1
|
Robles-Carnero V, Sesmero R, Figueroa FL. Biomass Productivity and Photosynthetic Activity in Ulva compressa (Chlorophyta) in Raceway Photobioreactors Under Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:3038. [PMID: 39519957 PMCID: PMC11548550 DOI: 10.3390/plants13213038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Research in seaweed cultivation technologies aims to increase production and reduce costs, leading to more efficient and sustainable processes. In this study, we analyzed the outdoor production of Ulva compressa cultured in summertime at different stocking densities of 0.6, 0.8 and 1.0 kg Fresh weight (FW) m-2 in a raceway photobioreactor with 30 m2 surface (3000 L), and its relation to photosynthetic activity. Under the experimental conditions of high temperature (>28-30 °C) and pH > 9 in culture water, higher seaweed density resulted in lower specific growth rate. The biomass production has been related to photosynthetic activity by using in vivo chlorophyll a fluorescence. Dynamic photoinhibition was observed at noon, which was less severe in cultures with higher algal densities. However, photosynthesis recovered in the afternoon. Seaweeds that were acclimatized for a week to the conditions of 1.0 kg FW m-2 stocking density showed an increase in biomass growth and absence of photoinhibition compared to non-acclimatized thalli. In conclusion, the cultivation of U. compressa in a mid-scale raceway photobiorreactor under conditions of high irradiance and temperature and low nutrient input, exhibited the best photosynthetic performance and hence the highest growth rates for the highest culture density assayed (1.0 kg FW m-2).
Collapse
Affiliation(s)
- Victor Robles-Carnero
- Andalusian Institute of Biotechnology and Blue Development (IBYDA), Experimental Centre Grice Hutchinson, University of Malaga, Loma de San Julián, 2, 29004 Malaga, Spain; (R.S.); (F.L.F.)
| | - Rafael Sesmero
- Andalusian Institute of Biotechnology and Blue Development (IBYDA), Experimental Centre Grice Hutchinson, University of Malaga, Loma de San Julián, 2, 29004 Malaga, Spain; (R.S.); (F.L.F.)
- Faculty of Sciences, Department of Botany and Plant Physiology, Campus de Teatinos, University of Malaga, 20071 Malaga, Spain
| | - Felix L. Figueroa
- Andalusian Institute of Biotechnology and Blue Development (IBYDA), Experimental Centre Grice Hutchinson, University of Malaga, Loma de San Julián, 2, 29004 Malaga, Spain; (R.S.); (F.L.F.)
| |
Collapse
|
2
|
Nelson DR, Mystikou A, Jaiswal A, Rad-Menendez C, Preston MJ, De Boever F, El Assal DC, Daakour S, Lomas MW, Twizere JC, Green DH, Ratcliff WC, Salehi-Ashtiani K. Macroalgal deep genomics illuminate multiple paths to aquatic, photosynthetic multicellularity. MOLECULAR PLANT 2024; 17:747-771. [PMID: 38614077 DOI: 10.1016/j.molp.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/31/2024] [Accepted: 03/08/2024] [Indexed: 04/15/2024]
Abstract
Macroalgae are multicellular, aquatic autotrophs that play vital roles in global climate maintenance and have diverse applications in biotechnology and eco-engineering, which are directly linked to their multicellularity phenotypes. However, their genomic diversity and the evolutionary mechanisms underlying multicellularity in these organisms remain uncharacterized. In this study, we sequenced 110 macroalgal genomes from diverse climates and phyla, and identified key genomic features that distinguish them from their microalgal relatives. Genes for cell adhesion, extracellular matrix formation, cell polarity, transport, and cell differentiation distinguish macroalgae from microalgae across all three major phyla, constituting conserved and unique gene sets supporting multicellular processes. Adhesome genes show phylum- and climate-specific expansions that may facilitate niche adaptation. Collectively, our study reveals genetic determinants of convergent and divergent evolutionary trajectories that have shaped morphological diversity in macroalgae and provides genome-wide frameworks to understand photosynthetic multicellular evolution in aquatic environments.
