphagnum and its associated microbiome, we identified a series of cascading impacts to the Sphagnum phytobiome triggered by warming and elevated CO2 . Under ambient CO2 , warming increased plant-available NH4 -N in surface peat, excess N accumulated in Sphagnum tissue, and N2 fixation activity decreased. Elevated CO2 offset the effects of warming, disrupting the accumulation of N in peat and Sphagnum tissue. Methane concentrations in porewater increased with warming irrespective of CO2 treatment, resulting in a ~10× rise in methanotrophic activity within Sphagnum from the +9°C enclosures. Warming's divergent impacts on diazotrophy and methanotrophy caused these processes to become decoupled at warmer temperatures, as evidenced by declining rates of methane-induced N2 fixation and significant losses of keystone microbial taxa. In addition to changes in the Sphagnum microbiome, we observed ~94% mortality of Sphagnum between the +0°C and +9°C treatments, possibly due to the interactive effects of warming on N-availability and competition from vascular plant species. Collectively, these results highlight the vulnerability of the Sphagnum phytobiome to rising temperatures and atmospheric CO2 concentrations, with significant implications for carbon and nitrogen cycling in boreal peatlands.
Collapse
Affiliation(s)
- Caitlin Petro
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Rachel M Wilson
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA
| | - Katherine Duchesneau
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sekou Noble-Kuchera
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Tianze Song
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Colleen M Iversen
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Joanne Childs
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Geoff Schwaner
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jeffrey P Chanton
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA
| | - Richard J Norby
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Paul J Hanson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jennifer B Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Joel E Kostka
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Zobel M, Moora M, Pärtel M, Semchenko M, Tedersoo L, Öpik M, Davison J. The multiscale feedback theory of biodiversity. Trends Ecol Evol 2023; 38:171-182. [PMID: 36182404 DOI: 10.1016/j.tree.2022.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 01/21/2023]
Abstract
Plants and their environments engage in feedback loops that not only affect individuals, but also scale up to the ecosystem level. Community-level negative feedback facilitates local diversity, while the ability of plants to engineer ecosystem-wide conditions for their own benefit enhances local dominance. Here, we suggest that local and regional processes influencing diversity are inherently correlated: community-level negative feedback predominates among large species pools formed under historically common conditions; ecosystem-level positive feedback is most apparent in historically restricted habitats. Given enough time and space, evolutionary processes should lead to transitions between systems dominated by positive and negative feedbacks: species-poor systems should become richer due to diversification of dominants and adaptation of subordinates; however, new monodominants may emerge due to migration or new adaptations.
Collapse
Affiliation(s)
- Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia; Biology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
21
|
Biotic and Abiotic Control Over Diurnal CH4 Fluxes in a Temperate Transitional Poor Fen Ecosystem. Ecosystems 2022. [DOI: 10.1007/s10021-022-00809-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
22
|
Man B, Xiang X, Zhang J, Cheng G, Zhang C, Luo Y, Qin Y. Keystone Taxa and Predictive Functional Analysis of Sphagnum palustre Tank Microbiomes in Erxianyan Peatland, Central China. BIOLOGY 2022; 11:1436. [PMID: 36290340 PMCID: PMC9598613 DOI: 10.3390/biology11101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Sphagnum is a fundamental ecosystem of engineers, including more than 300 species around the world. These species host diverse microbes, either endosymbiotic or ectosymbiotic, and are key to carbon sequestration in peatland ecosystems. However, the linkages between different types of Sphagnum and the diversity and ecological functions of Sphagnum-associated microbiomes are poorly known, and so are their joint responses to ecological functions. Here, we systematically investigated endophytes in Sphagnum palustre via next-generation sequencing (NGS) techniques in the Erxianyan peatland, central China. The total bacterial microbiome was classified into 38 phyla and 55 classes, 122 orders and 490 genera. The top 8 phyla of Proteobacteria (33.69%), Firmicutes (11.94%), Bacteroidetes (9.42%), Actinobacteria (6.53%), Planctomycetes (6.37%), Gemmatimonadetes (3.05%), Acidobacteria (5.59%) and Cyanobacteria (1.71%) occupied 78.31% of total OTUs. The core microbiome of S. palustre was mainly distributed mainly in 7 phyla, 9 classes, 15 orders, 22 families and 43 known genera. There were many differences in core microbiomes compared to those in the common higher plants. We further demonstrate that the abundant functional groups have a substantial potential for nitrogen fixation, carbon cycle, nitrate metabolism, sulfate respiration and chitinolysis. These results indicate that potential ecological function of Sphagnum palustre in peatlands is partially rooted in its microbiomes, and that incorporating into functional groups of Sphagnum-associated microbiomes can promote mechanistic understanding of Sphagnum ecology in subalpine peatlands.
Collapse
Affiliation(s)
- Baiying Man
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Xing Xiang
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Junzhong Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Higher Education Institutions, South West Forestry University, Kunming 650224, China
| | - Gang Cheng
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Chao Zhang
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Yang Luo
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Yangmin Qin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
23
|
Crichton KA, Anderson K, Charman DJ, Gallego-Sala A. Seasonal climate drivers of peak NDVI in a series of Arctic peatlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156419. [PMID: 35662594 DOI: 10.1016/j.scitotenv.2022.156419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Changes in plant cover and productivity are important in driving Arctic soil carbon dynamics and sequestration, especially in peatlands. Warming trends in the Arctic are known to have resulted in changes in plant productivity, extent and community composition, but more data are still needed to improve understanding of the complex controls and processes involved. Here we assess plant productivity response to climate variability between 1985 and 2020 by comparing peak growing season NDVI (Normalised Difference Vegetation Index data from Landsat 5 and 7), to seasonal-average weather data (temperature, precipitation and snow-melt timing) in nine locations containing peatlands in high- and low-Arctic regions in Europe and Canada. We find that spring (correlation 0.36 for peat dominant and 0.39 for mosaic; MLR coefficient 0.20 for peat, 0.29 for mosaic), summer (0.47, 0.42; 0.18, 0.17) and preceding-autumn (0.35, 0.25; 0.33, 0.27) temperature are linked to peak growing season NDVI at our sites between 1985 and 2020, whilst spring snow melt timing (0.42, 0.45; 0.25, 0.32) is also important, and growing season water availability is likely site-specific. According to regression trees, a warm preceding autumn (September-October-November) is more important than a warm summer (June-July-August) in predicting the highest peak season productivity in the peat-dominated areas. Mechanisms linked to soil processes may explain the importance of previous-Autumn conditions on productivity. We further find that peak productivity increases in these Arctic peatlands are comparable to those in the surrounding non-peatland-dominant vegetation. Increased productivity in and around Arctic peatlands suggests a potential to increased soil carbon sequestration with future warming, but further work is needed to test whether this is evident in observations of recent peat accumulation and extent.
