1
|
Guo JS, Barnes ML, Smith WK, Anderegg WRL, Kannenberg SA. Dynamic regulation of water potential in Juniperus osteosperma mediates ecosystem carbon fluxes. THE NEW PHYTOLOGIST 2024; 243:98-110. [PMID: 38725410 DOI: 10.1111/nph.19805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/14/2024] [Indexed: 06/07/2024]
Abstract
Some plants exhibit dynamic hydraulic regulation, in which the strictness of hydraulic regulation (i.e. iso/anisohydry) changes in response to environmental conditions. However, the environmental controls over iso/anisohydry and the implications of flexible hydraulic regulation for plant productivity remain unknown. In Juniperus osteosperma, a drought-resistant dryland conifer, we collected a 5-month growing season time series of in situ, high temporal-resolution plant water potential ( Ψ ) and stand gross primary productivity (GPP). We quantified the stringency of hydraulic regulation associated with environmental covariates and evaluated how predawn water potential contributes to empirically predicting carbon uptake. Juniperus osteosperma showed less stringent hydraulic regulation (more anisohydric) after monsoon precipitation pulses, when soil moisture and atmospheric demand were high, and corresponded with GPP pulses. Predawn water potential matched the timing of GPP fluxes and improved estimates of GPP more strongly than soil and/or atmospheric moisture, notably resolving GPP underestimation before vegetation green-up. Flexible hydraulic regulation appears to allow J. osteosperma to prolong soil water extraction and, therefore, the period of high carbon uptake following monsoon precipitation pulses. Water potential and its dynamic regulation may account for why process-based and empirical models commonly underestimate the magnitude and temporal variability of dryland GPP.
Collapse
Affiliation(s)
- Jessica S Guo
- Arizona Experiment Station, University of Arizona, Tucson, AZ, 85721, USA
| | - Mallory L Barnes
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, USA
| | - William K Smith
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
| | - William R L Anderegg
- School of Biological Sciences and Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, UT, 84112, USA
| | - Steven A Kannenberg
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 805023, USA
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
2
|
Sun M, Li X, Xu H, Wang K, Anniwaer N, Hong S. Drought thresholds that impact vegetation reveal the divergent responses of vegetation growth to drought across China. GLOBAL CHANGE BIOLOGY 2024; 30:e16998. [PMID: 37899690 DOI: 10.1111/gcb.16998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023]
Abstract
Identifying droughts and accurately evaluating drought impacts on vegetation growth are crucial to understanding the terrestrial carbon balance across China. However, few studies have identified the critical drought thresholds that impact China's vegetation growth, leading to large uncertainty in assessing the ecological consequences of droughts. In this study, we utilize gridded surface soil moisture data and satellite-observed normalized difference vegetation index (NDVI) to assess vegetation response to droughts in China during 2001-2018. Based on the nonlinear relationship between changing drought stress and the coincident anomalies of NDVI during the growing season, we derive the spatial patterns of satellite-based drought thresholds (T SM ) that impact vegetation growth in China via a framework for detecting drought thresholds combining the methods of feature extraction, coincidence analysis, and piecewise linear regression. The T SM values represent percentile-based drought threshold levels, with smaller T SM values corresponding to more negative anomalies of soil moisture. On average, T SM is at the 8.7th percentile and detectable in 64.4% of China's vegetated lands, with lower values in North China and Jianghan Plain and higher values in the Inner Mongolia Plateau. Furthermore, T SM for forests is commonly lower than that for grasslands. We also find that agricultural irrigation modifies the drought thresholds for croplands in the Sichuan Basin. For future projections, Earth System Models predict that more regions in China will face an increasing risk for ecological drought, and the Hexi Corridor-Hetao Plain and Shandong Peninsula will become hotspots of ecological drought. This study has important implications for accurately evaluating the impacts of drought on vegetation growth in China and provides a scientific reference for the effective ecomanagement of China's terrestrial ecosystems.