Collapse
Affiliation(s)
- David R Nelson
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE; Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, UAE.
| | - Alexandra Mystikou
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE; Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, UAE; Biotechnology Research Center, Technology Innovation Institute, PO Box 9639, Masdar City, Abu Dhabi, UAE.
| | - Ashish Jaiswal
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Cecilia Rad-Menendez
- Culture Collection of Algae and Protozoa, Scottish Association for Marine Science, Oban, Scotland, UK
| | - Michael J Preston
- National Center for Marine Algae and Microbiota, Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Frederik De Boever
- Culture Collection of Algae and Protozoa, Scottish Association for Marine Science, Oban, Scotland, UK
| | - Diana C El Assal
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Sarah Daakour
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE; Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, UAE
| | - Michael W Lomas
- National Center for Marine Algae and Microbiota, Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Jean-Claude Twizere
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE; Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
| | - David H Green
- Culture Collection of Algae and Protozoa, Scottish Association for Marine Science, Oban, Scotland, UK
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kourosh Salehi-Ashtiani
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE; Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
3
|
Patwary ZP, Zhao M, Paul NA, Cummins SF. Identification of reproductive sex-biased gene expression in Asparagopsis taxiformis (lineage 6) gametophytes. JOURNAL OF PHYCOLOGY 2024; 60:327-342. [PMID: 38156746 DOI: 10.1111/jpy.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 01/03/2024]
Abstract
The sub-tropical red seaweed Asparagopsis taxiformis is of significant interest due to its ability to store halogenated compounds, including bromoform, which can mitigate methane production in ruminants. Significant scale-up of aquaculture production of this seaweed is required; however, relatively little is known about the molecular mechanisms that control fundamental physiological processes, including the regulatory factors that determine sexual dimorphism in gametophytes. In this study, we used comparative RNA-sequencing analysis between different morphological parts of mature male and female A. taxiformis (lineage 6) gametophytes that resulted in greater number of sex-biased gene expression in tips (containing the reproductive structures for both sexes), compared with the somatic main axis and rhizomes. Further comparative RNA-seq against immature tips was used to identify 62 reproductive sex-biased genes (59 male-biased, 3 female-biased). Of the reproductive male-biased genes, 46% had an unknown function, while others were predicted to be regulatory factors and enzymes involved in signaling. We found that bromoform content obtained from female samples (8.5 ± 1.0 mg·g-1 dry weight) was ~10% higher on average than that of male samples (6.5 ± 1.0 mg·g-1 dry weight), although no significant difference was observed (p > 0.05). There was also no significant difference in the marine bromoform biosynthesis locus gene expression. In summary, our comparative RNA-sequencing analysis provides a first insight into the potential molecular factors relevant to gametogenesis and sexual differentiation in A. taxiformis, with potential benefits for identification of sex-specific markers.
Collapse
Affiliation(s)
- Zubaida Parveen Patwary
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nicholas A Paul
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Scott F Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| |
Collapse
|
4
|
Diehl N, Li H, Scheschonk L, Burgunter-Delamare B, Niedzwiedz S, Forbord S, Sæther M, Bischof K, Monteiro C. The sugar kelp Saccharina latissima I: recent advances in a changing climate. ANNALS OF BOTANY 2024; 133:183-212. [PMID: 38109285 PMCID: PMC10921839 DOI: 10.1093/aob/mcad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND The sugar kelp Saccharina latissima is a Laminariales species widely distributed in the Northern Hemisphere. Its physiology and ecology have been studied since the 1960s, given its ecological relevance on western temperate coasts. However, research interest has been rising recently, driven mainly by reports of negative impacts of anthropogenically induced environmental change and by the increased commercial interest in cultivating the species, with several industrial applications for the resulting biomass. SCOPE We used a variety of sources published between 2009 to May 2023 (but including some earlier literature where required), to provide a comprehensive review of the ecology, physiology, biochemical and molecular biology of S. latissima. In so doing we aimed to better understand the species' response to stressors in natural communities, but also inform the sustainable cultivation of the species. CONCLUSION Due to its wide distribution, S. latissima has developed a variety of physiological and biochemical mechanisms to adjust to environmental changes, including adjustments in photosynthetic parameters, modulation of osmolytes and antioxidants, reprogramming of gene expression and epigenetic modifications, among others summarized in this review. This is particularly important because massive changes in the abundance and distribution of S. latissima have already been observed. Namely, presence and abundance of S. latissima has significantly decreased at the rear edges on both sides of the Atlantic, and increased in abundance at the polar regions. These changes were mainly caused by climate change and will therefore be increasingly evident in the future. Recent developments in genomics, transcriptomics and epigenomics have clarified the existence of genetic differentiation along its distributional range with implications in the fitness at some locations. The complex biotic and abiotic interactions unraveled here demonstrated the cascading effects the disappearance of a kelp forest can have in a marine ecosystem. We show how S. latissima is an excellent model to study acclimation and adaptation to environmental variability and how to predict future distribution and persistence under climate change.
