1
|
Kessler A, Mueller MB. Induced resistance to herbivory and the intelligent plant. PLANT SIGNALING & BEHAVIOR 2024; 19:2345985. [PMID: 38687704 PMCID: PMC11062368 DOI: 10.1080/15592324.2024.2345985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Plant induced responses to environmental stressors are increasingly studied in a behavioral ecology context. This is particularly true for plant induced responses to herbivory that mediate direct and indirect defenses, and tolerance. These seemingly adaptive alterations of plant defense phenotypes in the context of other environmental conditions have led to the discussion of such responses as intelligent behavior. Here we consider the concept of plant intelligence and some of its predictions for chemical information transfer in plant interaction with other organisms. Within this framework, the flow, perception, integration, and storage of environmental information are considered tunable dials that allow plants to respond adaptively to attacking herbivores while integrating past experiences and environmental cues that are predictive of future conditions. The predictive value of environmental information and the costs of acting on false information are important drivers of the evolution of plant responses to herbivory. We identify integrative priming of defense responses as a mechanism that allows plants to mitigate potential costs associated with acting on false information. The priming mechanisms provide short- and long-term memory that facilitates the integration of environmental cues without imposing significant costs. Finally, we discuss the ecological and evolutionary prediction of the plant intelligence hypothesis.
Collapse
Affiliation(s)
- André Kessler
- Cornell University, Department of Ecology and Evolutionary Biology, Ithaca, NY, USA
| | - Michael B. Mueller
- Cornell University, Department of Ecology and Evolutionary Biology, Ithaca, NY, USA
| |
Collapse
|
2
|
Zhang Q, Liu Y, Zhang C, Xu D, Medina-Fraga AL, Wu B, Guo C, Wangzha M, Yang G, Zhu D, Weiss D, Ballaré CL, Lin L, Yin R. SlSPA3 regulates the nuclear abundance of SlUVR8 in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2656-2667. [PMID: 39522175 DOI: 10.1111/tpj.17135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Tomato (Solanum lycopersicum L.) is an important model plant species in photomorphogenesis research. Ultraviolet B (UV-B) induces the dissociation of homodimers of the photoreceptor UV RESISTANCE LOCUS8 (UVR8) into monomers, which translocate into the nucleus. Nuclear accumulation of UVR8 is a prerequisite for its signaling function. Previous studies have reported that SUPPRESSOR OF PHYTOCHROME A-105 (SPA) family members may regulate UV-B signaling in Arabidopsis (Arabidopsis thaliana); however, the underlying mechanism is unknown. Here, we show that the tomato genome encodes four SPA (SlSPA) orthologs. Genome-edited Slspa3 mutants exhibited enhanced photomorphogenic responses in white light, suggesting that SlSPA3 inhibits general photomorphogenesis. By contrast, UVR8-mediated gene expression in response to UV-B was compromised in Slspa3 mutants, suggesting that SlSPA3 promotes UV-B signaling. UV-B-induced nuclear accumulation of UVR8, which is essential for UV-B signaling, was reduced in the Slspa3 mutants. Moreover, UV-B-induced nuclear accumulation of UVR8 was also reduced in the Arabidopsis spa1 spa2 spa3 and spa1 spa2 spa4 triple mutants, indicating a conserved mechanism in these two species. Notably, spa1 spa2 spa4 exhibited normal UV-B-induced interaction between UVR8 and the plant morphogenesis repressor CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1). This suggests that the well-established mechanisms of UVR8 nuclear retention remained unaffected in spa1 spa2 spa4. Thus, our work uncovered a potentially unrecognized mechanism by which SPA proteins regulate UV-B signaling through the promotion of UVR8 nuclear abundance in land plants.
Collapse
Affiliation(s)
- Qianwen Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yue Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
| | - Chunli Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
| | - Dawei Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
| | - Ana L Medina-Fraga
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBIO), CONICET, Universidad Nacional de San Martın, Buenos Aires, Argentina
| | - Baoguo Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
| | - Chenyang Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
| | - MeLongying Wangzha
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
| | - Guoqian Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76100, Israel
| | - Carlos L Ballaré
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBIO), CONICET, Universidad Nacional de San Martın, Buenos Aires, Argentina
| | - Li Lin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
- Key Laboratory of Urban Agriculture Ministry of Agriculture, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Ruohe Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, 200240, Shanghai, China
- Key Laboratory of Urban Agriculture Ministry of Agriculture, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
3
|
Urdin-Bravo M, Sanchez-Garcia A, Rodriguez-Concepcion M, Martinez-Garcia JF. Effect of Higher Ethylene Levels Emitted by Shade-Avoider Plants on Neighboring Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:3212. [PMID: 39599421 PMCID: PMC11598319 DOI: 10.3390/plants13223212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Plants of several species, including crops, change their volatilome when exposed to a low ratio of red to far-red light (low R/FR) that informs about the presence of nearby plants (i.e., proximity shade). In particular, the volatile hormone ethylene was shown to be produced at higher levels in response to the low R/FR signal in shade-avoider plants. Here, we show that the shade-tolerant species Cardamine hirsuta produces more ethylene than shade avoiders such as Arabidopsis thaliana (a close relative of C. hirsuta) and tomato (Solanum lycopersicum) under white light (W). However, exposure to low R/FR (specifically to FR-supplemented W, referred to as W+FR or simulated shade) resulted in only a slight increase in ethylene emission in C. hirsuta compared to shade avoiders. Stimulation of ethylene production by growing plants in media supplemented with 1-aminocyclopropane-1-carboxylate (ACC) resulted in reduced hypocotyl growth under W+FR in both A. thaliana and C. hirsuta. ACC-dependent ethylene production also repressed hypocotyl elongation under low W and in the dark in C. hirsuta. By contrast, in A. thaliana, ACC supplementation inhibited hypocotyl elongation in the dark but stimulated it under W. Most interestingly, elongation of dark-grown A. thaliana seedlings was also repressed by exposure to the volatiles released by ACC-grown A. thaliana or tomato plants. This observation suggests that increased ethylene levels in the headspace can indeed impact the development of nearby plants. Although the amount of ethylene released by ACC-grown plants to their headspace was much higher than that released by exposure to low R/FR, our results support a contribution of this volatile hormone on the communication of proximity shade conditions to neighboring plants.
Collapse
Affiliation(s)
| | | | - Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022 Valencia, Spain; (M.U.-B.); (A.S.-G.)
| | - Jaume F. Martinez-Garcia
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022 Valencia, Spain; (M.U.-B.); (A.S.-G.)
| |
Collapse
|
4
|
Escobar-Bravo R, Schimmel BCJ, Zhang Y, Wang L, Robert CAM, Glauser G, Ballaré CL, Erb M. Far-red light increases maize volatile emissions in response to volatile cues from neighbouring plants. PLANT, CELL & ENVIRONMENT 2024; 47:3979-3998. [PMID: 38872585 DOI: 10.1111/pce.14995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/13/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Plants perceive the presence and defence status of their neighbours through light and volatile cues, but how plants integrate both stimuli is poorly understood. We investigated if and how low Red to Far red light (R:FR) ratios, indicative of shading or canopy closure, affect maize (Zea mays) responses to herbivore-induced plant volatiles (HIPVs), including the green leaf volatile (Z)-3-hexenyl acetate. We modulated light signalling and perception by using FR supplementation and a phyB1phyB2 mutant, and we determined volatile release as a response readout. To gain mechanistic insights, we examined expression of volatile biosynthesis genes, hormone accumulation, and photosynthesis. Exposure to a full blend of HIPVs or (Z)-3-hexenyl acetate induced maize volatile release. Short-term FR supplementation increased this response. In contrast, prolonged FR supplementation or constitutive phytochrome B inactivation in phyB1phyB2 plants showed the opposite response. Short-term FR supplementation enhanced photosynthesis and stomatal conductance and (Z)-3-hexenyl acetate-induced JA-Ile levels. We conclude that a FR-enriched light environment can prompt maize plants to respond more strongly to HIPVs emitted by neighbours, which might be explained by changes in photosynthetic processes and phytochrome B signalling. Our findings reveal interactive responses to light and volatile cues with potentially important consequences for plant-plant and plant-herbivore interactions.
Collapse
Affiliation(s)
| | | | - Yaqin Zhang
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Lei Wang
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Carlos L Ballaré
- Facultad de Agronomía, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
- 2IIBio, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Bass E, Mutyambai DM, Midega CAO, Khan ZR, Kessler A. Associational Effects of Desmodium Intercropping on Maize Resistance and Secondary Metabolism. J Chem Ecol 2024; 50:299-318. [PMID: 38305931 DOI: 10.1007/s10886-024-01470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 02/03/2024]
Abstract
Intercropping is drawing increasing attention as a strategy to increase crop yields and manage pest pressure, however the mechanisms of associational resistance in diversified cropping systems remain controversial. We conducted a controlled experiment to assess the impact of co-planting with silverleaf Desmodium (Desmodium uncinatum) on maize secondary metabolism and resistance to herbivory by the spotted stemborer (Chilo partellus). Maize plants were grown either in the same pot with a Desmodium plant or adjacent to it in a separate pot. Our findings indicate that co-planting with Desmodium influences maize secondary metabolism and herbivore resistance through both above and below-ground mechanisms. Maize growing in the same pot with a Desmodium neighbor was less attractive for oviposition by spotted stemborer adults. However, maize exposed only to above-ground Desmodium cues generally showed increased susceptibility to spotted stemborer herbivory (through both increased oviposition and larval consumption). VOC emissions and tissue secondary metabolite titers were also altered in maize plants exposed to Desmodium cues, with stronger effects being observed when maize and Desmodium shared the same pot. Specifically, benzoxazinoids were strongly suppressed in maize roots by direct contact with a Desmodium neighbor while headspace emissions of short-chain aldehydes and alkylbenzenes were increased. These results imply that direct root contact or soil-borne cues play an important role in mediating associational effects on plant resistance in this system.
