1
|
Fukushi Y, Yokochi Y, Hisabori T, Yoshida K. Plastidial thioredoxin-like proteins are essential for normal embryogenesis and seed development in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2024:10.1007/s10265-024-01611-7. [PMID: 39708257 DOI: 10.1007/s10265-024-01611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Thiol/disulfide-based redox regulation is a key mechanism for modulating protein functions in response to changes in cellular redox status. Two thioredoxin (Trx)-like proteins [atypical Cys His-rich Trx (ACHT) and Trx-like2 (TrxL2)] have been identified as crucial for oxidizing and deactivating several chloroplast enzymes during light-to-dark transitions; however, their roles remain to be fully understood. In this study, we investigated the functions of Trx-like proteins in seed development. Using the CRISPR/Cas9 system, we generated an Arabidopsis quadruple mutant defective in ACHT1, ACHT2, TrxL2.1, and TrxL2.2 (acht/trxl2). This mutant showed increased seed lethality prior to maturation, with embryogenesis impaired primarily during the heart and torpedo stages, which are critical phases for plastid differentiation into chloroplasts. Using transgenic plants expressing EGFP-fused proteins, we confirmed that ACHT and TrxL2 are localized in plastids during embryogenesis. Additionally, seed development in the acht/trxl2 mutant was further impaired under extended darkness and could not be recovered through complementation with variants of ACHT or TrxL2 lacking the redox-active Cys residue (replaced by Ser). These findings indicate that the protein-oxidation functions of ACHT and TrxL2 are important for plastid differentiation into chloroplasts, embryogenesis, and seed development.
Collapse
Affiliation(s)
- Yuka Fukushi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yuichi Yokochi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Keisuke Yoshida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
- Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, 226-8501, Japan.
| |
Collapse
|
2
|
Wang H, Li X, Meng B, Chang W, Zhang M, Miao L, Wei S, Yang H, Li S, Fan Y, Qian M, Chen Y, Khan SU, Wei L, Qu C, Li J, Song J, Lu K. Deciphering the Arf (ADP-ribosylation factor) gene family in Brassica napus L.: Genome-wide insights into duplication, expression, and rapeseed yield enhancement. Int J Biol Macromol 2024; 282:137257. [PMID: 39505192 DOI: 10.1016/j.ijbiomac.2024.137257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
The Arf gene family is essential for crop growth and development by regulating vesicle transport. However, few studies exist on the role of Arfs in the growth and yield formation of Brassica napus. Here we provide an exhaustive account of the phylogeny and expression of the 66 Arfs in rapeseed. We found that the expansion of Arf gene family is mainly through whole genome duplication, and some genes are loss during the expansion process. Expression analysis revealed that the Arfs in group X, with the exception of BnaC02.ARFA1B, BnaC06.ARFA1A.2, and BnaA07.ARFA1A.2, exhibited high expression levels across various tissues of B. napus at different developmental stages. These results indicate that the Arfss in group X were important in influencing rapeseed growth and development. We have found that Arfs in B. napus may have a more complex regulatory mechanism due to homologous recombination and gene sub-functionalization. Haplotype analysis indicated that Arfs regulate B. napus yield formation. We found high expression of BnaC07.ARFA1A in all tissues, and its overexpression significantly increased rapeseed silique number and yield. The comprehensive analysis will further characterize the functions of Arfs in B. napus and enhance regulatory networks for yield formation in B. napus.
Collapse
Affiliation(s)
- Hui Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Boyu Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Wei Chang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Minghao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Likai Miao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Siyu Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Haikun Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Shengting Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Mingchao Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Yuling Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China; Dubai Medical College for Girls (DMCG), United Arab Emirates.
| | - Lijuan Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China; Engineering Research Center of Grain and Oil Crops in Southwest Mountain, Ministry of Education, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, PR China.
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China; Engineering Research Center of Grain and Oil Crops in Southwest Mountain, Ministry of Education, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, PR China.
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China; Engineering Research Center of Grain and Oil Crops in Southwest Mountain, Ministry of Education, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, PR China.
| | - Jiaming Song
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China; Engineering Research Center of Grain and Oil Crops in Southwest Mountain, Ministry of Education, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, PR China.
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China; Engineering Research Center of Grain and Oil Crops in Southwest Mountain, Ministry of Education, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Hancock CN, Germany T, Redd P, Timmons J, Lipford J, Burns S, Cervantes‐Perez SA, Libault M, Shen W, An YC, Kanizay L, Yerka M, Parrott WA. A strategy for identification and characterization of genic mutations using a temperature-sensitive chlorotic soybean mutant as an example. PLANT DIRECT 2024; 8:e70011. [PMID: 39513014 PMCID: PMC11539004 DOI: 10.1002/pld3.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/21/2024] [Accepted: 09/22/2024] [Indexed: 11/15/2024]
Abstract
Screening a transposon-mutagenized soybean population led to the discovery of a recessively inherited chlorotic phenotype. This "y24" phenotype results in smaller stature, weaker stems, and a smaller root system. Genome sequencing identified 15 candidate genes with mutations likely to result in a loss of function. Amplicon sequencing of a segregating population was then used to narrow the list to a single candidate mutation, a single-base change in Glyma.07G102300 that disrupts splicing of the second intron. Single cell transcriptomic profiling indicates that this gene is expressed primarily in mesophyll cells, and RNA sequencing data indicate that it is upregulated in germinating seedlings by cold stress. Previous studies have shown that mutations to Os05g34040, the rice ortholog of Glyma.07G102300, produced a chlorotic phenotype that was more pronounced in cool temperatures. Growing soybean y24 mutants at lower temperatures also resulted in a more severe phenotype. In addition, transgenic expression of wild-type Glyma.07G102300 in the knockout mutant of the Arabidopsis ortholog At4930720 rescues the chlorotic phenotype, further supporting the hypothesis that the mutation in Glyma.07G102300 is causal of the y24 phenotype. The variant analysis strategy used to identify the genes underlying this phenotype provides a template for the study of other soybean mutants.
Collapse
Affiliation(s)
- C. Nathan Hancock
- Department of Biological, Ecological, and Earth ScienceUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Tetandianocee Germany
- Department of Biological, Ecological, and Earth ScienceUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Priscilla Redd
- Department of Biological, Ecological, and Earth ScienceUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Jack Timmons
- Department of Biological, Ecological, and Earth ScienceUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Jeffery Lipford
- Department of Biological, Ecological, and Earth ScienceUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Samantha Burns
- Department of Biological, Ecological, and Earth ScienceUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Sergio Alan Cervantes‐Perez
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
- The School of Plant SciencesUniversity of ArizonaTucsonArizonaUSA
| | - Marc Libault
- Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Wenhao Shen
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Yong‐qiang Charles An
- USDA‐ARS Plant Genetics Research UnitDanforth Plant Science CenterSaint LouisMissouriUSA
| | - Lisa Kanizay
- Institute of Plant Breeding, Genetics & Genomics and Department of Crop and Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
- Bayer Crop ScienceSt. LouisMissouriUSA
| | - Melinda Yerka
- Institute of Plant Breeding, Genetics & Genomics and Department of Crop and Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Agriculture, Veterinary and Rangeland SciencesUniversity of NevadaRenoNevadaUSA
| | - Wayne A. Parrott
- Institute of Plant Breeding, Genetics & Genomics and Department of Crop and Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
4
|
Guo M, Lian Q, Mei Y, Yang W, Zhao S, Zhang S, Xing X, Zhang H, Gao K, He W, Wang Z, Wang H, Zhou J, Cheng L, Bao Z, Huang S, Yan J, Zhao X. Analyzes of pan-genome and resequencing atlas unveil the genetic basis of jujube domestication. Nat Commun 2024; 15:9320. [PMID: 39472552 PMCID: PMC11522667 DOI: 10.1038/s41467-024-53718-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Jujube (Ziziphus jujuba Mill.), belonging to the Rhamnaceae family, is gaining increasing prominence as a perennial fruit crop with significant economic and medicinal values. Here, we conduct de novo assembly of four reference-grade genomes, encompassing one wild and three cultivated jujube accessions. We present insights into the population structure, genetic diversity, and genomic variations within a diverse collection of 1059 jujube accessions. Analyzes of the jujube pan-genome, based on our four assemblies and four previously released genomes, reveal extensive genomic variations within domestication-associated regions, potentially leading to the discovery of a candidate gene that regulates flowering and fruit ripening. By leveraging the pan-genome and a large-scale resequencing population, we identify two candidate genes involved in domestication traits, including the seed-setting rate, the bearing-shoot length and the leaf size in jujube. These genomic resources will accelerate evolutionary and functional genomics studies of jujube.
Collapse
Affiliation(s)
- Mingxin Guo
- College of Life Sciences, Luoyang Normal University, Luoyang, China.
| | - Qun Lian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- School of Biology & Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Ye Mei
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wangwang Yang
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Suna Zhao
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Siyuan Zhang
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Xinfeng Xing
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Haixiang Zhang
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Keying Gao
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Wentong He
- National Foundation for Improved Cultivar of Chinese Jujube, Bureau of Natural Resources and Planning of Cangxian County, Cangzhou, China
| | - Zhitong Wang
- National Foundation for Improved Cultivar of Chinese Jujube, Bureau of Natural Resources and Planning of Cangxian County, Cangzhou, China
| | - Huan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jun Zhou
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Lin Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Zhigui Bao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Xusheng Zhao
- College of Life Sciences, Luoyang Normal University, Luoyang, China.
| |
Collapse
|
5
|
Liang K, Zhan X, Li Y, Yang Y, Xie Y, Jin Z, Xu X, Zhang W, Lu Y, Zhang S, Zou Y, Feng S, Wu J, Yan Z. Conservation and specialization of the Ycf2-FtsHi chloroplast protein import motor in green algae. Cell 2024; 187:5638-5650.e18. [PMID: 39197449 DOI: 10.1016/j.cell.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/31/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
The protein import motor in chloroplasts plays a pivotal role in their biogenesis and homeostasis by driving the translocation of preproteins into chloroplasts. While the Ycf2-FtsHi complex serves as the import motor in land plants, its evolutionary conservation, specialization, and mechanisms across photosynthetic organisms are largely unexplored. Here, we isolated and determined the cryogenic electron microscopy (cryo-EM) structures of the native Ycf2-FtsHi complex from Chlamydomonas reinhardtii, uncovering a complex composed of up to 19 subunits, including multiple green-algae-specific components. The heterohexameric AAA+ ATPase motor module is tilted, potentially facilitating preprotein handover from the translocon at the inner chloroplast membrane (TIC) complex. Preprotein interacts with Ycf2-FtsHi and enhances its ATPase activity in vitro. Integrating Ycf2-FtsHi and translocon at the outer chloroplast membrane (TOC)-TIC supercomplex structures reveals insights into their physical and functional interplay during preprotein translocation. By comparing these findings with those from land plants, our study establishes a structural foundation for understanding the assembly, function, evolutionary conservation, and diversity of chloroplast protein import motors.
Collapse
Affiliation(s)
- Ke Liang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiechao Zhan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yuxin Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yi Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yanqiu Xie
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zeyu Jin
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiaoyan Xu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Wenwen Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Yang Lu
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Research Center for the Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Sheng Zhang
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Research Center for the Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yilong Zou
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Research Center for the Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zhen Yan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
6
|
Liang K, Jin Z, Zhan X, Li Y, Xu Q, Xie Y, Yang Y, Wang S, Wu J, Yan Z. Structural insights into the chloroplast protein import in land plants. Cell 2024; 187:5651-5664.e18. [PMID: 39197452 DOI: 10.1016/j.cell.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
Chloroplast proteins are imported via the translocon at the outer chloroplast membrane (TOC)-translocon at the inner chloroplast membrane (TIC) supercomplex, driven by an ATPase motor. The Ycf2-FtsHi complex has been identified as the chloroplast import motor. However, its assembly and cooperation with the TIC complex during preprotein translocation remain unclear. Here, we present the structures of the Ycf2-FtsHi and TIC complexes from Arabidopsis and an ultracomplex formed between them from Pisum. The Ycf2-FtsHi structure reveals a heterohexameric AAA+ ATPase motor module with characteristic features. Four previously uncharacterized components of Ycf2-FtsHi were identified, which aid in complex assembly and anchoring of the motor module at a tilted angle relative to the membrane. When considering the structures of the TIC complex and the TIC-Ycf2-FtsHi ultracomplex together, it becomes evident that the tilted motor module of Ycf2-FtsHi enables its close contact with the TIC complex, thereby facilitating efficient preprotein translocation. Our study provides valuable structural insights into the chloroplast protein import process in land plants.