Collapse
Affiliation(s)
- Nora Diehl
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Huiru Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| | | | - Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sarina Niedzwiedz
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Silje Forbord
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean AS, 7465 Trondheim, Norway
| | - Maren Sæther
- Seaweed Solutions AS, Bynesveien 50C, 7018 Trondheim, Norway
| | - Kai Bischof
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Catia Monteiro
- CIBIO, Research Centre in Biodiversity and Genetic Resources – InBIO Associate Laboratory, Campus of Vairão, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus of Vairão, Vairão, Portugal
| |
Collapse
|
5
|
Shanmuganathan R, Sibtain Kadri M, Mathimani T, Hoang Le Q, Pugazhendhi A. Recent innovations and challenges in the eradication of emerging contaminants from aquatic systems. CHEMOSPHERE 2023; 332:138812. [PMID: 37127197 DOI: 10.1016/j.chemosphere.2023.138812] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Presence of emerging pollutants (EPs), aka Micropollutants (MPs) in the freshwater environments is a severe threat to the environment and human beings. They include pharmaceuticals, insecticides, industrial chemicals, natural hormones, and personal care items and the pollutants are mostly present in wastewater generated from urbanization and increased industrial growth. Even concentrations as low as ngL-1 or mgL-1 have proven ecologically lethal to aquatic biota. For several years, the biodegradation of various Micropollutants (MPs) in aquatic ecosystems has been a significant area of research worldwide, with many chemical compounds being discovered in various water bodies. As aquatic biota spends most of their formative phases in polluted water, the impacts on aquatic biota are obvious, indicating that the environmental danger is substantial. In contrast, the impact of these contaminants on aquatic creatures and freshwater consumption is more subtle and manifests directly when disrupting the endocrine system. Research and development activities are expected to enable the development of ecologically sustainable, cost-effective, and efficient treatments for practical systems in the near future. Therefore, this review aims to understand recent emerging pollutants discovered and the available treatment technologies and suggest an innovative and cost-effective method to treat these EPs, which is sustainable and follows the circular bioeconomy.
Collapse
Affiliation(s)
- Rajasree Shanmuganathan
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, 804201, Taiwan
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
6
|
Lafeuille B, Tamigneaux É, Berger K, Provencher V, Beaulieu L. Variation of the Nutritional Composition and Bioactive Potential in Edible Macroalga Saccharina latissima Cultivated from Atlantic Canada Subjected to Different Growth and Processing Conditions. Foods 2023; 12:1736. [PMID: 37107531 PMCID: PMC10137355 DOI: 10.3390/foods12081736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Macroalgae are a new food source in the Western world. The purpose of this study was to evaluate the impact of harvest months and food processing on cultivated Saccharina latissima (S. latissima) from Quebec. Seaweeds were harvested in May and June 2019 and processed by blanching, steaming, and drying with a frozen control condition. The chemical (lipids, proteins, ash, carbohydrates, fibers) and mineral (I, K, Na, Ca, Mg, Fe) compositions, the potential bioactive compounds (alginates, fucoidans, laminarans, carotenoids, polyphenols) and in vitro antioxidant potential were investigated. The results showed that May specimens were significantly the richest in proteins, ash, I, Fe, and carotenoids, while June macroalgae contained more carbohydrates. The antioxidant potential of water-soluble extracts (Oxygen Radical Absorbance Capacity [ORAC] analysis-625 µg/mL) showed the highest potential in June samples. Interactions between harvested months and processing were demonstrated. The drying process applied in May specimens appeared to preserve more S. latissima quality, whereas blanching and steaming resulted in a leaching of minerals. Losses of carotenoids and polyphenols were observed with heating treatments. Water-soluble extracts of dried May samples showed the highest antioxidant potential (ORAC analysis) compared to other methods. Thus, the drying process used to treat S. latissima harvested in May seems to be the best that should be selected.