Collapse
Affiliation(s)
| | - Karen Anderson
- Department of Geography, University of Exeter, Exeter, UK
| | - Dan J Charman
- Department of Geography, University of Exeter, Exeter, UK
| | | |
Collapse
|
24
|
Panis F, Rompel A. The Novel Role of Tyrosinase Enzymes in the Storage of Globally Significant Amounts of Carbon in Wetland Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11952-11968. [PMID: 35944157 PMCID: PMC9454253 DOI: 10.1021/acs.est.2c03770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 05/30/2023]
Abstract
Over the last millennia, wetlands have been sequestering carbon from the atmosphere via photosynthesis at a higher rate than releasing it and, therefore, have globally accumulated 550 × 1015 g of carbon, which is equivalent to 73% of the atmospheric carbon pool. The accumulation of organic carbon in wetlands is effectuated by phenolic compounds, which suppress the degradation of soil organic matter by inhibiting the activity of organic-matter-degrading enzymes. The enzymatic removal of phenolic compounds by bacterial tyrosinases has historically been blocked by anoxic conditions in wetland soils, resulting from waterlogging. Bacterial tyrosinases are a subgroup of oxidoreductases that oxidatively remove phenolic compounds, coupled to the reduction of molecular oxygen to water. The biochemical properties of bacterial tyrosinases have been investigated thoroughly in vitro within recent decades, while investigations focused on carbon fluxes in wetlands on a macroscopic level have remained a thriving yet separated research area so far. In the wake of climate change, however, anoxic conditions in wetland soils are threatened by reduced rainfall and prolonged summer drought. This potentially allows tyrosinase enzymes to reduce the concentration of phenolic compounds, which in turn will increase the release of stored carbon back into the atmosphere. To offer compelling evidence for the novel concept that bacterial tyrosinases are among the key enzymes influencing carbon cycling in wetland ecosystems first, bacterial organisms indigenous to wetland ecosystems that harbor a TYR gene within their respective genome (tyr+) have been identified, which revealed a phylogenetically diverse community of tyr+ bacteria indigenous to wetlands based on genomic sequencing data. Bacterial TYR host organisms covering seven phyla (Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Nitrospirae, Planctomycetes, and Proteobacteria) have been identified within various wetland ecosystems (peatlands, marshes, mangrove forests, bogs, and alkaline soda lakes) which cover a climatic continuum ranging from high arctic to tropic ecosystems. Second, it is demonstrated that (in vitro) bacterial TYR activity is commonly observed at pH values characteristic for wetland ecosystems (ranging from pH 3.5 in peatlands and freshwater swamps to pH 9.0 in soda lakes and freshwater marshes) and toward phenolic compounds naturally present within wetland environments (p-coumaric acid, gallic acid, protocatechuic acid, p-hydroxybenzoic acid, caffeic acid, catechin, and epicatechin). Third, analyzing the available data confirmed that bacterial host organisms tend to exhibit in vitro growth optima at pH values similar to their respective wetland habitats. Based on these findings, it is concluded that, following increased aeration of previously anoxic wetland soils due to climate change, TYRs are among the enzymes capable of reducing the concentration of phenolic compounds present within wetland ecosystems, which will potentially destabilize vast amounts of carbon stored in these ecosystems. Finally, promising approaches to mitigate the detrimental effects of increased TYR activity in wetland ecosystems and the requirement of future investigations of the abundance and activity of TYRs in an environmental setting are presented.
Collapse
|
25
|
Renaudin M, Laforest-Lapointe I, Bellenger JP. Unraveling global and diazotrophic bacteriomes of boreal forest floor feather mosses and their environmental drivers at the ecosystem and at the plant scale in North America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155761. [PMID: 35533858 DOI: 10.1016/j.scitotenv.2022.155761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Feather mosses are abundant cryptogams of the boreal forest floor and shelter a broad diversity of bacteria who have important ecological functions (e.g., decomposition, nutrient cycling). In particular, nitrogen (N2-) fixation performed by feather moss-associated diazotrophs constitutes an important entry of nitrogen in the boreal forest ecosystem. However, the composition of the feather moss bacteriome and its environmental drivers are still unclear. Using cDNA amplicon sequencing of the 16S rRNA and nifH genes and cyanobacterial biomass quantification, we explored the active global and diazotrophic bacterial communities of two dominant feather moss species (i) at the ecosystem scale, along a 500-km climatic and nutrient deposition gradient in the North American boreal forest, and (ii) at the plant scale, along the moss shoot senescence gradient. We found that cyanobacteria were major actors of the feather moss bacteriome, accounting for 33% of global bacterial communities and 65% of diazotrophic communities, and that several cyanobacterial and methanotrophic genera were contributing to N2-fixation. Moreover, we showed that bacteria were occupying ecological niches along the moss shoot, with phototrophs being dominant in the apical part and methanotrophs being dominant in the basal part. Finally, climate (temperature, precipitation), environmental variables (moss species, month, tree density) and nutrients (nitrogen, phosphorus, molybdenum, vanadium, iron) strongly shaped global and diazotrophic bacteriomes. In summary, this work presents evidence that the feather moss bacteriome plays crucial roles in supporting moss growth, health, and decomposition, as well as in the boreal forest carbon and nitrogen cycles. This study also highlights the substantial effects of climate and nutrients on the feather moss bacteriome, suggesting the importance of understanding the impacts of global change on moss-associated bacterial growth and activity.
Collapse
Affiliation(s)
- Marie Renaudin
- Centre Sève, Département de Chimie, Université de Sherbrooke, J1K 2R1 Sherbrooke, QC, Canada.
| | | | - Jean-Philippe Bellenger
- Centre Sève, Département de Chimie, Université de Sherbrooke, J1K 2R1 Sherbrooke, QC, Canada.
| |
Collapse
|
26
|
Rousk K. Biotic and abiotic controls of nitrogen fixation in cyanobacteria-moss associations. THE NEW PHYTOLOGIST 2022; 235:1330-1335. [PMID: 35687087 DOI: 10.1111/nph.18264] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Most mosses are colonized by nitrogen (N)-fixing cyanobacteria. This discovery is relatively recent, which can explain the large knowledge gaps the field is now tackling. For instance, while we have a good understanding of the abiotic controls (e.g. nutrient availability, increased temperature), we still do not know much about the biotic controls of N2 fixation in mosses. I propose here that we should endeavour to position moss-cyanobacteria associations along the mutualism-parasitism continuum under varying abiotic conditions (e.g. nutrient availability). This would finally unravel the nature of the relationship between the partners and will be a big leap in our understanding of the evolution of plant-bacteria interactions using moss-cyanobacteria associations as a model system.
Collapse
Affiliation(s)
- Kathrin Rousk
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| |
Collapse
|
27
|
Chen KH, Nelson J. A scoping review of bryophyte microbiota: diverse microbial communities in small plant packages. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4496-4513. [PMID: 35536989 DOI: 10.1093/jxb/erac191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Plant health depends not only on the condition of the plant itself but also on its diverse community of microbes, or microbiota. Just like the better-studied angiosperms, bryophytes (mosses, liverworts, and hornworts) harbor diverse communities of bacteria, archaea, fungi, and other microbial eukaryotes. Bryophytes are increasingly recognized as important model systems for understanding plant evolution, development, physiology, and symbiotic interactions. Much of the work on bryophyte microbiota in the past focused on specific symbiont types for each bryophyte group, but more recent studies are taking a broader view acknowledging the coexistence of diverse microbial communities in bryophytes. Therefore, this review integrates studies of bryophyte microbes from both perspectives to provide a holistic view of the existing research for each bryophyte group and on key themes. The systematic search also reveals the taxonomic and geographic biases in this field, including a severe under-representation of the tropics, very few studies on viruses or eukaryotic microbes beyond fungi, and a focus on mycorrhizal fungi studies in liverworts. Such gaps may have led to errors in conclusions about evolutionary patterns in symbiosis. This analysis points to a wealth of future research directions that promise to reveal how the distinct life cycles and physiology of bryophytes interact with their microbiota.
Collapse
Affiliation(s)
- Ko-Hsuan Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jessica Nelson
- Maastricht Science Programme, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
28
|
Alvarenga DO, Rousk K. Unraveling host-microbe interactions and ecosystem functions in moss-bacteria symbioses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4473-4486. [PMID: 35728619 DOI: 10.1093/jxb/erac091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Mosses are non-vascular plants usually found in moist and shaded areas, with great ecological importance in several ecosystems. This is especially true in northern latitudes, where mosses are responsible for up to 100% of primary production in some ecosystems. Mosses establish symbiotic associations with unique bacteria that play key roles in the carbon and nitrogen cycles. For instance, in boreal environments, more than 35% of the nitrogen fixed by diazotrophic symbionts in peatlands is transferred to mosses, directly affecting carbon fixation by the hosts, while moss-associated methanotrophic bacteria contribute 10-30% of moss carbon. Further, half of ecosystem N input may derive from moss-cyanobacteria associations in pristine ecosystems. Moss-bacteria interactions have consequences on a global scale since northern environments sequester 20% of all the carbon generated by forests in the world and stock at least 32% of global terrestrial carbon. Different moss hosts influence bacteria in distinct ways, which suggests that threats to mosses also threaten unique microbial communities with important ecological and biogeochemical consequences. Since their origin ~500 Ma, mosses have interacted with bacteria, making these associations ideal models for understanding the evolution of plant-microbe associations and their contribution to biogeochemical cycles.
