1
|
Wilkening JV, Dawson TE, Thompson SE. Mind the Data Gap: Using a Multi-Measurement Synthesis for Identifying the Challenges and Opportunities in Studying Plant Drought Response and Recovery. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39810482 DOI: 10.1111/pce.15349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources. We synthesised the data qualitatively to assess the ability to better identify possible mechanisms and quantitatively, using information theory metrics, to measure the value of different measurements in constraining plant water fluxes and water status. Transpiration rates declined during the drydown and then showed a delayed and partial recovery following rewatering. After rewatering, plant water potentials also became decoupled from transpiration rates and the canopies experienced significant yellowing and leaf loss. Hormonal mechanisms were identified as a likely driver, demonstrating a mechanism with sustained impacts on plant water fluxes in the absence of xylem hydraulic damage. Quantitatively, the constraints offered by different measurements varied with the dynamic of interest, and temporally, with behaviour during recovery more difficult to constrain than during water stress. The study provides a uniquely diverse dataset offering insight into mechanisms of plant water stress response and approaches for studying these responses.
Collapse
Affiliation(s)
- Jean V Wilkening
- Civil and Environmental Engineering, University of California, Berkeley, California, USA
- Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA
| | - Todd E Dawson
- Integrative Biology, University of California, Berkeley, California, USA
- Environmental Science, Policy, & Management, University of California, Berkeley, California, USA
| | - Sally E Thompson
- Civil, Environmental, and Mining Engineering, University of Western Australia, Perth, Western Australia, Australia
- Centre for Water and Spatial Science, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Liu X, Heinzle J, Tian Y, Salas E, Kwatcho Kengdo S, Borken W, Schindlbacher A, Wanek W. Long-term soil warming changes the profile of primary metabolites in fine roots of Norway spruce in a temperate montane forest. PLANT, CELL & ENVIRONMENT 2024; 47:4212-4226. [PMID: 38935880 DOI: 10.1111/pce.15019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Climate warming poses major threats to temperate forests, but the response of tree root metabolism has largely remained unclear. We examined the impact of long-term soil warming (>14 years, +4°C) on the fine root metabolome across three seasons for 2 years in an old spruce forest, using a liquid chromatography-mass spectrometry platform for primary metabolite analysis. A total of 44 primary metabolites were identified in roots (19 amino acids, 12 organic acids and 13 sugars). Warming increased the concentration of total amino acids and of total sugars by 15% and 21%, respectively, but not organic acids. We found that soil warming and sampling date, along with their interaction, directly influenced the primary metabolite profiles. Specifically, in warming plots, concentrations of arginine, glycine, lysine, threonine, tryptophan, mannose, ribose, fructose, glucose and oxaloacetic acid increased by 51.4%, 19.9%, 21.5%, 19.3%, 22.1%, 23.0%, 38.0%, 40.7%, 19.8% and 16.7%, respectively. Rather than being driven by single compounds, changes in metabolite profiles reflected a general up- or downregulation of most metabolic pathway network. This emphasises the importance of metabolomics approaches in investigating root metabolic pathways and understanding the effects of climate change on tree root metabolism.
Collapse
Affiliation(s)
- Xiaofei Liu
- Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
- Key Laboratory of Humid Subtropical Eco-Geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Jakob Heinzle
- Department of Forest Ecology and Soils, Federal Research and Training Centre for Forests, Natural Hazards and Landscape-BFW, Vienna, Austria
| | - Ye Tian
- Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Erika Salas
- Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Steve Kwatcho Kengdo
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (Bayceer), University of Bayreuth, Bayreuth, Germany
| | - Werner Borken
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (Bayceer), University of Bayreuth, Bayreuth, Germany
| | - Andreas Schindlbacher
- Department of Forest Ecology and Soils, Federal Research and Training Centre for Forests, Natural Hazards and Landscape-BFW, Vienna, Austria
| | - Wolfgang Wanek
- Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Preisler Y, Grünzweig JM, Ahiman O, Amer M, Oz I, Feng X, Muller JD, Ruehr N, Rotenberg E, Birami B, Yakir D. Vapour pressure deficit was not a primary limiting factor for gas exchange in an irrigated, mature dryland Aleppo pine forest. PLANT, CELL & ENVIRONMENT 2023; 46:3775-3790. [PMID: 37680062 DOI: 10.1111/pce.14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Climate change is often associated with increasing vapour pressure deficit (VPD) and changes in soil moisture (SM). While atmospheric and soil drying often co-occur, their differential effects on plant functioning and productivity remain uncertain. We investigated the divergent effects and underlying mechanisms of soil and atmospheric drought based on continuous, in situ measurements of branch gas exchange with automated chambers in a mature semiarid Aleppo pine forest. We investigated the response of control trees exposed to combined soil-atmospheric drought (low SM, high VPD) during the rainless Mediterranean summer and that of trees experimentally unconstrained by soil dryness (high SM; using supplementary dry season water supply) but subjected to atmospheric drought (high VPD). During the seasonal dry period, branch conductance (gbr ), transpiration rate (E) and net photosynthesis (Anet ) decreased in low-SM trees but greatly increased in high-SM trees. The response of E and gbr to the massive rise in VPD (to 7 kPa) was negative in low-SM trees and positive in high-SM trees. These observations were consistent with predictions based on a simple plant hydraulic model showing the importance of plant water potential in the gbr and E response to VPD. These results demonstrate that avoiding drought on the supply side (SM) and relying on plant hydraulic regulation constrains the effects of atmospheric drought (VPD) as a stressor on canopy gas exchange in mature pine trees under field conditions.
Collapse
Affiliation(s)
- Yakir Preisler
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - José M Grünzweig
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ori Ahiman
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Beit Dagan, Israel
| | - Madi Amer
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| | - Itai Oz
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan D Muller
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- School for Climate Studies, Stellenbosch University, Stellenbosch, South Africa
| | - Nadine Ruehr
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Eyal Rotenberg
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Birami
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Dan Yakir
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Li H, Terrer C, Berdugo M, Maestre FT, Zhu Z, Peñuelas J, Yu K, Luo L, Gong JY, Ye JS. Nitrogen addition delays the emergence of an aridity-induced threshold for plant biomass. Natl Sci Rev 2023; 10:nwad242. [PMID: 37900195 PMCID: PMC10600907 DOI: 10.1093/nsr/nwad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/31/2023] Open
Abstract
Crossing certain aridity thresholds in global drylands can lead to abrupt decays of ecosystem attributes such as plant productivity, potentially causing land degradation and desertification. It is largely unknown, however, whether these thresholds can be altered by other key global change drivers known to affect the water-use efficiency and productivity of vegetation, such as elevated CO2 and nitrogen (N). Using >5000 empirical measurements of plant biomass, we showed that crossing an aridity (1-precipitation/potential evapotranspiration) threshold of ∼0.50, which marks the transition from dry sub-humid to semi-arid climates, led to abrupt declines in aboveground biomass (AGB) and progressive increases in root:shoot ratios, thus importantly affecting carbon stocks and their distribution. N addition significantly increased AGB and delayed the emergence of its aridity threshold from 0.49 to 0.55 (P < 0.05). By coupling remote sensing estimates of leaf area index with simulations from multiple models, we found that CO2 enrichment did not alter the observed aridity threshold. By 2100, and under the RCP 8.5 scenario, we forecast a 0.3% net increase in the global land area exceeding the aridity threshold detected under a scenario that includes N deposition, in comparison to a 2.9% net increase if the N effect is not considered. Our study thus indicates that N addition could mitigate to a great extent the negative impact of increasing aridity on plant biomass in drylands. These findings are critical for improving forecasts of abrupt vegetation changes in response to ongoing global environmental change.
Collapse
Affiliation(s)
- Hailing Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - César Terrer
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Miguel Berdugo
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef,” Universidad de Alicante, Alicante 03690, Spain
- Institut de Biologia Evolutiva (CSIC-UPF), Barcelona08003, Spain
| | - Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef,” Universidad de Alicante, Alicante 03690, Spain
- Departamento de Ecología, Universidad de Alicante, Alicante 03690, Spain
| | - Zaichun Zhu
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Peking University, Shenzhen518055, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona 08193, Spain
- CREAF, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Kailiang Yu
- High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA
| | - Lin Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Jie-Yu Gong
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Jian-Sheng Ye
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| |
Collapse
|
5
|
Férriz M, Martin-Benito D, Fernández-de-Simón MB, Conde M, García-Cervigón AI, Aranda I, Gea-Izquierdo G. Functional phenotypic plasticity mediated by water stress and [CO2] explains differences in drought tolerance of two phylogenetically close conifers. TREE PHYSIOLOGY 2023; 43:909-924. [PMID: 36809504 PMCID: PMC10255776 DOI: 10.1093/treephys/tpad021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/15/2023] [Indexed: 06/11/2023]
Abstract
Forests are threatened globally by increased recurrence and intensity of hot droughts. Functionally close coexisting species may exhibit differences in drought vulnerability large enough to cause niche differentiation and affect forest dynamics. The effect of rising atmospheric [CO2], which could partly alleviate the negative effects of drought, may also differ between species. We analysed functional plasticity in seedlings of two taxonomically close pine species (Pinus pinaster Ait., Pinus pinea L.) under different [CO2] and water stress levels. The multidimensional functional trait variability was more influenced by water stress (preferentially xylem traits) and [CO2] (mostly leaf traits) than by differences between species. However, we observed differences between species in the strategies followed to coordinate their hydraulic and structural traits under stress. Leaf 13C discrimination decreased with water stress and increased under elevated [CO2]. Under water stress both species increased their sapwood area to leaf area ratios, tracheid density and xylem cavitation, whereas they reduced tracheid lumen area and xylem conductivity. Pinus pinea was more anisohydric than P. pinaster. Pinus pinaster produced larger conduits under well-watered conditions than P. pinea. Pinus pinea was more tolerant to water stress and more resistant to xylem cavitation under low water potentials. The higher xylem plasticity in P. pinea, particularly in tracheid lumen area, expressed a higher capacity of acclimation to water stress than P. pinaster. In contrast, P. pinaster coped with water stress comparatively more by increasing plasticity of leaf hydraulic traits. Despite the small differences observed in the functional response to water stress and drought tolerance between species, these interspecific differences agreed with ongoing substitution of P. pinaster by P. pinea in forests where both species co-occur. Increased [CO2] had little effect on the species-specific relative performance. Thus, a competitive advantage under moderate water stress of P. pinea compared with P. pinaster is expected to continue in the future.