Collapse
Affiliation(s)
- Ke Liang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zeyu Jin
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiechao Zhan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yuxin Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Qikui Xu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yanqiu Xie
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yi Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Shaojie Wang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zhen Yan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
7
|
Xu K, Zeng H, Lin F, Yumoto E, Asahina M, Hayashi KI, Fukaki H, Ito H, Watahiki MK. Exogenous application of the apocarotenoid retinaldehyde negatively regulates auxin-mediated root growth. PLANT PHYSIOLOGY 2024; 196:1659-1673. [PMID: 39117340 PMCID: PMC11483604 DOI: 10.1093/plphys/kiae405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
Root development is essential for plant survival. The lack of carotenoid biosynthesis in the phytoene desaturase 3 (pds3) mutant results in short primary roots (PRs) and reduced lateral root formation. In this study, we showed that short-term inhibition of PDS by fluridone suppresses PR growth in wild type, but to a lesser extent in auxin mutants of Arabidopsis (Arabidopsis thaliana). Such an inhibition of PDS activity increased endogenous indole-3-acetic acid levels, promoted auxin signaling, and partially complemented the PR growth of an auxin-deficient mutant, the YUCCA 3 5 7 8 9 quadruple mutant (yucQ). The exogenous application of retinaldehyde (retinal), an apocarotenoid derived from β-carotene, complemented the fluridone-induced suppression of root growth, as well as the short roots of the pds3 mutant. Retinal also partially complemented the auxin-induced suppression of root growth. These results suggest that retinal may play a role in regulating root growth by modulating endogenous auxin levels.
Collapse
Affiliation(s)
- Kang Xu
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Haoran Zeng
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Feiyang Lin
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya 320-8551, Japan
| | - Masashi Asahina
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya 320-8551, Japan
- Department of Biosciences, Teikyo University, Utsunomiya 320-8551, Japan
| | - Ken-ichiro Hayashi
- Department of Bioscience, Okayama University of Science, Okayama 700-0005, Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Masaaki K Watahiki
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Division of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
8
|
Li Y, Liu Y, Ran G, Yu Y, Zhou Y, Zhu Y, Du Y, Pi L. The pentatricopeptide repeat protein DG1 promotes the transition to bilateral symmetry during Arabidopsis embryogenesis through GUN1-mediated plastid signals. THE NEW PHYTOLOGIST 2024; 244:542-557. [PMID: 39140987 DOI: 10.1111/nph.20056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
During Arabidopsis embryogenesis, the transition of the embryo's symmetry from radial to bilateral between the globular and heart stage is a crucial event, involving the formation of cotyledon primordia and concurrently the establishment of a shoot apical meristem (SAM). However, a coherent framework of how this transition is achieved remains to be elucidated. In this study, we investigated the function of DELAYED GREENING 1 (DG1) in Arabidopsis embryogenesis using a newly identified dg1-3 mutant. The absence of chloroplast-localized DG1 in the mutants led to embryos being arrested at the globular or heart stage, accompanied by an expansion of WUSCHEL (WUS) and SHOOT MERISTEMLESS (STM) expression. This finding pinpoints the essential role of DG1 in regulating the transition to bilateral symmetry. Furthermore, we showed that this regulation of DG1 may not depend on its role in plastid RNA editing. Nevertheless, we demonstrated that the DG1 function in establishing bilateral symmetry is genetically mediated by GENOMES UNCOUPLED 1 (GUN1), which represses the transition process in dg1-3 embryos. Collectively, our results reveal that DG1 functionally antagonizes GUN1 to promote the transition of the Arabidopsis embryo's symmetry from radial to bilateral and highlight the role of plastid signals in regulating pattern formation during plant embryogenesis.
Collapse
Affiliation(s)
- Yajie Li
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yiqiong Liu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Guiping Ran
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yue Yu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yifan Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuxian Zhu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yujuan Du
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Limin Pi
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
9
|
Shang H, Lu Y, Xun L, Wang K, Li B, Liu Y, Ma T. Genome assembly of Stephania longa provides insight into cepharanthine biosynthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1414636. [PMID: 39301160 PMCID: PMC11410628 DOI: 10.3389/fpls.2024.1414636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
Introduction Stephania longa, a medicinal plant renowned for producing cepharanthine, has gained significance due to the compound's notable antiviral properties against SARS-CoV-2. However, a comprehensive genetic understanding of S. longa has been lacking. This study aimed to develop a high-quality, chromosome-level genome assembly to uncover the genetic intricacies and evolutionary narrative of this species. By integrating genomic data with metabolomic and transcriptomic analyses, we sought to identify key genes involved in cepharanthine biosynthesis. Methods We employed a multi-faceted approach comprising genome assembly, phylogenetic analysis, gene family dynamics investigation, metabolomic profiling, and gene expression analysis across various tissues of S. longa. This integrated strategy enabled the identification of key genes involved in cepharanthine biosynthesis and elucidated the species' evolutionary history. Results Our phylogenetic analysis clarified the placement of the genus Stephania within the Ranunculales order and revealed its notably high mutation rate. We identified gene family expansions and signs of positive selection likely contributing to Stephania's unique metabolic capabilities. Metabolomic profiling uncovered complex regulatory mechanisms orchestrating the biosynthesis and distribution of cepharanthine and related metabolites. Through the integration of genomic, transcriptomic, and metabolomic data, we identified genes with expression patterns and evolutionary trajectories suggesting pivotal roles in cepharanthine biosynthesis, including those involved in crucial biosynthetic steps. Discussion This comprehensive study, integrating genomic, metabolomic, and transcriptomic approaches, provides valuable insights into S. longa's biosynthetic potential. It not only enhances our understanding of the species but also establishes a foundation for future investigations into the biosynthesis and therapeutic exploitation of cepharanthine and related alkaloids.
Collapse
Affiliation(s)
- Huiying Shang
- Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, Shaanxi, China
| | - Yuan Lu
- Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, Shaanxi, China
| | - Lulu Xun
- Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, Shaanxi, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Bin Li
- Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, Shaanxi, China
| | - Yuxuan Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Carrère S, Routaboul JM, Savourat P, Bellenot C, López H, Sahoo A, Quiroz Monnens T, Ricou A, Camilleri C, Declerck N, Laufs P, Mercier R, Noël LD. A fully sequenced collection of homozygous EMS mutants for forward and reverse genetic screens in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:3015-3026. [PMID: 39073886 DOI: 10.1111/tpj.16954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024]
Abstract
Genetic screens are powerful tools for biological research and are one of the reasons for the success of the thale cress Arabidopsis thaliana as a research model. Here, we describe the whole-genome sequencing of 871 Arabidopsis lines from the Homozygous EMS Mutant (HEM) collection as a novel resource for forward and reverse genetics. With an average 576 high-confidence mutations per HEM line, over three independent mutations altering protein sequences are found on average per gene in the collection. Pilot reverse genetics experiments on reproductive, developmental, immune and physiological traits confirmed the efficacy of the tool for identifying both null, knockdown and gain-of-function alleles. The possibility of conducting subtle repeated phenotyping and the immediate availability of the mutations will empower forward genetic approaches. The sequence resource is searchable with the ATHEM web interface (https://lipm-browsers.toulouse.inra.fr/pub/ATHEM/), and the biological material is distributed by the Versailles Arabidopsis Stock Center.
Collapse
Affiliation(s)
- Sébastien Carrère
- LIPME, Université de Toulouse, INRAE/CNRS UMR 0441/2598, Castanet-Tolosan, France
| | - Jean-Marc Routaboul
- LIPME, Université de Toulouse, INRAE/CNRS UMR 0441/2598, Castanet-Tolosan, France
| | - Pauline Savourat
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Caroline Bellenot
- LIPME, Université de Toulouse, INRAE/CNRS UMR 0441/2598, Castanet-Tolosan, France
| | - Hernán López
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | - Amruta Sahoo
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | | | - Anthony Ricou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Christine Camilleri
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Nathalie Declerck
- CBS, Université Montpellier, CNRS/INSERM, UMR5048/1054, Montpellier, France
| | - Patrick Laufs
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Raphaël Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | - Laurent D Noël
- LIPME, Université de Toulouse, INRAE/CNRS UMR 0441/2598, Castanet-Tolosan, France
| |
Collapse
|
11
|
Liu M, Chen L, Gu S, Zhang A, Tong M, Wang S, Wang J, Zhu Y, Zhang J, Sun Y, Guo Y, Li R. Arabidopsis TIC236 contributes to proplastid development and chloroplast biogenesis during embryogenesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1424994. [PMID: 39246812 PMCID: PMC11377289 DOI: 10.3389/fpls.2024.1424994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024]
Abstract
Plastids are essential, semi-autonomous organelles in plants that carry out a multitude of functions during development. Plastids existing in different subtypes are derived from proplastids progenitors and interconvert in response to environmental and growth cues. Most efforts focus on the differentiation from proplastid to other forms. However, the studies of proplastid development are insufficient and whether proplastid biogenesis affects plant growth is yet to be determined. Arabidopsis TIC236, a translocon component at the inner membrane of the chloroplast envelope, is critical for importing chloroplast-targeted preproteins and chloroplast division. In this study, we uncovered the fundamental influence of proplastid biogenesis on embryo development by exploring the function of TIC236 during embryogenesis. Widespread and strong expression of TIC236 was observed in leaves and embryos. The null mutant tic236 had an embryo-lethal phenotype, with cell division in the mutant embryos delayed starting at the octant stage and arrested at the globular stage. Transmission electron microscopy revealed enlarged proplastids with an aberrant inner structure at the dermatogen and globular stages that ultimately did not differentiate into chloroplasts. Additionally, the fluorescence signal distribution patterns of tic236 embryos carrying the pDR5rev::3xVENUS-N7, pPIN1::PIN1-GFP, pWOX5::GFP, and pSCR::H2B-YFP reporter systems were altered. Together, we provide genetic evidence supporting proplastid biogenesis plays a vital role in embryo development and TIC236 is identified as an indispensable player, ensuring normal proplastid development.
Collapse
Affiliation(s)
- Mei Liu
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Lifen Chen
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shijie Gu
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Aiwei Zhang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Mengjuan Tong
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shuailei Wang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Juntao Wang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yirui Zhu
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingsheng Zhang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yu Sun
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yi Guo
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Rui Li
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
12
|
Qiao H, Zhou X, Yi Y, Wei L, Xu X, Jin P, Su W, Weng Y, Yu D, He S, Fu M, Hou C, Pan X, Wang W, Zhang YY, Ming R, Ye C, Li QQ, Shen Y. Molecular mechanism of vivipary as revealed by the genomes of viviparous mangroves and non-viviparous relatives. Curr Biol 2024; 34:3707-3721.e7. [PMID: 39079534 DOI: 10.1016/j.cub.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
Vivipary is a prominent feature of mangroves, allowing seeds to complete germination while attached to the mother plant, and equips propagules to endure and flourish in challenging coastal intertidal wetlands. However, vivipary-associated genetic mechanisms remain largely elusive. Genomes of two viviparous mangrove species and a non-viviparous inland relative were sequenced and assembled at the chromosome level. Comparative genomic analyses between viviparous and non-viviparous genomes revealed that DELAY OF GERMINATION 1 (DOG1) family genes (DFGs), the proteins from which are crucial for seed dormancy, germination, and reserve accumulation, are either lost or dysfunctional in the entire lineage of true viviparous mangroves but are present and functional in their inland, non-viviparous relatives. Transcriptome dynamics at key stages of vivipary further highlighted the roles of phytohormonal homeostasis, proteins stored in mature seeds, and proanthocyanidins in vivipary under conditions lacking DFGs. Population genomic analyses elucidate dynamics of syntenic regions surrounding the missing DFGs. Our findings demonstrated the genetic foundation of constitutive vivipary in Rhizophoraceae mangroves.