Collapse
Affiliation(s)
- Danillo O Alvarenga
- Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
- Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| | - Kathrin Rousk
- Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
- Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| |
Collapse
|
29
|
Changes in Soil Microbial Community and Carbon Flux Regime across a Subtropical Montane Peatland-to-Forest Successional Series in Taiwan. FORESTS 2022. [DOI: 10.3390/f13060958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Subtropical montane peatland is among several rare ecosystems that continue to receive insufficient scientific exploration. We analyzed the vegetation types and soil bacterial composition, as well as surface carbon dioxide and methane fluxes along a successional peatland-to-upland-forest series in one such ecosystem in Taiwan. The Yuanyang Lake (YYL) study site is characterized by low temperature, high precipitation, prevailing fog, and acidic soil, which are typical conditions for the surrounding dominant Chamaecyparis obtusa var. formosana forest. Bacterial communities were dominated by Acidobacteriota and Proteobacteria. Along the bog-to-forest gradient, Proteobacteria decreased and Acidobacteriota increased while CO2 fluxes increased and CH4 fluxes decreased. Principal coordinate analysis allowed separating samples into four clusters, which correspond to samples from the bog, marsh, forest, and forest outside of the watershed. The majority of bacterial genera were found in all plots, suggesting that these communities can easily switch to other types. Variation among samples from the same vegetation type suggests influence of habitat heterogeneity on bacterial community composition. Variations of soil water content and season caused the variations of carbon fluxes. While CO2 flux decreased exponentially with increasing soil water content, the CH4 fluxes exhibited an exponential increase together with soil water content. Because YYL is in a process of gradual terrestrialization, especially under the warming climate, we expect changes in microbial composition and the greenhouse gas budget at the landscape scale within the next decades.
Collapse
|
30
|
Cao C, Huang J, Ge L, Li T, Bu ZJ, Wang S, Wang Z, Liu Z, Liu S, Wang M. Does Shift in Vegetation Abundance After Nitrogen and Phosphorus Additions Play a Key Role in Regulating Fungal Community Structure in a Northern Peatland? Front Microbiol 2022; 13:920382. [PMID: 35756014 PMCID: PMC9224414 DOI: 10.3389/fmicb.2022.920382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 11/26/2022] Open
Abstract
Soil fungal communities are key players in biogeochemical processes of peatlands, which are important carbon stocks globally. Although it has been elucidated that fungi are susceptible to environmental changes, little is known about the intricate and interactive effect of long-term nitrogen (N) and phosphorus (P) enrichment on fungal community structure in northern peatlands. In this study, we compared a short- (2 years) with a long-term (10 years) fertilization experiment in a peatland complex in northeastern China to assess how N and/or P additions influence fungal community structure. The results showed that fungal community composition and diversity were altered by N addition, without a significant interactive effect with P addition. Not only the long-term but also the short-term nutrient addition could change the abundance of different plant functional types. However, there were no strong cascading effects on the fungal community in any of the fertilization experiments. Long-term nutrient addition showed a stronger effect on the relative abundance of different fungal functional guilds; an increase in the relative abundance of saprotrophs after fertilization did not jeopardize mycorrhizal fungi. Moreover, the decline in Sphagnum cover after long-term N addition did not parallel changes in the relative abundance of Sphagnum-associated fungi (Clavaria sphagnicola, Galerina tibiicystis, G. sphagnicola, and G. paludosa). Given that short- and long-term fertilization showed strongly contrasting effects on fungal community structure, our study highlights the necessity of assessing the long-term effects of nutrient enrichment on the association between vegetation and fungal community in peatland ecosystems. Future research priorities should emphasize the connection between the community structure of fungal functional guilds and their functionality, which is of paramount importance to better understand their influences on C storage in the face of uncertain N and P deposition regimes.
Collapse
Affiliation(s)
- Chenhao Cao
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun, China
| | - Jingjing Huang
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Xianyang, China
| | - Leming Ge
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun, China
| | - Tong Li
- School of Geographic Sciences, Hunan Normal University, Changsha, China
| | - Zhao-Jun Bu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun, China
| | - Shengzhong Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun, China
| | - Zucheng Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun, China
| | - Ziping Liu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Shasha Liu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Meng Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun, China
| |
Collapse
|
31
|
Carrell AA, Lawrence TJ, Cabugao KGM, Carper DL, Pelletier DA, Lee JH, Jawdy SS, Grimwood J, Schmutz J, Hanson PJ, Shaw AJ, Weston DJ. Habitat-adapted microbial communities mediate Sphagnum peatmoss resilience to warming. THE NEW PHYTOLOGIST 2022; 234:2111-2125. [PMID: 35266150 PMCID: PMC9310625 DOI: 10.1111/nph.18072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/21/2022] [Indexed: 05/19/2023]
Abstract
Sphagnum peatmosses are fundamental members of peatland ecosystems, where they contribute to the uptake and long-term storage of atmospheric carbon. Warming threatens Sphagnum mosses and is known to alter the composition of their associated microbiome. Here, we use a microbiome transfer approach to test if microbiome thermal origin influences host plant thermotolerance. We leveraged an experimental whole-ecosystem warming study to collect field-grown Sphagnum, mechanically separate the associated microbiome and then transfer onto germ-free laboratory Sphagnum for temperature experiments. Host and microbiome dynamics were assessed with growth analysis, Chla fluorescence imaging, metagenomics, metatranscriptomics and 16S rDNA profiling. Microbiomes originating from warming field conditions imparted enhanced thermotolerance and growth recovery at elevated temperatures. Metagenome and metatranscriptome analyses revealed that warming altered microbial community structure in a manner that induced the plant heat shock response, especially the HSP70 family and jasmonic acid production. The heat shock response was induced even without warming treatment in the laboratory, suggesting that the warm-microbiome isolated from the field provided the host plant with thermal preconditioning. Our results demonstrate that microbes, which respond rapidly to temperature alterations, can play key roles in host plant growth response to rapidly changing environments.
Collapse
Affiliation(s)
- Alyssa A. Carrell
- Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37831USA
| | - Travis J. Lawrence
- Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37831USA
| | - Kristine Grace M. Cabugao
- Bredesen Center for Interdisciplinary Research and Graduate EducationUniversity of Tennessee1502 Cumberland Ave.KnoxvilleTN37996USA
| | - Dana L. Carper
- Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37831USA
| | - Dale A. Pelletier
- Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37831USA
| | - Jun Hyung Lee
- Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37831USA
| | - Sara S. Jawdy
- Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37831USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology601 Genome WayHuntsvilleAL35806USA
- Department of Energy Joint Genome InstituteLawrence Berkeley National Lab1 Cyclotron Rd.BerkeleyCA94720USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology601 Genome WayHuntsvilleAL35806USA
- Department of Energy Joint Genome InstituteLawrence Berkeley National Lab1 Cyclotron Rd.BerkeleyCA94720USA
| | - Paul J. Hanson
- Environmental Sciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37831USA
| | | | - David J. Weston
- Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RdOak RidgeTN37831USA
| |
Collapse
|
32
|
Klarenberg IJ, Keuschnig C, Russi Colmenares AJ, Warshan D, Jungblut AD, Jónsdóttir IS, Vilhelmsson O. Long-term warming effects on the microbiome and nifH gene abundance of a common moss species in sub-Arctic tundra. THE NEW PHYTOLOGIST 2022; 234:2044-2056. [PMID: 34719786 DOI: 10.1111/nph.17837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Bacterial communities form the basis of biogeochemical processes and determine plant growth and health. Mosses harbour diverse bacterial communities that are involved in nitrogen fixation and carbon cycling. Global climate change is causing changes in aboveground plant biomass and shifting species composition in the Arctic, but little is known about the response of moss microbiomes in these environments. Here, we studied the total and potentially active bacterial communities associated with Racomitrium lanuginosum in response to a 20-yr in situ warming in an Icelandic heathland. We evaluated the effect of warming and warming-induced shrub expansion on the moss bacterial community composition and diversity, and nifH gene abundance. Warming changed both the total and the potentially active bacterial community structure, while litter abundance only affected the total bacterial community structure. The abundance of nifH genes was negatively affected by litter abundance. We also found shifts in the potentially nitrogen-fixing community, with Nostoc decreasing and noncyanobacterial diazotrophs increasing in relative abundance. Our data suggest that the moss microbial community and potentially nitrogen fixing taxa will be sensitive to future warming, partly via changes in litter and shrub abundance.