Collapse
Affiliation(s)
- Ethan Bass
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Daniel M Mutyambai
- International Centre of Insect Physiology and Ecology (Icipe), Nairobi, Kenya
- Department of Life Sciences, South Eastern Kenya University, P.O Box 170-90200, Kitui, Kenya
| | - Charles A O Midega
- Poverty and Health Integrated Solutions (PHIS), Kisumu, Kenya
- Unit for Environmental Sciences and Management, IPM Program, North-West University, Potchefstroom, South Africa
| | - Zeyaur R Khan
- International Centre of Insect Physiology and Ecology (Icipe), Nairobi, Kenya
- International Centre of Insect Physiology and Ecology, Mbita, Kenya
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Wu S, Gao Y, Zhang Q, Liu F, Hu W. Application of Multi-Omics Technologies to the Study of Phytochromes in Plants. Antioxidants (Basel) 2024; 13:99. [PMID: 38247523 PMCID: PMC10812741 DOI: 10.3390/antiox13010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Phytochromes (phy) are distributed in various plant organs, and their physiological effects influence plant germination, flowering, fruiting, and senescence, as well as regulate morphogenesis throughout the plant life cycle. Reactive oxygen species (ROS) are a key regulatory factor in plant systemic responses to environmental stimuli, with an attractive regulatory relationship with phytochromes. With the development of high-throughput sequencing technology, omics techniques have become powerful tools, and researchers have used omics techniques to facilitate the big data revolution. For an in-depth analysis of phytochrome-mediated signaling pathways, integrated multi-omics (transcriptomics, proteomics, and metabolomics) approaches may provide the answer from a global perspective. This article comprehensively elaborates on applying multi-omics techniques in studying phytochromes. We describe the current research status and future directions on transcriptome-, proteome-, and metabolome-related network components mediated by phytochromes when cells are subjected to various stimulation. We emphasize the importance of multi-omics technologies in exploring the effects of phytochromes on cells and their molecular mechanisms. Additionally, we provide methods and ideas for future crop improvement.
Collapse
Affiliation(s)
- Shumei Wu
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| | - Yue Gao
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
| | - Qi Zhang
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| |
Collapse
|
7
|
Pekas A, Mazzoni V, Appel H, Cocroft R, Dicke M. Plant protection and biotremology: fundamental and applied aspects. TRENDS IN PLANT SCIENCE 2024; 29:32-39. [PMID: 37563025 DOI: 10.1016/j.tplants.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 08/12/2023]
Abstract
There is overwhelming evidence that synthetic pesticides have a negative impact on the environment and human health, emphasizing the need for novel and sustainable methods for plant protection. A growing body of literature reports that plants interact through substrate-borne vibrations with arthropod pests and mutualistic arthropods that provide biological control and pollination services. Here, we propose a new theoretical framework that integrates insights from biological control, the ecology of fear, and plant-borne vibrations, to address plant-insect interactions and explore new, sustainable opportunities to improve plant health and productivity.
Collapse
Affiliation(s)
| | - Valerio Mazzoni
- Fondazione Edmund Mach, Research and Innovation Centre, via Mach 1, S. Michele all'Adige 38010, TN, Italy
| | - Heidi Appel
- University of Houston, Department of Biology and Biochemistry, Science & Research Building 2, 3455 Cullen Blvd, Room 342, Houston, TX 77204-5001, USA
| | - Reginald Cocroft
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, PO Box 16, NL-6700AA, Wageningen, The Netherlands
| |
Collapse
|
8
|
Meijer D, Hopkoper S, Weldegergis BT, Westende WV, Gort G, van Loon JJA, Dicke M. Effects of far-red light on the behaviour and reproduction of the zoophytophagous predator Macrolophus pygmaeus and its interaction with a whitefly herbivore. PLANT, CELL & ENVIRONMENT 2024; 47:187-196. [PMID: 37705240 DOI: 10.1111/pce.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Plants can detect neighbouring plants through a reduction in the ratio between red and far-red light (R:FR). This provides a signal of plant-plant competition and induces rapid plant growth while inhibiting defence against biotic stress, two interlinked responses designated as the shade avoidance syndrome (SAS). Consequently, the SAS can influence plant-herbivore interactions that could cascade to higher trophic levels. However, little is known about how the expression of the SAS can influence tritrophic interactions. We investigated whether changes in R:FR affect the emission of herbivore-induced plant volatiles (HIPVs), and whether these changes influence the attraction of the zoophytophagous predator Macrolophus pygmaeus. We also studied how the expression of the SAS and subsequent inhibition of plant defences affects the reproduction of M. pygmaeus in both the presence and absence of the greenhouse whitefly (WF) (Trialeurodes vaporariorum) as arthropod prey. The results show that changes in R:FR have little effect on HIPV emissions and predator attraction. However, a reduction in R:FR leads to increased reproduction of both the predator and the WFs. We discuss that shade avoidance responses can increase the population development of M. pygmaeus through a combination of reduced plant defences and increased herbivore densities.
Collapse
Affiliation(s)
- Davy Meijer
- Laboratory of Entomology, Wageningen University, AA Wageningen, The Netherlands
| | - Syb Hopkoper
- Laboratory of Entomology, Wageningen University, AA Wageningen, The Netherlands
| | | | - Wendy Van't Westende
- Laboratory of Plant Breeding, Wageningen University, AA Wageningen, The Netherlands
| | - Gerrit Gort
- Biometris, Wageningen University, AA Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, AA Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, AA Wageningen, The Netherlands
| |
Collapse
|
9
|
Yang F, Shen H, Huang T, Yao Q, Hu J, Tang J, Zhang R, Tong H, Wu Q, Zhang Y, Su Q. Flavonoid production in tomato mediates both direct and indirect plant defences against whiteflies in tritrophic interactions. PEST MANAGEMENT SCIENCE 2023; 79:4644-4654. [PMID: 37442806 DOI: 10.1002/ps.7667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND The role of plant flavonoids in direct defences against chewing and sap-sucking herbivorous insects has been extensively characterized. However, little is known about flavonoid-mediated tritrophic interactions between plants, herbivorous insects and natural enemies. In this study, we investigated how flavonoids modulate plant-insect interactions in a tritrophic system involving near-isogenic lines (NILs) of cultivated tomato (Solanum lycopersicum) with high (line NIL-purple hypocotyl [PH]) and low (line NIL-green hypocotyl [GH]) flavonoid levels, with a generalist herbivore whitefly (Bemisia tabaci) and its predatory bug (Orius sauteri). RESULTS By contrasting levels of tomato flavonoids (direct defence) while manipulating the presence of predators (indirect defence), we found that high production of flavonoids in tomato was associated with a higher inducibility of direct defences and a stronger plant resistance to whitefly infestation and stimulated the emissions of induced volatile organic compounds, thereby increasing the attractiveness of B. tabaci-infested plants to the predator O. sauteri. Furthermore, suppression of B. tabaci population growth and enhancement of plant growth were mediated directly by the high production of flavonoids and indirectly by the attraction of O. sauteri, and the combined effects were larger than each effect individually. CONCLUSION Our results show that high flavonoid production in tomato enhances herbivore-induced direct and indirect defences to better defend against herbivores in tritrophic interactions. Thus, the development of transgenic plants may present an opportunity to utilize the beneficial role of flavonoids in integrated pest management, while simultaneously maintaining or improving resistance against other pests and pathogens. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fengbo Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Haowei Shen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Tianyu Huang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qixi Yao
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Jinyu Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Tang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Rong Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong Tong
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Su
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
10
|
Qian J, Liao Y, Jian G, Jia Y, Zeng L, Gu D, Li H, Yang Y. Light induces an increasing release of benzyl nitrile against diurnal herbivore Ectropis grisescens Warren attack in tea (Camellia sinensis) plants. PLANT, CELL & ENVIRONMENT 2023; 46:3464-3480. [PMID: 37553868 DOI: 10.1111/pce.14687] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
Herbivore-induced plant volatiles (HIPVs) are critical compounds that directly or indirectly regulate the tritrophic interactions among herbivores, natural enemies and plants. The synthesis and release of HIPVs are regulated by many biotic and abiotic factors. However, the mechanism by which multiple factors synergistically affect HIPVs release remains unclear. Tea plant (Camellia sinensis) is the object of this study because of its rich and varied volatile metabolites. In this study, benzyl nitrile was released from herbivore-attacked tea plants more in the daytime than at night, which was consistent with the feeding behaviour of tea geometrid (Ectropis grisescens Warren) larvae. The Y-tube olfactometer assay and insect resistance analysis revealed that benzyl nitrile can repel tea geometrid larvae and inhibit their growth. On the basis of enzyme activities in transiently transformed Nicotiana benthamiana plants, CsCYP79 was identified as a crucial regulator in the benzyl nitrile biosynthetic pathway. Light signalling-related transcription factor CsPIF1-like and the jasmonic acid (JA) signalling-related transcription factor CsMYC2 serve as the activator of CsCYP79 under light and damage conditions. Our study revealed that light (abiotic factor) and herbivore-induced damage (biotic stress) synergistically regulate the synthesis and release of benzyl nitrile to protect plants from diurnal herbivorous tea geometrid larvae.