Collapse
Affiliation(s)
- M Férriz
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | - D Martin-Benito
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | | | - M Conde
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | - A I García-Cervigón
- Department of Biology and Geology, Physics and Inorganic Chemistry Rey Juan Carlos University, c/Tulipán s/n, 28933 Móstoles, Spain
| | - I Aranda
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | - G Gea-Izquierdo
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| |
Collapse
|
6
|
Wang Z, Wang C. Interactive effects of elevated temperature and drought on plant carbon metabolism: A meta-analysis. GLOBAL CHANGE BIOLOGY 2023; 29:2824-2835. [PMID: 36794475 DOI: 10.1111/gcb.16639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/18/2023] [Indexed: 05/31/2023]
Abstract
Elevated temperature (Te ) and drought often co-occur and interactively affect plant carbon (C) metabolism and thus the ecosystem C cycling; however, the magnitude of their interaction is unclear, making the projection of global change impacts challenging. Here, we compiled 107 journal articles in which temperature and water availability were jointly manipulated, and we performed a meta-analysis of interactive effects of Te and drought on leaf photosynthesis (Agrowth ) and respiration (Rgrowth ) at growth temperature, nonstructural carbohydrates and biomass of plants, and their dependencies on experimental and biological moderators (e.g., treatment intensity, plant functional type). Our results showed that, overall, there was no significant interaction of Te and drought on Agrowth . Te accelerated Rgrowth under well-watered conditions rather than under drought conditions. The Te × drought interaction on leaf soluble sugar and starch concentrations were neutral and negative, respectively. The effect of Te and drought on plant biomass displayed a negative interaction, with Te deteriorating the drought impacts. Drought induced an increase in root to shoot ratio at ambient temperature but not at Te . The magnitudes of Te and drought negatively modulated the Te × drought interactions on Agrowth . Root biomass of woody plants was more vulnerable to drought than that of herbaceous plants at ambient temperature, but this difference diminished at Te . Perennial herbs exhibited a stronger amplifying effect of Te on plant biomass in response to drought than did annual herbs. Te exacerbated the responses of Agrowth and stomatal conductance to drought for evergreen broadleaf trees rather than for deciduous broadleaf and evergreen coniferous trees. A negative Te × drought interaction on plant biomass was observed on species-level rather than on community-level. Collectively, our findings provide a mechanistic understanding of the interactive effects of Te and drought on plant C metabolism, which would improve the prediction of climate change impacts.
Collapse
Affiliation(s)
- Zhaoguo Wang
- Center for Ecological Research, Northeast Forestry University, Harbin, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chuankuan Wang
- Center for Ecological Research, Northeast Forestry University, Harbin, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| |
Collapse
|
7
|
de Souza AH, de Oliveira US, Oliveira LA, de Carvalho PHN, de Andrade MT, Pereira TS, Gomes Junior CC, Cardoso AA, Ramalho JDC, Martins SCV, DaMatta FM. Growth and Leaf Gas Exchange Upregulation by Elevated [CO 2] Is Light Dependent in Coffee Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1479. [PMID: 37050105 PMCID: PMC10097104 DOI: 10.3390/plants12071479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Coffee (Coffea arabica L.) plants have been assorted as highly suitable to growth at elevated [CO2] (eCa), although such suitability is hypothesized to decrease under severe shade. We herein examined how the combination of eCa and contrasting irradiance affects growth and photosynthetic performance. Coffee plants were grown in open-top chambers under relatively high light (HL) or low light (LL) (9 or 1 mol photons m-2 day-1, respectively), and aCa or eCa (437 or 705 μmol mol-1, respectively). Most traits were affected by light and CO2, and by their interaction. Relative to aCa, our main findings were (i) a greater stomatal conductance (gs) (only at HL) with decreased diffusive limitations to photosynthesis, (ii) greater gs during HL-to-LL transitions, whereas gs was unresponsive to the LL-to-HL transitions irrespective of [CO2], (iii) greater leaf nitrogen pools (only at HL) and higher photosynthetic nitrogen-use efficiency irrespective of light, (iv) lack of photosynthetic acclimation, and (v) greater biomass partitioning to roots and earlier branching. In summary, eCa improved plant growth and photosynthetic performance. Our novel and timely findings suggest that coffee plants are highly suited for a changing climate characterized by a progressive elevation of [CO2], especially if the light is nonlimiting.
Collapse
Affiliation(s)
- Antonio H. de Souza
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Ueliton S. de Oliveira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Leonardo A. Oliveira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Pablo H. N. de Carvalho
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Moab T. de Andrade
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Talitha S. Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Carlos C. Gomes Junior
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Amanda A. Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - José D. C. Ramalho
- PlantStress & Biodiversity Lab., Centro de Estudos Florestais (CEF), Laboratório Associado Terra, Departamento de Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505 Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Samuel C. V. Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| |
Collapse
|
8
|
Wang L, Zheng J, Wang G, Dang QL. Combined effects of elevated CO2 and warmer temperature on limitations to photosynthesis and carbon sequestration in yellow birch. TREE PHYSIOLOGY 2023; 43:379-389. [PMID: 36322135 DOI: 10.1093/treephys/tpac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/13/2022] [Accepted: 09/30/2022] [Indexed: 05/03/2023]
Abstract
Elevated CO2 and warmer temperature occur simultaneously under the current climate change. However, their combined effects on the photosynthetic traits in boreal trees are not well understood. This study investigated the morphological and photosynthetic responses of yellow birch (Betula alleghaniensis Britt.) to a combined treatment of CO2 and temperature (ambient, ACT (400 μmol mol-1 CO2 and current temperature) vs elevated, ECT (750 μmol mol-1 CO2 and current +4 °C temperature)). It was found that ECT significantly reduced leaf-area based photosynthetic rate (An), maximum Rubisco carboxylation rate (Vcmax), photosynthetic electron transport rate (Jmax), leaf nitrogen concentration, respiration and mesophyll conductance. There were two interesting findings: first, the primary mechanism of photosynthetic limitation shifted from Ribulose-1,5-bisphosphate (RuBP) carboxylation (related to Vcmax) to RuBP regeneration (related to Jmax) in response to ECT, leading to decreased transition point (Ci-t and An-t) from RuBP carboxylation to regeneration; second, the increase in total leaf area in response to ECT more than compensated for the downregulation of leaf-area based photosynthesis, leading to greater biomass in ECT than in ACT. We proposed a new protocol for evaluating photosynthetic limitations by comparing the relative relationship between the transition point (Ci-t and An-t) and the photosynthetic rate at growth CO2 (Ci-g and An-g). Furthermore, we found that Jmax (RuBP regeneration) was the primary limitation to An under ECT.
Collapse
Affiliation(s)
- Lei Wang
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
- Department of Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Jinping Zheng
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
- Forestry College, Beihua University, 3999 Binjiang East Road, Jilin, Jilin 132013, China
| | - Gerong Wang
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
- Forestry College, Beihua University, 3999 Binjiang East Road, Jilin, Jilin 132013, China
| | - Qing-Lai Dang
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| |
Collapse
|
9
|
Gattmann M, McAdam SAM, Birami B, Link R, Nadal-Sala D, Schuldt B, Yakir D, Ruehr NK. Anatomical adjustments of the tree hydraulic pathway decrease canopy conductance under long-term elevated CO2. PLANT PHYSIOLOGY 2023; 191:252-264. [PMID: 36250901 PMCID: PMC9806622 DOI: 10.1093/plphys/kiac482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The cause of reduced leaf-level transpiration under elevated CO2 remains largely elusive. Here, we assessed stomatal, hydraulic, and morphological adjustments in a long-term experiment on Aleppo pine (Pinus halepensis) seedlings germinated and grown for 22-40 months under elevated (eCO2; c. 860 ppm) or ambient (aCO2; c. 410 ppm) CO2. We assessed if eCO2-triggered reductions in canopy conductance (gc) alter the response to soil or atmospheric drought and are reversible or lasting due to anatomical adjustments by exposing eCO2 seedlings to decreasing [CO2]. To quantify underlying mechanisms, we analyzed leaf abscisic acid (ABA) level, stomatal and leaf morphology, xylem structure, hydraulic efficiency, and hydraulic safety. Effects of eCO2 manifested in a strong reduction in leaf-level gc (-55%) not caused by ABA and not reversible under low CO2 (c. 200 ppm). Stomatal development and size were unchanged, while stomatal density increased (+18%). An increased vein-to-epidermis distance (+65%) suggested a larger leaf resistance to water flow. This was supported by anatomical adjustments of branch xylem having smaller conduits (-8%) and lower conduit lumen fraction (-11%), which resulted in a lower specific conductivity (-19%) and leaf-specific conductivity (-34%). These adaptations to CO2 did not change stomatal sensitivity to soil or atmospheric drought, consistent with similar xylem safety thresholds. In summary, we found reductions of gc under elevated CO2 to be reflected in anatomical adjustments and decreases in hydraulic conductivity. As these water savings were largely annulled by increases in leaf biomass, we do not expect alleviation of drought stress in a high CO2 atmosphere.