Collapse
Affiliation(s)
- Ingeborg J Klarenberg
- Natural Resource Sciences, University of Akureyri, Borgir i Nordurslod, Akureyri, 600, Iceland
- Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 102, Reykjavík, Iceland
| | - Christoph Keuschnig
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Avenue Guy de Collongue 36, Écully, 69134, France
| | - Ana J Russi Colmenares
- Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 102, Reykjavík, Iceland
| | - Denis Warshan
- Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 102, Reykjavík, Iceland
| | - Anne D Jungblut
- Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Ingibjörg S Jónsdóttir
- Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 102, Reykjavík, Iceland
| | - Oddur Vilhelmsson
- Natural Resource Sciences, University of Akureyri, Borgir i Nordurslod, Akureyri, 600, Iceland
- BioMedical Center, University of Iceland, Vatnsmýrarvegur 16, 101, Reykjavík, Iceland
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AJ, UK
| |
Collapse
|
33
|
Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. THE ISME JOURNAL 2022; 16:1074-1085. [PMID: 34845335 PMCID: PMC8941135 DOI: 10.1038/s41396-021-01136-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022]
Abstract
Interactions between Sphagnum (peat moss) and cyanobacteria play critical roles in terrestrial carbon and nitrogen cycling processes. Knowledge of the metabolites exchanged, the physiological processes involved, and the environmental conditions allowing the formation of symbiosis is important for a better understanding of the mechanisms underlying these interactions. In this study, we used a cross-feeding approach with spatially resolved metabolite profiling and metatranscriptomics to characterize the symbiosis between Sphagnum and Nostoc cyanobacteria. A pH gradient study revealed that the Sphagnum–Nostoc symbiosis was driven by pH, with mutualism occurring only at low pH. Metabolic cross-feeding studies along with spatially resolved matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) identified trehalose as the main carbohydrate source released by Sphagnum, which were depleted by Nostoc along with sulfur-containing choline-O-sulfate, taurine and sulfoacetate. In exchange, Nostoc increased exudation of purines and amino acids. Metatranscriptome analysis indicated that Sphagnum host defense was downregulated when in direct contact with the Nostoc symbiont, but not as a result of chemical contact alone. The observations in this study elucidated environmental, metabolic, and physiological underpinnings of the widespread plant–cyanobacterial symbioses with important implications for predicting carbon and nitrogen cycling in peatland ecosystems as well as the basis of general host-microbe interactions.
Collapse
|
34
|
Defining the
Sphagnum
Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio 2022. [PMCID: PMC8863050 DOI: 10.1128/mbio.03714-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peat mosses of the genus Sphagnum are ecosystem engineers that frequently predominate over photosynthetic production in boreal peatlands. Sphagnum spp. host diverse microbial communities capable of nitrogen fixation (diazotrophy) and methane oxidation (methanotrophy), thereby potentially supporting plant growth under severely nutrient-limited conditions. Moreover, diazotrophic methanotrophs represent a possible “missing link” between the carbon and nitrogen cycles, but the functional contributions of the Sphagnum-associated microbiome remain in question. A combination of metagenomics, metatranscriptomics, and dual-isotope incorporation assays was applied to investigate Sphagnum microbiome community composition across the North American continent and provide empirical evidence for diazotrophic methanotrophy in Sphagnum-dominated ecosystems. Remarkably consistent prokaryotic communities were detected in over 250 Sphagnum SSU rRNA libraries from peatlands across the United States (5 states, 17 bog/fen sites, 18 Sphagnum species), with 12 genera of the core microbiome comprising 60% of the relative microbial abundance. Additionally, nitrogenase (nifH) and SSU rRNA gene amplicon analysis revealed that nitrogen-fixing populations made up nearly 15% of the prokaryotic communities, predominated by Nostocales cyanobacteria and Rhizobiales methanotrophs. While cyanobacteria comprised the vast majority (>95%) of diazotrophs detected in amplicon and metagenome analyses, obligate methanotrophs of the genus Methyloferula (order Rhizobiales) accounted for one-quarter of transcribed nifH genes. Furthermore, in dual-isotope tracer experiments, members of the Rhizobiales showed substantial incorporation of 13CH4 and 15N2 isotopes into their rRNA. Our study characterizes the core Sphagnum microbiome across large spatial scales and indicates that diazotrophic methanotrophs, here defined as obligate methanotrophs of the rare biosphere (Methyloferula spp. of the Rhizobiales) that also carry out diazotrophy, play a keystone role in coupling of the carbon and nitrogen cycles in nutrient-poor peatlands.
Collapse
|
35
|
Etto RM, Jesus EDC, Cruz LM, Schneider BSF, Tomachewski D, Urrea-Valencia S, Gonçalves DRP, Galvão F, Ayub RA, Curcio GR, Steffens MBR, Galvão CW. Influence of environmental factors on the tropical peatlands diazotrophic communities from the Southern Brazilian Atlantic Rain Forest. Lett Appl Microbiol 2021; 74:543-554. [PMID: 34951701 DOI: 10.1111/lam.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/10/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
Abstract
The tropical peatlands of southern Brazil are essential for the maintenance of the Atlantic Rain Forest, one of the 25 hotspots of biodiversity in the world. Although diazotrophic microorganisms are essential for the maintenance of this nitrogen limited ecosystem, so far studies have focused only on microorganisms involved in the carbon cycle. In this work, peat samples were collected from three tropical peatland regions during dry and rainy seasons and their chemical and microbial characteristics were evaluated. Our results showed that the structure of the diazotrophic communities in the Brazilian tropical peatlands differs in the evaluated seasons. The abundance of the genus Bradyrhizobium showed to be affected by rainfall and peat pH. Despite the shifts of the nitrogen fixing population in the tropical peatland caused by seasonality it showed to be constantly dominated by α-Proteobacteria followed by Cyanobacteria. In addition, more than 50% of nifH gene sequences have not been classified, indicating the necessity for more studies in tropical peatland, since the reduction of N supply in the peatlands stimulates the recalcitrant organic matter decomposition performed by peatland microorganisms, influencing the C stock.