Collapse
Affiliation(s)
- Bétina Lafeuille
- Département de Science des Aliments, Faculté des Sciences de l’Agriculture et de l’Alimentation (FSAA), Université Laval, Québec, QC G1V 0A6, Canada;
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Éric Tamigneaux
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- École des Pêches et de L’aquaculture du Québec, Cégep de la Gaspésie et des Îles, Québec, QC G0C 1V0, Canada
- Merinov, Grande-Rivière, QC G0C 1V0, Canada;
| | | | - Véronique Provencher
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada
- École de Nutrition, Faculté des Sciences de l’Agriculture et de l’Alimentation (FSAA), Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Beaulieu
- Département de Science des Aliments, Faculté des Sciences de l’Agriculture et de l’Alimentation (FSAA), Université Laval, Québec, QC G1V 0A6, Canada;
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
7
|
Li J, Weinberger F, de Nys R, Thomas T, Egan S. A pathway to improve seaweed aquaculture through microbiota manipulation. Trends Biotechnol 2023; 41:545-556. [PMID: 36089422 DOI: 10.1016/j.tibtech.2022.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022]
Abstract
Eukaryotic hosts are associated with microbial communities that are critical to their function. Microbiota manipulation using beneficial microorganisms, for example, in the form of animal probiotics or plant growth-promoting microorganisms (PGPMs), can enhance host performance and health. Recently, seaweed beneficial microorganisms (SBMs) have been identified that promote the growth and development and/or improve disease resistance of seaweeds. This knowledge coincides with global initiatives seeking to expand and intensify seaweed aquaculture. Here, we provide a pathway with the potential to improve commercial cultivation of seaweeds through microbiota manipulation, highlighting that seaweed restoration practices can also benefit from further understanding SBMs and their modes of action. The challenges and opportunities of different approaches to identify and apply SBMs to seaweed aquaculture are discussed.
Collapse
Affiliation(s)
- Jiasui Li
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Florian Weinberger
- Marine Ecology Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Rocky de Nys
- Sea Forest Limited, 488 Freestone Point Road, Triabunna, Tasmania 7190, Australia and College of Science and Engineering, James Cook University, Townsville 4810, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia.
| |
Collapse
|
8
|
Clerc T, Boscq S, Attia R, Kaminski Schierle GS, Charrier B, Läubli NF. Cultivation and Imaging of S. latissima Embryo Monolayered Cell Sheets Inside Microfluidic Devices. Bioengineering (Basel) 2022; 9:bioengineering9110718. [PMID: 36421119 PMCID: PMC9687954 DOI: 10.3390/bioengineering9110718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The culturing and investigation of individual marine specimens in lab environments is crucial to further our understanding of this highly complex ecosystem. However, the obtained results and their relevance are often limited by a lack of suitable experimental setups enabling controlled specimen growth in a natural environment while allowing for precise monitoring and in-depth observations. In this work, we explore the viability of a microfluidic device for the investigation of the growth of the alga Saccharina latissima to enable high-resolution imaging by confining the samples, which usually grow in 3D, to a single 2D plane. We evaluate the specimen’s health based on various factors such as its growth rate, cell shape, and major developmental steps with regard to the device’s operating parameters and flow conditions before demonstrating its compatibility with state-of-the-art microscopy imaging technologies such as the skeletonisation of the specimen through calcofluor white-based vital staining of its cell contours as well as the immunolocalisation of the specimen’s cell wall. Furthermore, by making use of the on-chip characterisation capabilities, we investigate the influence of altered environmental illuminations on the embryonic development using blue and red light. Finally, live tracking of fluorescent microspheres deposited on the surface of the embryo permits the quantitative characterisation of growth at various locations of the organism.
Collapse
Affiliation(s)
- Thomas Clerc
- Morphogenesis of Macroalgae, Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, CNRS, Sorbonne University, 29680 Roscoff, France
| | - Samuel Boscq
- Morphogenesis of Macroalgae, Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, CNRS, Sorbonne University, 29680 Roscoff, France
| | - Rafaele Attia
- Ecology of Marine Plankton, Laboratory of Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, CNRS, Sorbonne University, 29680 Roscoff, France
| | - Gabriele S. Kaminski Schierle
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Bénédicte Charrier
- Morphogenesis of Macroalgae, Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, CNRS, Sorbonne University, 29680 Roscoff, France
- Correspondence: (B.C.); (N.F.L.)
| | - Nino F. Läubli
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- Correspondence: (B.C.); (N.F.L.)