Collapse
Affiliation(s)
- Hongmei Qiao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaoxuan Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Yuchong Yi
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Liufeng Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiuming Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Pengfei Jin
- Novogene Co. Ltd, Building 301, Zone A10 Jiuxianqiao North Road, Chaoyang District, Beijing 100006, China
| | - Wenyue Su
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Yulin Weng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Dingtian Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Shanshan He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Meiping Fu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Chengcheng Hou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaobao Pan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Wenqing Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China.
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China; Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA.
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
13
|
Go D, Lu B, Alizadeh M, Gazzarrini S, Song L. Voice from both sides: a molecular dialogue between transcriptional activators and repressors in seed-to-seedling transition and crop adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1416216. [PMID: 39166233 PMCID: PMC11333834 DOI: 10.3389/fpls.2024.1416216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/20/2024] [Indexed: 08/22/2024]
Abstract
High-quality seeds provide valuable nutrients to human society and ensure successful seedling establishment. During maturation, seeds accumulate storage compounds that are required to sustain seedling growth during germination. This review focuses on the epigenetic repression of the embryonic and seed maturation programs in seedlings. We begin with an extensive overview of mutants affecting these processes, illustrating the roles of core proteins and accessory components in the epigenetic machinery by comparing mutants at both phenotypic and molecular levels. We highlight how omics assays help uncover target-specific functional specialization and coordination among various epigenetic mechanisms. Furthermore, we provide an in-depth discussion on the Seed dormancy 4 (Sdr4) transcriptional corepressor family, comparing and contrasting their regulation of seed germination in the dicotyledonous species Arabidopsis and two monocotyledonous crops, rice and wheat. Finally, we compare the similarities in the activation and repression of the embryonic and seed maturation programs through a shared set of cis-regulatory elements and discuss the challenges in applying knowledge largely gained in model species to crops.
Collapse
Affiliation(s)
- Dongeun Go
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Sonia Gazzarrini
- Department of Biological Science, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Blázquez MA. Polyamines: Their Role in Plant Development and Stress. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:95-117. [PMID: 38382905 DOI: 10.1146/annurev-arplant-070623-110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
This review focuses on the intricate relationship between plant polyamines and the genetic circuits and signaling pathways that regulate various developmental programs and the defense responses of plants when faced with biotic and abiotic aggressions. Particular emphasis is placed on genetic evidence supporting the involvement of polyamines in specific processes, such as the pivotal role of thermospermine in regulating xylem cell differentiation and the significant contribution of polyamine metabolism in enhancing plant resilience to drought. Based on the numerous studies describing effects of the manipulation of plant polyamine levels, two conceptually different mechanisms for polyamine activity are discussed: direct participation of polyamines in translational regulation and the indirect production of hydrogen peroxide as a defensive mechanism against pathogens. By describing the multifaceted functions of polyamines, this review underscores the profound significance of these compounds in enabling plants to adapt and thrive in challenging environments.
Collapse
Affiliation(s)
- Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain;
| |
Collapse
|
15
|
Nandety RS, Oh S, Lee HK, Krom N, Gupta R, Mysore KS. Genome-wide methylation landscape during somatic embryogenesis in Medicago truncatula reveals correlation between Tnt1 retrotransposition and hyperactive methylation regions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:557-576. [PMID: 38627952 DOI: 10.1111/tpj.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 07/01/2024]
Abstract
Medicago truncatula is a model legume for fundamental research on legume biology and symbiotic nitrogen fixation. Tnt1, a retrotransposon from tobacco, was used to generate insertion mutants in M. truncatula R108. Approximately 21 000 insertion lines have been generated and publicly available. Tnt1 retro-transposition event occurs during somatic embryogenesis (SE), a pivotal process that triggers massive methylation changes. We studied the SE of M. truncatula R108 using leaf explants and explored the dynamic shifts in the methylation landscape from leaf explants to callus formation and finally embryogenesis. Higher cytosine methylation in all three contexts of CG, CHG, and CHH patterns was observed during SE compared to the controls. Higher methylation patterns were observed in assumed promoter regions (~2-kb upstream regions of transcription start site) of the genes, while lowest was recorded in the untranslated regions. Differentially methylated promoter region analysis showed a higher CHH methylation in embryogenesis tissue samples when compared to CG and CHG methylation. Strong correlation (89.71%) was identified between the differentially methylated regions (DMRs) and the site of Tnt1 insertions in M. truncatula R108 and stronger hypermethylation of genes correlated with higher number of Tnt1 insertions in all contexts of CG, CHG, and CHH methylation. Gene ontology enrichment and KEGG pathway enrichment analysis identified genes and pathways enriched in the signal peptide processing, ATP hydrolysis, RNA polymerase activity, transport, secondary metabolites, and nitrogen metabolism pathways. Combined gene expression analysis and methylation profiling showed an inverse relationship between methylation in the DMRs (regions spanning genes) and the expression of genes. Our results show that a dynamic shift in methylation happens during the SE process in the context of CG, CHH and CHG methylation, and the Tnt1 retrotransposition correlates with the hyperactive methylation regions.
Collapse
Affiliation(s)
- Raja Sekhar Nandety
- Noble Research Institute, Ardmore, Oklahoma, 73401, USA
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, 58102, USA
- Cereal Crops Research Unit, USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, North Dakota, 58102, USA
| | - Sunhee Oh
- Noble Research Institute, Ardmore, Oklahoma, 73401, USA
| | - Hee-Kyung Lee
- Noble Research Institute, Ardmore, Oklahoma, 73401, USA
| | - Nick Krom
- Noble Research Institute, Ardmore, Oklahoma, 73401, USA
| | - Rajeev Gupta
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, 58102, USA
- Cereal Crops Research Unit, USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, North Dakota, 58102, USA
| | - Kirankumar S Mysore
- Noble Research Institute, Ardmore, Oklahoma, 73401, USA
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, 73401, USA
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| |
Collapse
|
16
|
Wang Y, Duchen P, Chávez A, Sree KS, Appenroth KJ, Zhao H, Höfer M, Huber M, Xu S. Population genomics and epigenomics of Spirodela polyrhiza provide insights into the evolution of facultative asexuality. Commun Biol 2024; 7:581. [PMID: 38755313 PMCID: PMC11099151 DOI: 10.1038/s42003-024-06266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Many plants are facultatively asexual, balancing short-term benefits with long-term costs of asexuality. During range expansion, natural selection likely influences the genetic controls of asexuality in these organisms. However, evidence of natural selection driving asexuality is limited, and the evolutionary consequences of asexuality on the genomic and epigenomic diversity remain controversial. We analyzed population genomes and epigenomes of Spirodela polyrhiza, (L.) Schleid., a facultatively asexual plant that flowers rarely, revealing remarkably low genomic diversity and DNA methylation levels. Within species, demographic history and the frequency of asexual reproduction jointly determined intra-specific variations of genomic diversity and DNA methylation levels. Genome-wide scans revealed that genes associated with stress adaptations, flowering and embryogenesis were under positive selection. These data are consistent with the hypothesize that natural selection can shape the evolution of asexuality during habitat expansions, which alters genomic and epigenomic diversity levels.
Collapse
Affiliation(s)
- Yangzi Wang
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Pablo Duchen
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Alexandra Chávez
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, 48161, Münster, Germany
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periya, 671320, India
| | - Klaus J Appenroth
- Matthias Schleiden Institute - Plant Physiology, Friedrich Schiller University of Jena, 07743, Jena, Germany
| | - Hai Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, 6100641, Chengdu, China
| | - Martin Höfer
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Meret Huber
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, 48161, Münster, Germany
| | - Shuqing Xu
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany.
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany.
- Institute for Quantitative and Computational Biosciences, University of Mainz, 55218, Mainz, Germany.
| |
Collapse
|
17
|
Schmid LM, Manavski N, Chi W, Meurer J. Chloroplast Ribosome Biogenesis Factors. PLANT & CELL PHYSIOLOGY 2024; 65:516-536. [PMID: 37498958 DOI: 10.1093/pcp/pcad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
The formation of chloroplasts can be traced back to an ancient event in which a eukaryotic host cell containing mitochondria ingested a cyanobacterium. Since then, chloroplasts have retained many characteristics of their bacterial ancestor, including their transcription and translation machinery. In this review, recent research on the maturation of rRNA and ribosome assembly in chloroplasts is explored, along with their crucial role in plant survival and their implications for plant acclimation to changing environments. A comparison is made between the ribosome composition and auxiliary factors of ancient and modern chloroplasts, providing insights into the evolution of ribosome assembly factors. Although the chloroplast contains ancient proteins with conserved functions in ribosome assembly, newly evolved factors have also emerged to help plants acclimate to changes in their environment and internal signals. Overall, this review offers a comprehensive analysis of the molecular mechanisms underlying chloroplast ribosome assembly and highlights the importance of this process in plant survival, acclimation and adaptation.
Collapse
Affiliation(s)
- Lisa-Marie Schmid
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| |
Collapse
|
18
|
Li Z, Qian W, Qiu S, Wang W, Jiang M, Hu X, Huang H, Lin E. Identification and characterization of the WOX Gene Family revealed two WUS Clade Members associated with embryo development in Cunninghamia lanceolata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108570. [PMID: 38560957 DOI: 10.1016/j.plaphy.2024.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
The WUSCHEL-related homeobox (WOX) gene family is vital for plant development and stress response. In this study, we conducted a comprehensive analysis of WOX genes in Cunninghamia lanceolata (C. lanceolata) and subsequently explored the potential roles of two ClWOX genes within the WUS clade. In total, six ClWOX genes were identified through a full-length transcriptome analysis. These genes, exhibiting conserved structural and functional motifs, were assigned to the ancient clade and Modern/WUS clade, respectively, through a phylogenetic analysis. Our expression analysis indicated that these ClWOX genes were highly expressed in the middle and late developmental stages of zygotic embryos in C. lanceolata. Moreover, only ClWOX5 and ClWOX6 within the Modern/WUS clade exhibited transcriptional activity, and their expressions were also induced in response to auxin and wounding. Overexpression of ClWOX5 and ClWOX6 in Arabidopsis caused a partially sterile phenotype, resulting in a very low seed setting rate. Transcriptomic analysis revealed that expressions of many embryo-defective (EMB) genes, phytohormone-related genes, and transcription factors (TFs) were dramatically altered in ClWOX5 and ClWOX6 transgenic plants, which suggested that ClWOX5 and ClWOX6 may play specific important roles in embryo development via complex gene networks. In addition, overexpression of ClWOX5 and ClWOX6 in leaf segments promoted shoot regeneration in tobacco, indicating that ClWOX5 and ClWOX6 can promote plant regeneration and could be used to improve genetic transformation. In conclusion, these results help to elucidate the function of the WOX gene and provide a valuable basis for future studies of the developmental regulation and applications of WOX genes in C. lanceolata.
Collapse
Affiliation(s)
- Zhouyang Li
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Wang Qian
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Shan Qiu
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Wenxin Wang
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Mei Jiang
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xiange Hu
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Huahong Huang
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
| | - Erpei Lin
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
19
|
Robil JM. Plastid translation as a developmental checkpoint? Plastid ribosomal protein EMB27 is required for maize embryogenesis. PLANT PHYSIOLOGY 2024; 195:259-261. [PMID: 38401161 PMCID: PMC11060672 DOI: 10.1093/plphys/kiae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Affiliation(s)
- Janlo M Robil
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Department of Biology, School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines
| |
Collapse
|
20
|
Liu XY, Jiang RC, Ma B, Wang Y, Yang YZ, Xu C, Sun F, Tan BC. Maize requires Embryo defective27 for embryogenesis and seedling development. PLANT PHYSIOLOGY 2024; 195:430-445. [PMID: 38198212 DOI: 10.1093/plphys/kiae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
The essential role of plastid translation in embryogenesis has been established in many plants, but a retrograde signal triggered by defective plastid translation machinery that may leads to embryogenesis arrest remains unknown. In this study, we characterized an embryo defective27 (emb27) mutant in maize (Zea mays), and cloning indicates that Emb27 encodes the plastid ribosomal protein S13. The null mutant emb27-1 conditions an emb phenotype with arrested embryogenesis; however, the leaky mutant emb27-2 exhibits normal embryogenesis but an albino seedling-lethal phenotype. The emb27-1/emb27-2 trans-heterozygotes display varying phenotypes from emb to normal seeds but albino seedlings. Analysis of the Emb27 transcription levels in these mutants revealed that the Emb27 expression level in the embryo corresponds with the phenotypic expression of the emb27 mutants. In the W22 genetic background, an Emb27 transcription level higher than 6% of the wild-type level renders normal embryogenesis, whereas lower than that arrests embryogenesis. Mutation of Emb27 reduces the level of plastid 16S rRNA and the accumulation of the plastid-encoded proteins. As a secondary effect, splicing of several plastid introns was impaired in emb27-1 and 2 other plastid translation-defective mutants, emb15 and emb16, suggesting that plastome-encoded factors are required for the splicing of these introns, such as Maturase K (MatK). Our results indicate that EMB27 is essential for plastid protein translation, embryogenesis, and seedling development in maize and reveal an expression threshold of Emb27 for maize embryogenesis.