Collapse
Affiliation(s)
- Rafael Mazer Etto
- Microbial Molecular Biology Laboratory, State University of Ponta Grossa, CEP, 84030-900, Ponta Grossa - PR, Brazil
| | | | - Leonardo Magalhães Cruz
- Nucleus of Nitrogen Fixation, Federal University of Paraná, CEP, 81531-980, Curitiba - PR, Brazil
| | | | - Douglas Tomachewski
- Microbial Molecular Biology Laboratory, State University of Ponta Grossa, CEP, 84030-900, Ponta Grossa - PR, Brazil
| | - Salomé Urrea-Valencia
- Microbial Molecular Biology Laboratory, State University of Ponta Grossa, CEP, 84030-900, Ponta Grossa - PR, Brazil
| | - Daniel Ruiz Potma Gonçalves
- Microbial Molecular Biology Laboratory, State University of Ponta Grossa, CEP, 84030-900, Ponta Grossa - PR, Brazil
| | - Franklin Galvão
- Forest Ecology Laboratory, Universidade Federal do Paraná, CEP, 80210-170, Curitiba - PR, Brazil
| | - Ricardo Antônio Ayub
- Applied Biotechnology Laboratory, State University of Ponta Grossa, CEP, 84030-900, Ponta Grossa - PR, Brazil
| | | | | | - Carolina Weigert Galvão
- Microbial Molecular Biology Laboratory, State University of Ponta Grossa, CEP, 84030-900, Ponta Grossa - PR, Brazil
| |
Collapse
|
36
|
Lamit LJ, Romanowicz KJ, Potvin LR, Lennon JT, Tringe SG, Chimner RA, Kolka RK, Kane ES, Lilleskov EA. Peatland microbial community responses to plant functional group and drought are depth-dependent. Mol Ecol 2021; 30:5119-5136. [PMID: 34402116 DOI: 10.1111/mec.16125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022]
Abstract
Peatlands store one-third of Earth's soil carbon, the stability of which is uncertain due to climate change-driven shifts in hydrology and vegetation, and consequent impacts on microbial communities that mediate decomposition. Peatland carbon cycling varies over steep physicochemical gradients characterizing vertical peat profiles. However, it is unclear how drought-mediated changes in plant functional groups (PFGs) and water table (WT) levels affect microbial communities at different depths. We combined a multiyear mesocosm experiment with community sequencing across a 70-cm depth gradient, to test the hypotheses that vascular PFGs (Ericaceae vs. sedges) and WT (high vs. low) structure peatland microbial communities in depth-dependent ways. Several key results emerged. (i) Both fungal and prokaryote (bacteria and archaea) community structure shifted with WT and PFG manipulation, but fungi were much more sensitive to PFG whereas prokaryotes were much more sensitive to WT. (ii) PFG effects were largely driven by Ericaceae, although sedge effects were evident in specific cases (e.g., methanotrophs). (iii) Treatment effects varied with depth: the influence of PFG was strongest in shallow peat (0-10, 10-20 cm), whereas WT effects were strongest at the surface and middle depths (0-10, 30-40 cm), and all treatment effects waned in the deepest peat (60-70 cm). Our results underline the depth-dependent and taxon-specific ways that plant communities and hydrologic variability shape peatland microbial communities, pointing to the importance of understanding how these factors integrate across soil profiles when examining peatland responses to climate change.
Collapse
Affiliation(s)
- Louis J Lamit
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Karl J Romanowicz
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Lynette R Potvin
- USDA Forest Service Northern Research Station, Houghton, Michigan, USA
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Susannah G Tringe
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Rodney A Chimner
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Randall K Kolka
- USDA Forest Service Northern Research Station, Grand Rapids, Minnesota, USA
| | - Evan S Kane
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA.,USDA Forest Service Northern Research Station, Houghton, Michigan, USA
| | - Erik A Lilleskov
- USDA Forest Service Northern Research Station, Houghton, Michigan, USA
| |
Collapse
|
37
|
Wicaksono WA, Cernava T, Berg C, Berg G. Bog ecosystems as a playground for plant-microbe coevolution: bryophytes and vascular plants harbour functionally adapted bacteria. MICROBIOME 2021; 9:170. [PMID: 34380552 PMCID: PMC8359052 DOI: 10.1186/s40168-021-01117-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/21/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Bogs are unique ecosystems inhabited by distinctive, coevolved assemblages of organisms, which play a global role for carbon storage, climate stability, water quality and biodiversity. To understand ecology and plant-microbe co-occurrence in bogs, we selected 12 representative species of bryophytes and vascular plants and subjected them to a shotgun metagenomic sequencing approach. We explored specific plant-microbe associations as well as functional implications of the respective communities on their host plants and the bog ecosystem. RESULTS Microbial communities were shown to be functionally adapted to their plant hosts; a higher colonization specificity was found for vascular plants. Bryophytes that commonly constitute the predominant Sphagnum layer in bogs were characterized by a higher bacterial richness and diversity. Each plant group showed an enrichment of distinct phylogenetic and functional bacterial lineages. Detailed analyses of the metabolic potential of 28 metagenome-assembled genomes (MAGs) supported the observed functional specification of prevalent bacteria. We found that novel lineages of Betaproteobacteria and Actinobacteria in the bog environment harboured genes required for carbon fixation via RuBisCo. Interestingly, several of the highly abundant bacteria in both plant types harboured pathogenicity potential and carried similar virulence factors as found with corresponding human pathogens. CONCLUSIONS The unexpectedly high specificity of the plant microbiota reflects intimate plant-microbe interactions and coevolution in bog environments. We assume that the detected pathogenicity factors might be involved in coevolution processes, but the finding also reinforces the role of the natural plant microbiota as a potential reservoir for human pathogens. Overall, the study demonstrates how plant-microbe assemblages can ensure stability, functioning and ecosystem health in bogs. It also highlights the role of bog ecosystems as a playground for plant-microbe coevolution. Video abstract.
Collapse
Affiliation(s)
- Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Christian Berg
- Institute of Plant Sciences, University of Graz, Graz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Postdam, Postdam, Germany
| |
Collapse
|
38
|
Obermeier MM, Wicaksono WA, Taffner J, Bergna A, Poehlein A, Cernava T, Lindstaedt S, Lovric M, Müller Bogotá CA, Berg G. Plant resistome profiling in evolutionary old bog vegetation provides new clues to understand emergence of multi-resistance. THE ISME JOURNAL 2021; 15:921-937. [PMID: 33177608 PMCID: PMC8027415 DOI: 10.1038/s41396-020-00822-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022]
Abstract
The expanding antibiotic resistance crisis calls for a more in depth understanding of the importance of antimicrobial resistance genes (ARGs) in pristine environments. We, therefore, studied the microbiome associated with Sphagnum moss forming the main vegetation in undomesticated, evolutionary old bog ecosystems. In our complementary analysis of culture collections, metagenomic data and a fosmid library from different geographic sites in Europe, we identified a low abundant but highly diverse pool of resistance determinants, which targets an unexpectedly broad range of 29 antibiotics including natural and synthetic compounds. This derives both, from the extraordinarily high abundance of efflux pumps (up to 96%), and the unexpectedly versatile set of ARGs underlying all major resistance mechanisms. Multi-resistance was frequently observed among bacterial isolates, e.g. in Serratia, Rouxiella, Pandoraea, Paraburkholderia and Pseudomonas. In a search for novel ARGs, we identified the new class A β-lactamase Mm3. The native Sphagnum resistome comprising a highly diversified and partially novel set of ARGs contributes to the bog ecosystem´s plasticity. Our results reinforce the ecological link between natural and clinically relevant resistomes and thereby shed light onto this link from the aspect of pristine plants. Moreover, they underline that diverse resistomes are an intrinsic characteristic of plant-associated microbial communities, they naturally harbour many resistances including genes with potential clinical relevance.
Collapse
Affiliation(s)
- Melanie Maria Obermeier
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
- ACIB GmbH, Krenngasse 37/II, 8010, Graz, Austria
| | - Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Julian Taffner
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Alessandro Bergna
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
- ACIB GmbH, Krenngasse 37/II, 8010, Graz, Austria
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstrasse 8, 37077, Göttingen, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Stefanie Lindstaedt
- Know-Center GmbH, Research Center for Data-Driven Business & Big Data Analytics, Infeldgasse 13/VI, 8010, Graz, Austria
| | - Mario Lovric
- Know-Center GmbH, Research Center for Data-Driven Business & Big Data Analytics, Infeldgasse 13/VI, 8010, Graz, Austria
| | - Christina Andrea Müller Bogotá
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria.
- ACIB GmbH, Krenngasse 37/II, 8010, Graz, Austria.