| |
Collapse
|
9
|
Bačėninaitė D, Džermeikaitė K, Antanaitis R. Global Warming and Dairy Cattle: How to Control and Reduce Methane Emission. Animals (Basel) 2022; 12:2687. [PMID: 36230428 PMCID: PMC9559257 DOI: 10.3390/ani12192687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
Agriculture produces greenhouse gases. Methane is a result of manure degradation and microbial fermentation in the rumen. Reduced CH4 emissions will slow climate change and reduce greenhouse gas concentrations. This review compiled studies to evaluate the best ways to decrease methane emissions. Longer rumination times reduce methane emissions and milk methane. Other studies have not found this. Increasing propionate and reducing acetate and butyrate in the rumen can reduce hydrogen equivalents that would otherwise be transferred to methanogenesis. Diet can reduce methane emissions. Grain lowers rumen pH, increases propionate production, and decreases CH4 yield. Methane generation per unit of energy-corrected milk yield reduces with a higher-energy diet. Bioactive bromoform discovered in the red seaweed Asparagopsis taxiformis reduces livestock intestinal methane output by inhibiting its production. Essential oils, tannins, saponins, and flavonoids are anti-methanogenic. While it is true that plant extracts can assist in reducing methane emissions, it is crucial to remember to source and produce plants in a sustainable manner. Minimal lipid supplementation can reduce methane output by 20%, increasing energy density and animal productivity. Selecting low- CH4 cows may lower GHG emissions. These findings can lead to additional research to completely understand the impacts of methanogenesis suppression on rumen fermentation and post-absorptive metabolism, which could improve animal productivity and efficiency.
Collapse
Affiliation(s)
- Dovilė Bačėninaitė
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
| | | | | |
Collapse
|
10
|
Dhiman S, Ulrich JF, Wienecke P, Wichard T, Arndt H. Stereoselective Total Synthesis of (-)-Thallusin for Bioactivity Profiling. Angew Chem Int Ed Engl 2022; 61:e202206746. [PMID: 35900916 PMCID: PMC9804709 DOI: 10.1002/anie.202206746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 01/09/2023]
Abstract
Chemical mediators are key compounds for controlling symbiotic interactions in the environment. Here, we disclose a fully stereoselective total synthesis of the algae differentiation factor (-)-thallusin that utilizes sophisticated 6-endo-cyclization chemistry and effective late-stage sp2 -sp2 -couplings using non-toxic reagents. An EC50 of 4.8 pM was determined by quantitative phenotype profiling in the green seaweed Ulva mutabilis (Chlorophyte), underscoring this potent mediator's enormous, pan-species bioactivity produced by symbiotic bacteria. SAR investigations indicate that (-)-thallusin triggers at least two different pathways in Ulva that may be separated by chemical editing of the mediator compound structure.
Collapse
Affiliation(s)
- Seema Dhiman
- Friedrich-Schiller-Universität JenaInstitut für Organische Chemie und Makromolekulare ChemieHumboldtstr. 1007743JenaGermany
| | - Johann F. Ulrich
- Friedrich-Schiller-Universität JenaInstitut für Anorganische und Analytische ChemieLessingstr. 807743JenaGermany
| | - Paul Wienecke
- Friedrich-Schiller-Universität JenaInstitut für Organische Chemie und Makromolekulare ChemieHumboldtstr. 1007743JenaGermany
| | - Thomas Wichard
- Friedrich-Schiller-Universität JenaInstitut für Anorganische und Analytische ChemieLessingstr. 807743JenaGermany
| | - Hans‐Dieter Arndt
- Friedrich-Schiller-Universität JenaInstitut für Organische Chemie und Makromolekulare ChemieHumboldtstr. 1007743JenaGermany
| |
Collapse
|
11
|
Dhiman S, Ulrich JF, Wienecke P, Wichard T, Arndt HD. Stereoselective total synthesis of (‒)‐thallusin for bioactivity profiling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Seema Dhiman
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institute of Organic Chemistry and Macromolecular Chemistry Humboldtstr. 10 07743 Jena GERMANY
| | - Johann F. Ulrich
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena INstitute of Inorganic and Analytical Chemistry Lessingstr. 8 07743 Jena GERMANY
| | - Paul Wienecke
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institute of Organic Chemistry and Macromolecular Chemistry Humboldtstr. 10 07743 Jena GERMANY
| | - Thomas Wichard
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institute of Inorganic and Analytical Chemistry Lessingstr. 8 07743 Jena GERMANY
| | - Hans-Dieter Arndt
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institute of Organic and Macromolecular Chemistry Humboldtstr. 10 07743 Jena GERMANY
| |
Collapse
|
12
|
Hejna M, Kapuścińska D, Aksmann A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7717. [PMID: 35805373 PMCID: PMC9266021 DOI: 10.3390/ijerph19137717] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023]
Abstract