Collapse
Affiliation(s)
- Jiajia Qian
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinyin Liao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Guotai Jian
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongxia Jia
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Dachuan Gu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hanxiang Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yuhua Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
11
|
Qiu X, Sun G, Liu F, Hu W. Functions of Plant Phytochrome Signaling Pathways in Adaptation to Diverse Stresses. Int J Mol Sci 2023; 24:13201. [PMID: 37686008 PMCID: PMC10487518 DOI: 10.3390/ijms241713201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Phytochromes are receptors for red light (R)/far-red light (FR), which are not only involved in regulating the growth and development of plants but also in mediated resistance to various stresses. Studies have revealed that phytochrome signaling pathways play a crucial role in enabling plants to cope with abiotic stresses such as high/low temperatures, drought, high-intensity light, and salinity. Phytochromes and their components in light signaling pathways can also respond to biotic stresses caused by insect pests and microbial pathogens, thereby inducing plant resistance against them. Given that, this paper reviews recent advances in understanding the mechanisms of action of phytochromes in plant resistance to adversity and discusses the importance of modulating the genes involved in phytochrome signaling pathways to coordinate plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Xue Qiu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Guanghua Sun
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| |
Collapse
|
12
|
Kessler A, Mueller MB, Kalske A, Chautá A. Volatile-mediated plant-plant communication and higher-level ecological dynamics. Curr Biol 2023; 33:R519-R529. [PMID: 37279686 DOI: 10.1016/j.cub.2023.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Volatile organic compounds (VOCs) in general and herbivory-induced plant volatiles (HIPVs) in particular are increasingly understood as major mediators of information transfer between plant tissues. Recent findings have moved the field of plant communication closer to a detailed understanding of how plants emit and perceive VOCs and seem to converge on a model that juxtaposes perception and emission mechanisms. These new mechanistic insights help to explain how plants can integrate different types of information and how environmental noise can affect the transmission of information. At the same time, ever-new functions of VOC-mediated plant-plant interactions are being revealed. Chemical information transfer between plants is now known to fundamentally affect plant organismal interactions and, additionally, population, community, and ecosystem dynamics. One of the most exciting new developments places plant-plant interactions along a behavioral continuum with an eavesdropping strategy at one end and mutually beneficial information-sharing among plants within a population at the other. Most importantly and based on recent findings as well as theoretical models, plant populations can be predicted to evolve different communication strategies depending on their interaction environment. We use recent studies from ecological model systems to illustrate this context dependency of plant communication. Moreover, we review recent key findings about the mechanisms and functions of HIPV-mediated information transfer and suggest conceptual links, such as to information theory and behavioral game theory, as valuable tools for a deeper understanding of how plant-plant communication affects ecological and evolutionary dynamics.
Collapse
Affiliation(s)
- André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Michael B Mueller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Aino Kalske
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Department of Biology, University of Turku, 20014 Turku, Finland
| | - Alexander Chautá
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
13
|
Munawar A, Xu Y, Abou El-Ela AS, Zhang Y, Zhong J, Mao Z, Chen X, Guo H, Zhang C, Sun Y, Zhu Z, Baldwin IT, Zhou W. Tissue-specific regulation of volatile emissions moves predators from flowers to attacked leaves. Curr Biol 2023:S0960-9822(23)00556-0. [PMID: 37224808 DOI: 10.1016/j.cub.2023.04.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023]
Abstract
Plant-predator mutualisms have been widely described in nature.1,2 How plants fine-tune their mutualistic interactions with the predators they recruit remains poorly understood. In the wild potato (Solanum kurtzianum), predatory mites, Neoseiulus californicus, are recruited to flowers of undamaged plants but rapidly move downward when the herbivorous mites, Tetranychus urticae, damage leaves. This "up-down" movement within the plant corresponds to the shift of N. californicus from palynivory to carnivory, as they change from feeding on pollen to herbivores when moving between different plant organs. This up-down movement of N. californicus is mediated by the organ-specific emissions of volatile organic compounds (VOCs) in flowers and herbivory-elicited leaves. Experiments with exogenous applications, biosynthetic inhibitors, and transient RNAi revealed that salicylic acid and jasmonic acid signaling in flowers and leaves mediates both the changes in VOC emissions and the up-down movement of N. californicus. This alternating communication between flowers and leaves mediated by organ-specific VOC emissions was also found in a cultivated variety of potato, suggesting the agronomic potential of using flowers as reservoirs of natural enemies in the control of potato pests.
Collapse
Affiliation(s)
- Asim Munawar
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Amr S Abou El-Ela
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; Department of Plant Protection, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Yadong Zhang
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Jian Zhong
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Zhiyao Mao
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Xuan Chen
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Han Guo
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Chao Zhang
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yiqiao Sun
- Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 6, 8006 Zurich, Switzerland
| | - Zengrong Zhu
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Wenwu Zhou
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Meijer D, van der Vleut J, Weldegergis BT, Costaz T, Duarte MVA, Pekas A, van Loon JJA, Dicke M. Effects of far-red light on tritrophic interactions between the two-spotted spider mite (Tetranychus urticae) and the predatory mite Phytoseiulus persimilis on tomato. PEST MANAGEMENT SCIENCE 2023; 79:1820-1828. [PMID: 36641545 DOI: 10.1002/ps.7358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The use of light-emitting diode (LED) lights in horticulture allows growers to adjust the light spectrum to optimize crop production and quality. However, changes in light quality can also influence plant-arthropod interactions, with possible consequences for pest management. The addition of far-red light has been shown to interfere with plant immunity, thereby increasing plant susceptibility to biotic stress and increasing pest performance. Far-red light also influences plant emission of volatile organic compounds (VOCs) and might thus influence tritrophic interactions with biological control agents. We investigated how far-red light influences the VOC-mediated attraction of the predatory mite Phytoseiulus persimilis to tomato plants infested with Tetranychus urticae, and its ability to control T. urticae populations. RESULTS Far-red light significantly influences herbivore-induced VOC emissions of tomato plants, characterized by a change in relative abundance of terpenoids, but this did not influence the attraction of P. persimilis to herbivore-induced plants. Supplemental far-red light led to an increased population growth of T. urticae and increased numbers of P. persimilis. This resulted in a stronger suppression of T. urticae populations under supplemental far-red light, to similar T. urticae numbers as in control conditions without supplemental far-red light. CONCLUSION We conclude that supplemental far-red light can change herbivore-induced VOC emissions but does not interfere with the attraction of the predator P. persimilis. Moreover, far-red light stimulates biological control of spider mites in glasshouse tomatoes due to increased population build-up of the biocontrol agent. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Davy Meijer
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Jaimie van der Vleut
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- Biobest Group N.V., R&D Department, Westerlo, Belgium
| | | | - Thibault Costaz
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
15
|
Escobar-Bravo R, Lin PA, Waterman JM, Erb M. Dynamic environmental interactions shaped by vegetative plant volatiles. Nat Prod Rep 2023; 40:840-865. [PMID: 36727645 PMCID: PMC10132087 DOI: 10.1039/d2np00061j] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 02/03/2023]
Abstract
Covering: up to November 2022Plants shape terrestrial ecosystems through physical and chemical interactions. Plant-derived volatile organic compounds in particular influence the behavior and performance of other organisms. In this review, we discuss how vegetative plant volatiles derived from leaves, stems and roots are produced and released into the environment, how their production and release is modified by abiotic and biotic factors, and how they influence other organisms. Vegetative plant volatiles are derived from different biosynthesis and degradation pathways and are released via distinct routes. Both biosynthesis and release are regulated by other organisms as well as abiotic factors. In turn, vegetative plant volatiles modify the physiology and the behavior of a wide range of organisms, from microbes to mammals. Several concepts and frameworks can help to explain and predict the evolution and ecology of vegetative plant volatile emission patterns of specific pathways: multifunctionality of specialized metabolites, chemical communication displays and the information arms race, and volatile physiochemistry. We discuss how these frameworks can be leveraged to understand the evolution and expression patterns of vegetative plant volatiles. The multifaceted roles of vegetative plant volatiles provide fertile grounds to understand ecosystem dynamics and harness their power for sustainable agriculture.
Collapse
Affiliation(s)
| | - Po-An Lin
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jamie M Waterman
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
16
|
Li Z, Zhao T, Liu J, Li H, Liu B. Shade-Induced Leaf Senescence in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1550. [PMID: 37050176 PMCID: PMC10097262 DOI: 10.3390/plants12071550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Leaf senescence is a vital developmental process that involves the orderly breakdown of macromolecules to transfer nutrients from mature leaves to emerging and reproductive organs. This process is essential for a plant's overall fitness. Multiple internal and external factors, such as leaf age, plant hormones, stresses, and light environment, regulate the onset and progression of leaf senescence. When plants grow close to each other or are shaded, it results in significant alterations in light quantity and quality, such as a decrease in photosynthetically active radiation (PAR), a drop in red/far-red light ratios, and a reduction in blue light fluence rate, which triggers premature leaf senescence. Recently, studies have identified various components involved in light, phytohormone, and other signaling pathways that regulate the leaf senescence process in response to shade. This review summarizes the current knowledge on the molecular mechanisms that control leaf senescence induced by shade.
Collapse
Affiliation(s)
| | | | | | - Hongyu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
17
|
Chautá A, Kessler A. Metabolic Integration of Spectral and Chemical Cues Mediating Plant Responses to Competitors and Herbivores. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202768. [PMID: 36297792 PMCID: PMC9609625 DOI: 10.3390/plants11202768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 06/08/2023]
Abstract
Light quality and chemicals in a plant's environment can provide crucial information about the presence and nature of antagonists, such as competitors and herbivores. Here, we evaluate the roles of three sources of information-shifts in the red:far red (R:FR) ratio of light reflected off of potentially competing neighbors, induced metabolic changes to damage by insect herbivores, and induced changes to volatile organic compounds emitted from herbivore-damaged neighboring plants-to affect metabolic responses in the tall goldenrod, Solidago altissima. We address the hypothesis that plants integrate the information available about competitors and herbivory to optimize metabolic responses to interacting stressors by exposing plants to the different types of environmental information in isolation and combination. We found strong interactions between the exposure to decreased R:FR light ratios and damage on the induction of secondary metabolites (volatile and non-volatile) in plants. Similarly, the perception of VOCs emitted from neighboring plants was altered by the simultaneous exposure to spectral cues from neighbors. These results suggest that plants integrate spectral and chemical environmental cues to change the production and perception of volatile and non-volatile compounds and highlight the role of plant context-dependent metabolic responses in mediating population and community dynamics.