Collapse
Affiliation(s)
- Marielle Gattmann
- Institute of Meteorology and Climate Research – Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen 82467, Germany
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Benjamin Birami
- Institute of Meteorology and Climate Research – Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen 82467, Germany
| | - Roman Link
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Würzburg 97082, Germany
| | - Daniel Nadal-Sala
- Institute of Meteorology and Climate Research – Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen 82467, Germany
| | - Bernhard Schuldt
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Würzburg 97082, Germany
| | - Dan Yakir
- Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
10
|
Patono DL, Eloi Alcatrāo L, Dicembrini E, Ivaldi G, Ricauda Aimonino D, Lovisolo C. Technical advances for measurement of gas exchange at the whole plant level: Design solutions and prototype tests to carry out shoot and rootzone analyses in plants of different sizes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111505. [PMID: 36270511 DOI: 10.1016/j.plantsci.2022.111505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 10/16/2022] [Indexed: 05/24/2023]
Abstract
To measure gas exchange at the whole plant (WP) level, design solutions were provided and prototypes of gas-exchange systems (GESs) were tested to carry out shoot and rootzone analyses in plants of different sizes. A WP-GES for small herbaceous plants was tested on the ability to maximize the net assimilation rate of CO2 in lettuce plants grown either under blue-red light or upon full spectrum artificial light. A WP-GES for large woody plants was tested during an experiment describing the drought stress inhibition of grapevine transpiration and photosynthesis. Technical advances pointed to optimize: i) the choice of cuvette material and its technical configuration to allow hermetic isolation of the interface shoot-rootzone, to avoid contamination between the two compartments, and to allow climate control of both shoot and rootzone cuvettes, ii) accurate measurements of the mass air-flow entering both cuvettes, and iii) an adequate homogenization of the cuvette air volume for stable and accurate detection of CO2 and H2O concentration in cuvettes before and after CO2 and H2O contamination of the air volumes exerted by plant organs.
Collapse
Affiliation(s)
- Davide L Patono
- Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Leandro Eloi Alcatrāo
- Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Emilio Dicembrini
- Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Giorgio Ivaldi
- Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | | | - Claudio Lovisolo
- Dept. Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy; Institute for Sustainable Plant Protection, National Research Council, Turin, Italy.
| |
Collapse
|
11
|
Costa LDS, Vuralhan-Eckert J, Fromm J. Effect of Elevated CO 2 and Drought on Biomass, Gas Exchange and Wood Structure of Eucalyptus grandis. PLANTS (BASEL, SWITZERLAND) 2022; 12:148. [PMID: 36616277 PMCID: PMC9823954 DOI: 10.3390/plants12010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Juvenile Eucalyptus grandis were exposed to drought and elevated CO2 to evaluate the independent and interactive effects on growth, gas exchange and wood structure. Trees were grown in a greenhouse at ambient and elevated CO2 (aCO2, 410 ppm; eCO2, 950 ppm), in combination with daily irrigation and cyclic drought during one growing season. The results demonstrated that drought stress limited intercellular CO2 concentration, photosynthesis, stomatal conductance, and transpiration, which correlated with a lower increment in height, stem diameter and biomass. Drought also induced formation of frequent and narrow vessels accompanied by a reduction in vessel lumen area. Conversely, elevated CO2 increased intercellular CO2 concentration as well as photosynthesis, and partially closed stomata, leading to a more efficient water use, especially under drought. There was a clear trend towards greater biomass accumulation at eCO2, although the results did not show statistical significance for this parameter. We observed an increase in vessel diameter and vessel lumen area at eCO2, and, contrarily, the vessel frequency decreased. Thus, we conclude that eCO2 delayed the effects of drought and potentialized growth. However, results on vessel anatomy suggest that increasing vulnerability to cavitation due to formation of larger vessels may counteract the beneficial effects of eCO2 under severe drought.
Collapse
Affiliation(s)
| | | | - Jörg Fromm
- Correspondence: (L.d.S.C.); (J.F.); Tel.: +49-40-73962-466 (L.d.S.C.)
| |
Collapse
|
12
|
Metabolic, physiological and anatomical responses of soybean plants under water deficit and high temperature condition. Sci Rep 2022; 12:16467. [PMID: 36183028 PMCID: PMC9526742 DOI: 10.1038/s41598-022-21035-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Water deficit (WD) combined with high temperature (HT) is the major factor limiting agriculture worldwide, and it is predicted to become worse according to the current climate change scenario. It is thus important to understand how current cultivated crops respond to these stress conditions. Here we investigated how four soybean cultivars respond to WD and HT isolated or in combination at metabolic, physiological, and anatomical levels. The WD + HT increased the level of stress in soybean plants when compared to plants under well-watered (WW), WD, or HT conditions. WD + HT exacerbates the increases in ascorbate peroxidase activity, which was associated with the greater photosynthetic rate in two cultivars under WD + HT. The metabolic responses to WD + HT diverge substantially from plants under WW, WD, or HT conditions. Myo-inositol and maltose were identified as WD + HT biomarkers and were connected to subnetworks composed of catalase, amino acids, and both root and leaf osmotic potentials. Correlation-based network analyses highlight that the network heterogeneity increased and a higher integration among metabolic, physiological, and morphological nodes is observed under stress conditions. Beyond unveiling biochemical and metabolic WD + HT biomarkers, our results collectively highlight that the mechanisms behind the acclimation to WD + HT cannot be understood by investigating WD or HT stress separately.
Collapse
|
13
|
Shanker AK, Gunnapaneni D, Bhanu D, Vanaja M, Lakshmi NJ, Yadav SK, Prabhakar M, Singh VK. Elevated CO 2 and Water Stress in Combination in Plants: Brothers in Arms or Partners in Crime? BIOLOGY 2022; 11:biology11091330. [PMID: 36138809 PMCID: PMC9495351 DOI: 10.3390/biology11091330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/17/2022] [Indexed: 04/30/2023]
Abstract
The changing dynamics in the climate are the primary and important determinants of agriculture productivity. The effects of this changing climate on overall productivity in agriculture can be understood when we study the effects of individual components contributing to the changing climate on plants and crops. Elevated CO2 (eCO2) and drought due to high variability in rainfall is one of the important manifestations of the changing climate. There is a considerable amount of literature that addresses climate effects on plant systems from molecules to ecosystems. Of particular interest is the effect of increased CO2 on plants in relation to drought and water stress. As it is known that one of the consistent effects of increased CO2 in the atmosphere is increased photosynthesis, especially in C3 plants, it will be interesting to know the effect of drought in relation to elevated CO2. The potential of elevated CO2 ameliorating the effects of water deficit stress is evident from literature, which suggests that these two agents are brothers in arms protecting the plant from stress rather than partners in crime, specifically for water deficit when in isolation. The possible mechanisms by which this occurs will be discussed in this minireview. Interpreting the effects of short-term and long-term exposure of plants to elevated CO2 in the context of ameliorating the negative impacts of drought will show us the possible ways by which there can be effective adaption to crops in the changing climate scenario.
Collapse
|
14
|
Marques I, Rodrigues AP, Gouveia D, Lidon FC, Martins S, Semedo MC, Gaillard JC, Pais IP, Semedo JN, Scotti-Campos P, Reboredo FH, Partelli FL, DaMatta FM, Armengaud J, Ribeiro-Barros AI, Ramalho JC. High-resolution shotgun proteomics reveals that increased air [CO 2] amplifies the acclimation response of coffea species to drought regarding antioxidative, energy, sugar, and lipid dynamics. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153788. [PMID: 35944291 DOI: 10.1016/j.jplph.2022.153788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
As drought threatens crop productivity it is crucial to characterize the defense mechanisms against water deficit and unveil their interaction with the expected rise in the air [CO2]. For that, plants of Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu grown under 380 (aCO2) or 700 μL L-1 (eCO2) were exposed to moderate (MWD) and severe (SWD) water deficits. Responses were characterized through the activity and/or abundance of a selected set of proteins associated with antioxidative (e.g., Violaxanthin de-epoxidase, Superoxide dismutase, Ascorbate peroxidases, Monodehydroascorbate reductase), energy/sugar (e.g., Ferredoxin-NADP reductase, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, sucrose synthase, mannose-6-phosphate isomerase, Enolase), and lipid (Lineolate 13S-lipoxygenase) processes, as well as with other antioxidative (ascorbate) and protective (HSP70) molecules. MWD caused small changes in both genotypes regardless of [CO2] level while under the single imposition to SWD, only Icatu showed a global reinforcement of most studied proteins supporting its tolerance to drought. eCO2 alone did not promote remarkable changes but strengthened a robust multi-response under SWD, even supporting the reversion of impacts already observed by CL153 at aCO2. In the context of climate changes where water constraints and [CO2] levels are expected to increase, these results highlight why eCO2 might have an important role in improving drought tolerance in Coffea species.