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
- ACIB GmbH, Krenngasse 37/II, 8010, Graz, Austria
| |
Collapse
|
39
|
Robroek BJM, Martí M, Svensson BH, Dumont MG, Veraart AJ, Jassey VEJ. Rewiring of peatland plant–microbe networks outpaces species turnover. OIKOS 2021. [DOI: 10.1111/oik.07635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bjorn J. M. Robroek
- Aquatic Ecology and Environmental Biology, Inst. for Water and Wetland Research, Faculty of Science, Radboud Univ. Nijmegen Nijmegen the Netherlands
| | - Magalí Martí
- Thematic Studies – Environmental Change, Linköping Univ. Linköping Sweden
| | - Bo H. Svensson
- Thematic Studies – Environmental Change, Linköping Univ. Linköping Sweden
| | - Marc G. Dumont
- School of Biological Sciences, Faculty of Environmental and Life Sciences, Univ. of Southampton Southampton UK
| | - Annelies J. Veraart
- Aquatic Ecology and Environmental Biology, Inst. for Water and Wetland Research, Faculty of Science, Radboud Univ. Nijmegen Nijmegen the Netherlands
| | - Vincent E. J. Jassey
- Laboratoire d'Ecologie Fonctionnelle et Environnement, Univ. de Toulouse, CNRS Toulouse Cedex France
| |
Collapse
|
40
|
Holland-Moritz H, Stuart JEM, Lewis LR, Miller SN, Mack MC, Ponciano JM, McDaniel SF, Fierer N. The bacterial communities of Alaskan mosses and their contributions to N 2-fixation. MICROBIOME 2021; 9:53. [PMID: 33622403 PMCID: PMC7903681 DOI: 10.1186/s40168-021-01001-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/08/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Mosses in high-latitude ecosystems harbor diverse bacterial taxa, including N2-fixers which are key contributors to nitrogen dynamics in these systems. Yet the relative importance of moss host species, and environmental factors, in structuring these microbial communities and their N2-fixing potential remains unclear. We studied 26 boreal and tundra moss species across 24 sites in Alaska, USA, from 61 to 69° N. We used cultivation-independent approaches to characterize the variation in moss-associated bacterial communities as a function of host species identity and site characteristics. We also measured N2-fixation rates via 15N2 isotopic enrichment and identified potential N2-fixing bacteria using available literature and genomic information. RESULTS Host species identity and host evolutionary history were both highly predictive of moss microbiome composition, highlighting strong phylogenetic coherence in these microbial communities. Although less important, light availability and temperature also influenced composition of the moss microbiome. Finally, we identified putative N2-fixing bacteria specific to some moss hosts, including potential N2-fixing bacteria outside well-studied cyanobacterial clades. CONCLUSIONS The strong effect of host identity on moss-associated bacterial communities demonstrates mosses' utility for understanding plant-microbe interactions in non-leguminous systems. Our work also highlights the likely importance of novel bacterial taxa to N2-fixation in high-latitude ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Hannah Holland-Moritz
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO USA
| | - Julia E. M. Stuart
- Center for Ecosystem Science and Society and the Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ USA
| | - Lily R. Lewis
- Provost’s Office, University of Florida, Gainesville, FL USA
| | - Samantha N. Miller
- Center for Ecosystem Science and Society and the Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ USA
| | - Michelle C. Mack
- Center for Ecosystem Science and Society and the Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ USA
| | | | | | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO USA
| |
Collapse
|
41
|
Recovery in methanotrophic activity does not reflect on the methane-driven interaction network after peat mining. Appl Environ Microbiol 2021; 87:AEM.02355-20. [PMID: 33355115 PMCID: PMC8090869 DOI: 10.1128/aem.02355-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aerobic methanotrophs are crucial in ombrotrophic peatlands, driving the methane and nitrogen cycles. Peat mining adversely affects the methanotrophs, but activity and community composition/abundances may recover after restoration. Considering that the methanotrophic activity and growth are significantly stimulated in the presence of other microorganisms, the methane-driven interaction network, encompassing methanotrophs and non-methanotrophs (i.e., methanotrophic interactome), may also be relevant in conferring community resilience. Yet, little is known of the response and recovery of the methanotrophic interactome to disturbances. Here, we determined the recovery of the methanotrophic interactome as inferred by a co-occurrence network analysis, comparing a pristine and restored peatland. We coupled a DNA-based stable isotope probing (SIP) approach using 13C-CH4 to a co-occurrence network analysis derived from the 13C-enriched 16S rRNA gene sequences to relate the response in methanotrophic activity to the structuring of the interaction network. Methanotrophic activity and abundances recovered after peat restoration since 2000. 'Methylomonaceae' was the predominantly active methanotrophs in both peatlands, but differed in the relative abundance of Methylacidiphilaceae and Methylocystis However, bacterial community composition was distinct in both peatlands. Likewise, the methanotrophic interactome was profoundly altered in the restored peatland. Structuring of the interaction network after peat mining resulted in the loss of complexity and modularity, indicating a less connected and efficient network, which may have consequences in the event of recurring/future disturbances. Therefore, determining the response of the methane-driven interaction network, in addition to relating methanotrophic activity to community composition/abundances, provided a more comprehensive understanding of the resilience of the methanotrophs.Importance The resilience and recovery of microorganisms from disturbances are often determined with regard to their activity and community composition/abundances. Rarely has the response of the network of interacting microorganisms been considered, despite accumulating evidence showing that microbial interaction modulates community functioning. Comparing the methane-driven interaction network of a pristine and restored peatland, our findings revealed that the metabolically active microorganisms were less connected and formed less modular 'hubs' in the restored peatland, indicative of a less complex network which may have consequences with recurring disturbances and environmental changes. This also suggests that the resilience and full recovery in the methanotrophic activity and abundances do not reflect on the interaction network. Therefore, it is relevant to consider the interaction-induced response, in addition to documenting changes in activity and community composition/abundances, to provide a comprehensive understanding of the resilience of microorganisms to disturbances.
Collapse
|
42
|
Schmitz RA, Peeters SH, Versantvoort W, Picone N, Pol A, Jetten MSM, Op den Camp HJM. Verrucomicrobial methanotrophs: ecophysiology of metabolically versatile acidophiles. FEMS Microbiol Rev 2021; 45:6125968. [PMID: 33524112 PMCID: PMC8498564 DOI: 10.1093/femsre/fuab007] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022] Open
Abstract
Methanotrophs are an important group of microorganisms that counteract methane emissions to the atmosphere. Methane-oxidising bacteria of the Alpha- and Gammaproteobacteria have been studied for over a century, while methanotrophs of the phylum Verrucomicrobia are a more recent discovery. Verrucomicrobial methanotrophs are extremophiles that live in very acidic geothermal ecosystems. Currently, more than a dozen strains have been isolated, belonging to the genera Methylacidiphilum and Methylacidimicrobium. Initially, these methanotrophs were thought to be metabolically confined. However, genomic analyses and physiological and biochemical experiments over the past years revealed that verrucomicrobial methanotrophs, as well as proteobacterial methanotrophs, are much more metabolically versatile than previously assumed. Several inorganic gases and other molecules present in acidic geothermal ecosystems can be utilised, such as methane, hydrogen gas, carbon dioxide, ammonium, nitrogen gas and perhaps also hydrogen sulfide. Verrucomicrobial methanotrophs could therefore represent key players in multiple volcanic nutrient cycles and in the mitigation of greenhouse gas emissions from geothermal ecosystems. Here, we summarise the current knowledge on verrucomicrobial methanotrophs with respect to their metabolic versatility and discuss the factors that determine their diversity in their natural environment. In addition, key metabolic, morphological and ecological characteristics of verrucomicrobial and proteobacterial methanotrophs are reviewed.