Collapse
Affiliation(s)
- Xin-Yuan Liu
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Rui-Cheng Jiang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bing Ma
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yong Wang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yan-Zhuo Yang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Chunhui Xu
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Feng Sun
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
21
|
Ishii K, Kazama Y, Hirano T, Fawcett JA, Sato M, Hirai MY, Sakai F, Shirakawa Y, Ohbu S, Abe T. Genomic view of heavy-ion-induced deletions associated with distribution of essential genes in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:1352564. [PMID: 38693931 PMCID: PMC11061394 DOI: 10.3389/fpls.2024.1352564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/11/2024] [Indexed: 05/03/2024]
Abstract
Heavy-ion beam, a type of ionizing radiation, has been applied to plant breeding as a powerful mutagen and is a promising tool to induce large deletions and chromosomal rearrangements. The effectiveness of heavy-ion irradiation can be explained by linear energy transfer (LET; keV µm-1). Heavy-ion beams with different LET values induce different types and sizes of mutations. It has been suggested that deletion size increases with increasing LET value, and complex chromosomal rearrangements are induced in higher LET radiations. In this study, we mapped heavy-ion beam-induced deletions detected in Arabidopsis mutants to its genome. We revealed that deletion sizes were similar between different LETs (100 to 290 keV μm-1), that their upper limit was affected by the distribution of essential genes, and that the detected chromosomal rearrangements avoid disrupting the essential genes. We also focused on tandemly arrayed genes (TAGs), where two or more homologous genes are adjacent to one another in the genome. Our results suggested that 100 keV µm-1 of LET is enough to disrupt TAGs and that the distribution of essential genes strongly affects the heritability of mutations overlapping them. Our results provide a genomic view of large deletion inductions in the Arabidopsis genome.
Collapse
Affiliation(s)
- Kotaro Ishii
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Japan
- Department of Radiation Measurement and Dose Assessment, Institute for Radiological Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yusuke Kazama
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Japan
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji-cho, Japan
| | - Tomonari Hirano
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Japan
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Jeffrey A. Fawcett
- RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), Wako, Japan
| | - Muneo Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Japan
| | | | - Yuki Shirakawa
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Japan
| | - Sumie Ohbu
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Japan
| | - Tomoko Abe
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Japan
| |
Collapse
|
22
|
Binmöller L, Volkert C, Kiefer C, Zühl L, Slawinska MW, Loreth A, Nauerth BH, Ibberson D, Martinez R, Mandakova TM, Zipper R, Schmidt A. Differential expression and evolutionary diversification of RNA helicases in Boechera sexual and apomictic reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2451-2469. [PMID: 38263359 DOI: 10.1093/jxb/erae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Abstract
In higher plants, sexual reproduction is characterized by meiosis of the first cells of the germlines, and double fertilization of the egg and central cell after gametogenesis. In contrast, in apomicts of the genus Boechera, meiosis is omitted or altered and only the central cell requires fertilization, while the embryo forms parthenogenetically from the egg cell. To deepen the understanding of the transcriptional basis underlying these differences, we applied RNA-seq to compare expression in reproductive tissues of different Boechera accessions. This confirmed previous evidence of an enrichment of RNA helicases in plant germlines. Furthermore, few RNA helicases were differentially expressed in female reproductive ovule tissues harboring mature gametophytes from apomictic and sexual accessions. For some of these genes, we further found evidence for a complex recent evolutionary history. This included a homolog of Arabidopsis thaliana FASCIATED STEM4 (FAS4). In contrast to AtFAS4, which is a single-copy gene, FAS4 is represented by three homologs in Boechera, suggesting a potential for subfunctionalization to modulate reproductive development. To gain first insights into functional roles of FAS4, we studied Arabidopsis lines carrying mutant alleles. This identified the crucial importance of AtFAS4 for reproduction, as we observed developmental defects and arrest during male and female gametogenesis.
Collapse
Affiliation(s)
- Laura Binmöller
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Christopher Volkert
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Christiane Kiefer
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Luise Zühl
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Magdalena W Slawinska
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Anna Loreth
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Berit H Nauerth
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany
| | - Rafael Martinez
- Centre for Organismal Studies Heidelberg, Department of Developmental Biology, Heidelberg University, Im Neuenheimer Feld 230, D-69120, Heidelberg, Germany
| | - Terezie M Mandakova
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Reinhard Zipper
- Institute of Biology, Plant Evolutionary Biology, University of Hohenheim, Garbenstrasse 30, D-70599 Stuttgart, Germany
| | - Anja Schmidt
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
- Institute of Biology, Plant Evolutionary Biology, University of Hohenheim, Garbenstrasse 30, D-70599 Stuttgart, Germany
| |
Collapse
|
23
|
Qin R, Cao M, Dong J, Chen L, Guo H, Guo Q, Cai Y, Han L, Huang Z, Xu N, Yang A, Xu H, Wu Y, Sun H, Liu X, Ling H, Zhao C, Li J, Cui F. Fine mapping of a major QTL, qKl-1BL controlling kernel length in common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:67. [PMID: 38441674 DOI: 10.1007/s00122-024-04574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/03/2024] [Indexed: 03/07/2024]
Abstract
KEY MESSAGE A major stable QTL, qKl-1BL, for kernel length of wheat was narrowed down to a 2.04-Mb interval on chromosome 1BL; the candidate genes were predicated and the genetic effects on yield-related traits were characterized. As a key factor influencing kernel weight, wheat kernel shape is closely related to yield formation, and in turn affects both wheat processing quality and market value. Fine mapping of the major quantitative trait loci (QTL) for kernel shape could provide genetic resources and a theoretical basis for the genetic improvement of wheat yield-related traits. In this study, a major QTL for kernel length (KL) on 1BL, named qKl-1BL, was identified from the recombinant inbred lines (RIL) in multiple environments based on the genetic map and physical map, with 4.76-21.15% of the phenotypic variation explained. To fine map qKl-1BL, the map-based cloning strategy was used. By using developed InDel markers, the near-isogenic line (NIL) pairs and eight key recombinants were identified from a segregating population containing 3621 individuals derived from residual heterozygous lines (RHLs) self-crossing. In combination with phenotype identification, qKl-1BL was finely positioned into a 2.04-Mb interval, KN1B:698.15-700.19 Mb, with eight differentially expressed genes enriched at the key period of kernel elongation. Based on transcriptome analysis and functional annotation information, two candidate genes for qKl-1BL controlling kernel elongation were identified. Additionally, genetic effect analysis showed that the superior allele of qKl-1BL from Jing411 could increase KL, thousand kernel weight (TKW), and yield per plant (YPP) significantly, as well as kernel bulk density and stability time. Taken together, this study identified a QTL interval for controlling kernel length with two possible candidate genes, which provides an important basis for qKl-1BL cloning, functional analysis, and application in molecular breeding programs.
Collapse
Affiliation(s)
- Ran Qin
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Mingsu Cao
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Jizi Dong
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Linqu Chen
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Haoru Guo
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Qingjie Guo
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Yibiao Cai
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Lei Han
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Zhenjie Huang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Ninghao Xu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Aoyu Yang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Huiyuan Xu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Yongzhen Wu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Han Sun
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050000, China
| | - Hongqing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunhua Zhao
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China.
| | - Junming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050000, China.
| | - Fa Cui
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
24
|
Sachdeva S, Singh R, Maurya A, Singh VK, Singh UM, Kumar A, Singh GP. New insights into QTNs and potential candidate genes governing rice yield via a multi-model genome-wide association study. BMC PLANT BIOLOGY 2024; 24:124. [PMID: 38373874 PMCID: PMC10877931 DOI: 10.1186/s12870-024-04810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the globally important staple food crops, and yield-related traits are prerequisites for improved breeding efficiency in rice. Here, we used six different genome-wide association study (GWAS) models for 198 accessions, with 553,229 single nucleotide markers (SNPs) to identify the quantitative trait nucleotides (QTNs) and candidate genes (CGs) governing rice yield. RESULTS Amongst the 73 different QTNs in total, 24 were co-localized with already reported QTLs or loci in previous mapping studies. We obtained fifteen significant QTNs, pathway analysis revealed 10 potential candidates within 100kb of these QTNs that are predicted to govern plant height, days to flowering, and plot yield in rice. Based on their superior allelic information in 20 elite and 6 inferior genotypes, we found a higher percentage of superior alleles in the elite genotypes in comparison to inferior genotypes. Further, we implemented expression analysis and enrichment analysis enabling the identification of 73 candidate genes and 25 homologues of Arabidopsis, 19 of which might regulate rice yield traits. Of these candidate genes, 40 CGs were found to be enriched in 60 GO terms of the studied traits for instance, positive regulator metabolic process (GO:0010929), intracellular part (GO:0031090), and nucleic acid binding (GO:0090079). Haplotype and phenotypic variation analysis confirmed that LOC_OS09G15770, LOC_OS02G36710 and LOC_OS02G17520 are key candidates associated with rice yield. CONCLUSIONS Overall, we foresee that the QTNs, putative candidates elucidated in the study could summarize the polygenic regulatory networks controlling rice yield and be useful for breeding high-yielding varieties.
Collapse
Grants
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Supriya Sachdeva
- Division of Genomic Resources, ICAR-NBPGR, Pusa, New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-NBPGR, Pusa, New Delhi, India.
| | - Avantika Maurya
- Division of Genomic Resources, ICAR-NBPGR, Pusa, New Delhi, India
| | - Vikas K Singh
- International Rice Research Institute (IRRI), South Asia Hub, ICRISAT, Hyderabad, India
| | - Uma Maheshwar Singh
- International Rice Research Institute (IRRI), South Asia Regional Centre (ISARC), Varanasi, India
| | - Arvind Kumar
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | | |
Collapse
|
25
|
Hancock CN, Germany T, Redd P, Timmons J, Lipford J, Burns S, Cervantes-Perez SA, Libault M, Shen W, An YQC, Kanizay L, Yerka M, Parrott WA. Identification and characterization of a temperature sensitive chlorotic soybean mutant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578604. [PMID: 38352530 PMCID: PMC10862810 DOI: 10.1101/2024.02.02.578604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Screening a transposon-mutagenized soybean population led to the discovery of a recessively inherited chlorotic phenotype. This "vir1" phenotype results in smaller stature, weaker stems, and a smaller root system with smaller nodules. Genome sequencing identified 15 candidate genes with mutations likely to result in a loss of function. Amplicon sequencing of a segregating population was then used to narrow the list to a single candidate mutation, a single-base change in Glyma.07G102300 that disrupts splicing of the second intron. Single cell transcriptomic profiling indicates that this gene is expressed primarily in mesophyll cells and RNA sequencing data indicates it is upregulated in germinating seedlings by cold stress. Previous studies have shown that mutations to Os05g34040, the rice homolog of Glyma.07G102300, produced a chlorotic phenotype that was more pronounced in cool temperatures. Growing soybean vir1 mutants at lower temperatures also resulted in a more severe phenotype. In addition, transgenic expression of wild type Glyma.07G102300 in the knockout mutant of the Arabidopsis homolog At4930720 rescues the chlorotic phenotype, further supporting the hypothesis that the mutation in Glyma.07G102300 is causal of the vir1 phenotype.