Collapse
Affiliation(s)
- Isabel Marques
- PlantStress & Biodiversity Lab., Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505 Oeiras, and Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Ana P Rodrigues
- PlantStress & Biodiversity Lab., Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505 Oeiras, and Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Duarte Gouveia
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-F-30200, Bagnols-sur-Cèze, France.
| | - Fernando C Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal.
| | - Sónia Martins
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal; Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007, Lisboa, Portugal.
| | - Magda C Semedo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal; Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007, Lisboa, Portugal.
| | - Jean-Charles Gaillard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-F-30200, Bagnols-sur-Cèze, France.
| | - Isabel P Pais
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal; Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2784-505, Oeiras, Portugal.
| | - José N Semedo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal; Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2784-505, Oeiras, Portugal.
| | - Paula Scotti-Campos
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal; Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2784-505, Oeiras, Portugal.
| | - Fernando H Reboredo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal.
| | - Fábio L Partelli
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), Rod. BR 101 Norte, Km. 60, Bairro Litorâneo, CEP: 29932-540, São Mateus, ES, Brazil.
| | - Fábio M DaMatta
- Dept. Biologia Vegetal, Univ. Federal Viçosa (UFV), 36570-000, Viçosa, MG, Brazil.
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-F-30200, Bagnols-sur-Cèze, France.
| | - Ana I Ribeiro-Barros
- PlantStress & Biodiversity Lab., Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505 Oeiras, and Tapada da Ajuda, 1349-017, Lisboa, Portugal; Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007, Lisboa, Portugal.
| | - José C Ramalho
- PlantStress & Biodiversity Lab., Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505 Oeiras, and Tapada da Ajuda, 1349-017, Lisboa, Portugal; Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007, Lisboa, Portugal.
| |
Collapse
|
15
|
Rehschuh R, Ruehr NK. Diverging responses of water and carbon relations during and after heat and hot drought stress in Pinus sylvestris. TREE PHYSIOLOGY 2022; 42:1532-1548. [PMID: 34740258 PMCID: PMC9366868 DOI: 10.1093/treephys/tpab141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Forests are increasingly affected by heatwaves, often co-occurring with drought, with consequences for water and carbon (C) cycling. However, our ability to project tree resilience to more intense hot droughts remains limited. Here, we used single tree chambers (n = 18) to investigate transpiration (E), net assimilation (Anet), root respiration (Rroot) and stem diameter change in Scots pine seedlings in a control treatment and during gradually intensifying heat or drought-heat stress (max. 42 °C), including recovery. Alongside this, we assessed indicators of stress impacts and recovery capacities. In the heat treatment, excessive leaf heating was mitigated via increased E, while under drought-heat, E ceased and leaf temperatures reached 46 °C. However, leaf electrolyte leakage was negligible, while light-adapted quantum yield of photosystem II (F'v/F'm) declined alongside Anet moderately in heat, but strongly in drought-heat seedlings, in which respiration exceeded C uptake. Drought-heat largely affected the hydraulic system as apparent in stem diameter shrinkage, declining relative needle water content (RWCNeedle) and water potential (ΨNeedle) reaching -2.7 MPa, alongside a 90% decline of leaf hydraulic conductance (KLeaf). Heat alone resulted in low functional impairment and all measured parameters recovered quickly. Contrary, following drought-heat, the recovery of KLeaf was incomplete and stem hydraulic conductivity (KS) was 25% lower than the control. However, F'v/F'm recovered and the tree net C balance reached control values 2 days post-stress, with stem increment rates accelerating during the second recovery week. This indicates a new equilibrium of C uptake and release in drought-heat seedlings independent of hydraulic impairment, which may slowly contribute to the repair of damaged tissues. In summary, Scots pine recovered rapidly following moderate heat stress, while combined with drought, hydraulic and thermal stress intensified, resulting in functional damage and slow recovery of hydraulic conductance. This incomplete hydraulic recovery could critically limit evaporative cooling capacities and C uptake under repeated heatwaves.
Collapse
Affiliation(s)
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research-Atmospheric Environmental Research (KIT/IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| |
Collapse
|
16
|
Lobo AKM, Catarino ICA, Silva EA, Centeno DC, Domingues DS. Physiological and Molecular Responses of Woody Plants Exposed to Future Atmospheric CO2 Levels under Abiotic Stresses. PLANTS 2022; 11:plants11141880. [PMID: 35890514 PMCID: PMC9322912 DOI: 10.3390/plants11141880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
Climate change is mainly driven by the accumulation of carbon dioxide (CO2) in the atmosphere in the last century. Plant growth is constantly challenged by environmental fluctuations including heat waves, severe drought and salinity, along with ozone accumulation in the atmosphere. Food security is at risk in an increasing world population, and it is necessary to face the current and the expected effects of global warming. The effects of the predicted environment scenario of elevated CO2 concentration (e[CO2]) and more severe abiotic stresses have been scarcely investigated in woody plants, and an integrated view involving physiological, biochemical and molecular data is missing. This review highlights the effects of elevated CO2 in the metabolism of woody plants and the main findings of its interaction with abiotic stresses, including a molecular point of view, aiming to improve the understanding of how woody plants will face the predicted environmental conditions. Overall, e[CO2] stimulates photosynthesis and growth and attenuates mild to moderate abiotic stress in woody plants if root growth and nutrients are not limited. Moreover, e[CO2] does not induce acclimation in most tree species. Some high-throughput analyses involving omics techniques were conducted to better understand how these processes are regulated. Finally, knowledge gaps in the understanding of how the predicted climate condition will affect woody plant metabolism were identified, with the aim of improving the growth and production of this plant species.
Collapse
Affiliation(s)
- Ana Karla M. Lobo
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
- Correspondence: (A.K.M.L.); (D.S.D.)
| | - Ingrid C. A. Catarino
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
| | - Emerson A. Silva
- Institute of Environmental Research, São Paulo 04301-002, Brazil;
| | - Danilo C. Centeno
- Centre for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil;
| | - Douglas S. Domingues
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
- Correspondence: (A.K.M.L.); (D.S.D.)
| |
Collapse
|
17
|
Lu R, Du Y, Sun H, Xu X, Yan L, Xia J. Nocturnal warming accelerates drought-induced seedling mortality of two evergreen tree species. TREE PHYSIOLOGY 2022; 42:1164-1176. [PMID: 34919711 DOI: 10.1093/treephys/tpab168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Extreme drought is one of the key climatic drivers of tree mortality on a global scale. However, it remains unclear whether the drought-induced tree mortality will increase under nocturnal climate warming. Here we exposed seedlings of two wide-ranging subtropical tree species, Castanopsis sclerophylla and Schima superba, with contrasting stomatal regulation strategies to prolonged drought under ambient and elevated night-time temperature by 2 °C. We quantified the seedling survival time since drought treatment by measuring multiple leaf traits such as leaf gas exchange, predawn leaf water potential and water-use efficiency. The results showed that all seedlings in the ambient temperature died within 180 days and 167 days of drought for C. sclerophylla and S. superba, respectively. Night warming significantly shortened the survival time of C. sclerophylla, by 31 days, and S. superba by 28 days, under the drought treatment. A survival analysis further showed that seedlings under night warming suffered a 1.6 times greater mortality risk than those under ambient temperature. Further analyses revealed that night warming suppressed net leaf carbon gain in both species by increasing the nocturnal respiratory rate of S. superba across the first 120 days of drought and decreasing the photosynthetic rate of both species generally after 46 days of drought. These effects on net carbon gain were more pronounced in S. superba than C. sclerophylla. After 60 days of drought, night warming decreased the predawn leaf water potential and leaf water-use efficiency of C. sclerophylla but not S. superba. These contrasting responses are partially due to variations in stomatal control between the two species. These findings suggest that stomatal traits can regulate the response of leaf gas exchange and plant water-use to nocturnal warming during drought. This study indicates that nocturnal warming can accelerate tree mortality during drought. Night warming accelerates the mortality of two subtropical seedlings under drought.Night warming differently affects the drought response of leaf gas exchange and plant water-use between the two species due to species-specific stomatal morphological traits.Carbon metabolism changes and hydraulic damage play differential roles in driving night-warming impacts on the drought-induced mortality between the two species.