Collapse
|
18
|
Zhang C, Wu Y, Liu X, Zhang J, Li X, Lin L, Yin R. Pivotal roles of ELONGATED HYPOCOTYL5 in regulation of plant development and fruit metabolism in tomato. PLANT PHYSIOLOGY 2022; 189:527-540. [PMID: 35312008 PMCID: PMC9157105 DOI: 10.1093/plphys/kiac133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The transcription factor ELONGATED HYPOCOTYL5 (HY5) plays critical roles in plant photomorphogenesis. Previous studies on HY5 have mainly focused on the seedling stage in Arabidopsis (Arabidopsis thaliana), and its functions in other plant species have not been well characterized, particularly at adult stages of development. In this report, we investigated the functions of tomato (Solanum lycopersicum) HY5 (SlHY5) from seedlings to adult plants with a focus on fruits. Genome-edited slhy5 mutants exhibited typical compromised photomorphogenesis in response to various light conditions. The slhy5 mutants showed reduced primary root length and secondary root number, which is associated with altered auxin signaling. SlHY5 promoted chlorophyll biosynthesis from seedling to adult stages. Notably, the promotive role of SlHY5 on chlorophyll accumulation was more pronounced on the illuminated side of green fruits than on their shaded side. Consistent with this light-dependent effect, we determined that SlHY5 protein is stabilized by light. Transcriptome and metabolome analyses in fruits revealed that SlHY5 has major functions in the regulation of metabolism, including the biosynthesis of phenylpropanoids and steroidal glycoalkaloids. These data demonstrate that SlHY5 performs both shared and distinct functions in relation to its Arabidopsis counterpart. The manipulation of SlHY5 represents a powerful tool to influence the two vital agricultural traits of seedling fitness and fruit quality in tomato.
Collapse
Affiliation(s)
- Chunli Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban Agriculture Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujie Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaorui Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayi Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Li
- Instrumental Analysis Center of Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban Agriculture Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruohe Yin
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban Agriculture Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
19
|
Saha H, Kaloterakis N, Harvey JA, Van der Putten WH, Biere A. Effects of Light Quality on Colonization of Tomato Roots by AMF and Implications for Growth and Defense. PLANTS 2022; 11:plants11070861. [PMID: 35406841 PMCID: PMC9002964 DOI: 10.3390/plants11070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Beneficial soil microbes can enhance plant growth and defense, but the extent to which this occurs depends on the availability of resources, such as water and nutrients. However, relatively little is known about the role of light quality, which is altered during shading, resulting a low red: far-red ratio (R:FR) of light. We examined how low R:FR light influences arbuscular mycorrhizal fungus (AMF)-mediated changes in plant growth and defense using Solanum lycopersicum (tomato) and the insect herbivore Chrysodeixis chalcites. We also examined effects on third trophic level interactions with the parasitoid Cotesia marginiventris. Under low R:FR light, non-mycorrhizal plants activated the shade avoidance syndrome (SAS), resulting in enhanced biomass production. However, mycorrhizal inoculation decreased stem elongation in shaded plants, thus counteracting the plant’s SAS response to shading. Unexpectedly, activation of SAS under low R:FR light did not increase plant susceptibility to the herbivore in either non-mycorrhizal or mycorrhizal plants. AMF did not significantly affect survival or growth of caterpillars and parasitoids but suppressed herbivore-induced expression of jasmonic acid-signaled defenses genes under low R:FR light. These results highlight the context-dependency of AMF effects on plant growth and defense and the potentially adverse effects of AMF under shading.
Collapse
Affiliation(s)
- Haymanti Saha
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (N.K.); (J.A.H.); (W.H.V.d.P.); (A.B.)
- Correspondence: ; Tel.: +31-645036538
| | - Nikolaos Kaloterakis
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (N.K.); (J.A.H.); (W.H.V.d.P.); (A.B.)
- Soil Biology Group, Wageningen University and Research, Droevendaalsesteeg 2, 6708 PB Wageningen, The Netherlands
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Jeffrey A. Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (N.K.); (J.A.H.); (W.H.V.d.P.); (A.B.)
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Wim H. Van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (N.K.); (J.A.H.); (W.H.V.d.P.); (A.B.)
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 2, 6708 PB Wageningen, The Netherlands
| | - Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (N.K.); (J.A.H.); (W.H.V.d.P.); (A.B.)
| |
Collapse
|
20
|
Courbier S, Snoek BL, Kajala K, Li L, van Wees SCM, Pierik R. Mechanisms of far-red light-mediated dampening of defense against Botrytis cinerea in tomato leaves. PLANT PHYSIOLOGY 2021; 187:1250-1266. [PMID: 34618050 PMCID: PMC8566310 DOI: 10.1093/plphys/kiab354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Plants detect neighboring competitors through a decrease in the ratio between red and far-red light (R:FR). This decreased R:FR is perceived by phytochrome photoreceptors and triggers shade avoidance responses such as shoot elongation and upward leaf movement (hyponasty). In addition to promoting elongation growth, low R:FR perception enhances plant susceptibility to pathogens: the growth-defense tradeoff. Although increased susceptibility in low R:FR has been studied for over a decade, the associated timing of molecular events is still unknown. Here, we studied the chronology of FR-induced susceptibility events in tomato (Solanum lycopersicum) plants pre-exposed to either white light (WL) or WL supplemented with FR light (WL+FR) prior to inoculation with the necrotrophic fungus Botrytis cinerea (B.c.). We monitored the leaf transcriptional changes over a 30-h time course upon infection and followed up with functional studies to identify mechanisms. We found that FR-induced susceptibility in tomato is linked to a general dampening of B.c.-responsive gene expression, and a delay in both pathogen recognition and jasmonic acid-mediated defense gene expression. In addition, we found that the supplemental FR-induced ethylene emissions affected plant immune responses under the WL+FR condition. This study improves our understanding of the growth-immunity tradeoff, while simultaneously providing leads to improve tomato resistance against pathogens in dense cropping systems.
Collapse
Affiliation(s)
- Sarah Courbier
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Institute of Biodynamics and Biocomplexity, Utrecht University, The Netherlands
| | - Kaisa Kajala
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Linge Li
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Saskia C M van Wees
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| |
Collapse
|
21
|
Hoang XLT, Prerostova S, Thu NBA, Thao NP, Vankova R, Tran LSP. Histidine Kinases: Diverse Functions in Plant Development and Responses to Environmental Conditions. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:297-323. [PMID: 34143645 DOI: 10.1146/annurev-arplant-080720-093057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The two-component system (TCS), which is one of the most evolutionarily conserved signaling pathway systems, has been known to regulate multiple biological activities and environmental responses in plants. Significant progress has been made in characterizing the biological functions of the TCS components, including signal receptor histidine kinase (HK) proteins, signal transducer histidine-containing phosphotransfer proteins, and effector response regulator proteins. In this review, our scope is focused on the diverse structure, subcellular localization, and interactions of the HK proteins, as well as their signaling functions during development and environmental responses across different plant species. Based on data collected from scientific studies, knowledge about acting mechanisms and regulatory roles of HK proteins is presented. This comprehensive summary ofthe HK-related network provides a panorama of sophisticated modulating activities of HK members and gaps in understanding these activities, as well as the basis for developing biotechnological strategies to enhance the quality of crop plants.
Collapse
Affiliation(s)
- Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - Nguyen Binh Anh Thu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79409, USA;
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
22
|
Liu Y, Jafari F, Wang H. Integration of light and hormone signaling pathways in the regulation of plant shade avoidance syndrome. ABIOTECH 2021; 2:131-145. [PMID: 36304753 PMCID: PMC9590540 DOI: 10.1007/s42994-021-00038-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/24/2021] [Indexed: 11/25/2022]
Abstract
As sessile organisms, plants are unable to move or escape from their neighboring competitors under high-density planting conditions. Instead, they have evolved the ability to sense changes in light quantity and quality (such as a reduction in photoactive radiation and drop in red/far-red light ratios) and evoke a suite of adaptative responses (such as stem elongation, reduced branching, hyponastic leaf orientation, early flowering and accelerated senescence) collectively termed shade avoidance syndrome (SAS). Over the past few decades, much progress has been made in identifying the various photoreceptor systems and light signaling components implicated in regulating SAS, and in elucidating the underlying molecular mechanisms, based on extensive molecular genetic studies with the model dicotyledonous plant Arabidopsis thaliana. Moreover, an emerging synthesis of the field is that light signaling integrates with the signaling pathways of various phytohormones to coordinately regulate different aspects of SAS. In this review, we present a brief summary of the various cross-talks between light and hormone signaling in regulating SAS. We also present a perspective of manipulating SAS to tailor crop architecture for breeding high-density tolerant crop cultivars.
Collapse
Affiliation(s)
- Yang Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Fereshteh Jafari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
| |
Collapse
|
23
|
Lazzarin M, Meisenburg M, Meijer D, van Ieperen W, Marcelis LFM, Kappers IF, van der Krol AR, van Loon JJA, Dicke M. LEDs Make It Resilient: Effects on Plant Growth and Defense. TRENDS IN PLANT SCIENCE 2021; 26:496-508. [PMID: 33358304 DOI: 10.1016/j.tplants.2020.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 05/22/2023]
Abstract
Light spectral composition influences plant growth and metabolism, and has important consequences for interactions with plant-feeding arthropods and their natural enemies. In greenhouse horticulture, light spectral composition can be precisely manipulated by light-emitting diodes (LEDs), and LEDs are already used to optimize crop production and quality. However, because light quality also modulates plant secondary metabolism and defense, it is important to understand the underlying mechanisms in the context of the growth-defense trade-off. We review the effects of the spectral composition of supplemental light currently used, or potentially used, in greenhouse horticulture on the mechanisms underlying plant growth and defense. This information is important for exploring opportunities to optimize crop performance and pest management, and thus for developing resilient crop-production systems.