Collapse
Affiliation(s)
- C. Nathan Hancock
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | | | - Priscilla Redd
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | - Jack Timmons
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | - Jeffery Lipford
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | - Samantha Burns
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | | | - Marc Libault
- Plant Science and Technology, University of Missouri, Columbia, MO
| | - Wenhao Shen
- Donald Danforth Plant Science Center, St. Louis, MO
| | - Yong-qiang Charles An
- USDA-ARS Plant Genetics Research Unit, Danforth Plant Science Center, Saint Louis, MO
| | - Lisa Kanizay
- Center for Applied Genetic Technology, University of Georgia, Athens, GA
| | - Melinda Yerka
- Center for Applied Genetic Technology, University of Georgia, Athens, GA
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV
| | - Wayne A. Parrott
- Center for Applied Genetic Technology, University of Georgia, Athens, GA
| |
Collapse
|
26
|
Wójcikowska B, Belaidi S, Robert HS. Game of thrones among AUXIN RESPONSE FACTORs-over 30 years of MONOPTEROS research. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6904-6921. [PMID: 37450945 PMCID: PMC10690734 DOI: 10.1093/jxb/erad272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
For many years, research has been carried out with the aim of understanding the mechanism of auxin action, its biosynthesis, catabolism, perception, and transport. One central interest is the auxin-dependent gene expression regulation mechanism involving AUXIN RESPONSE FACTOR (ARF) transcription factors and their repressors, the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins. Numerous studies have been focused on MONOPTEROS (MP)/ARF5, an activator of auxin-dependent gene expression with a crucial impact on plant development. This review summarizes over 30 years of research on MP/ARF5. We indicate the available analytical tools to study MP/ARF5 and point out the known mechanism of MP/ARF5-dependent regulation of gene expression during various developmental processes, namely embryogenesis, leaf formation, vascularization, and shoot and root meristem formation. However, many questions remain about the auxin dose-dependent regulation of gene transcription by MP/ARF5 and its isoforms in plant cells, the composition of the MP/ARF5 protein complex, and, finally, all the genes under its direct control. In addition, information on post-translational modifications of MP/ARF5 protein is marginal, and knowledge about their consequences on MP/ARF5 function is limited. Moreover, the epigenetic factors and other regulators that act upstream of MP/ARF5 are poorly understood. Their identification will be a challenge in the coming years.
Collapse
Affiliation(s)
- Barbara Wójcikowska
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Samia Belaidi
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hélène S Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
27
|
Zhou W, Zhang L, He J, Chen W, Zhao F, Fu C, Li M. Transcriptome Shock in Developing Embryos of a Brassica napus and Brassica rapa Hybrid. Int J Mol Sci 2023; 24:16238. [PMID: 38003428 PMCID: PMC10671433 DOI: 10.3390/ijms242216238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Interspecific crosses that fuse the genomes of two different species may result in overall gene expression changes in the hybrid progeny, called 'transcriptome shock'. To better understand the expression pattern after genome merging during the early stages of allopolyploid formation, we performed RNA sequencing analysis on developing embryos of Brassica rapa, B. napus, and their synthesized allotriploid hybrids. Here, we show that the transcriptome shock occurs in the developing seeds of the hybrids. Of the homoeologous gene pairs, 17.1% exhibit expression bias, with an overall expression bias toward B. rapa. The expression level dominance also biases toward B. rapa, mainly induced by the expression change in homoeologous genes from B. napus. Functional enrichment analysis revealed significant differences in differentially expressed genes (DEGs) related to photosynthesis, hormone synthesis, and other pathways. Further study showed that significant changes in the expression levels of the key transcription factors (TFs) could regulate the overall interaction network in the developing embryo, which might be an essential cause of phenotype change. In conclusion, the present results have revealed the global changes in gene expression patterns in developing seeds of the hybrid between B. rapa and B. napus, and provided novel insights into the occurrence of transcriptome shock for harnessing heterosis.
Collapse
Affiliation(s)
- Weixian Zhou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Libin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Wang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Feifan Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Chunhua Fu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| |
Collapse
|
28
|
Pérez de los Cobos F, Coindre E, Dlalah N, Quilot-Turion B, Batlle I, Arús P, Eduardo I, Duval H. Almond population genomics and non-additive GWAS reveal new insights into almond dissemination history and candidate genes for nut traits and blooming time. HORTICULTURE RESEARCH 2023; 10:uhad193. [PMID: 37927408 PMCID: PMC10623407 DOI: 10.1093/hr/uhad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023]
Abstract
Domestication drastically changed crop genomes, fixing alleles of interest and creating different genetic populations. Genome-wide association studies (GWASs) are a powerful tool to detect these alleles of interest (and so QTLs). In this study, we explored the genetic structure as well as additive and non-additive genotype-phenotype associations in a collection of 243 almond accessions. Our genetic structure analysis strongly supported the subdivision of the accessions into five ancestral groups, all formed by accessions with a common origin. One of these groups was formed exclusively by Spanish accessions, while the rest were mainly formed by accessions from China, Italy, France, and the USA. These results agree with archaeological and historical evidence that separate modern almond dissemination into four phases: Asiatic, Mediterranean, Californian, and southern hemisphere. In total, we found 13 independent QTLs for nut weight, crack-out percentage, double kernels percentage, and blooming time. Of the 13 QTLs found, only one had an additive effect. Through candidate gene analysis, we proposed Prudul26A013473 as a candidate gene responsible for the main QTL found in crack-out percentage, Prudul26A012082 and Prudul26A017782 as candidate genes for the QTLs found in double kernels percentage, and Prudul26A000954 as a candidate gene for the QTL found in blooming time. Our study enhances our knowledge of almond dissemination history and will have a great impact on almond breeding.
Collapse
Affiliation(s)
- Felipe Pérez de los Cobos
- Fruticultura, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8 43120 Constantí Tarragona, Spain
- Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | | | | | | | - Ignasi Batlle
- Fruticultura, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8 43120 Constantí Tarragona, Spain
| | - Pere Arús
- Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Iban Eduardo
- Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | | |
Collapse
|
29
|
Zeiner A, Colina FJ, Citterico M, Wrzaczek M. CYSTEINE-RICH RECEPTOR-LIKE PROTEIN KINASES: their evolution, structure, and roles in stress response and development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4910-4927. [PMID: 37345909 DOI: 10.1093/jxb/erad236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
Plant-specific receptor-like protein kinases (RLKs) are central components for sensing the extracellular microenvironment. CYSTEINE-RICH RLKs (CRKs) are members of one of the biggest RLK subgroups. Their physiological and molecular roles have only begun to be elucidated, but recent studies highlight the diverse types of proteins interacting with CRKs, as well as the localization of CRKs and their lateral organization within the plasma membrane. Originally the DOMAIN OF UNKNOWN FUNCTION 26 (DUF26)-containing extracellular region of the CRKs was proposed to act as a redox sensor, but the potential activating post-translational modification or ligands perceived remain elusive. Here, we summarize recent progress in the analysis of CRK evolution, molecular function, and role in plant development, abiotic stress responses, plant immunity, and symbiosis. The currently available information on CRKs and related proteins suggests that the CRKs are central regulators of plant signaling pathways. However, more research using classical methods and interdisciplinary approaches in various plant model species, as well as structural analyses, will not only enhance our understanding of the molecular function of CRKs, but also elucidate the contribution of other cellular components in CRK-mediated signaling pathways.
Collapse
Affiliation(s)
- Adam Zeiner
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Francisco J Colina
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Matteo Citterico
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Michael Wrzaczek
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
30
|
Zhang K, He Y, Lu X, Shi Y, Zhao H, Li X, Li J, Liu Y, Ouyang Y, Tang Y, Ren X, Zhang X, Yang W, Sun Z, Zhang C, Quinet M, Luthar Z, Germ M, Kreft I, Janovská D, Meglič V, Pipan B, Georgiev MI, Studer B, Chapman MA, Zhou M. Comparative and population genomics of buckwheat species reveal key determinants of flavor and fertility. MOLECULAR PLANT 2023; 16:1427-1444. [PMID: 37649255 PMCID: PMC10512774 DOI: 10.1016/j.molp.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023]
Abstract
Common buckwheat (Fagopyrum esculentum) is an ancient crop with a world-wide distribution. Due to its excellent nutritional quality and high economic and ecological value, common buckwheat is becoming increasingly important throughout the world. The availability of a high-quality reference genome sequence and population genomic data will accelerate the breeding of common buckwheat, but the high heterozygosity due to the outcrossing nature has greatly hindered the genome assembly. Here we report the assembly of a chromosome-scale high-quality reference genome of F. esculentum var. homotropicum, a homozygous self-pollinating variant of common buckwheat. Comparative genomics revealed that two cultivated buckwheat species, common buckwheat (F. esculentum) and Tartary buckwheat (F. tataricum), underwent metabolomic divergence and ecotype differentiation. The expansion of several gene families in common buckwheat, including FhFAR genes, is associated with its wider distribution than Tartary buckwheat. Copy number variation of genes involved in the metabolism of flavonoids is associated with the difference of rutin content between common and Tartary buckwheat. Furthermore, we present a comprehensive atlas of genomic variation based on whole-genome resequencing of 572 accessions of common buckwheat. Population and evolutionary genomics reveal genetic variation associated with environmental adaptability and floral development between Chinese and non-Chinese cultivated groups. Genome-wide association analyses of multi-year agronomic traits with the content of flavonoids revealed that Fh05G014970 is a potential major regulator of flowering period, a key agronomic trait controlling the yield of outcrossing crops, and that Fh06G015130 is a crucial gene underlying flavor-associated flavonoids. Intriguingly, we found that the gene translocation and sequence variation of FhS-ELF3 contribute to the homomorphic self-compatibility of common buckwheat. Collectively, our results elucidate the genetic basis of speciation, ecological adaptation, fertility, and unique flavor of common buckwheat, and provide new resources for future genomics-assisted breeding of this economically important crop.
Collapse
Affiliation(s)
- Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Xiang Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Yaliang Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Hui Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China; College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaobo Li
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, China
| | - Jinlong Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Yang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Yinan Ouyang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Yu Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Xue Ren
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, China
| | - Xuemei Zhang
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, China
| | - Weifei Yang
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, China
| | - Zhaoxia Sun
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Chunhua Zhang
- Tongliao Institute Agricultural and Animal Husbandry Sciences, Tongliao 028015, Inner Mongolia, China
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université Catholique de Louvain, Croix du Sud 4-5, boîte L7.07.13, B-1348, Louvain-la-Neuve, Belgium
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Ivan Kreft
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; Nutrition Institute, Tržaška 40, 1000 Ljubljana, Slovenia
| | - Dagmar Janovská
- Gene Bank, Crop Research Institute, Drnovská 507, Prague 6, Czech Republic
| | - Vladimir Meglič
- Agricultural Institute of Slovenia, Hacquetova ulica, Ljubljana, Slovenia
| | - Barbara Pipan
- Agricultural Institute of Slovenia, Hacquetova ulica, Ljubljana, Slovenia
| | - Milen I Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China.
| |
Collapse
|
31
|
Rogo U, Fambrini M, Pugliesi C. Embryo Rescue in Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3106. [PMID: 37687352 PMCID: PMC10489947 DOI: 10.3390/plants12173106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Embryo rescue (ER) techniques are among the oldest and most successful in vitro tissue culture protocols used with plant species. ER refers to a series of methods that promote the development of an immature or lethal embryo into a viable plant. Intraspecific, interspecific, or intergeneric crosses allow the introgression of important alleles of agricultural interest from wild species, such as resistance or tolerance to abiotic and biotic stresses or morphological traits in crops. However, pre-zygotic and post-zygotic reproductive barriers often present challenges in achieving successful hybridization. Pre-zygotic barriers manifest as incompatibility reactions that hinder pollen germination, pollen tube growth, or penetration into the ovule occurring in various tissues, such as the stigma, style, or ovary. To overcome these barriers, several strategies are employed, including cut-style or graft-on-style techniques, the utilization of mixed pollen from distinct species, placenta pollination, and in vitro ovule pollination. On the other hand, post-zygotic barriers act at different tissues and stages ranging from early embryo development to the subsequent growth and reproduction of the offspring. Many crosses among different genera result in embryo abortion due to the failure of endosperm development. In such cases, ER techniques are needed to rescue these hybrids. ER holds great promise for not only facilitating successful crosses but also for obtaining haploids, doubled haploids, and manipulating the ploidy levels for chromosome engineering by monosomic and disomic addition as well substitution lines. Furthermore, ER can be used to shorten the reproductive cycle and for the propagation of rare plants. Additionally, it has been repeatedly used to study the stages of embryonic development, especially in embryo-lethal mutants. The most widely used ER procedure is the culture of immature embryos taken and placed directly on culture media. In certain cases, the in vitro culture of ovule, ovaries or placentas enables the successful development of young embryos from the zygote stage to maturity.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (U.R.); (M.F.)