Collapse
Affiliation(s)
- Ruiling Lu
- Tiantong Forest Ecosystem National Observation and Research Station, Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Ying Du
- Tiantong Forest Ecosystem National Observation and Research Station, Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Huanfa Sun
- Tiantong Forest Ecosystem National Observation and Research Station, Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Xiaoni Xu
- Tiantong Forest Ecosystem National Observation and Research Station, Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Liming Yan
- Tiantong Forest Ecosystem National Observation and Research Station, Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Jianyang Xia
- Tiantong Forest Ecosystem National Observation and Research Station, Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| |
Collapse
|
18
|
Fernández de Simón B, Cadahía E, Aranda I. Aerial and underground organs display specific metabolic strategies to cope with water stress under rising atmospheric CO 2 in Fagus sylvatica L. PHYSIOLOGIA PLANTARUM 2022; 174:e13711. [PMID: 35570621 PMCID: PMC9321914 DOI: 10.1111/ppl.13711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Beech is known to be a moderately drought-sensitive tree species, and future increases in atmospheric concentrations of CO2 ([CO2 ]) could influence its ecological interactions, also with changes at the metabolic level. The metabolome of leaves and roots of drought-stressed beech seedlings grown under two different [CO2 ] (400 (aCO2 ) and 800 (eCO2 ) ppm) was analyzed together with gas exchange parameters and water status. Water stress estimated from predawn leaf water potential (Ψpd ) was similar under both [CO2 ], although eCO2 had a positive impact on net photosynthesis and intrinsic water use efficiency. The aerial and underground organs showed different metabolomes. Leaves mainly stored C metabolites, while those of N and P accumulated differentially in roots. Drought triggered the proline and N-rich amino acids biosynthesis in roots through the activation of arginine and proline pathways. Besides the TCA cycle, polyols and soluble sugar biosynthesis were activated in roots, with no clear pattern seen in the leaves, prioritizing the root functioning as metabolites sink. eCO2 slightly altered this metabolic acclimation to drought, reflecting mitigation of its effect. The leaves showed only minor changes, investing C surplus in secondary metabolites and malic acid. The TCA cycle metabolites and osmotically active substances increased in roots, but many other metabolites decreased as if the water stress was dampened. Above- and belowground plant metabolomes were differentially affected by two drivers of climate change, water scarcity and high [CO2 ], showing different chemical responsiveness that could modulate the tree adaptation to future climatic scenarios.
Collapse
Affiliation(s)
- Brígida Fernández de Simón
- Grupo de Ecología Funcional de Especies ForestalesCentro de Investigacion Forestal (CIFOR‐INIA) CSICMadridSpain
| | - Estrella Cadahía
- Grupo de Ecología Funcional de Especies ForestalesCentro de Investigacion Forestal (CIFOR‐INIA) CSICMadridSpain
| | - Ismael Aranda
- Grupo de Ecología Funcional de Especies ForestalesCentro de Investigacion Forestal (CIFOR‐INIA) CSICMadridSpain
| |
Collapse
|
19
|
Hammond WM, Williams AP, Abatzoglou JT, Adams HD, Klein T, López R, Sáenz-Romero C, Hartmann H, Breshears DD, Allen CD. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth's forests. Nat Commun 2022; 13:1761. [PMID: 35383157 PMCID: PMC8983702 DOI: 10.1038/s41467-022-29289-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/01/2022] [Indexed: 11/09/2022] Open
Abstract
Earth's forests face grave challenges in the Anthropocene, including hotter droughts increasingly associated with widespread forest die-off events. But despite the vital importance of forests to global ecosystem services, their fates in a warming world remain highly uncertain. Lacking is quantitative determination of commonality in climate anomalies associated with pulses of tree mortality-from published, field-documented mortality events-required for understanding the role of extreme climate events in overall global tree die-off patterns. Here we established a geo-referenced global database documenting climate-induced mortality events spanning all tree-supporting biomes and continents, from 154 peer-reviewed studies since 1970. Our analysis quantifies a global "hotter-drought fingerprint" from these tree-mortality sites-effectively a hotter and drier climate signal for tree mortality-across 675 locations encompassing 1,303 plots. Frequency of these observed mortality-year climate conditions strongly increases nonlinearly under projected warming. Our database also provides initial footing for further community-developed, quantitative, ground-based monitoring of global tree mortality.
Collapse
Affiliation(s)
- William M. Hammond
- grid.15276.370000 0004 1936 8091Agronomy Department, University of Florida, Gainesville, FL 32611 USA
| | - A. Park Williams
- grid.19006.3e0000 0000 9632 6718Department of Geography, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - John T. Abatzoglou
- grid.266096.d0000 0001 0049 1282Management of Complex Systems, University of California, Merced, CA USA
| | - Henry D. Adams
- grid.30064.310000 0001 2157 6568School of the Environment, Washington State University, Pullman, WA USA
| | - Tamir Klein
- grid.13992.300000 0004 0604 7563Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Rosana López
- grid.5690.a0000 0001 2151 2978Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Cuauhtémoc Sáenz-Romero
- grid.412205.00000 0000 8796 243XInstituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán Mexico
| | - Henrik Hartmann
- grid.419500.90000 0004 0491 7318Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - David D. Breshears
- grid.134563.60000 0001 2168 186XSchool of Natural Resources and the Environment, University of Arizona, Tucson, AZ USA
| | - Craig D. Allen
- grid.266832.b0000 0001 2188 8502Department of Geography and Environmental Studies, University of New Mexico, Albuquerque, NM USA
| |
Collapse
|
20
|
Lauriks F, Salomón RL, De Roo L, Goossens W, Leroux O, Steppe K. Limited plasticity of anatomical and hydraulic traits in aspen trees under elevated CO2 and seasonal drought. PLANT PHYSIOLOGY 2022; 188:268-284. [PMID: 34718790 PMCID: PMC8774844 DOI: 10.1093/plphys/kiab497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The timing of abiotic stress elicitors on wood formation largely affects xylem traits that determine xylem efficiency and vulnerability. Nonetheless, seasonal variability of elevated CO2 (eCO2) effects on tree functioning under drought remains largely unknown. To address this knowledge gap, 1-year-old aspen (Populus tremula L.) trees were grown under ambient (±445 ppm) and elevated (±700 ppm) CO2 and exposed to an early (spring/summer 2019) or late (summer/autumn 2018) season drought event. Stomatal conductance and stem shrinkage were monitored in vivo as xylem water potential decreased. Additional trees were harvested for characterization of wood anatomical traits and to determine vulnerability and desorption curves via bench dehydration. The abundance of narrow vessels decreased under eCO2 only during the early season. At this time, xylem vulnerability to embolism formation and hydraulic capacitance during severe drought increased under eCO2. Contrastingly, stomatal closure was delayed during the late season, while hydraulic vulnerability and capacitance remained unaffected under eCO2. Independently of the CO2 treatment, elastic, and inelastic water pools depleted simultaneously after 50% of complete stomatal closure. Our results suggest that the effect of eCO2 on drought physiology and wood traits are small and variable during the growing season and question a sequential capacitive water release from elastic and inelastic pools as drought proceeds.
Collapse
Affiliation(s)
- Fran Lauriks
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - Linus De Roo
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Willem Goossens
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Olivier Leroux
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
21
|
Rehschuh R, Rehschuh S, Gast A, Jakab AL, Lehmann MM, Saurer M, Gessler A, Ruehr NK. Tree allocation dynamics beyond heat and hot drought stress reveal changes in carbon storage, belowground translocation and growth. THE NEW PHYTOLOGIST 2022; 233:687-704. [PMID: 34668198 DOI: 10.1111/nph.17815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Heatwaves combined with drought affect tree functioning with as yet undetermined legacy effects on carbon (C) and nitrogen (N) allocation. We continuously monitored shoot and root gas exchange, δ13 CO2 of respiration and stem growth in well-watered and drought-treated Pinus sylvestris (Scots pine) seedlings exposed to increasing daytime temperatures (max. 42°C) and evaporative demand. Following stress release, we used 13 CO2 canopy pulse-labeling, supplemented by soil-applied 15 N, to determine allocation to plant compartments, respiration and soil microbial biomass (SMB) over 2.5 wk. Previously heat-treated seedlings rapidly translocated 13 C along the long-distance transport path, to root respiration (Rroot ; 7.1 h) and SMB (3 d). Furthermore, 13 C accumulated in branch cellulose, suggesting secondary growth enhancement. However, in recovering drought-heat seedlings, the mean residence time of 13 C in needles increased, whereas C translocation to Rroot was delayed (13.8 h) and 13 C incorporated into starch rather than cellulose. Concurrently, we observed stress-induced low N uptake and aboveground allocation. C and N allocation during early recovery were affected by stress type and impact. Although C uptake increased quickly in both treatments, drought-heat in combination reduced the above-belowground coupling and starch accumulated in leaves at the expense of growth. Accordingly, C allocation during recovery depends on phloem translocation capacity.