Collapse
Affiliation(s)
- Mingze Sun
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xiangyi Li
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Hao Xu
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Kai Wang
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Nazhakaiti Anniwaer
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Songbai Hong
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
Cushman KC, Albert LP, Norby RJ, Saatchi S. Innovations in plant science from integrative remote sensing research: an introduction to a Virtual Issue. THE NEW PHYTOLOGIST 2023; 240:1707-1711. [PMID: 37915249 DOI: 10.1111/nph.19237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 11/03/2023]
Abstract
This article is an Editorial to the Virtual issue on ‘Remote sensing’ that includes the following papers Chavana‐Bryant et al. (2017), Coupel‐Ledru et al. (2022), Cushman & Machado (2020), Disney (2019), D'Odorico et al. (2020), Dong et al. (2022), Fischer et al. (2019), Gamon et al. (2023), Gu et al. (2019), Guillemot et al. (2020), Jucker (2021), Koh et al. (2022), Konings et al. (2019), Kothari et al. (2023), Martini et al. (2022), Richardson (2019), Santini et al. (2021), Schimel et al. (2019), Serbin et al. (2019), Smith et al. (2019, 2020), Still et al. (2021), Stovall et al. (2021), Wang et al. (2020), Wong et al. (2020), Wu et al. (2021), Wu et al. (2017), Wu et al. (2018), Wu et al. (2019), Xu et al. (2021), Yan et al. (2021). Access the Virtual Issue at www.newphytologist.com/virtualissues.
Collapse
Affiliation(s)
- K C Cushman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Loren P Albert
- College of Forestry, Oregon State University, Corvallis, OR, 97331, USA
| | - Richard J Norby
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sassan Saatchi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| |
Collapse
|
4
|
Li W, Pacheco-Labrador J, Migliavacca M, Miralles D, Hoek van Dijke A, Reichstein M, Forkel M, Zhang W, Frankenberg C, Panwar A, Zhang Q, Weber U, Gentine P, Orth R. Widespread and complex drought effects on vegetation physiology inferred from space. Nat Commun 2023; 14:4640. [PMID: 37582763 PMCID: PMC10427636 DOI: 10.1038/s41467-023-40226-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
The response of vegetation physiology to drought at large spatial scales is poorly understood due to a lack of direct observations. Here, we study vegetation drought responses related to photosynthesis, evaporation, and vegetation water content using remotely sensed data, and we isolate physiological responses using a machine learning technique. We find that vegetation functional decreases are largely driven by the downregulation of vegetation physiology such as stomatal conductance and light use efficiency, with the strongest downregulation in water-limited regions. Vegetation physiological decreases in wet regions also result in a discrepancy between functional and structural changes under severe drought. We find similar patterns of physiological drought response using simulations from a soil-plant-atmosphere continuum model coupled with a radiative transfer model. Observation-derived vegetation physiological responses to drought across space are mainly controlled by aridity and additionally modulated by abnormal hydro-meteorological conditions and vegetation types. Hence, isolating and quantifying vegetation physiological responses to drought enables a better understanding of ecosystem biogeochemical and biophysical feedback in modulating climate change.
Collapse
Affiliation(s)
- Wantong Li
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.