| |
Collapse
|
32
|
Chen C, Zhang K, Liu F, Wang X, Yao Y, Niu X, He Y, Hong J, Liu F, Gao Q, Zhang Y, Li Y, Wang M, Lin J, Fan Y, Ren K, Shen L, Gao B, Ren X, Yang W, Georgiev MI, Zhang X, Zhou M. Resequencing of global Lotus corniculatus accessions reveals population distribution and genetic loci, associated with cyanogenic glycosides accumulation and growth traits. BMC Biol 2023; 21:176. [PMID: 37592232 PMCID: PMC10433565 DOI: 10.1186/s12915-023-01670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Lotus corniculatus is a widely distributed perennial legume whose great adaptability to different environments and resistance to barrenness make it an excellent forage and ecological restoration plant. However, its molecular genetics and genomic relationships among populations are yet to be uncovered. RESULT Here we report on a genomic variation map from worldwide 272 L. corniculatus accessions by genome resequencing. Our analysis suggests that L. corniculatus accessions have high genetic diversity and could be further divided into three subgroups, with the genetic diversity centers were located in Transcaucasia. Several candidate genes and SNP site associated with CNglcs content and growth traits were identified by genome-wide associated study (GWAS). A non-synonymous in LjMTR was responsible for the decreased expression of CNglcs synthesis genes and LjZCD was verified to positively regulate CNglcs synthesis gene CYP79D3. The LjZCB and an SNP in LjZCA promoter were confirmed to be involved in plant growth. CONCLUSION This study provided a large number of genomic resources and described genetic relationship and population structure among different accessions. Moreover, we attempt to provide insights into the molecular studies and breeding of CNglcs and growth traits in L. corniculatus.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fu Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xia Wang
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing, 100177, China
| | - Yang Yao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaolei Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Hong
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Fang Liu
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Qiu Gao
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Yi Zhang
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Yurong Li
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Meijuan Wang
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Jizhen Lin
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Yu Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kui Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lunhao Shen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bin Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xue Ren
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weifei Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| |
Collapse
|
33
|
Córdoba SC, Tong H, Burgos A, Zhu F, Alseekh S, Fernie AR, Nikoloski Z. Identification of gene function based on models capturing natural variability of Arabidopsis thaliana lipid metabolism. Nat Commun 2023; 14:4897. [PMID: 37580345 PMCID: PMC10425450 DOI: 10.1038/s41467-023-40644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
Lipids play fundamental roles in regulating agronomically important traits. Advances in plant lipid metabolism have until recently largely been based on reductionist approaches, although modulation of its components can have system-wide effects. However, existing models of plant lipid metabolism provide lumped representations, hindering detailed study of component modulation. Here, we present the Plant Lipid Module (PLM) which provides a mechanistic description of lipid metabolism in the Arabidopsis thaliana rosette. We demonstrate that the PLM can be readily integrated in models of A. thaliana Col-0 metabolism, yielding accurate predictions (83%) of single lethal knock-outs and 75% concordance between measured transcript and predicted flux changes under extended darkness. Genome-wide associations with fluxes obtained by integrating the PLM in diel condition- and accession-specific models identify up to 65 candidate genes modulating A. thaliana lipid metabolism. Using mutant lines, we validate up to 40% of the candidates, paving the way for identification of metabolic gene function based on models capturing natural variability in metabolism.
Collapse
Affiliation(s)
- Sandra Correa Córdoba
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| | - Hao Tong
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Asdrúbal Burgos
- Department of Zoology and Botany, University of Guadalajara, Guadalajara, Mexico
| | - Feng Zhu
- National R&D Center for Citrus Preservation, Hubei Hongshan Laboratory, National Key Laboratory for Germplasm Innovation and Utilization for Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Saleh Alseekh
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair R Fernie
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria.
| |
Collapse
|
34
|
Bekalu ZE, Panting M, Bæksted Holme I, Brinch-Pedersen H. Opportunities and Challenges of In Vitro Tissue Culture Systems in the Era of Crop Genome Editing. Int J Mol Sci 2023; 24:11920. [PMID: 37569295 PMCID: PMC10419073 DOI: 10.3390/ijms241511920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Currently, the development of genome editing (GE) tools has provided a wide platform for targeted modification of plant genomes. However, the lack of versatile DNA delivery systems for a large variety of crop species has been the main bottleneck for improving crops with beneficial traits. Currently, the generation of plants with heritable mutations induced by GE tools mostly goes through tissue culture. Unfortunately, current tissue culture systems restrict successful results to only a limited number of plant species and genotypes. In order to release the full potential of the GE tools, procedures need to be species and genotype independent. This review provides an in-depth summary and insights into the various in vitro tissue culture systems used for GE in the economically important crops barley, wheat, rice, sorghum, soybean, maize, potatoes, cassava, and millet and uncovers new opportunities and challenges of already-established tissue culture platforms for GE in the crops.
Collapse
|
35
|
Collins PP, Broad RC, Yogeeswaran K, Varsani A, Poole AM, Collings DA. Characterisation of the trans-membrane nucleoporins GP210 and NDC1 in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111719. [PMID: 37116717 DOI: 10.1016/j.plantsci.2023.111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/28/2023] [Accepted: 04/23/2023] [Indexed: 05/05/2023]
Abstract
The nuclear pore is structurally conserved across eukaryotes as are many of the pore's constituent proteins. The transmembrane nuclear pore proteins GP210 and NDC1 span the nuclear envelope holding the nuclear pore in place. Orthologues of GP210 and NDC1 in Arabidopsis were investigated through characterisation of T-DNA insertional mutants. While the T-DNA insert into GP210 reduced expression of the gene, the insert in the NDC1 gene resulted in increased expression in both the ndc1 mutant as well as the ndc1/gp210 double mutant. The ndc1 and gp210 individual mutants showed little phenotypic difference from wild-type plants, but the ndc1/gp210 mutant showed a range of phenotypic effects. As with many plant nuclear pore protein mutants, these effects included non-nuclear phenotypes such as reduced pollen viability, reduced growth and glabrous leaves in mature plants. Importantly, however, ndc1/gp210 exhibited nuclear-specific effects including modifications to nuclear shape in different cell types. We also observed functional changes to nuclear transport in ndc1/gp210 plants, with low levels of cytoplasmic fluorescence observed in cells expressing nuclear-targeted GFP. The lack of phenotypes in individual insertional lines, and the relatively mild phenotype suggests that additional transmembrane nucleoporins, such as the recently-discovered CPR5, likely compensate for their loss.
Collapse
Affiliation(s)
- Patrick P Collins
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Ronan C Broad
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Krithika Yogeeswaran
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Arvind Varsani
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Anthony M Poole
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - David A Collings
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
36
|
Hu M, Jiang Y, Xu JJ. Characterization of Arabidopsis thaliana Coq9 in the CoQ Biosynthetic Pathway. Metabolites 2023; 13:813. [PMID: 37512520 PMCID: PMC10385794 DOI: 10.3390/metabo13070813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Coenzyme Q, also known as ubiquinone, is a fat-soluble isoprene quinone that serves as a cofactor for numerous enzymes across all domains of life. However, the biosynthetic pathway for this important molecule in plants has been examined in only a limited number of studies. In yeast and mammals, Coq9, an isoprenoid-lipid-binding protein, is essential for CoQ biosynthesis. Previous studies showed that Arabidopsis thaliana Coq9 failed to complement the fission yeast Schizosaccharomyces pombe coq9 null mutant, and its function in plants remains unknown. In this study, we demonstrated that expression of Arabidopsis Coq9 rescued the growth of a yeast temperature-sensitive coq9 mutant and increased CoQ content. Phylogenetic analysis revealed that Coq9 is widely present in green plants. Green fluorescent protein (GFP) fusion experiments showed that Arabidopsis Coq9 is targeted to mitochondria. Disruption of the Coq9 gene in Arabidopsis results in lower amounts of CoQ. Our work suggests that plant Coq9 is required for efficient CoQ biosynthesis. These findings provide new insights into the evolution of CoQ biosynthesis in plants. The identification of Coq9 as a key player in CoQ biosynthesis in plants opens up new avenues for understanding the regulation of this important metabolic pathway.
Collapse
Affiliation(s)
- Mei Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yan Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- School of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jing-Jing Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| |
Collapse
|
37
|
Best C, Mizrahi R, Edris R, Tang H, Zer H, Colas des Francs-Small C, Finkel OM, Zhu H, Small ID, Ostersetzer-Biran O. MSP1 encodes an essential RNA-binding pentatricopeptide repeat factor required for nad1 maturation and complex I biogenesis in Arabidopsis mitochondria. THE NEW PHYTOLOGIST 2023; 238:2375-2392. [PMID: 36922396 DOI: 10.1111/nph.18880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/23/2023] [Indexed: 05/19/2023]
Abstract
Mitochondrial biogenesis relies on nuclearly encoded factors, which regulate the expression of the organellar-encoded genes. Pentatricopeptide repeat (PPR) proteins constitute a major gene family in angiosperms that are pivotal in many aspects of mitochondrial (mt)RNA metabolism (e.g. trimming, splicing, or stability). Here, we report the analysis of MITOCHONDRIA STABILITY/PROCESSING PPR FACTOR1 (MSP1, At4g20090), a canonical PPR protein that is necessary for mitochondrial functions and embryo development. Loss-of-function allele of MSP1 leads to seed abortion. Here, we employed an embryo-rescue method for the molecular characterization of msp1 mutants. Our analyses reveal that msp1 embryogenesis fails to proceed beyond the heart/torpedo stage as a consequence of a nad1 pre-RNA processing defect, resulting in the loss of respiratory complex I activity. Functional complementation confirmed that msp1 phenotypes result from a disruption of the MSP1 gene. In Arabidopsis, the maturation of nad1 involves the processing of three RNA fragments, nad1.1, nad1.2, and nad1.3. Based on biochemical analyses and mtRNA profiles of wild-type and msp1 plants, we concluded that MSP1 facilitates the generation of the 3' terminus of nad1.1 transcript, a prerequisite for nad1 exons a-b splicing. Our data substantiate the importance of mtRNA metabolism for the biogenesis of the respiratory system during early plant life.
Collapse
Affiliation(s)
- Corinne Best
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ron Mizrahi
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Rana Edris
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Hui Tang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hagit Zer
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Omri M Finkel
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Hongliang Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ian D Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
38
|
Wang Y, Shi D, Zhu H, Yin H, Wang G, Yang A, Song Z, Jing Q, Shuai B, Xu N, Yang J, Chen H, Wang G. Revisiting maize Brittle endosperm-2 reveals new insights in BETL development and starchy endosperm filling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111727. [PMID: 37149228 DOI: 10.1016/j.plantsci.2023.111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/18/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Rerouting the starch biosynthesis pathway in maize can generate specialty types, like sweet corn and waxy corn, with a drastically increasing global demand. Hence, a fine-tuning of starch metabolism is relevant to create diverse maize cultivars for end-use applications. Here, we characterized a new maize brittle endosperm mutant, referred to as bt1774, which exhibited decreased starch content but a dramatic increase of soluble sugars at maturity. Both endosperm and embryo development was impaired in bt1774 relative to the wild-type (WT), with a prominently arrested basal endosperm transfer layer (BETL). Map-based cloning revealed that BRITTLE ENDOSPERM2 (Bt2), which encodes a small subunit of ADP-glucose pyrophosphorylase (AGPase), is the causal gene for bt1774. A MuA2 element was found to be inserted into intron 2 of Bt2, leading to a severe decrease of its expression, in bt1774. This is in line with the irregular and loosely packed starch granules in the mutant. Transcriptome of endosperm at grain filling stage identified 1, 013 differentially expressed genes in bt1774, which were notably enriched in the BETL compartment, including ZmMRP1, Miniature1, MEG1, and BETLs. Gene expression of the canonical starch biosynthesis pathway was marginally disturbed in Bt1774. Combined with the residual 60% of starch in this nearly null mutant of Bt2, this data strongly suggests that an AGPase-independent pathway compensates for starch synthesis in the endosperm. Consistent with the BETL defects, zein accumulation was impaired in bt1774. Co-expression network analysis revealed that Bt2 probably has a role in intracellular signal transduction, besides starch synthesis. Altogether, we propose that Bt2 is likely involved in carbohydrate flux and balance, thus regulating both the BETL development and the starchy endosperm filling.