Collapse
Affiliation(s)
- Romy Rehschuh
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Stephanie Rehschuh
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Andreas Gast
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Andrea-Livia Jakab
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Marco M Lehmann
- Swiss Federal Research Institute WSL, Research Unit Forest Dynamics, Birmensdorf, 8903, Switzerland
| | - Matthias Saurer
- Swiss Federal Research Institute WSL, Research Unit Forest Dynamics, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Research Unit Forest Dynamics, Birmensdorf, 8903, Switzerland
- Department of Environmental System Sciences, ETH Zurich, Zurich, 8092, Switzerland
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| |
Collapse
|
22
|
Cao Q, Li G, Liu F. Elevated CO 2 enhanced water use efficiency of wheat to progressive drought stress but not on maize. FRONTIERS IN PLANT SCIENCE 2022; 13:953712. [PMID: 36466229 PMCID: PMC9714360 DOI: 10.3389/fpls.2022.953712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/28/2022] [Indexed: 05/12/2023]
Abstract
Global rising atmospheric CO2 concentration ([CO2]) and drought stress exert profound influences on crop growth and yield. The objective of the present study was to investigate the responses of leaf gas exchange and plant water use efficiency (WUE) of wheat (C3) and maize (C4) plants to progressive drought stress under ambient (a[CO2], 400 ppm) and elevated (e[CO2], 800 ppm) atmospheric CO2 concentrations. The fraction of transpirable soil water (FTSW) was used to evaluate soil water status in the pots. Under non-drought stress, e[CO2] increased the net photosynthetic rate (An) solely in wheat, and dry matter accumulation (DMA), whereas it decreased stomatal conductance (g s) and water consumption (WC), resulting in enhanced WUE by 27.82% for maize and 49.86% for wheat. After onset of progressive soil drying, maize plants in e[CO2] showed lower FTSW thresholds than wheat, at which e.g. gs (0.31 vs 0.40) and leaf relative water content (0.21 vs 0.43) starts to decrease, indicating e[CO2] conferred a greater drought resistance in maize. Under the combination of e[CO2] and drought stress, enhanced WUE was solely found in wheat, which is mainly associated with increased DMA and unaffected WC. These varied responses of leaf gas exchange and WUE between the two species to combined drought and e[CO2] suggest that specific water management strategies should be developed to optimize crop WUE for different species in a future drier and CO2-enriched environment.
Collapse
Affiliation(s)
- Qingjun Cao
- Key Laboratory of Northeast crop physiology ecology and cultivation, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, Jilin Academy of Agriculture Science, Changchun, China
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Gang Li
- Key Laboratory of Northeast crop physiology ecology and cultivation, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, Jilin Academy of Agriculture Science, Changchun, China
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
- *Correspondence: Fulai Liu,
| |
Collapse
|
23
|
Li F, Guo D, Gao X, Zhao X. Water Deficit Modulates the CO 2 Fertilization Effect on Plant Gas Exchange and Leaf-Level Water Use Efficiency: A Meta-Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:775477. [PMID: 34912360 PMCID: PMC8667667 DOI: 10.3389/fpls.2021.775477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Elevated atmospheric CO2 concentrations ([eCO2]) and soil water deficits significantly influence gas exchange in plant leaves, affecting the carbon-water cycle in terrestrial ecosystems. However, it remains unclear how the soil water deficit modulates the plant CO2 fertilization effect, especially for gas exchange and leaf-level water use efficiency (WUE). Here, we synthesized a comprehensive dataset including 554 observations from 54 individual studies and quantified the responses for leaf gas exchange induced by e[CO2] under water deficit. Moreover, we investigated the contribution of plant net photosynthesis rate (P n ) and transpiration rates (T r) toward WUE in water deficit conditions and e[CO2] using graphical vector analysis (GVA). In summary, e[CO2] significantly increased P n and WUE by 11.9 and 29.3% under well-watered conditions, respectively, whereas the interaction of water deficit and e[CO2] slightly decreased P n by 8.3%. Plants grown under light in an open environment were stimulated to a greater degree compared with plants grown under a lamp in a closed environment. Meanwhile, water deficit reduced P n by 40.5 and 37.8%, while increasing WUE by 24.5 and 21.5% under ambient CO2 concentration (a[CO2]) and e[CO2], respectively. The e[CO2]-induced stimulation of WUE was attributed to the common effect of P n and T r, whereas a water deficit induced increase in WUE was linked to the decrease in T r. These results suggested that water deficit lowered the stimulation of e[CO2] induced in plants. Therefore, fumigation conditions that closely mimic field conditions and multi-factorial experiments such as water availability are needed to predict the response of plants to future climate change.
Collapse
Affiliation(s)
- Fei Li
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang, China
| | - Dagang Guo
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang, China
| | - Xiaodong Gao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- National Engineering Research Center of Water Saving and Irrigation Technology, Yangling, China
- Institute of Soil and Water Conservation, Northwest A&F University, Xianyang, China
| | - Xining Zhao
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- National Engineering Research Center of Water Saving and Irrigation Technology, Yangling, China
| |
Collapse
|
24
|
Nadal-Sala D, Medlyn BE, Ruehr NK, Barton CVM, Ellsworth DS, Gracia C, Tissue DT, Tjoelker MG, Sabaté S. Increasing aridity will not offset CO 2 fertilization in fast-growing eucalypts with access to deep soil water. GLOBAL CHANGE BIOLOGY 2021; 27:2970-2990. [PMID: 33694242 DOI: 10.1111/gcb.15590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Rising atmospheric [CO2 ] (Ca ) generally enhances tree growth if nutrients are not limiting. However, reduced water availability and elevated evaporative demand may offset such fertilization. Trees with access to deep soil water may be able to mitigate such stresses and respond more positively to Ca . Here, we sought to evaluate how increased vapor pressure deficit and reduced precipitation are likely to modify the impact of elevated Ca (eCa ) on tree productivity in an Australian Eucalyptus saligna Sm. plantation with access to deep soil water. We parameterized a forest growth simulation model (GOTILWA+) using data from two field experiments on E. saligna: a 2-year whole-tree chamber experiment with factorial Ca (ambient =380, elevated =620 μmol mol-1 ) and watering treatments, and a 10-year stand-scale irrigation experiment. Model evaluation showed that GOTILWA+ can capture the responses of canopy C uptake to (1) rising vapor pressure deficit (D) under both Ca treatments; (2) alterations in tree water uptake from shallow and deep soil layers during soil dry-down; and (3) the impact of irrigation on tree growth. Simulations suggest that increasing Ca up to 700 μmol mol-1 alone would result in a 33% increase in annual gross primary production (GPP) and a 62% increase in biomass over 10 years. However, a combined 48% increase in D and a 20% reduction in precipitation would halve these values. Our simulations identify high D conditions as a key limiting factor for GPP. They also suggest that rising Ca will compensate for increasing aridity limitations in E. saligna trees with access to deep soil water under non-nutrient limiting conditions, thereby reducing the negative impacts of global warming upon this eucalypt species. Simulation models not accounting for water sources available to deep-rooting trees are likely to overestimate aridity impacts on forest productivity and C stocks.
Collapse
Affiliation(s)
- Daniel Nadal-Sala
- Ecology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona (UB), Barcelona, Spain
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| | - Craig V M Barton
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Carles Gracia
- Ecology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona (UB), Barcelona, Spain
- CREAF (Center for Ecological Research and Forestry Applications, Cerdanyola del Vallès, Spain
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Santi Sabaté
- Ecology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona (UB), Barcelona, Spain
- CREAF (Center for Ecological Research and Forestry Applications, Cerdanyola del Vallès, Spain
| |
Collapse
|
25
|
Nadal-Sala D, Grote R, Birami B, Lintunen A, Mammarella I, Preisler Y, Rotenberg E, Salmon Y, Tatarinov F, Yakir D, Ruehr NK. Assessing model performance via the most limiting environmental driver in two differently stressed pine stands. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02312. [PMID: 33630380 DOI: 10.1002/eap.2312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/06/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Climate change will impact forest productivity worldwide. Forecasting the magnitude of such impact, with multiple environmental stressors changing simultaneously, is only possible with the help of process-based models. In order to assess their performance, such models require careful evaluation against measurements. However, direct comparison of model outputs against observational data is often not reliable, as models may provide the right answers due to the wrong reasons. This would severely hinder forecasting abilities under unprecedented climate conditions. Here, we present a methodology for model assessment, which supplements the traditional output-to-observation model validation. It evaluates model performance through its ability to reproduce observed seasonal changes of the most limiting environmental driver (MLED) for a given process, here daily gross primary productivity (GPP). We analyzed seasonal changes of the MLED for GPP in two contrasting pine forests, the Mediterranean Pinus halepensis Mill. Yatir (Israel) and the boreal Pinus sylvestris L. Hyytiälä (Finland) from three years of eddy-covariance flux data. Then, we simulated the same period with a state-of-the-art process-based simulation model (LandscapeDNDC). Finally, we assessed if the model was able to reproduce both GPP observations and MLED seasonality. We found that the model reproduced the seasonality of GPP in both stands, but it was slightly overestimated without site-specific fine-tuning. Interestingly, although LandscapeDNDC properly captured the main MLED in Hyytiälä (temperature) and in Yatir (soil water availability), it failed to reproduce high-temperature and high-vapor pressure limitations of GPP in Yatir during spring and summer. We deduced that the most likely reason for this divergence is an incomplete description of stomatal behavior. In summary, this study validates the MLED approach as a model evaluation tool, and opens up new possibilities for model improvement.