| | - Javier Pacheco-Labrador
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | | | - Diego Miralles
- Hydro-Climate Extremes Lab (H-CEL), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anne Hoek van Dijke
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Markus Reichstein
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
- Integrative Center for Biodiversity Research (iDIV), Leipzig, Germany
| | - Matthias Forkel
- Institute of Photogrammetry and Remote Sensing, Technische Universität Dresden, Dresden, Germany
| | - Weijie Zhang
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Christian Frankenberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Annu Panwar
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Qian Zhang
- School of Geomatics Science and Technology, Nanjing Tech University, Nanjing, China
| | - Ulrich Weber
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, 10027, USA
| | - Rene Orth
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
5
|
Xu H, Zhang Z, Oren R, Wu X. Hyposensitive canopy conductance renders ecosystems vulnerable to meteorological droughts. GLOBAL CHANGE BIOLOGY 2023; 29:1890-1904. [PMID: 36655411 DOI: 10.1111/gcb.16607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 05/28/2023]
Abstract
Increased meteorological drought intensity with rising atmospheric demand for water (hereafter vapor pressure deficit [VPD]) increases the risk of tree mortality and ecosystem dysfunction worldwide. Ecosystem-scale water-use strategy is increasingly recognized as a key factor in regulating drought-related ecosystem responses. However, the link between water-use strategy and ecosystem vulnerability to meteorological droughts is poorly established. Using the global flux observations, historic hydroclimatic data, remote-sensing products, and plant functional-trait archive, we identified potentially vulnerable ecosystems, examining how ecosystem water-use strategy, quantified by the percentage bias (δ) of the empirical canopy conductance sensitivity to VPD relative to the theoretical value, mediated ecosystem responses to droughts. We found that prevailing soil water availability substantially impacted δ in dryland regions where ecosystems with insufficient soil moisture usually showed conservative water-use strategy, while ecosystems in humid regions exhibited more pronounced climatic adaptability. Hyposensitive and hypersensitive ecosystems, classified based on δ falling below or above the theoretical sensitivity, respectively, achieved similar net ecosystem productivity during droughts, employing different structural and functional strategies. However, hyposensitive ecosystems, risking their hydraulic system with a permissive water-use strategy, were unable to recover from droughts as quickly as hypersensitive ones. Our findings highlight that processed-based models predicting current functions and future performance of vegetation should account for the greater vulnerability of hyposensitive ecosystems to intensifying atmospheric and soil droughts.
Collapse
Affiliation(s)
- Hang Xu
- Jixian National Forest Ecosystem Observation and Research Station, CNERN, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of Soil and Water Conservation and Desertification Combating, State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Zhiqiang Zhang
- Jixian National Forest Ecosystem Observation and Research Station, CNERN, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of Soil and Water Conservation and Desertification Combating, State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Ram Oren
- Nicholas School of the Environment and Pratt School of Engineering, Duke University, North Carolina, Durham, USA
- Department of Forest Science, University of Helsinki, Helsinki, Finland
| | - Xiaoyun Wu
- Jixian National Forest Ecosystem Observation and Research Station, CNERN, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of Soil and Water Conservation and Desertification Combating, State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
6
|
Qiu J, Crow WT, Wang S, Dong J, Li Y, Garcia M, Shangguan W. Microwave-based soil moisture improves estimates of vegetation response to drought in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157535. [PMID: 35872188 DOI: 10.1016/j.scitotenv.2022.157535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The increased frequency and severity of drought has heightened concerns over the risk of hydraulic vegetative stress and the premature mortality of ecosystems globally. Unfortunately, most land surface models (LSMs) continue to underestimate ecosystem resilience to drought - which degrades the credibility of model-predicted ecohydrological responses to climate change. This study investigates the response of vegetation gross productivity to water-stress conditions using microwave-based vegetation optical depth (VOD) and soil moisture retrievals. Based on the estimated isohydric/anisohydric spectrum, we find that vegetation at isohydric state exhibits a larger decrease in gross primary productivity and higher water use efficiency than anisohydric vegetation due to their more rigorous stomatal control and higher tolerance of carbon starvation risk. In addition, the introduction of microwave soil moisture improves the accuracy of isohydricity/anisohydricity estimates compared to those obtained using microwave VOD alone (i.e., increases their Spearman rank correlation versus the benchmark of Global Biodiversity Information Facility dataset from 0.12 to 0.63). Results of this study provide clear justification for the use of microwave-based soil moisture retrievals to enhance stomatal conductance parameterization within LSMs.
Collapse
Affiliation(s)
- Jianxiu Qiu
- Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China.