Collapse
Affiliation(s)
- Yongyan Wang
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT-China (Henan) Joint Center of Wheat and Maize, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Dongsheng Shi
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Hui Zhu
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT-China (Henan) Joint Center of Wheat and Maize, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hanxue Yin
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT-China (Henan) Joint Center of Wheat and Maize, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Gaoyang Wang
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT-China (Henan) Joint Center of Wheat and Maize, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Anqi Yang
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT-China (Henan) Joint Center of Wheat and Maize, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhixuan Song
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT-China (Henan) Joint Center of Wheat and Maize, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Qingquan Jing
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT-China (Henan) Joint Center of Wheat and Maize, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Bilian Shuai
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ningkun Xu
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT-China (Henan) Joint Center of Wheat and Maize, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianping Yang
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT-China (Henan) Joint Center of Wheat and Maize, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongyu Chen
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT-China (Henan) Joint Center of Wheat and Maize, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Guifeng Wang
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT-China (Henan) Joint Center of Wheat and Maize, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
39
|
Orantes-Bonilla M, Wang H, Lee HT, Golicz AA, Hu D, Li W, Zou J, Snowdon RJ. Transgressive and parental dominant gene expression and cytosine methylation during seed development in Brassica napus hybrids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:113. [PMID: 37071201 PMCID: PMC10113308 DOI: 10.1007/s00122-023-04345-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/12/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Transcriptomic and epigenomic profiling of gene expression and small RNAs during seed and seedling development reveals expression and methylation dominance levels with implications on early stage heterosis in oilseed rape. The enhanced performance of hybrids through heterosis remains a key aspect in plant breeding; however, the underlying mechanisms are still not fully elucidated. To investigate the potential role of transcriptomic and epigenomic patterns in early expression of hybrid vigor, we investigated gene expression, small RNA abundance and genome-wide methylation in hybrids from two distant Brassica napus ecotypes during seed and seedling developmental stages using next-generation sequencing. A total of 31117, 344, 36229 and 7399 differentially expressed genes, microRNAs, small interfering RNAs and differentially methylated regions were identified, respectively. Approximately 70% of the differentially expressed or methylated features displayed parental dominance levels where the hybrid followed the same patterns as the parents. Via gene ontology enrichment and microRNA-target association analyses during seed development, we found copies of reproductive, developmental and meiotic genes with transgressive and paternal dominance patterns. Interestingly, maternal dominance was more prominent in hypermethylated and downregulated features during seed formation, contrasting to the general maternal gamete demethylation reported during gametogenesis in angiosperms. Associations between methylation and gene expression allowed identification of putative epialleles with diverse pivotal biological functions during seed formation. Furthermore, most differentially methylated regions, differentially expressed siRNAs and transposable elements were in regions that flanked genes without differential expression. This suggests that differential expression and methylation of epigenomic features may help maintain expression of pivotal genes in a hybrid context. Differential expression and methylation patterns during seed formation in an F1 hybrid provide novel insights into genes and mechanisms with potential roles in early heterosis.
Collapse
Affiliation(s)
- Mauricio Orantes-Bonilla
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany
| | - Hao Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Huey Tyng Lee
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany
| | - Agnieszka A Golicz
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany
| | - Dandan Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wenwen Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Rod J Snowdon
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
40
|
Wang X, Liu X, Yi X, Wang M, Shi W, Li R, Tang W, Zhang L, Sun M, Peng X. The female germ unit is essential for pollen tube funicular guidance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 238:155-168. [PMID: 36527238 DOI: 10.1111/nph.18686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In angiosperm, two immotile sperm cells are delivered to the female gametes for fertilization by a pollen tube, which perceives guidance cues from ovules at least at two critical sites, micropyle for short-distance guidance and funiculus for comparably longer distance guidance. Compared with the great progress in understanding pollen tube micropylar guidance, little is known about the signaling for funicular guidance. Here, we show that funiculus plays an important role in pollen tube guidance and report that female gametophyte (FG) plays a critical role in funicular guidance by analysis of a 3-dehydroquinate synthase (DHQS) mutant. Loss function of DHQS in FG interrupts pollen tube funicular guidance, suggesting that the guiding signal is generated from FG. We show the evidence that the capacity of funicular guidance is established during FG functional specification after the establishment of cell identity. Specific expression of DHQS in the synergid cells, central cells, or egg cells can rescue funicular guidance defect in dhqs/+, indicating all the female germ unit cells are involved in the funicular guidance. The finding reveals that the attracting signal of pollen tube funicular guidance was generated at a site and stage manner and provides novel clue to locate and search for the signal.
Collapse
Affiliation(s)
- Xiu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiangfeng Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinlei Yi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Min Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenxin Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruiping Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenyue Tang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Liyao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengxiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
41
|
Ta KN, Yoshida MW, Tezuka T, Shimizu-Sato S, Nosaka-Takahashi M, Toyoda A, Suzuki T, Goshima G, Sato Y. Control of Plant Cell Growth and Proliferation by MO25A, a Conserved Major Component of the Mammalian Sterile 20-Like Kinase Pathway. PLANT & CELL PHYSIOLOGY 2023; 64:336-351. [PMID: 36639938 PMCID: PMC10016325 DOI: 10.1093/pcp/pcad005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 05/22/2023]
Abstract
The precise control of cell growth and proliferation underpins the development of plants and animals. These factors affect the development and size of organs and the body. In plants, the growth and proliferation of cells are regulated by environmental stimuli and intrinsic signaling, allowing different cell types to have specific growth and proliferation characteristics. An increasing number of factors that control cell division and growth have been identified. However, the mechanisms underlying cell type-specific cell growth and proliferation characteristics in the normal developmental context are poorly understood. Here, we analyzed the rice mutant osmo25a1, which is defective in the progression of embryogenesis. The osmo25a1 mutant embryo developed incomplete embryonic organs, such as the shoot and root apical meristems. It showed a delayed progression of embryogenesis, associated with the reduced mitotic activity. The causal gene of this mutation encodes a member of the Mouse protein-25A (MO25A) family of proteins that have pivotal functions in a signaling pathway that governs cell proliferation and polarity in animals, yeasts and filamentous fungi. To elucidate the function of plant MO25A at the cellular level, we performed a functional analysis of MO25A in the moss Physcomitrium patens. Physcomitrium patens MO25A was uniformly distributed in the cytoplasm and functioned in cell tip growth and the initiation of cell division in stem cells. Overall, we demonstrated that MO25A proteins are conserved factors that control cell proliferation and growth.
Collapse
Affiliation(s)
- Kim Nhung Ta
- Department of Genome and Evolutionary Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
| | - Mari W Yoshida
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Takumi Tezuka
- Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
| | - Sae Shimizu-Sato
- Department of Genome and Evolutionary Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
| | - Misuzu Nosaka-Takahashi
- Department of Genome and Evolutionary Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
- Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
| | - Atsushi Toyoda
- Department of Genome and Evolutionary Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501 Japan
| | - Gohta Goshima
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba, 517-0004 Japan
| | - Yutaka Sato
- Department of Genome and Evolutionary Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
- Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
| |
Collapse
|
42
|
The Chloroplast Envelope of Angiosperms Contains a Peptidoglycan Layer. Cells 2023; 12:cells12040563. [PMID: 36831230 PMCID: PMC9954125 DOI: 10.3390/cells12040563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Plastids in plants are assumed to have evolved from cyanobacteria as they have maintained several bacterial features. Recently, peptidoglycans, as bacterial cell wall components, have been shown to exist in the envelopes of moss chloroplasts. Phylogenomic comparisons of bacterial and plant genomes have raised the question of whether such structures are also part of chloroplasts in angiosperms. To address this question, we visualized canonical amino acids of peptidoglycan around chloroplasts of Arabidopsis and Nicotiana via click chemistry and fluorescence microscopy. Additional detection by different peptidoglycan-binding proteins from bacteria and animals supported this observation. Further Arabidopsis experiments with D-cycloserine and AtMurE knock-out lines, both affecting putative peptidoglycan biosynthesis, revealed a central role of this pathway in plastid genesis and division. Taken together, these results indicate that peptidoglycans are integral parts of plastids in the whole plant lineage. Elucidating their biosynthesis and further roles in the function of these organelles is yet to be achieved.
Collapse
|
43
|
Du J, Shi Q, Liu Y, Shi G, Li X, Li X. Integrated microRNA and transcriptome profiling reveals the regulatory network of embryo abortion in jujube. TREE PHYSIOLOGY 2023; 43:142-153. [PMID: 35972818 PMCID: PMC9833866 DOI: 10.1093/treephys/tpac098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/01/2022] [Indexed: 06/01/2023]
Abstract
Hybridization is an important approach to the production of new varieties with exceptional traits. Although the kernel rate of wild jujube (Ziziphus jujuba Mill. var. spinosa Hu.) is generally high, that of cultivated jujube (Z. jujuba Mill.) is low, greatly hampering the jujube breeding process. However, the mechanism by which this trait changed during jujube domestication remains unclear. Here, we explored the potential regulatory network that governs jujube embryo abortion using correlation analysis of population traits, artificial pollination, sugar content measurements and multi-omics analysis. The results showed that embryo abortion was an important reason for the low kernel rate of cultivated jujube, and kernel rate was negatively correlated with edible rate. Twenty-one days after pollination was a critical period for embryo abortion. At this time, the sugar content of cultivated 'Junzao' kernels decreased significantly compared with that of the pulp, but sugar content remained relatively stable in kernels of wild 'Suanzao'. A total of 1142 differentially expressed genes targeted by 93 microRNAs (miRNAs) were identified by transcriptome, miRNA and degradome sequencing, and may be involved in the regulation of embryo abortion during kernel development. Among them, DELLA protein, TCP14 and bHLH93 transcription factors have been shown to participate in the regulation of embryonic development. Our findings suggest that carbohydrate flow between different tissues of cultivated jujube exhibits a bias toward the pulp at 21 days after pollination, thereby restricting the process of kernel development. This information enhances our understanding of the embryo abortion process and reveals miRNA-target gene pairs that may be useful for molecular-assisted breeding.
Collapse
Affiliation(s)
- Jiangtao Du
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Qianqian Shi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Yu Liu
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Guozhao Shi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xi Li
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xingang Li
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Research Center for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
44
|
Jia Z, Gao P, Yin F, Quilichini TD, Sheng H, Song J, Yang H, Gao J, Chen T, Yang B, Kochian LV, Zou J, Patterson N, Yang Q, Gillmor CS, Datla R, Li Q, Xiang D. Asymmetric gene expression in grain development of reciprocal crosses between tetraploid and hexaploid wheats. Commun Biol 2022; 5:1412. [PMID: 36564439 PMCID: PMC9789062 DOI: 10.1038/s42003-022-04374-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Production of viable progeny from interploid crosses requires precise regulation of gene expression from maternal and paternal chromosomes, yet the transcripts contributed to hybrid seeds from polyploid parent species have rarely been explored. To investigate the genome-wide maternal and paternal contributions to polyploid grain development, we analyzed the transcriptomes of developing embryos, from zygote to maturity, alongside endosperm in two stages of development, using reciprocal crosses between tetraploid and hexaploid wheats. Reciprocal crosses between species with varied levels of ploidy displayed broad impacts on gene expression, including shifts in alternative splicing events in select crosses, as illustrated by active splicing events, enhanced protein synthesis and chromatin remodeling. Homoeologous gene expression was repressed on the univalent D genome in pentaploids, but this suppression was attenuated in crosses with a higher ploidy maternal parent. Imprinted genes were identified in endosperm and early embryo tissues, supporting predominant maternal effects on early embryogenesis. By systematically investigating the complex transcriptional networks in reciprocal-cross hybrids, this study presents a framework for understanding the genomic incompatibility and transcriptome shock that results from interspecific hybridization and uncovers the transcriptional impacts on hybrid seeds created from agriculturally-relevant polyploid species.