Collapse
Affiliation(s)
- Rob A Schmitz
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Stijn H Peeters
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Wouter Versantvoort
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Nunzia Picone
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Arjan Pol
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
43
|
Byun MY, Seo S, Lee J, Yoo YH, Lee H. Transfection of Arctic Bryum sp. KMR5045 as a Model for Genetic Engineering of Cold-Tolerant Mosses. FRONTIERS IN PLANT SCIENCE 2021; 11:609847. [PMID: 33584753 PMCID: PMC7873996 DOI: 10.3389/fpls.2020.609847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Mosses number about 13,000 species and are an important resource for the study of the plant evolution that occurred during terrestrial colonization by plants. Recently, the physiological and metabolic characteristics that distinguish mosses from terrestrial plants have received attention. In the Arctic, in particular, mosses developed their own distinct physiological features to adapt to the harsh environment. However, little is known about the molecular mechanisms by which Arctic mosses survive in extreme environments due to the lack of basic knowledge and tools such as genome sequences and genetic transfection methods. In this study, we report the axenic cultivation and transfection of Arctic Bryum sp. KMR5045, as a model for bioengineering of Arctic mosses. We also found that the inherent low-temperature tolerance of KMR5045 permitted it to maintain slow growth even at 2°C, while the model moss species Physcomitrium patens failed to grow at all, implying that KMR5045 is suitable for studies of cold-tolerance mechanisms. To achieve genetic transfection of KMR5045, some steps of the existing protocol for P. patens were modified. First, protoplasts were isolated using 1% driselase solution. Second, the appropriate antibiotic was identified and its concentration was optimized for the selection of transfectants. Third, the cell regeneration period before transfer to selection medium was extended to 9 days. As a result, KMR5045 transfectants were successfully obtained and confirmed transfection by detection of intracellular Citrine fluorescence derived from expression of a pAct5:Citrine transgene construct. This is the first report regarding the establishment of a genetic transfection method for an Arctic moss species belonging to the Bryaceae. The results of this study will contribute to understanding the function of genes involved in environmental adaptation and to application for production of useful metabolites derived from stress-tolerant mosses.
Collapse
Affiliation(s)
- Mi Young Byun
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Suyeon Seo
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
- Polar Science, University of Science and Technology, Incheon, South Korea
| | - Jungeun Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Yo-Han Yoo
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Hyoungseok Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
- Polar Science, University of Science and Technology, Incheon, South Korea
| |
Collapse
|
44
|
Heck MA, Lüth VM, van Gessel N, Krebs M, Kohl M, Prager A, Joosten H, Decker EL, Reski R. Axenic in vitro cultivation of 19 peat moss (Sphagnum L.) species as a resource for basic biology, biotechnology, and paludiculture. THE NEW PHYTOLOGIST 2021; 229:861-876. [PMID: 32910470 DOI: 10.1111/nph.16922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/27/2020] [Indexed: 05/07/2023]
Abstract
Sphagnum farming can substitute peat with renewable biomass and thus help mitigate climate change. Large volumes of the required founder material can only be supplied sustainably by axenic cultivation in bioreactors. We established axenic in vitro cultures from sporophytes of 19 Sphagnum species collected in Austria, Germany, Latvia, the Netherlands, Russia, and Sweden: S. angustifolium, S. balticum, S. capillifolium, S. centrale, S. compactum, S. cuspidatum, S. fallax, S. fimbriatum, S. fuscum, S. lindbergii, S. medium/divinum, S. palustre, S. papillosum, S. rubellum, S. russowii, S. squarrosum, S. subnitens, S. subfulvum and S. warnstorfii. These species cover five of the six European Sphagnum subgenera; namely, Acutifolia, Cuspidata, Rigida, Sphagnum and Squarrosa. Their growth was measured in suspension cultures, whereas their ploidy was determined by flow cytometry and compared with the genome size of Physcomitrella patens. We identified haploid and diploid Sphagnum species, found that their cells are predominantly arrested in the G1 phase of the cell cycle, and did not find a correlation between plant productivity and ploidy. DNA barcoding was achieved by sequencing introns of the BRK1 genes. With this collection, high-quality founder material for diverse large-scale applications, but also for basic Sphagnum research, is available from the International Moss Stock Center.
Collapse
Affiliation(s)
- Melanie A Heck
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Volker M Lüth
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Matthias Krebs
- Peatland Studies and Palaeoecology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, 17487, Germany
- Greifswald Mire Centre, Greifswald, 17489, Germany
| | - Mira Kohl
- Peatland Studies and Palaeoecology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, 17487, Germany
- Greifswald Mire Centre, Greifswald, 17489, Germany
| | - Anja Prager
- Peatland Studies and Palaeoecology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, 17487, Germany
- Greifswald Mire Centre, Greifswald, 17489, Germany
| | - Hans Joosten
- Peatland Studies and Palaeoecology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, 17487, Germany
- Greifswald Mire Centre, Greifswald, 17489, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, 79104, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, 79110, Germany
| |
Collapse
|
45
|
Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nat Commun 2020; 11:5601. [PMID: 33154374 PMCID: PMC7645420 DOI: 10.1038/s41467-020-19410-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 10/13/2020] [Indexed: 11/25/2022] Open
Abstract
The extent to which species can balance out the loss of suitable habitats due to climate warming by shifting their ranges is an area of controversy. Here, we assess whether highly efficient wind-dispersed organisms like bryophytes can keep-up with projected shifts in their areas of suitable climate. Using a hybrid statistical-mechanistic approach accounting for spatial and temporal variations in both climatic and wind conditions, we simulate future migrations across Europe for 40 bryophyte species until 2050. The median ratios between predicted range loss vs expansion by 2050 across species and climate change scenarios range from 1.6 to 3.3 when only shifts in climatic suitability were considered, but increase to 34.7–96.8 when species dispersal abilities are added to our models. This highlights the importance of accounting for dispersal restrictions when projecting future distribution ranges and suggests that even highly dispersive organisms like bryophytes are not equipped to fully track the rates of ongoing climate change in the course of the next decades. Bryophytes tend to be sensitive to warming, but their high dispersal ability could help them track climate change. Here the authors combine correlative niche models and mechanistic dispersal models for 40 European bryophyte species under RCP4.5 and RCP8.5, finding that most of these species are unlikely to track climate change over the coming decades.
Collapse
|
46
|
Borg Dahl M, Krebs M, Unterseher M, Urich T, Gaudig G. Temporal dynamics in the taxonomic and functional profile of the Sphagnum-associated fungi (mycobiomes) in a Sphagnum farming field site in Northwestern Germany. FEMS Microbiol Ecol 2020; 96:5917977. [PMID: 33016319 DOI: 10.1093/femsec/fiaa204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
The drainage of peatlands for their agricultural use leads to huge emissions of greenhouse gases. One sustainable alternative is the cultivation of peat mosses after rewetting ('Sphagnum farming'). Environmental parameters of such artificial systems may differ from those of natural Sphagnum ecosystems which host a rich fungal community. We studied the fungal community at a 4 ha Sphagnum farming field site in Northwestern Germany and compared it with that of natural Sphagnum ecosystems. Additionally, we asked if any fungi occur with potentially negative consequences for the commercial production and/or use of Sphagnum biomass. Samples were collected every 3 months within 1 year. High-throughput sequencing of the fungal ITS2 barcode was used to obtain a comprehensive community profile of the fungi. The dominant taxa in the fungal community of the Sphagnum farming field site were all commonly reported from natural Sphagnum ecosystems. While the taxonomic composition showed clear differences between seasons, a stable functional community profile was identified across seasons. Additionally, nutrient supply seems to affect composition of fungal community. Despite a rather high abundance of bryophyte parasites, and the occurrence of both Sphagnum-species-specific and general plant pathogens, their impact on the productivity and usage of Sphagnum biomass as raw material for growing media was considered to be low.