Collapse
Affiliation(s)
- M Lazzarin
- Horticulture and Product Physiology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - M Meisenburg
- Laboratory of Plant Physiology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - D Meijer
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - W van Ieperen
- Horticulture and Product Physiology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - L F M Marcelis
- Horticulture and Product Physiology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - I F Kappers
- Laboratory of Plant Physiology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - A R van der Krol
- Laboratory of Plant Physiology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - J J A van Loon
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - M Dicke
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
24
|
Fernández-Milmanda GL, Ballaré CL. Shade Avoidance: Expanding the Color and Hormone Palette. TRENDS IN PLANT SCIENCE 2021; 26:509-523. [PMID: 33461868 DOI: 10.1016/j.tplants.2020.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Major strides have been made over the past decade in elucidating the mechanisms that mediate shade-avoidance responses. The canonical PHYTOCHROME INTERACTING FACTOR (PIF)-auxin pathway that begins with inactivation of phytochrome B (phyB) by a low red:far-red (R:FR) ratio, and that leads to increased elongation, has been thoroughly characterized in arabidopsis (Arabidopsisthaliana) seedlings. Nevertheless, studies in other life stages and plant species have demonstrated the role of other wavelengths, photoreceptors, and hormones in the orchestration of shade-avoidance responses. We highlight recent developments that illustrate how canopy light cues regulate signaling through auxin, gibberellins (GAs), jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), and strigolactones (SLs) to modulate key aspects of plant growth, metabolism, and defense.
Collapse
Affiliation(s)
- Guadalupe L Fernández-Milmanda
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Carlos L Ballaré
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas (IIBIO), CONICET, Universidad Nacional de San Martín, B1650HMP Buenos Aires, Argentina.
| |
Collapse
|
25
|
Iqbal Z, Iqbal MS, Hashem A, Abd_Allah EF, Ansari MI. Plant Defense Responses to Biotic Stress and Its Interplay With Fluctuating Dark/Light Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:631810. [PMID: 33763093 PMCID: PMC7982811 DOI: 10.3389/fpls.2021.631810] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 05/24/2023]
Abstract
Plants are subjected to a plethora of environmental cues that cause extreme losses to crop productivity. Due to fluctuating environmental conditions, plants encounter difficulties in attaining full genetic potential for growth and reproduction. One such environmental condition is the recurrent attack on plants by herbivores and microbial pathogens. To surmount such attacks, plants have developed a complex array of defense mechanisms. The defense mechanism can be either preformed, where toxic secondary metabolites are stored; or can be inducible, where defense is activated upon detection of an attack. Plants sense biotic stress conditions, activate the regulatory or transcriptional machinery, and eventually generate an appropriate response. Plant defense against pathogen attack is well understood, but the interplay and impact of different signals to generate defense responses against biotic stress still remain elusive. The impact of light and dark signals on biotic stress response is one such area to comprehend. Light and dark alterations not only regulate defense mechanisms impacting plant development and biochemistry but also bestow resistance against invading pathogens. The interaction between plant defense and dark/light environment activates a signaling cascade. This signaling cascade acts as a connecting link between perception of biotic stress, dark/light environment, and generation of an appropriate physiological or biochemical response. The present review highlights molecular responses arising from dark/light fluctuations vis-à-vis elicitation of defense mechanisms in plants.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
26
|
Roeber VM, Bajaj I, Rohde M, Schmülling T, Cortleven A. Light acts as a stressor and influences abiotic and biotic stress responses in plants. PLANT, CELL & ENVIRONMENT 2021; 44:645-664. [PMID: 33190307 DOI: 10.1111/pce.13948] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 05/18/2023]
Abstract
Light is important for plants as an energy source and a developmental signal, but it can also cause stress to plants and modulates responses to stress. Excess and fluctuating light result in photoinhibition and reactive oxygen species (ROS) accumulation around photosystems II and I, respectively. Ultraviolet light causes photodamage to DNA and a prolongation of the light period initiates the photoperiod stress syndrome. Changes in light quality and quantity, as well as in light duration are also key factors impacting the outcome of diverse abiotic and biotic stresses. Short day or shady environments enhance thermotolerance and increase cold acclimation. Similarly, shade conditions improve drought stress tolerance in plants. Additionally, the light environment affects the plants' responses to biotic intruders, such as pathogens or insect herbivores, often reducing growth-defence trade-offs. Understanding how plants use light information to modulate stress responses will support breeding strategies to enhance crop stress resilience. This review summarizes the effect of light as a stressor and the impact of the light environment on abiotic and biotic stress responses. There is a special focus on the role of the different light receptors and the crosstalk between light signalling and stress response pathways.
Collapse
Affiliation(s)
- Venja M Roeber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Ishita Bajaj
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Mareike Rohde
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
27
|
Pierik R, Ballaré CL. Control of Plant Growth and Defense by Photoreceptors: From Mechanisms to Opportunities in Agriculture. MOLECULAR PLANT 2021; 14:61-76. [PMID: 33276158 DOI: 10.1016/j.molp.2020.11.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Plants detect and respond to the proximity of competitors using light signals perceived by photoreceptor proteins. A low ratio of red to far-red radiation (R:FR ratio) is a key signal of competition that is sensed by the photoreceptor phytochrome B (phyB). Low R:FR ratios increase the synthesis of growth-related hormones, including auxin and gibberellins, promoting stem elongation and other shade-avoidance responses. Other photoreceptors that help plants to optimize their developmental configuration and resource allocation patterns in the canopy include blue light photoreceptors, such as cryptochromes and phototropins, and UV receptors, such as UVR8. All photoreceptors act by directly or indirectly controlling the activity of two major regulatory nodes for growth and development: the COP1/SPA ubiquitin E3 ligase complex and the PIF transcription factors. phyB is also an important modulator of hormonal pathways that regulate plant defense against herbivores and pathogens, including the jasmonic acid signaling pathway. In this Perspective, we discuss recent advances on the studies of the mechanisms that link photoreceptors with growth and defense. Understanding these mechanisms is important to provide a functional platform for breeding programs aimed at improving plant productivity, stress tolerance, and crop health in species of agronomic interest, and to manipulate the light environments in protected agriculture.
Collapse
Affiliation(s)
- Ronald Pierik
- Plant Ecophysiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands.
| | - Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina; IIBIO-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina.
| |
Collapse
|
28
|
Courbier S, Grevink S, Sluijs E, Bonhomme PO, Kajala K, Van Wees SCM, Pierik R. Far-red light promotes Botrytis cinerea disease development in tomato leaves via jasmonate-dependent modulation of soluble sugars. PLANT, CELL & ENVIRONMENT 2020; 43:2769-2781. [PMID: 32833234 DOI: 10.1101/2020.05.25.114439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 05/27/2023]
Abstract
Plants experience a decrease in the red:far-red light ratio (R:FR) when grown at high planting density. In addition to eliciting the shade avoidance response, low R:FR also enhances plant susceptibility to pathogens via modulation of defense hormone-mediated responses. However, other mechanisms, also affected by low R:FR, have not been considered as potential components in FR-induced susceptibility. Here, we identify FR-induced accumulation of leaf soluble sugars as a novel component of FR-induced susceptibility. We observed that phytochrome inactivation by FR or phytochrome B mutation was associated with elevated leaf glucose and fructose levels and enhanced disease severity caused by Botrytis cinerea. By experimentally manipulating internal leaf sugar levels, we found that the FR-induced susceptibility in tomato was partly sugar-dependent. Further analysis revealed that the observed sugar accumulation in supplemental FR occurred in a jasmonic acid (JA)-dependent manner, and the JA biosynthesis mutant def1 also displayed elevated soluble sugar levels, which was rescued by exogenous methyl jasmonate (MeJA) application. We propose that the reduced JA responsiveness under low R:FR promotes disease symptoms not only via dampened induction of defense responses, but also via increased levels of soluble sugars that supports pathogen growth in tomato leaves.
Collapse
Affiliation(s)
- Sarah Courbier
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Sanne Grevink
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Emma Sluijs
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Pierre-Olivier Bonhomme
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Kaisa Kajala
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
29
|
Courbier S, Grevink S, Sluijs E, Bonhomme P, Kajala K, Van Wees SCM, Pierik R. Far-red light promotes Botrytis cinerea disease development in tomato leaves via jasmonate-dependent modulation of soluble sugars. PLANT, CELL & ENVIRONMENT 2020; 43:2769-2781. [PMID: 32833234 PMCID: PMC7693051 DOI: 10.1111/pce.13870] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 05/12/2023]
Abstract
Plants experience a decrease in the red:far-red light ratio (R:FR) when grown at high planting density. In addition to eliciting the shade avoidance response, low R:FR also enhances plant susceptibility to pathogens via modulation of defense hormone-mediated responses. However, other mechanisms, also affected by low R:FR, have not been considered as potential components in FR-induced susceptibility. Here, we identify FR-induced accumulation of leaf soluble sugars as a novel component of FR-induced susceptibility. We observed that phytochrome inactivation by FR or phytochrome B mutation was associated with elevated leaf glucose and fructose levels and enhanced disease severity caused by Botrytis cinerea. By experimentally manipulating internal leaf sugar levels, we found that the FR-induced susceptibility in tomato was partly sugar-dependent. Further analysis revealed that the observed sugar accumulation in supplemental FR occurred in a jasmonic acid (JA)-dependent manner, and the JA biosynthesis mutant def1 also displayed elevated soluble sugar levels, which was rescued by exogenous methyl jasmonate (MeJA) application. We propose that the reduced JA responsiveness under low R:FR promotes disease symptoms not only via dampened induction of defense responses, but also via increased levels of soluble sugars that supports pathogen growth in tomato leaves.