| | - Wade T Crow
- USDA ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD 20705, USA
| | - Sheng Wang
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jianzhi Dong
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yan Li
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing 100875, China
| | - Monica Garcia
- Research Centre for the Management of Agricultural and Environmental Risks, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28015, Spain
| | - Wei Shangguan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Hu Y, Ding R, Kang S, Lana M. The trade-offs between resistance and resilience of forage stay robust with varied growth potentials under different soil water and salt stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157421. [PMID: 35850343 DOI: 10.1016/j.scitotenv.2022.157421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Water shortage and soil salinization are important factors restricting crop production worldwide. To conduct accurate yield prediction and reasonable crop layout, more attention should be paid to the performances of crop resistance and resilience under water and salt stress and their trade-off relationships. Here, we set different water (full irrigation, W0; moderate deficit irrigation, W1; and severe deficit irrigation, W2) and salt (S0, S1, S2, S3, S4, S5, and S6, representing 0 ‰, 1 ‰, 2 ‰, 3 ‰, 4 ‰, 5 ‰, and 6 ‰ salt in soil) treatments. Together with relevant studies, we analyzed the performances of forage resistance (Rt) and resilience (Rs) and their relationships under varied water and salt stress. The results indicated that logarithmic Rt (lg(Rt), the same as lg(Rs)) and the distribution of lg(Rs) were affected by water and salt stress, however, the relationships of lg(Rs)-lg(Rt) stayed stable with the constant slopes (k) and declined intercepts (m) as stress intensified. The physiological mechanisms and trade-offs for fixed species remained robust while the growth potentials varied under stress, which were closely related to stomatal regulations. Forage with larger |k| was suitable for fully irrigated regions to achieve higher yields, while regions with detrimental water and salt conditions should select cultivars with smaller |k| to ensure production. This study laid the groundwork for the estimation of the perennial forage adaptation and stability, and the method of long-term yield prediction and cultivar management under soil water and salt stress.
Collapse
Affiliation(s)
- Yanzhe Hu
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei 733009, China
| | - Risheng Ding
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei 733009, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei 733009, China.
| | - Marcos Lana
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| |
Collapse
|
8
|
Cory ST, Smith WK, Anderson TM. First-year Acacia seedlings are anisohydric "water-spenders" but differ in their rates of water use. AMERICAN JOURNAL OF BOTANY 2022; 109:1251-1261. [PMID: 35791878 PMCID: PMC9544296 DOI: 10.1002/ajb2.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
PREMISE First-year seedlings (FYS) of tree species may be a critical demographic bottleneck in semi-arid, seasonally dry ecosystems such as savannas. Given the highly variable water availability and potentially strong FYS-grass competition for water, FYS water-use strategies may play a crucial role in FYS establishment in savannas and, ultimately, in tree-grass competition and coexistence. METHODS We examined drought responses in FYS of two tree species that are dominant on opposite ends of an aridity gradient in Serengeti, Acacia (=Vachellia) tortilis and A. robusta. In a glasshouse experiment, gas exchange and whole-plant hydraulic conductance (Kplant ) were measured as soil water potential (Ψsoil ) declined. Trajectory of the Ψleaf /Ψsoil relationship during drought elucidated the degree of iso/anisohydry. RESULTS Both species were strongly anisohydric "water-spenders," allowing rapid wet-season C gain after pulses of moisture availability. Despite being equally vulnerable to declines in Kplant under severe drought, they differed in their rates of water use. Acacia tortilis, which occurs in the more arid regions, initially had greater Kmax , transpiration (E), and photosynthesis (Anet ) than A. robusta. CONCLUSIONS This work demonstrates an important mechanism of FYS establishment in savannas: Rather than investing in drought tolerance, savanna FYS maximize gas exchange during wet periods at the expense of desiccation during dry seasons. FYS establishment appears dependent on high C uptake during the pulses of water availability that characterize habitats dominated by these species. This study increases our understanding of species-scale plant ecophysiology and ecosystem-scale patterns of tree-grass coexistence.