Collapse
Affiliation(s)
- Zhen Jia
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Peng Gao
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Feifan Yin
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070 Wuhan, China
| | - Teagen D. Quilichini
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Huajin Sheng
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Jingpu Song
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Hui Yang
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Jie Gao
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ting Chen
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Bo Yang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Leon V. Kochian
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Jitao Zou
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Nii Patterson
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Qingyong Yang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070 Wuhan, China
| | - C. Stewart Gillmor
- grid.512574.0Langebio, Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, 36821 México
| | - Raju Datla
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Qiang Li
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Daoquan Xiang
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| |
Collapse
|
45
|
Brunetti SC, Arseneault MKM, Gulick PJ. The caleosin CLO7 and its role in the heterotrimeric G-protein signalling network. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153841. [PMID: 36334585 DOI: 10.1016/j.jplph.2022.153841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The investigation of the caleosin CLO7 in relation to heterotrimeric G-protein signalling in Arabidopsis showed that the gene plays a role in seed germination and embryo viability. The caleosin CLO7 belongs to a multi-gene family of calcium-binding proteins which are characterized by single EF-hand motifs. Other members of the caleosin gene family have been shown to affect transpiration and seed germination as well as play a role in both abiotic and biotic stress responses. The proteins are associated with lipid droplets/oil bodies and some members of the gene family have been shown to have peroxygenase activity. Members of the gene family have also been shown to interact with the α subunit of the heterotrimeric G protein complex. In this study, we further expand on the diversity of physiological responses in which members of this gene family play regulatory roles. Utilizing BiFC and Y2H protein-protein interaction assays, CLO7 is identified as an interactor of the heterotrimeric G protein α subunit, GPA1. The full-length CLO7 is shown to interact with both the wild-type GPA1 and its constitutively active form, GPA1QL, at the plasma membrane. Point mutations to critical amino acids for calcium binding in the EF-hand of CLO7 indicate that the interaction with GPA1 is calcium-dependent and that the interaction with GPA1QL is enhanced by calcium. Protein-protein interaction assays also show that CLO7 interacts with Pirin1, a member of the cupin gene superfamily and a known downstream effector of GPA1, and this interaction is calcium-dependent. The N-terminal portion of CLO7 is responsible for these interactions. GFP-tagged CLO7 protein localizes to the endoplasmic reticulum (ER) and to lipid bodies. Characterization of the clo7 mutant line has shown that CLO7 is implicated in the abscisic acid (ABA) and mannitol-mediated inhibition of seed germination, with the clo7 mutant displaying higher germination rates in response to osmotic stress and ABA hormone treatment. These results provide insight into the role of CLO7 in seed germination in response to abiotic stress as well as its interaction with GPA1 and Pirin1. CLO7 also plays a role in embryo viability with the clo7gpa1 double mutant displaying embryo lethality, and therefore the double mutant cannot be recovered.
Collapse
Affiliation(s)
- Sabrina C Brunetti
- Biology Department, Concordia University, 7141 Sherbrooke W. Montreal (Quebec) H4B 1R6, Canada
| | - Michelle K M Arseneault
- Biology Department, Concordia University, 7141 Sherbrooke W. Montreal (Quebec) H4B 1R6, Canada
| | - Patrick J Gulick
- Biology Department, Concordia University, 7141 Sherbrooke W. Montreal (Quebec) H4B 1R6, Canada.
| |
Collapse
|
46
|
Alaniz-Fabián J, Orozco-Nieto A, Abreu-Goodger C, Gillmor CS. Hybridization alters maternal and paternal genome contributions to early plant embryogenesis. Development 2022; 149:281772. [PMID: 36314727 DOI: 10.1242/dev.201025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
After fertilization, zygotic genome activation results in a transcriptionally competent embryo. Hybrid transcriptome experiments in Arabidopsis have concluded that the maternal and paternal genomes make equal contributions to zygotes and embryos, yet embryo defective (emb) mutants in the Columbia (Col) ecotype display early maternal effects. Here, we show that hybridization of Col with Landsberg erecta (Ler) or Cape Verde Islands (Cvi) ecotypes decreases the maternal effects of emb mutants. Reanalysis of Col/Ler and Col/Cvi transcriptomes confirmed equal parental contributions in Col/Cvi early embryos. By contrast, thousands of genes in Col/Ler zygotes and one-cell embryos were biallelic in one cross and monoallelic in the reciprocal cross, with analysis of intron reads pointing to active transcription as responsible for this parent-of-origin bias. Our analysis shows that, contrary to previous conclusions, the maternal and paternal genomes in Col/Ler zygotes are activated in an asymmetric manner. The decrease in maternal effects in hybrid embryos compared with those in isogenic Col along with differences in genome activation between Col/Cvi and Col/Ler suggest that neither of these hybrids accurately reflects the general trends of parent-of-origin regulation in Arabidopsis embryogenesis.
Collapse
Affiliation(s)
- Jaime Alaniz-Fabián
- Langebio, Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato 36824, México
| | - Axel Orozco-Nieto
- Langebio, Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato 36824, México
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - C Stewart Gillmor
- Langebio, Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato 36824, México
| |
Collapse
|
47
|
Amos RA, Atmodjo MA, Huang C, Gao Z, Venkat A, Taujale R, Kannan N, Moremen KW, Mohnen D. Polymerization of the backbone of the pectic polysaccharide rhamnogalacturonan I. NATURE PLANTS 2022; 8:1289-1303. [PMID: 36357524 PMCID: PMC10115348 DOI: 10.1038/s41477-022-01270-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/05/2022] [Indexed: 06/10/2023]
Abstract
Rhamnogalacturonan I (RG-I) is a major plant cell wall pectic polysaccharide defined by its repeating disaccharide backbone structure of [4)-α-D-GalA-(1,2)-α-L-Rha-(1,]. A family of RG-I:Rhamnosyltransferases (RRT) has previously been identified, but synthesis of the RG-I backbone has not been demonstrated in vitro because the identity of Rhamnogalacturonan I:Galaturonosyltransferase (RG-I:GalAT) was unknown. Here a putative glycosyltransferase, At1g28240/MUCI70, is shown to be an RG-I:GalAT. The name RGGAT1 is proposed to reflect the catalytic activity of this enzyme. When incubated together with the rhamnosyltransferase RRT4, the combined activities of RGGAT1 and RRT4 result in elongation of RG-I acceptors in vitro into a polymeric product. RGGAT1 is a member of a new GT family categorized as GT116, which does not group into existing GT-A clades and is phylogenetically distinct from the GALACTURONOSYLTRANSFERASE (GAUT) family of GalA transferases that synthesize the backbone of the pectin homogalacturonan. RGGAT1 has a predicted GT-A fold structure but employs a metal-independent catalytic mechanism that is rare among glycosyltransferases with this fold type. The identification of RGGAT1 and the 8-member Arabidopsis GT116 family provides a new avenue for studying the mechanism of RG-I synthesis and the function of RG-I in plants.
Collapse
Affiliation(s)
- Robert A Amos
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Melani A Atmodjo
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Chin Huang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Zhongwei Gao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Rahil Taujale
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Kelley W Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Debra Mohnen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
48
|
Robles P, Quesada V. Unveiling the functions of plastid ribosomal proteins in plant development and abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:35-45. [PMID: 36041366 DOI: 10.1016/j.plaphy.2022.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Translation of mRNAs into proteins is a universal process and ribosomes are the molecular machinery that carries it out. In eukaryotic cells, ribosomes can be found in the cytoplasm, mitochondria, and also in the chloroplasts of photosynthetic organisms. A number of genetic studies have been performed to determine the function of plastid ribosomal proteins (PRPs). Tobacco has been frequently used as a system to study the ribosomal proteins encoded by the chloroplast genome. In contrast, Arabidopsis thaliana and rice are preferentially used models to study the function of nuclear-encoded PRPs by using direct or reverse genetics approaches. The results of these works have provided a relatively comprehensive catalogue of the roles of PRPs in different plant biology aspects, which highlight that some PRPs are essential, while others are not. The latter ones are involved in chloroplast biogenesis, lateral root formation, leaf morphogenesis, plant growth, photosynthesis or chlorophyll synthesis. Furthermore, small gene families encode some PRPs. In the last few years, an increasing number of findings have revealed a close association between PRPs and tolerance to adverse environmental conditions. Sometimes, the same PRP can be involved in both developmental processes and the response to abiotic stress. The aim of this review is to compile and update the findings hitherto published on the functional analysis of PRPs. The study of the phenotypic effects caused by the disruption of PRPs from different species reveals the involvement of PRPs in different biological processes and highlights the significant impact of plastid translation on plant biology.
Collapse
Affiliation(s)
- Pedro Robles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.
| |
Collapse
|
49
|
Chloroplast envelope ATPase PGA1/AtFtsH12 is required for chloroplast protein accumulation and cytosol-chloroplast protein homeostasis in Arabidopsis. J Biol Chem 2022; 298:102489. [PMID: 36113581 PMCID: PMC9574505 DOI: 10.1016/j.jbc.2022.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
The establishment of photosynthetic protein complexes during chloroplast development requires the influx of a large number of chloroplast proteins that are encoded by the nuclear genome, which is critical for cytosol and chloroplast protein homeostasis and chloroplast development. However, the mechanisms regulating this process are still not well understood in higher plants. Here, we report the isolation and characterization of the pale green Arabidopsis pga1-1 mutant, which is defective in chloroplast development and chloroplast protein accumulation. Using genetic and biochemical evidence, we reveal that PGA1 encodes AtFtsH12, a chloroplast envelope-localized protein of the FtsH family proteins. We determined a G703R mutation in the GAD motif of the conserved ATPase domain renders the pga1-1 a viable hypomorphic allele of the essential gene AtFtsH12. In de-etiolation assays, we showed that the accumulation of photosynthetic proteins and the expression of photosynthetic genes were impaired in pga1-1. Using the FNRctp-GFP and pTAC2-GFP reporters, we demonstrated that AtFtsH12 was required for the accumulation of chloroplast proteins in vivo. Interestingly, we identified an increase in expression of the mutant AtFtsH12 gene in pga1-1, suggesting a feedback regulation. Moreover, we found that cytosolic and chloroplast proteostasis responses were triggered in pga1-1. Together, taking advantage of the novel pga1-1 mutant, we demonstrate the function of AtFtsH12 in chloroplast protein homeostasis and chloroplast development.
Collapse
|
50
|
Xu JJ, Hu M, Yang L, Chen XY. How plants synthesize coenzyme Q. PLANT COMMUNICATIONS 2022; 3:100341. [PMID: 35614856 PMCID: PMC9483114 DOI: 10.1016/j.xplc.2022.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Coenzyme Q (CoQ) is a conserved redox-active lipid that has a wide distribution across the domains of life. CoQ plays a key role in the oxidative electron transfer chain and serves as a crucial antioxidant in cellular membranes. Our understanding of CoQ biosynthesis in eukaryotes has come mostly from studies of yeast. Recently, significant advances have been made in understanding CoQ biosynthesis in plants. Unique mitochondrial flavin-dependent monooxygenase and benzenoid ring precursor biosynthetic pathways have been discovered, providing new insights into the diversity of CoQ biosynthetic pathways and the evolution of phototrophic eukaryotes. We summarize research progress on CoQ biosynthesis and regulation in plants and recent efforts to increase the CoQ content in plant foods.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Chenshan Plant Science Research Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| | - Mei Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Chenshan Plant Science Research Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Xiao-Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|