Collapse
Affiliation(s)
- Sarah Courbier
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Sanne Grevink
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Emma Sluijs
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Pierre‐Olivier Bonhomme
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Kaisa Kajala
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Saskia C. M. Van Wees
- Plant‐Microbe Interactions, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
30
|
Courbier S, Pierik R. Canopy Light Quality Modulates Stress Responses in Plants. iScience 2019; 22:441-452. [PMID: 31816531 PMCID: PMC6909002 DOI: 10.1016/j.isci.2019.11.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 11/29/2022] Open
Abstract
Plants growing at high density are in constant competition for light with each other. The shade avoidance syndrome (SAS) is an effective way to escape neighboring vegetation. Even though the molecular mechanisms regulating SAS have been long studied, interactions between light and other environmental signaling pathways have only recently received attention. Under natural conditions, plants deal with multiple stresses simultaneously. It is, therefore, key to identify commonalities, distinctions, and interactions between plant responses to different environmental cues. This review outlines the current understanding of the interplay between canopy light signaling and other stresses, both biotic and abiotic. Understanding plant responses to multiple stimuli, factoring in the dominance of light for plant life, is essential to generate crops with increased resilience against climate change.
Collapse
Affiliation(s)
- Sarah Courbier
- Plant Ecophysiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
31
|
Fernandez JC, Burch-Smith TM. Chloroplasts as mediators of plant biotic interactions over short and long distances. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:148-155. [PMID: 31284090 DOI: 10.1016/j.pbi.2019.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/21/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
In nature, plants interact with numerous other organisms. Some interactions benefit both the plant and the other organism(s), while others lead to disease or even death of the plant hosts. The traditional focus of research into plant biotic interactions has been on the negative effects on plants and the strategies plants use to mitigate or prevent these. Over the last several years there has been increasing appreciation for the diversity and importance of plant biotic interactions in plant success as well as the evolution and stabilization of ecosystems. With this new perspective, it is also becoming clear that the metabolic output of chloroplasts in plants is critical to establishing and maintaining these interactions. Here we highlight the roles of chloroplasts in diverse biotic interactions. Photosynthetic chloroplasts are the source of hormones, small molecules and a prodigious number of secondary metabolites, a significant portion of which influence plant biotic interactions. Importantly, the effects of chloroplasts on these interactions are not limited to sites of direct association or contact but also act at a distance in systemic leaves and roots, in the rhizosphere, in the air surrounding a plant and in neighboring plants, and they can persist over several years.
Collapse
Affiliation(s)
- Jessica C Fernandez
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
32
|
Ballaré CL, Austin AT. Recalculating growth and defense strategies under competition: key roles of photoreceptors and jasmonates. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3425-3434. [PMID: 31099390 DOI: 10.1093/jxb/erz237] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/10/2019] [Indexed: 05/21/2023]
Abstract
The growth-defense trade-off in plant biology has gained enormous traction in the last two decades, highlighting the importance of understanding how plants deal with two of the greatest challenges for their survival and reproduction. It has been well established that in response to competition signals perceived by informational photoreceptors, shade-intolerant plants typically activate the shade-avoidance syndrome (SAS). In turn, in response to signals of biotic attack, plants activate a suite of defense responses, many of which are directed to minimize the loss of plant tissue to the attacking agent (broadly defined, the defense syndrome, DS). We argue that components of the SAS, including increased elongation, apical dominance, reduced leaf mass per area (LMA), and allocation to roots, are in direct conflict with configurational changes that plants require to maximize defense. We hypothesize that these configurational trade-offs provide a functional explanation for the suppression of components of the DS in response to competition cues. Based on this premise, we discuss recent advances in the understanding of the mechanisms by which informational photoreceptors, by interacting with jasmonic acid (JA) signaling, help the plant to make intelligent allocation and developmental decisions that optimize its configuration in complex biotic contexts.
Collapse
Affiliation(s)
- Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- IIB-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, HMP Buenos Aires, Argentina
| | - Amy T Austin
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
33
|
Boulanger FX, Jandricic S, Bolckmans K, Wäckers FL, Pekas A. Optimizing aphid biocontrol with the predator Aphidoletes aphidimyza, based on biology and ecology. PEST MANAGEMENT SCIENCE 2019; 75:1479-1493. [PMID: 30450665 DOI: 10.1002/ps.5270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Aphidoletes aphidimyza is one of the most important predators used in the augmentative biological control of aphids, key pests of many crops worldwide. Adult females are very efficient in locating aphid infestations over a relatively long range, up to 45 m, and deposit eggs near or within aphid colonies. The predatory larvae are aphid generalists preying on several agriculturally important aphid species. The successful use of this biocontrol agent in agricultural systems depends on several biotic and abiotic factors. Among biotic factors, aphid species, plant structure, interspecific competition and intraguild predation may significantly impact the predator´s population dynamics. Key abiotic conditions include day lengths (above a critical threshold to prevent diapause), availability of mating sites in the crop, temperature (above 15 °C to enable egg laying), air relative humidity (above 70%) and availability of pupation sites. Although several successes have been reported in open field crops with naturally occurring or released populations, commercial releases are primarily used in protected crops. Optimized emergence boxes combining provisioning of food sources for the adults, integration with the technological advances that occurred in the greenhouse environment lately, insights into the nutritional ecology in open field crops and exploration of the genetic variability are proposed as future directions to improve adoption and efficacy of A. aphidimyza in crop protection. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Sarah Jandricic
- Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA), Victoria, Canada
| | - Karel Bolckmans
- Biobest Group N.V., Research & Development Department, Westerlo, Belgium
| | - Felix L Wäckers
- Biobest Group N.V., Research & Development Department, Westerlo, Belgium
| | - Apostolos Pekas
- Biobest Group N.V., Research & Development Department, Westerlo, Belgium
| |
Collapse
|
34
|
Fei C, Chen L, Yang T, Zou W, Lin H, Xi D. The role of phytochromes in Nicotiana tabacum against Chilli veinal mottle virus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:470-477. [PMID: 30999134 DOI: 10.1016/j.plaphy.2019.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 05/02/2023]
Abstract
It has been reported that phytochrome A (phyA) and phytochrome B (phyB) are potent regulators of plant defense. However, the mechanisms that phytochromes use to interfere with plant resistance to viral infection remain largely unclear. In this study, Chilli veinal mottle virus (ChiVMV) was used to investigate the role of phytochromes in response to biotic stress. Our results showed that the phytochromes mutant phyAphyB28 plants displayed more serious necrosis and dwarf phenotypes compared to that of wild type plants (WT) after ChiVMV infection. qRT-PCR and Western blot analyses indicated that the expression and accumulation of ChiVMV were higher in phyAphyB28 mutants than that in WT plants. The leakage (EL) and the content of thiobarbituric acid-reactive substance (TBARS) suggested that phyAphyB28 mutants suffered more severe membrane damage than that of WT plants. In addition, extensive ROS accumulated in phyAphyB28 mutants after ChiVMV infection, whereas ROS production in WT plants were much less than mutant plants. The activities of antioxidant enzymes were down-regulated in phyAphyB28 mutants when compared with that in WT plants under ChiVMV infection. Besides, the contents of endogenous SA, JA and the expression of both hormones signaling related genes were lower in phyAphyB28 mutants compared to that in WT plants. Application of exogenous SA and JA could alleviate disease symptoms. Taken together, these results demonstrated that phyA and phyB positively regulated plant defense responses to ChiVMV infection and this process was dependent on the SA and JA defense pathways.
Collapse
Affiliation(s)
- Chunyan Fei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Lijuan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Department of Crop Stress Management, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute) Guangzhou, 510316, Guangdong, PR China
| | - Ting Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Wenshan Zou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Dehui Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
35
|
Hu L, Ye M, Erb M. Integration of two herbivore-induced plant volatiles results in synergistic effects on plant defence and resistance. PLANT, CELL & ENVIRONMENT 2019; 42:959-971. [PMID: 30195252 PMCID: PMC6392123 DOI: 10.1111/pce.13443] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/25/2018] [Accepted: 09/02/2018] [Indexed: 05/03/2023]
Abstract
Plants can use induced volatiles to detect herbivore- and pathogen-attacked neighbors and prime their defenses. Several individual volatile priming cues have been identified, but whether plants are able to integrate multiple cues from stress-related volatile blends remains poorly understood. Here, we investigated how maize plants respond to two herbivore-induced volatile priming cues with complementary information content, the green leaf volatile (Z)-3-hexenyl acetate (HAC) and the aromatic volatile indole. In the absence of herbivory, HAC directly induced defence gene expression, whereas indole had no effect. Upon induction by simulated herbivory, both volatiles increased jasmonate signalling, defence gene expression, and defensive secondary metabolite production and increased plant resistance. Plant resistance to caterpillars was more strongly induced in dual volatile-exposed plants than plants exposed to single volatiles.. Induced defence levels in dual volatile-exposed plants were significantly higher than predicted from the added effects of the individual volatiles, with the exception of induced plant volatile production, which showed no increase upon dual-exposure relative to single exposure. Thus, plants can integrate different volatile cues into strong and specific responses that promote herbivore defence induction and resistance. Integrating multiple volatiles may be beneficial, as volatile blends are more reliable indicators of future stress than single cues.