Collapse
Affiliation(s)
- Mathilde Borg Dahl
- Institute of Microbiology, University of Greifswald, Partner in the Greifswald Mire Centre, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Matthias Krebs
- Institute of Botany and Landscape Ecology, University of Greifswald, Partner in the Greifswald Mire Centre, Soldmannstr. 15, 17489, Greifswald, Germany
| | - Martin Unterseher
- Institute of Botany and Landscape Ecology, University of Greifswald, Partner in the Greifswald Mire Centre, Soldmannstr. 15, 17489, Greifswald, Germany.,Montessori-Schule, Helsinkiring 5, 17493, Greifswald, Germany
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Partner in the Greifswald Mire Centre, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Greta Gaudig
- Institute of Botany and Landscape Ecology, University of Greifswald, Partner in the Greifswald Mire Centre, Soldmannstr. 15, 17489, Greifswald, Germany
| |
Collapse
|
47
|
Reczuga MK, Seppey CVW, Mulot M, Jassey VE, Buttler A, Słowińska S, Słowiński M, Lara E, Lamentowicz M, Mitchell EA. Assessing the responses of Sphagnum micro-eukaryotes to climate changes using high throughput sequencing. PeerJ 2020; 8:e9821. [PMID: 32999758 PMCID: PMC7505061 DOI: 10.7717/peerj.9821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 08/05/2020] [Indexed: 11/20/2022] Open
Abstract
Current projections suggest that climate warming will be accompanied by more frequent and severe drought events. Peatlands store ca. one third of the world's soil organic carbon. Warming and drought may cause peatlands to become carbon sources through stimulation of microbial activity increasing ecosystem respiration, with positive feedback effect on global warming. Micro-eukaryotes play a key role in the carbon cycle through food web interactions and therefore, alterations in their community structure and diversity may affect ecosystem functioning and could reflect these changes. We assessed the diversity and community composition of Sphagnum-associated eukaryotic microorganisms inhabiting peatlands and their response to experimental drought and warming using high throughput sequencing of environmental DNA. Under drier conditions, micro-eukaryotic diversity decreased, the relative abundance of autotrophs increased and that of osmotrophs (including Fungi and Peronosporomycetes) decreased. Furthermore, we identified climate change indicators that could be used as early indicators of change in peatland microbial communities and ecosystem functioning. The changes we observed indicate a shift towards a more "terrestrial" community in response to drought, in line with observed changes in the functioning of the ecosystem.
Collapse
Affiliation(s)
- Monika K. Reczuga
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Christophe Victor William Seppey
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Arctic and Marine Biology, Faculty of Biosciences Fisheries and Economics, University of Tromsø, Tromsø, Norway
| | - Matthieu Mulot
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
| | - Vincent E.J. Jassey
- Laboratoire Ecologie Fonctionelle et Environnement, Université de Toulouse, CNRS, Toulouse Cedex, France
- Ecological Systems Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Switzerland
| | - Alexandre Buttler
- Ecological Systems Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Switzerland
| | - Sandra Słowińska
- Department of Geoecology and Climatology, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Słowiński
- Past Landscape Dynamics Laboratory, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
| | - Enrique Lara
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
- Real Jardín Botánico, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland
| | - Edward A.D. Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
- Jardin Botanique de Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
48
|
Cong M, Xu Y, Tang L, Yang W, Jian M. Predicting the dynamic distribution of Sphagnum bogs in China under climate change since the last interglacial period. PLoS One 2020; 15:e0230969. [PMID: 32251486 PMCID: PMC7135081 DOI: 10.1371/journal.pone.0230969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/12/2020] [Indexed: 11/19/2022] Open
Abstract
Sphagnum bogs possess irreplaceable ecological and economic value, and they are scarce in China, with a fragmented distribution. Based on 19 high-resolution bioclimatic environmental datasets and 71 bog center point locations, we employed a maximum entropy model (MaxEnt) to reconstruct and predict the spatial-temporal geographical distribution patterns of Sphagnum bogs from the last interglacial (LIG) period to two typical CO2 representative concentration pathway scenarios (RCP2.6, RCP8.5) in the future. We further computed the migratory paths of the distribution center points. Finally, a jackknife test was used to uncover the crucial environmental factors restricting the geographical distribution of the bogs. Our data indicated that the MaxEnt niche model had a high simulation precision with an area under the ROC curve value of 0.957. Spatially, the suitable bog habitats are currently centralized in northeastern China, including the Greater Khingan Mountains, the Lesser Khingan Mountains, and the Changbai Mountains, as well as peripheral areas of the Sichuan Basin. Temporally, the contours of Sphagnum bogs were similar to the present and rendered from the last glacial maximum (LMG) period, and had much more total area than the current. The total area in LIG was nearly the same as the current because of the similar climate. It was worth noting that there would be a reduction of the total area in the future. Loss of area occurred at the edges of bogs, especially under RCP8.5. The distribution center of bogs will shift to the northwest in the immediate future. The precipitation of driest month, the mean temperature of warmest quarter and the precipitation of warmest quarter were identified as crucial climatic factors affecting the distribution of Sphagnum bogs. Overall, our research provides scientific evidence for the long-term protection and effective management of these rare, precious natural resources and suggestions for in situ conservation.
Collapse
Affiliation(s)
- Mingyang Cong
- Analytical & Testing Center, Jiangxi Normal University, Nanchang, Jiangxi Province, China
- Jiangxi Provincial Key Lab of Protection and Utilization of Subtropical Plant Resources, Jiangxi Normal University, Nanchang, Jiangxi Province, China
| | - Yueyue Xu
- School of Economics & Management, Nanchang University, Nanchang, Jiangxi Province, China
| | - Luyan Tang
- College of Life Science, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Wenjing Yang
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi Province, China
| | - Minfei Jian
- Jiangxi Provincial Key Lab of Protection and Utilization of Subtropical Plant Resources, Jiangxi Normal University, Nanchang, Jiangxi Province, China
- * E-mail:
| |
Collapse
|
49
|
Community structure and function of cultivable Endophytic Bacteria isolated from four Moss species in Qilian Mountain. Symbiosis 2020. [DOI: 10.1007/s13199-020-00669-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Vesty EF, Whitbread AL, Needs S, Tanko W, Jones K, Halliday N, Ghaderiardakani F, Liu X, Cámara M, Coates JC. Cross-kingdom signalling regulates spore germination in the moss Physcomitrella patens. Sci Rep 2020; 10:2614. [PMID: 32054953 PMCID: PMC7018845 DOI: 10.1038/s41598-020-59467-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/17/2020] [Indexed: 01/10/2023] Open
Abstract
Plants live in close association with microorganisms that can have beneficial or detrimental effects. The activity of bacteria in association with flowering plants has been extensively analysed. Bacteria use quorum-sensing as a way of monitoring their population density and interacting with their environment. A key group of quorum sensing molecules in Gram-negative bacteria are the N-acylhomoserine lactones (AHLs), which are known to affect the growth and development of both flowering plants, including crops, and marine algae. Thus, AHLs have potentially important roles in agriculture and aquaculture. Nothing is known about the effects of AHLs on the earliest-diverging land plants, thus the evolution of AHL-mediated bacterial-plant/algal interactions is unknown. In this paper, we show that AHLs can affect spore germination in a representative of the earliest plants on land, the Bryophyte moss Physcomitrella patens. Furthermore, we demonstrate that sporophytes of some wild isolates of Physcomitrella patens are associated with AHL-producing bacteria.
Collapse
Affiliation(s)
- Eleanor F Vesty
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.,University Centre Shrewsbury, Guildhall, Frankwell Quay, Shrewsbury, Shropshire, UK
| | - Amy L Whitbread
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.,Karlsruhe Institute of Technology, Karlsruhe, Baden-Württemberg, Germany
| | - Sarah Needs
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.,School of Life, Health and Chemical Sciences, Open University, Walton Hall, Kents Hill, Milton Keynes, UK
| | - Wesal Tanko
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Kirsty Jones
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Nigel Halliday
- National Biofilm Innovations Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | | | - Xiaoguang Liu
- National Biofilm Innovations Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham, UK.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Miguel Cámara
- National Biofilm Innovations Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham, UK.
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|