Collapse
Affiliation(s)
- Daniel Nadal-Sala
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Rüdiger Grote
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Benjamin Birami
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Anna Lintunen
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, Helsinki,, 00014, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, Gustaf Hällströmin katu 2b, Helsinki,, 00014, Finland
| | - Ivan Mammarella
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, Helsinki,, 00014, Finland
| | - Yakir Preisler
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138, USA
| | - Eyal Rotenberg
- Deptartment of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yann Salmon
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, Helsinki,, 00014, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, Gustaf Hällströmin katu 2b, Helsinki,, 00014, Finland
| | - Fedor Tatarinov
- Deptartment of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dan Yakir
- Deptartment of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| |
Collapse
|
26
|
Semedo JN, Rodrigues AP, Lidon FC, Pais IP, Marques I, Gouveia D, Armengaud J, Silva MJ, Martins S, Semedo MC, Dubberstein D, Partelli FL, Reboredo FH, Scotti-Campos P, Ribeiro-Barros AI, DaMatta FM, Ramalho JC. Intrinsic non-stomatal resilience to drought of the photosynthetic apparatus in Coffea spp. is strengthened by elevated air [CO2]. TREE PHYSIOLOGY 2021; 41:708-727. [PMID: 33215189 DOI: 10.1093/treephys/tpaa158] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/11/2020] [Indexed: 05/10/2023]
Abstract
Growing water restrictions associated with climate changes constitute daunting challenges to crop performance. This study unveils the impacts of moderate (MWD) or severe (SWD) water deficit, and their interaction with air [CO2], on the photosynthetic apparatus of Coffea canephora Pierre ex A. Froehner cv. Conilon Clone 153 (CL153) and Coffea arabica L. cv. Icatu. Seven year-old potted plants grown under 380 (aCO2) or 700 μl l -1 (eCO2) [CO2] gradually reached predawn water potentials between -1.6 and -2.1 MPa (MWD), and below -3.5 MPa (SWD). Under drought, stomata closure was chiefly related to abscisic acid (ABA) rise. Increasing drought severity progressively affected gas exchange and fluorescence parameters in both genotypes, with non-stomatal limitations becoming gradually dominating, especially regarding the photochemical and biochemical components of CL153 SWD plants. In contrast, Icatu plants were highly tolerant to SWD, with minor, if any, negative impacts on the potential photosynthetic functioning and components (e.g., Amax, Fv/Fm, electron carriers, photosystems (PSs) and ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) activities). Besides, drought-stressed Icatu plants displayed increased abundance of a large set of proteins associated with the photosynthetic apparatus (PSs, light-harvesting complexes, cyclic electron flow, RuBisCO activase) regardless of [CO2]. Single eCO2 did not promote stomatal and photosynthetic down-regulation in both genotypes. Instead, eCO2 increased photosynthetic performance, moderately reinforced photochemical (PSs activity, electron carriers) and biochemical (RuBisCO, ribulose-5-phosphate kinase) components, whereas photoprotective mechanisms and protein abundance remained mostly unaffected. In both genotypes, under MWD, eCO2 superimposition delayed stress severity and promoted photosynthetic functioning with lower energy dissipation and PSII impacts, whereas stomatal closure was decoupled from increases in ABA. In SWD plants, most impacts on the photosynthetic performance were reduced by eCO2, especially in the moderately drought affected CL153 genotype, although maintaining RuBisCO as the most sensitive component, deserving special breeder's attention to improve coffee sustainability under future climate scenarios.
Collapse
Affiliation(s)
- José N Semedo
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras 2784-505, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Ana P Rodrigues
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| | - Fernando C Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Isabel P Pais
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras 2784-505, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Isabel Marques
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| | - Duarte Gouveia
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze F-F-30200, France
| | - Jean Armengaud
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze F-F-30200, France
| | - Maria J Silva
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| | - Sónia Martins
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, Lisboa 1959-007, Portugal
| | - Magda C Semedo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, Lisboa 1959-007, Portugal
| | - Danielly Dubberstein
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Departamento de Ciências Agrárias e Biológicas (DCAB), Centro Universitário do Norte do Espírito Santo (CEUNES), Universidade Federal Espírito Santo (UFES), Rod. BR 101 Norte, Km. 60, Bairro Litorâneo, São Mateu-ES, CEP 29932-540, Brazil
| | - Fábio L Partelli
- Departamento de Ciências Agrárias e Biológicas (DCAB), Centro Universitário do Norte do Espírito Santo (CEUNES), Universidade Federal Espírito Santo (UFES), Rod. BR 101 Norte, Km. 60, Bairro Litorâneo, São Mateu-ES, CEP 29932-540, Brazil
| | - Fernando H Reboredo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Paula Scotti-Campos
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras 2784-505, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Ana I Ribeiro-Barros
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa, Viçosa, MG 36570-900, Brazil
| | - José C Ramalho
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| |
Collapse
|
27
|
Lauriks F, Salomón RL, Steppe K. Temporal variability in tree responses to elevated atmospheric CO 2. PLANT, CELL & ENVIRONMENT 2021; 44:1292-1310. [PMID: 33368341 DOI: 10.1111/pce.13986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
At leaf level, elevated atmospheric CO2 concentration (eCO2 ) results in stimulation of carbon net assimilation and reduction of stomatal conductance. However, a comprehensive understanding of the impact of eCO2 at larger temporal (seasonal and annual) and spatial (from leaf to whole-tree) scales is still lacking. Here, we review overall trends, magnitude and drivers of dynamic tree responses to eCO2 , including carbon and water relations at the leaf and the whole-tree level. Spring and early season leaf responses are most susceptible to eCO2 and are followed by a down-regulation towards the onset of autumn. At the whole-tree level, CO2 fertilization causes consistent biomass increments in young seedlings only, whereas mature trees show a variable response. Elevated CO2 -induced reductions in leaf stomatal conductance do not systematically translate into limitation of whole-tree transpiration due to the unpredictable response of canopy area. Reduction in the end-of-season carbon sink demand and water-limiting strategies are considered the main drivers of seasonal tree responses to eCO2 . These large temporal and spatial variabilities in tree responses to eCO2 highlight the risk of predicting tree behavior to eCO2 based on single leaf-level point measurements as they only reveal snapshots of the dynamic responses to eCO2 .
Collapse
Affiliation(s)
- Fran Lauriks
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Natural Resources and Systems, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
28
|
Zhao W, Yu X, Jiao C, Xu C, Liu Y, Wu G. Increased association between climate change and vegetation index variation promotes the coupling of dominant factors and vegetation growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144669. [PMID: 33429281 DOI: 10.1016/j.scitotenv.2020.144669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Vegetation productivity dynamics are closely related to climate change, and water availability determines vegetation growth in water-limited ecosystems. Nevertheless, how changes in the interactions between climatic factors and vegetation activity variation regulate the relationship between their trends remains unclear. The Normalized Difference Vegetation Index (NDVI) is an effective proxy of vegetation growth. First, we investigated the NDVI trends, and the results revealed a vegetation activity with weaker greening and greater spatial heterogeneity after an obvious land-cover breakpoint in 1999 compared with that before 1999 in northwest China. Notably, the Loess Plateau greatly led the greenness trends, but the Tibet Plateau showed mean browning after 1999, which implied that the coupling of climate change and vegetation trends varied with spatio-temporal changes. Subsequently, using the Geographical Detector Method (GDM), we quantified and compared the association between climate change and the interannual variability of NDVI in the two stages. Vegetation productivity variation is more closely related to changes in climatic factors after 1999 compared with that before 1999. Precipitation (PPT) and vapor pressure deficit (VPD) are the primary constraints to vegetation growth in both stages. Patterns in NDVI trend increases are consistent with those of increased PPT and decreased VPD and vice versa after 1999. However, the same patterns were not observed before 1999 because of the weak association between climate change and NDVI variation. This implicated a great significance of the association between climate change and changes in vegetation activity for the prediction of potential carbon sequestration due to the shift of dominant factors and their trends under future climate change.
Collapse
Affiliation(s)
- Wei Zhao
- Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiubo Yu
- Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Cuicui Jiao
- College of Economics, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Chengdong Xu
- Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yu Liu
- Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Genan Wu
- Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China; Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
29
|
Rakocevic M, Batista ER, Pazianotto RAA, Scholz MBS, Souza GAR, Campostrini E, Ramalho JC. Leaf gas exchange and bean quality fluctuations over the whole canopy vertical profile of Arabic coffee cultivated under elevated CO 2. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:469-482. [PMID: 33423738 DOI: 10.1071/fp20298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Leaves in different positions respond differently to dynamic fluctuations in light availability, temperature and to multiple environmental stresses. The current hypothesis states that elevated atmospheric CO2 (e[CO2]) can compensate for the negative effects of water scarcity regarding leaf gas exchanges and coffee bean quality traits over the canopy vertical profile, in interactions with light and temperature microclimate during the two final stages of berry development. Responses of Coffea arabica L. were observed in the 5th year of a free air CO2 enrichment experiment (FACE) under water-limited rainfed conditions. The light dependent leaf photosynthesis curves (A/PAR) were modelled for leaves sampled from vertical profile divided into four 50-cm thick layers. e[CO2] significantly increased gross photosynthesis (AmaxGross), the apparent quantum yield efficiency, light compensation point, light saturation point (LSP) and dark respiration rate (Rd). As a specific stage response, considering berry ripening, all parameters calculated from A/PAR were insensitive to leaf position over the vertical profile. Lack of a progressive increase in AmaxGross and LSP was observed over the whole canopy profile in both stages, especially in the two lowest layers, indicating leaf plasticity to light. Negative correlation of Rd to leaf temperature (TL) was observed under e[CO2] in both stages. Under e[CO2], stomatal conductance was also negatively correlated with TL, reducing leaf transpiration and Rd even with increasing TL. This indicated coffee leaf acclimation to elevated temperatures under e[CO2] and water restriction. The e[CO2] attenuation occurred under water restriction, especially in A and water use efficiency, in both stages, with the exception of the lowest two layers. Under e[CO2], coffee produced berries in moderate- and high light level layers, with homogeneous distribution among them, contrasted to the heterogeneous distribution under actual CO2. e[CO2] led to increased caffeine content in the highest layer, with reduction of chlorogenic acid and lipids under moderate light and to raised levels of sugar in the shaded low layer. The ability of coffee to respond to e[CO2] under limited soil water was expressed through the integrated individual leaf capacities to use the available light and water, resulting in final plant investments in new reproductive structures in moderate and high light level layers.