Collapse
Affiliation(s)
- Lingfei Hu
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Meng Ye
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Matthias Erb
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| |
Collapse
|
36
|
Douma JC, de Vries J, Poelman EH, Dicke M, Anten NP, Evers JB. Ecological significance of light quality in optimizing plant defence. PLANT, CELL & ENVIRONMENT 2019; 42:1065-1077. [PMID: 30702750 PMCID: PMC6392137 DOI: 10.1111/pce.13524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 05/29/2023]
Abstract
Plants balance the allocation of resources between growth and defence to optimize fitness in a competitive environment. Perception of neighbour-detection cues, such as a low ratio of red to far-red (R:FR) radiation, activates a suite of shade-avoidance responses that include stem elongation and upward leaf movement, whilst simultaneously downregulating defence. This downregulation is hypothesized to benefit the plant either by mediating the growth-defence balance in favour of growth in high plant densities or, alternatively, by mediating defence of individual leaves such that those most photosynthetically productive are best protected. To test these hypotheses, we used a 3D functional-structural plant model of Brassica nigra that mechanistically simulates the interactions between plant architecture, herbivory, and the light environment. Our results show that plant-level defence expression is a strong determinant of plant fitness and that leaf-level defence mediation by R:FR can provide a fitness benefit in high densities. However, optimal plant-level defence expression does not decrease monotonically with plant density, indicating that R:FR mediation of defence alone is not enough to optimize defence between densities. Therefore, assessing the ecological significance of R:FR-mediated defence is paramount to better understand the evolution of this physiological linkage and its implications for crop breeding.
Collapse
Affiliation(s)
- Jacob C. Douma
- Centre for Crop Systems AnalysisWageningen University6708PBWageningenThe Netherlands
- Laboratory of EntomologyWageningen University6708PBWageningenThe Netherlands
| | - Jorad de Vries
- Centre for Crop Systems AnalysisWageningen University6708PBWageningenThe Netherlands
- Laboratory of EntomologyWageningen University6708PBWageningenThe Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen University6708PBWageningenThe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University6708PBWageningenThe Netherlands
| | - Niels P.R. Anten
- Centre for Crop Systems AnalysisWageningen University6708PBWageningenThe Netherlands
| | - Jochem B. Evers
- Centre for Crop Systems AnalysisWageningen University6708PBWageningenThe Netherlands
| |
Collapse
|
37
|
Xiao L, Carrillo J, Siemann E, Ding J. Herbivore-specific induction of indirect and direct defensive responses in leaves and roots. AOB PLANTS 2019; 11:plz003. [PMID: 30792834 PMCID: PMC6378760 DOI: 10.1093/aobpla/plz003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/06/2019] [Accepted: 01/24/2019] [Indexed: 05/07/2023]
Abstract
Herbivory can induce both general and specific responses in plants that modify direct and indirect defence against subsequent herbivory. The type of induction (local versus systemic induction, single versus multiple defence induction) likely depends both on herbivore identity and relationships among different responses. We examined the effects of two above-ground chewing herbivores (caterpillar, weevil) and one sucking herbivore (aphid) on indirect defence responses in leaves and direct defence responses in both leaves and roots of tallow tree, Triadica sebifera. We also included foliar applications of methyl jasmonate (MeJA) and salicylic acid (SA). We found that chewing herbivores and MeJA increased above-ground defence chemicals but SA only increased below-ground total flavonoids. Herbivory or MeJA increased above-ground indirect defence response (extrafloral nectar) but SA decreased it. Principal component analysis showed there was a trade-off between increasing total root phenolics and tannins (MeJA, chewing) versus latex and total root flavonoids (aphid, SA). For individual flavonoids, there was evidence for systemic induction (quercetin), trade-offs between compounds (quercetin versus kaempferitrin) and trade-offs between above-ground versus below-ground production (isoquercetin). Our results suggest that direct and indirect defence responses in leaves and roots depend on herbivore host range and specificity along with feeding mode. We detected relationships among some defence response types, while others were independent. Including multiple types of insects to examine defence inductions in leaves and roots may better elucidate the complexity and specificity of defence responses of plants.
Collapse
Affiliation(s)
- Li Xiao
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Faculty of Land and Food Systems, Centre for Sustainable Food Systems, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Juli Carrillo
- Faculty of Land and Food Systems, Centre for Sustainable Food Systems, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan Siemann
- Biosciences Department, Rice University, Houston, TX, USA
| | - Jianqing Ding
- School of Life Sciences, Henan University, Kaifeng, Henan, China
- Corresponding author’s e-mail address:
| |
Collapse
|
38
|
de Vries J, Poelman EH, Anten N, Evers JB. Elucidating the interaction between light competition and herbivore feeding patterns using functional-structural plant modelling. ANNALS OF BOTANY 2018; 121:1019-1031. [PMID: 29373660 PMCID: PMC5906910 DOI: 10.1093/aob/mcx212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/11/2018] [Indexed: 05/22/2023]
Abstract
Background and Aims Plants usually compete with neighbouring plants for resources such as light as well as defend themselves against herbivorous insects. This requires investment of limiting resources, resulting in optimal resource distribution patterns and trade-offs between growth- and defence-related traits. A plant's competitive success is determined by the spatial distribution of its resources in the canopy. The spatial distribution of herbivory in the canopy in turn differs between herbivore species as the level of herbivore specialization determines their response to the distribution of resources and defences in the canopy. Here, we investigated to what extent competition for light affects plant susceptibility to herbivores with different feeding preferences. Methods To quantify interactions between herbivory and competition, we developed and evaluated a 3-D spatially explicit functional-structural plant model for Brassica nigra that mechanistically simulates competition in a dynamic light environment, and also explicitly models leaf area removal by herbivores with different feeding preferences. With this novel approach, we can quantitatively explore the extent to which herbivore feeding location and light competition interact in their effect on plant performance. Key Results Our results indicate that there is indeed a strong interaction between levels of plant-plant competition and herbivore feeding preference. When plants did not compete, herbivory had relatively small effects irrespective of feeding preference. Conversely, when plants competed, herbivores with a preference for young leaves had a strong negative effect on the competitiveness and subsequent performance of the plant, whereas herbivores with a preference for old leaves did not. Conclusions Our study predicts how plant susceptibility to herbivory depends on the composition of the herbivore community and the level of plant competition, and highlights the importance of considering the full range of dynamics in plant-plant-herbivore interactions.
Collapse
Affiliation(s)
- Jorad de Vries
- Wageningen University, Laboratory of Entomology, Wageningen, The Netherlands
- Wageningen University, Centre for Crop System Analysis, Wageningen, The Netherlands
| | - Erik H Poelman
- Wageningen University, Laboratory of Entomology, Wageningen, The Netherlands
| | - Niels Anten
- Wageningen University, Centre for Crop System Analysis, Wageningen, The Netherlands
| | - Jochem B Evers
- Wageningen University, Centre for Crop System Analysis, Wageningen, The Netherlands
| |
Collapse
|
39
|
Pappas ML, Liapoura M, Papantoniou D, Avramidou M, Kavroulakis N, Weinhold A, Broufas GD, Papadopoulou KK. The Beneficial Endophytic Fungus Fusarium solani Strain K Alters Tomato Responses Against Spider Mites to the Benefit of the Plant. FRONTIERS IN PLANT SCIENCE 2018; 9:1603. [PMID: 30459791 PMCID: PMC6232530 DOI: 10.3389/fpls.2018.01603] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/17/2018] [Indexed: 05/23/2023]
Abstract
Beneficial microorganisms are known to promote plant growth and confer resistance to biotic and abiotic stressors. Soil-borne beneficial microbes in particular have shown potential in protecting plants against pathogens and herbivores via the elicitation of plant responses. In this study, we evaluated the role of Fusarium solani strain K (FsK) in altering plant responses to the two spotted spider mite Tetranychus urticae in tomato. We found evidence that FsK, a beneficial endophytic fungal strain isolated from the roots of tomato plants grown on suppressive compost, affects both direct and indirect tomato defenses against spider mites. Defense-related genes were differentially expressed on FsK-colonized plants after spider mite infestation compared to clean or spider mite-infested un-colonized plants. In accordance, spider mite performance was negatively affected on FsK-colonized plants and feeding damage was lower on these compared to control plants. Notably, FsK-colonization led to increased plant biomass to both spider mite-infested and un-infested plants. FsK was shown to enhance indirect tomato defense as FsK-colonized plants attracted more predators than un-colonized plants. In accordance, headspace volatile analysis revealed significant differences between the volatiles emitted by FsK-colonized plants in response to attack by spider mites. Our results highlight the role of endophytic fungi in shaping plant-mite interactions and may offer the opportunity for the development of a novel tool for spider mite control.
Collapse
Affiliation(s)
- Maria L. Pappas
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
- *Correspondence: Maria L. Pappas,
| | - Maria Liapoura
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Dimitra Papantoniou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Marianna Avramidou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Nektarios Kavroulakis
- Laboratory of Phytopathology, Institute of Olive Tree, Subtropical Plants & Viticulture, Hellenic Agricultural Organization – DEMETER, Chania, Greece
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - George D. Broufas
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Kalliope K. Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
40
|
Yang YX, Wu C, Ahammed GJ, Wu C, Yang Z, Wan C, Chen J. Red Light-Induced Systemic Resistance Against Root-Knot Nematode Is Mediated by a Coordinated Regulation of Salicylic Acid, Jasmonic Acid and Redox Signaling in Watermelon. FRONTIERS IN PLANT SCIENCE 2018; 9:899. [PMID: 30042771 PMCID: PMC6048386 DOI: 10.3389/fpls.2018.00899] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/07/2018] [Indexed: 02/05/2023]
Abstract
Red light (RL) can stimulate plant defense against foliar diseases; however, its role in activation of systemic defense against root diseases remains unclear. Here, the effect of RL on root knot nematode Meloidogyne incognita (RKN) infestation was investigated in watermelon plants (Citrullus lanatus L.). Plants were exposed to 200 μmol m-2 s-1 photosynthetic photon flux density RL at the canopy level for 21 days using light-emitting photodiodes. The results showed that RL significantly suppressed gall formation and nematode development, which was closely associated with the RL-induced attenuation of oxidative stress in roots. Gene expression analysis showed that RL caused a transient upregulation of PR1 and WRKY70 transcripts at 7 days post inoculation in RKN-infected plants. Further investigation revealed that RL-induced systemic defense against RKN was attributed to increased jasmonic acid (JA) and salicylic acid (SA) content, and transcript levels of their biosynthetic genes in roots. Interestingly, while malondialdehyde content decreased, H2O2 accumulation increased in RL-treated RKN-plants, indicating a potential signaling role of H2O2 in mediating RL-induced systemic defense. Furthermore, analysis of enzymatic and non-enzymatic antidoxidants revealed that RL-induced enhanced defense agaist RKN was also attributed to increased activities of antioxidant enzymes as well as redox homeostasis. Taken together, these findings suggest that RL could enhance systemic resistance against RKN, which is mediated by a coordinated regulation of JA- and SA-dependent signaling, antioxidants, and redox homeostasis in watermelon plants.