The pollution of the aquatic environment has become a worldwide problem. The widespread use of pesticides, heavy metals and pharmaceuticals through anthropogenic activities has increased the emission of such contaminants into wastewater. Pharmaceuticals constitute a significant class of aquatic contaminants and can seriously threaten the health of non-target organisms. No strict legal regulations on the consumption and release of pharmaceuticals into water bodies have been implemented on a global scale. Different conventional wastewater treatments are not well-designed to remove emerging contaminants from wastewater with high efficiency. Therefore, particular attention has been paid to the phycoremediation technique, which seems to be a promising choice as a low-cost and environment-friendly wastewater treatment. This technique uses macro- or micro-algae for the removal or biotransformation of pollutants and is constantly being developed to cope with the issue of wastewater contamination. The aims of this review are: (i) to examine the occurrence of pharmaceuticals in water, and their toxicity on non-target organisms and to describe the inefficient conventional wastewater treatments; (ii) present cost-efficient algal-based techniques of contamination removal; (iii) to characterize types of algae cultivation systems; and (iv) to describe the challenges and advantages of phycoremediation.
Collapse
Affiliation(s)
| | | | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.H.); (D.K.)
| |
Collapse
|
13
|
Manikandan A, Suresh Babu P, Shyamalagowri S, Kamaraj M, Muthukumaran P, Aravind J. Emerging role of microalgae in heavy metal bioremediation. J Basic Microbiol 2021; 62:330-347. [PMID: 34724223 DOI: 10.1002/jobm.202100363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/27/2021] [Accepted: 10/17/2021] [Indexed: 12/16/2022]
Abstract
Microalgae have been publicized for their diversified dominance responsiveness and bioaccumulation potential toward pollutants in an ecosystem. Also, algal's incredible capability as biocatalysts in environmental appliances has been well elucidated owing to their robustness and simple nutritional demand. Additionally, microalgae can deliver various collections of bio-based chemical compounds helpful for diversified applications, especially as green alternatives. The environment has been contaminated with various polluting agents; one principal polluting agent is heavy metals which are carcinogenic and show toxicity even in minimal quantity, cause unsatisfactory threats to the environmental ecosystem, including human and animal health. There is a prominent tendency to apply microalgae in the phytoremediation of heavy metals compounds because of its vast benefits, including great accessibility, cost-effective, excellent toxic metal eliminating efficiency, and nontoxic to the ecosystem. This review uncovers the most recent advancements and mechanisms associated with the bioremediation process and biosorption interaction of substantial harmful synthetic compounds processing microalgae species. Furthermore, future challenges and prospects in the utilization of microalgae in heavy metals bioremediation are also explored. The current review aims to give valuable information to aid the advancement of robust and proficient future microalgae-based heavy metal bioremediation innovations and summarizing a wide range of benefits socioeconomic scope to be employed in heavy metal compound removal in environment system.
Collapse
Affiliation(s)
- Arumugam Manikandan
- Industrial Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Palanisamy Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, India.,Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | | | - Murugesan Kamaraj
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Peraman Muthukumaran
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - Jeyaseelan Aravind
- Department of Civil Engineering, Environmental Research, Dhirajlal Gandhi College of Technology, Kamalapuram Sikkanampatty, Omalur, Salem, India
| |
Collapse
|
14
|
Tripathi S, Poluri KM. Heavy metal detoxification mechanisms by microalgae: Insights from transcriptomics analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117443. [PMID: 34090077 DOI: 10.1016/j.envpol.2021.117443] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 05/20/2023]
Abstract
Heavy metal pollution in ecosystem is a global threat. The associated toxicity and carcinogenic nature of heavy metals/metalloids such as mercury, cadmium, lead, and arsenic are imposing a severe risk to both ecological diversity and human lives. Harnessing the adaptive feature of microalgae for remediating toxic heavy metal has reached a milestone in past few decades. Transcriptomics analyses have provided mechanistic insights to map the dynamics of cellular events under heavy metal stress, thus deciphering the strategic responses of microalgae. Here, the present review comprehensively addresses the elicited molecular responses of microalgae to detoxify the heavy metal stress. The review highlights the intricate role of biochemical components and signaling networks mediating stress responsive transitions of microalgae at physiological level. Furthermore, the differential gene expression signifying the transporters involved in uptake, distribution/sequestration, and efflux of heavy metal has also been reviewed. In a nutshell, this study provided a comprehensive understanding of the molecular mechanisms adopted by microalgae at transcriptome level to nullify the oxidative stress while detoxifying the heavy metals.