Collapse
Affiliation(s)
- Miroslava Rakocevic
- Northern Rio de Janeiro State University - UENF, Plant Physiology Lab, Av. Alberto Lamego 2000, 28013-602 Campos dos Goytacazes-RJ, Brazil; and Embrapa Meio Ambiente, Rodovia SP 340 km 127.5, 13820-000 Jaguariúna-SP, Brazil; and Corresponding author.
| | - Eunice R Batista
- Embrapa Meio Ambiente, Rodovia SP 340 km 127.5, 13820-000 Jaguariúna-SP, Brazil
| | | | - Maria B S Scholz
- IAPAR, Department of Ecophysiology, Rodovia Celso Garcia Cid, km 375, PO Box 10030, 86047-902 Londrina-PR, Brazil
| | - Guilherme A R Souza
- Northern Rio de Janeiro State University - UENF, Plant Physiology Lab, Av. Alberto Lamego 2000, 28013-602 Campos dos Goytacazes-RJ, Brazil
| | - Eliemar Campostrini
- Northern Rio de Janeiro State University - UENF, Plant Physiology Lab, Av. Alberto Lamego 2000, 28013-602 Campos dos Goytacazes-RJ, Brazil
| | - José C Ramalho
- University of Lisbon, School of Agriculture, Plant Stress and Biodiversity, Forest Research Center, 2784-505 Oeiras, Portugal; and Universidade NOVA de Lisboa, Faculdade de Ciências e Tecnologia, GeoBioTec, 2829-516 Caparica, Portugal
| |
Collapse
|
30
|
Riparian Area Changes in Greenness and Water Use on the Lower Colorado River in the USA from 2000 to 2020. REMOTE SENSING 2021. [DOI: 10.3390/rs13071332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Declines in riparian ecosystem greenness and water use have been observed in the delta of the Lower Colorado River (LCR) since 2000. The purpose of our case study was to measure these metrics on the U.S. side of the border between Hoover and Morelos Dams to see if declining greenness was unique to the portion of the river in Mexico. In this case study, five riparian reaches of the LCR from Hoover to Morelos Dam since 2000 were studied to evaluate trends in riparian ecosystem health. We measure these riparian woodlands using remotely sensed measurements of the two-band Enhanced Vegetation Index (EVI2; a proxy for greenness); daily evapotranspiration (ET; mmd−1) using EVI2 (ET(EVI2)); and an annualized ET based on EVI2, the Phenology Assessment Metric (PAM ET), an annualized ET using Landsat time-series. A key finding is that riparian health and its water use has been in decline since 2000 on the U.S. portion of the LCR, depicting a loss of green vegetation over the last two decades. EVI2 results show a decline of −13.83%, while average daily ET(EVI2) between the first and last decade had a decrease of over 1 mmd−1 (−27.30%) and the respective average PAM ET losses were 170.91 mmyr−1 (−17.95%). The difference between the first and last five-year periods, 2000–2005 and 2016–2020, showed the largest decrease in daily ET(EVI) of 1.24 mmd−1 (−32.61%). These declines come from a loss in healthy, green, riparian plant-cover, not a change in plant water use efficiency nor efficient use of managed water resources. Our results suggest further deterioration of biodiversity, wildlife habitat and other key ecosystem services on the U.S. portion of the LCR.
Collapse
|
31
|
Gattmann M, Birami B, Nadal Sala D, Ruehr NK. Dying by drying: Timing of physiological stress thresholds related to tree death is not significantly altered by highly elevated CO 2. PLANT, CELL & ENVIRONMENT 2021; 44:356-370. [PMID: 33150582 DOI: 10.1111/pce.13937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/13/2020] [Indexed: 05/03/2023]
Abstract
Drought-induced tree mortality is expected to occur more frequently under predicted climate change. However, the extent of a possibly mitigating effect of simultaneously rising atmospheric [CO2 ] on stress thresholds leading to tree death is not fully understood, yet. Here, we studied the drought response, the time until critical stress thresholds were reached and mortality occurrence of Pinus halepensis (Miller). In order to observe a large potential benefit from eCO2 , the seedlings were grown with ample of water and nutrient supply under either highly elevated [CO2 ] (eCO2 , c. 936 ppm) or ambient (aCO2 , c. 407 ppm) during 2 years. The subsequent exposure to a fast or a slow lethal drought was monitored using whole-tree gas exchange chambers, measured leaf water potential and non-structural carbohydrates. Using logistic regressions to derive probabilities for physiological parameters to reach critical drought stress thresholds, indicated a longer period for halving needle starch storage under eCO2 than aCO2 . Stomatal closure, turgor loss, the duration until the daily tree C balance turned negative, leaf water potential at thresholds and time-of-death were unaffected by eCO2 . Overall, our study provides for the first-time insights into the chronological interplay of physiological drought thresholds under long-term acclimation to elevated [CO2 ].
Collapse
Affiliation(s)
- Marielle Gattmann
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research, Karlsruhe Institute of Technology KIT, Garmisch-Partenkirchen, Germany
| | - Benjamin Birami
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research, Karlsruhe Institute of Technology KIT, Garmisch-Partenkirchen, Germany
| | - Daniel Nadal Sala
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research, Karlsruhe Institute of Technology KIT, Garmisch-Partenkirchen, Germany
| | - Nadine Katrin Ruehr
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research, Karlsruhe Institute of Technology KIT, Garmisch-Partenkirchen, Germany
| |
Collapse
|
32
|
Gains or Losses in Forest Productivity under Climate Change? The Uncertainty of CO2 Fertilization and Climate Effects. CLIMATE 2020. [DOI: 10.3390/cli8120141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Global warming poses great challenges for forest managers regarding adaptation strategies and species choices. More frequent drought events and heat spells are expected to reduce growth and increase mortality. Extended growing seasons, warming and elevated CO2 (eCO2) can also positively affect forest productivity. We studied the growth, productivity and mortality of beech (Fagus sylvatica L.) and fir (Abies alba Mill.) in the Black Forest (Germany) under three climate change scenarios (representative concentration pathways (RCP): RCP2.6, RCP4.5, RCP8.5) using the detailed biogeochemical forest growth model GOTILWA+. Averaged over the entire simulation period, both species showed productivity losses in RCP2.6 (16–20%) and in RCP4.5 (6%), but productivity gains in RCP8.5 (11–17%). However, all three scenarios had a tipping point (between 2035–2060) when initial gains in net primary productivity (NPP) (6–29%) eventually turned into losses (1–26%). With eCO2 switched off, the losses in NPP were 26–51% in RCP2.6, 36–45% in RCP4.5 and 33–71% in RCP8.5. Improved water-use efficiency dampened drought effects on NPP between 4 and 5%. Tree mortality increased, but without notably affecting forest productivity. Concluding, cultivation of beech and fir may still be possible in the study region, although severe productivity losses can be expected in the coming decades, which will strongly depend on the dampening CO2 fertilization effect.
Collapse
|
33
|
Indications for a Central Role of Hexokinase Activity in Natural Variation of Heat Acclimation in Arabidopsis thaliana. PLANTS 2020; 9:plants9070819. [PMID: 32610673 PMCID: PMC7411702 DOI: 10.3390/plants9070819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 01/06/2023]
Abstract
Diurnal and seasonal changes of abiotic environmental factors shape plant performance and distribution. Changes of growth temperature and light intensity may vary significantly on a diurnal, but also on a weekly or seasonal scale. Hence, acclimation to a changing temperature and light regime is essential for plant survival and propagation. In the present study, we analyzed photosynthetic CO2 assimilation and metabolic regulation of the central carbohydrate metabolism in two natural accessions of Arabidopsis thaliana that originate from north western Russia and south Italy during exposure to heat and a combination of heat and high light. Our findings indicate that it is hardly possible to predict photosynthetic capacities under combined stress from single stress experiments. Further, capacities of hexose phosphorylation were found to be significantly lower in the Italian than in the Russian accession, which could explain an inverted sucrose-to-hexose ratio. Together with the finding of significantly stronger accumulation of anthocyanins under heat/high light, these observations indicate a central role of hexokinase activity in the stabilization of photosynthesis and carbohydrate metabolism during environmental changes.
Collapse
|
34
|
|