Collapse
Affiliation(s)
- You-xin Yang
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chaoqun Wu
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Golam J. Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, China
| | - Caijun Wu
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Zemao Yang
- Germplasm Lab, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Jinyin Chen
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Pingxiang University, Pingxiang, China
- *Correspondence: Jinyin Chen,
| |
Collapse
|
41
|
Ballaré CL, Pierik R. The shade-avoidance syndrome: multiple signals and ecological consequences. PLANT, CELL & ENVIRONMENT 2017; 40:2530-2543. [PMID: 28102548 DOI: 10.1111/pce.12914] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 05/18/2023]
Abstract
Plants use photoreceptor proteins to detect the proximity of other plants and to activate adaptive responses. Of these photoreceptors, phytochrome B (phyB), which is sensitive to changes in the red (R) to far-red (FR) ratio of sunlight, is the one that has been studied in greatest detail. The molecular connections between the proximity signal (low R:FR) and a model physiological response (increased elongation growth) have now been mapped in considerable detail in Arabidopsis seedlings. We briefly review our current understanding of these connections and discuss recent progress in establishing the roles of other photoreceptors in regulating growth-related pathways in response to competition cues. We also consider processes other than elongation that are controlled by photoreceptors and contribute to plant fitness under variable light conditions, including photoresponses that optimize the utilization of soil resources. In examining recent advances in the field, we highlight emerging roles of phyB as a major modulator of hormones related to plant immunity, in particular salicylic acid and jasmonic acid (JA). Recent attempts to manipulate connections between light signals and defence in Arabidopsis suggest that it might be possible to improve crop health at high planting densities by targeting links between phyB and JA signalling.
Collapse
Affiliation(s)
- Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- IIB-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
42
|
Viczián A, Klose C, Ádám É, Nagy F. New insights of red light-induced development. PLANT, CELL & ENVIRONMENT 2017; 40:2457-2468. [PMID: 27943362 DOI: 10.1111/pce.12880] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 05/14/2023]
Abstract
The red/far-red light absorbing photoreceptors phytochromes regulate development and growth and thus play an essential role in optimizing adaptation of the sessile plants to the ever-changing environment. Our understanding of how absorption of a red/far-red photon by phytochromes initiates/modifies diverse physiological responses has been steadily improving. Research performed in the last 5 years has been especially productive and led to significant conceptual changes about the mode of action of these photoreceptors. In this review, we focus on the phytochrome B photoreceptor, the major phytochrome species active in light-grown plants. We discuss how its light-independent inactivation (termed dark/thermal reversion), post-translational modification, including ubiquitination, phosphorylation and sumoylation, as well as heterodimerization with other phytochrome species modify red light-controlled physiological responses. Finally, we discuss how photobiological properties of phytochrome B enable this photoreceptor to function also as a thermosensor.
Collapse
Affiliation(s)
- András Viczián
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Cornelia Klose
- Institute of Biology2/Botany, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Éva Ádám
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| |
Collapse
|
43
|
Cerrudo I, Caliri-Ortiz ME, Keller MM, Degano ME, Demkura PV, Ballaré CL. Exploring growth-defence trade-offs in Arabidopsis: phytochrome B inactivation requires JAZ10 to suppress plant immunity but not to trigger shade-avoidance responses. PLANT, CELL & ENVIRONMENT 2017; 40:635-644. [PMID: 27943325 DOI: 10.1111/pce.12877] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 05/26/2023]
Abstract
Under conditions that involve a high risk of competition for light among neighbouring plants, shade-intolerant species often display increased shoot elongation and greater susceptibility to pathogens and herbivores. The functional links between morphological and defence responses to crowding are not well understood. In Arabidopsis, the protein JAZ10 is thought to play a key role connecting the inactivation of the photoreceptor phytochrome B (phyB), which takes place under competition for light, with the repression of jasmonate-mediated plant defences. Here, we show that a null mutation of the JAZ10 gene in Arabidopsis did not affect plant growth nor did it suppress the shade-avoidance responses elicited by phyB inactivation. However, the jaz10 mutation restored many of the defence traits that are missing in the phyB mutant, including the ability to express robust responses to jasmonate and to accumulate indolic glucosinolates. Furthermore, the jaz10phyB double mutant showed a significantly increased resistance to the pathogenic fungus Botrytis cinerea compared with the phyB parental line. Our results demonstrate that, by inactivating JAZ10, it is possible to partially uncouple shade avoidance from defence suppression in Arabidopsis. These findings may provide clues to improve plant resistance to pathogens in crops that are planted at high density.
Collapse
Affiliation(s)
- Ignacio Cerrudo
- Instituto de Investigaciones Biotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, San Martín, Buenos Aires, Argentina
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Ciudad de Buenos Aires, Argentina
| | - M Emilia Caliri-Ortiz
- Instituto de Investigaciones Biotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, San Martín, Buenos Aires, Argentina
| | - Mercedes M Keller
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Ciudad de Buenos Aires, Argentina
| | - M Eugenia Degano
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Ciudad de Buenos Aires, Argentina
| | - Patricia V Demkura
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Ciudad de Buenos Aires, Argentina
| | - Carlos L Ballaré
- Instituto de Investigaciones Biotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, San Martín, Buenos Aires, Argentina
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
44
|
Escobar-Bravo R, Klinkhamer PGL, Leiss KA. Interactive Effects of UV-B Light with Abiotic Factors on Plant Growth and Chemistry, and Their Consequences for Defense against Arthropod Herbivores. FRONTIERS IN PLANT SCIENCE 2017; 8:278. [PMID: 28303147 PMCID: PMC5332372 DOI: 10.3389/fpls.2017.00278] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/15/2017] [Indexed: 05/06/2023]
Abstract
Ultraviolet-B (UV-B) light plays a crucial role in plant-herbivorous arthropods interactions by inducing changes in constitutive and inducible plant defenses. In particular, constitutive defenses can be modulated by UV-B-induced photomorphogenic responses and changes in the plant metabolome. In accordance, the prospective use of UV-B light as a tool to increase plant protection in agricultural practice has gained increasing interest. Changes in the environmental conditions might, however, modulate the UV-B -induced plant responses. While in some cases plant responses to UV-B can increase adaptation to changes in certain abiotic factors, UV-B-induced responses might be also antagonized by the changing environment. The outcome of these interactions might have a great influence on how plants interact with their enemies, e.g., herbivorous arthropods. Here, we provide a review on the interactive effects of UV-B and light quantity and quality, increased temperature and drought stress on plant biochemistry, and we discuss the implications of the outcome of these interactions for plant resistance to arthropod pests.
Collapse
Affiliation(s)
- Rocio Escobar-Bravo
- Plant Sciences and Natural Products, Institute of Biology of Leiden, Leiden UniversityLeiden, Netherlands
| | | | | |
Collapse
|
45
|
Yang C, Li L. Hormonal Regulation in Shade Avoidance. FRONTIERS IN PLANT SCIENCE 2017; 8:1527. [PMID: 28928761 PMCID: PMC5591575 DOI: 10.3389/fpls.2017.01527] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/21/2017] [Indexed: 05/10/2023]
Abstract
At high vegetation density, shade-intolerant plants sense a reduction in the red (660 nm) to far-red (730 nm) light ratio (R/FR) in addition to a general reduction in light intensity. These light signals trigger a spectrum of morphological changes manifested by growth of stem-like tissue (hypocotyl, petiole, etc.) instead of harvestable organs (leaves, fruits, seeds, etc.)-namely, shade avoidance syndrome (SAS). Common phenotypical changes related to SAS are changes in leaf hyponasty, an increase in hypocotyl and internode elongation and extended petioles. Prolonged shade exposure leads to early flowering, less branching, increased susceptibility to insect herbivory, and decreased seed yield. Thus, shade avoidance significantly impacts on agronomic traits. Many genetic and molecular studies have revealed that phytochromes, cryptochromes and UVR8 (UV-B photoreceptor protein) monitor the changes in light intensity under shade and regulate the stability or activity of phytochrome-interacting factors (PIFs). PIF-governed modulation of the expression of auxin biosynthesis, transporter and signaling genes is the major driver for shade-induced hypocotyl elongation. Besides auxin, gibberellins, brassinosteroids, and ethylene are also required for shade-induced hypocotyl or petiole elongation growth. In leaves, accumulated auxin stimulates cytokinin oxidase expression to break down cytokinins and inhibit leaf growth. In the young buds, shade light promotes the accumulation of abscisic acid to repress branching. Shade light also represses jasmonate- and salicylic acid-induced defense responses to balance resource allocation between growth and defense. Here we will summarize recent findings relating to such hormonal regulation in SAS in Arabidopsis thaliana, Brassica rapa, and certain crops.
Collapse
|