Collapse
Affiliation(s)
- Shweta Tripathi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Transportation Systems, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
15
|
Blomme J, Liu X, Jacobs TB, De Clerck O. A molecular toolkit for the green seaweed Ulva mutabilis. PLANT PHYSIOLOGY 2021; 186:1442-1454. [PMID: 33905515 PMCID: PMC8260120 DOI: 10.1093/plphys/kiab185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/02/2021] [Indexed: 06/02/2023]
Abstract
The green seaweed Ulva mutabilis is an ecologically important marine primary producer as well as a promising cash crop cultivated for multiple uses. Despite its importance, several molecular tools are still needed to better understand seaweed biology. Here, we report the development of a flexible and modular molecular cloning toolkit for the green seaweed U. mutabilis based on a Golden Gate cloning system. The toolkit presently contains 125 entry vectors, 26 destination vectors, and 107 functionally validated expression vectors. We demonstrate the importance of endogenous regulatory sequences for transgene expression and characterize three endogenous promoters suitable to drive transgene expression. We describe two vector architectures to express transgenes via two expression cassettes or a bicistronic approach. The majority of selected transformants (50%-80%) consistently give clear visual transgene expression. Furthermore, we made different marker lines for intracellular compartments after evaluating 13 transit peptides and 11 tagged endogenous Ulva genes. Our molecular toolkit enables the study of Ulva gain-of-function lines and paves the way for gene characterization and large-scale functional genomics studies in a green seaweed.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Biology, Phycology Research Group, Ghent University, Ghent 9000, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent 9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
| | - Xiaojie Liu
- Department of Biology, Phycology Research Group, Ghent University, Ghent 9000, Belgium
| | - Thomas B Jacobs
- VIB-UGent Center for Plant Systems Biology, Ghent 9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
16
|
Effect of Oxidative Stress on Physicochemical Quality of Taiwanese Seagrape (Caulerpa lentillifera) with the Application of Alternating Current Electric Field (ACEF) during Post-Harvest Storage. Processes (Basel) 2021. [DOI: 10.3390/pr9061011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This study aims to determine the physicochemical quality of seagrape (Caulerpa lentillifera) as a freshness label for products cultivated in different seasons. The applied post-harvest storage experiments compared between, within and without seawater that led to oxidative stress conditions. Water content, malondialdehyde (MDA) compound, total phenolic content (TPC), and chlorophyll content were observed at 0, 3, 6, and 9 days of storage. The storage without seawater showed sharper quality reductions by reaching 20–40% of water loss, 70–90% of MDA production, 15–25% of TPC reduction, and 40–60% of total chlorophyll degradation. The storage within seawater showed lower quality reductions due to the specific growth rates still reaching 5–10%. This study found that the greater the physicochemical quality, the slower the decomposition rates of the stored seagrape during storage. Therefore, the seagrapes’ obvious discoloration occurred earlier in winter, followed by summer and spring. Kinetics of chlorophyll degradation on seagrape in different seasons meet different order-reactions during storage. Furthermore, alternating current electric field (ACEF) treatment with 125 kV/m of intensity for 60 min can lower the spring seagrapes’ physicochemical quality by reaching 10–30% of inhibition, resulting in the shelf-life extension for up to 12 days of post-harvest storage.
Collapse
|
17
|
García-Poza S, Leandro A, Cotas C, Cotas J, Marques JC, Pereira L, Gonçalves AMM. The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6528. [PMID: 32911710 PMCID: PMC7560192 DOI: 10.3390/ijerph17186528] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Seaweeds (marine macroalgae) are autotrophic organisms capable of producing many compounds of interest. For a long time, seaweeds have been seen as a great nutritional resource, primarily in Asian countries to later gain importance in Europe and South America, as well as in North America and Australia. It has been reported that edible seaweeds are rich in proteins, lipids and dietary fibers. Moreover, they have plenty of bioactive molecules that can be applied in nutraceutical, pharmaceutical and cosmetic areas. There are historical registers of harvest and cultivation of seaweeds but with the increment of the studies of seaweeds and their valuable compounds, their aquaculture has increased. The methodology of cultivation varies from onshore to offshore. Seaweeds can also be part of integrated multi-trophic aquaculture (IMTA), which has great opportunities but is also very challenging to the farmers. This multidisciplinary field applied to the seaweed aquaculture is very promising to improve the methods and techniques; this area is developed under the denominated industry 4.0.
Collapse
Affiliation(s)
- Sara García-Poza
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Adriana Leandro
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Carla Cotas
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | - João Cotas
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - João C. Marques
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Leonel Pereira
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Ana M. M. Gonçalves
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Sato Y, Endo H, Oikawa H, Kanematsu K, Naka H, Mogamiya M, Kawano S, Kazama Y. Sexual Difference in the Optimum Environmental Conditions for Growth and Maturation of the Brown Alga Undaria pinnatifida in the Gametophyte Stage. Genes (Basel) 2020; 11:E944. [PMID: 32824303 PMCID: PMC7463851 DOI: 10.3390/genes11080944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022] Open
Abstract
Undaria pinnatifida is an annual brown kelp growing naturally in coastal areas as a major primary producer in temperate regions and is cultivated on an industrial scale. Kelps have a heteromorphic life cycle characterized by a macroscopic sporophyte and microscopic sexual gametophytes. The sex-dependent effects of different environmental factors on the growth and maturation characteristics of the gametophyte stage were investigated using response surface methodology. Gametophytes were taken from three sites in Japan: Iwate Prefecture, Tokushima Prefecture, and Kagoshima Prefecture in order to confirm the sexual differences in three independent lines. Optimum temperature and light intensity were higher for males (20.7-20.9 °C and 28.6-33.7 µmol m-2 s-1, respectively) than females (16.5-19.8 °C and 26.9-32.5 µmol m-2 s-1), and maturity progressed more quickly in males than females. Optimum wavelengths of light for growth and maturation of the gametophytes were observed for both blue (400-500 nm, λmax 453 nm) and green (500-600 nm; λmax 525 nm) lights and were sex-independent. These characteristics were consistent among the three regional lines. Slower growth optima and progress of maturation could be important for female gametophytes to restrict fertilization and sporophyte germination to the lower water temperatures of autumn and winter, and suggest that the female gametophyte may be more sensitive to temperature than the male. The sexual differences in sensitivity to environmental factors improved the synchronicity of sporeling production.
Collapse
Affiliation(s)
- Yoichi Sato
- Bio-resources Business Development Division, Riken Food Co., Ltd., Miyagi 985-0844, Japan;
- Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198, Japan
| | - Hikaru Endo
- Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan;
| | - Hiroki Oikawa
- Connected Solutions Company, Panasonic Co., Tokyo 104-0061, Japan; (H.O.); (K.K.); (H.N.)
| | - Koichi Kanematsu
- Connected Solutions Company, Panasonic Co., Tokyo 104-0061, Japan; (H.O.); (K.K.); (H.N.)
- SiM24 Co., Ltd., Osaka 540-6104, Japan
| | - Hiroyuki Naka
- Connected Solutions Company, Panasonic Co., Tokyo 104-0061, Japan; (H.O.); (K.K.); (H.N.)
- SiM24 Co., Ltd., Osaka 540-6104, Japan
| | - Miho Mogamiya
- Bio-resources Business Development Division, Riken Food Co., Ltd., Miyagi 985-0844, Japan;
| | - Shigeyuki Kawano
- Future Center Initiative, The University of Tokyo, Saitama 277-0871, Japan;
| | - Yusuke Kazama
- Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198, Japan
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan
| |
Collapse
|
19
|
Chen T, Wang W, Xu K, Xu Y, Ji D, Chen C, Xie C. K+ and Na+ transport contribute to K+/Na+ homeostasis in Pyropia haitanensis under hypersaline stress. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101526] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
|