Collapse
Affiliation(s)
- Scott T. Cory
- Department of BiologyWake Forest University1834 Wake Forest RoadWinston‐SalemNC27106USA
| | - William K. Smith
- Department of BiologyWake Forest University1834 Wake Forest RoadWinston‐SalemNC27106USA
| | - T. Michael Anderson
- Department of BiologyWake Forest University1834 Wake Forest RoadWinston‐SalemNC27106USA
| |
Collapse
|
9
|
Haberstroh S, Lobo‐do‐Vale R, Caldeira MC, Dubbert M, Cuntz M, Werner C. Plant invasion modifies isohydricity in Mediterranean tree species. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Simon Haberstroh
- Ecosystem Physiology, Faculty of Environment and Natural Resources University Freiburg 79110 Freiburg Germany
- Forest Research Centre School of Agriculture University of Lisbon, 1349‐017 Lisbon Portugal
| | - Raquel Lobo‐do‐Vale
- Forest Research Centre School of Agriculture University of Lisbon, 1349‐017 Lisbon Portugal
| | - Maria C. Caldeira
- Forest Research Centre School of Agriculture University of Lisbon, 1349‐017 Lisbon Portugal
| | - Maren Dubbert
- Ecosystem Physiology, Faculty of Environment and Natural Resources University Freiburg 79110 Freiburg Germany
- Leibniz Centre for Agricultural Landscape Research (ZALF), Isotope Biogeochemistry and Gas Fluxes, 15374 Müncheberg Germany
| | - Matthias Cuntz
- Université de Lorraine AgroParisTech, INRAE, UMR Silva, 54000 Nancy France
| | - Christiane Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources University Freiburg 79110 Freiburg Germany
| |
Collapse
|
10
|
Guo JS, Bush SE, Hultine KR. Temporal variation in stomatal sensitivity to vapor pressure deficit in western riparian forests. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jessica S. Guo
- Arizona Experiment Station, College of Agriculture and Life Sciences University of Arizona Tucson, AZ 85721 USA
| | - Susan E. Bush
- Department of Biological Sciences University of Utah Salt Lake City, UT 84112 USA
| | - Kevin R. Hultine
- Department of Research, Conservation, and Collections, Desert Botanical Garden Phoenix, AZ 85008 USA
| |
Collapse
|
11
|
Li X, Xi B, Wu X, Choat B, Feng J, Jiang M, Tissue D. Unlocking Drought-Induced Tree Mortality: Physiological Mechanisms to Modeling. FRONTIERS IN PLANT SCIENCE 2022; 13:835921. [PMID: 35444681 PMCID: PMC9015645 DOI: 10.3389/fpls.2022.835921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Drought-related tree mortality has become a major concern worldwide due to its pronounced negative impacts on the functioning and sustainability of forest ecosystems. However, our ability to identify the species that are most vulnerable to drought, and to pinpoint the spatial and temporal patterns of mortality events, is still limited. Model is useful tools to capture the dynamics of vegetation at spatiotemporal scales, yet contemporary land surface models (LSMs) are often incapable of predicting the response of vegetation to environmental perturbations with sufficient accuracy, especially under stressful conditions such as drought. Significant progress has been made regarding the physiological mechanisms underpinning plant drought response in the past decade, and plant hydraulic dysfunction has emerged as a key determinant for tree death due to water shortage. The identification of pivotal physiological events and relevant plant traits may facilitate forecasting tree mortality through a mechanistic approach, with improved precision. In this review, we (1) summarize current understanding of physiological mechanisms leading to tree death, (2) describe the functionality of key hydraulic traits that are involved in the process of hydraulic dysfunction, and (3) outline their roles in improving the representation of hydraulic function in LSMs. We urge potential future research on detailed hydraulic processes under drought, pinpointing corresponding functional traits, as well as understanding traits variation across and within species, for a better representation of drought-induced tree mortality in models.
Collapse
Affiliation(s)
- Ximeng Li
- College of Life and Environmental Science, Minzu University of China, Beijing, China
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Benye Xi
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China
| | - Xiuchen Wu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Jinchao Feng
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Mingkai Jiang
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - David Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Global Centre for Land-based Innovation, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
12
|
Benson MC, Miniat CF, Oishi AC, Denham SO, Domec JC, Johnson DM, Missik JE, Phillips RP, Wood JD, Novick KA. The xylem of anisohydric Quercus alba L. is more vulnerable to embolism than isohydric codominants. PLANT, CELL & ENVIRONMENT 2022; 45:329-346. [PMID: 34902165 DOI: 10.1111/pce.14244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The coordination of plant leaf water potential (ΨL ) regulation and xylem vulnerability to embolism is fundamental for understanding the tradeoffs between carbon uptake and risk of hydraulic damage. There is a general consensus that trees with vulnerable xylem more conservatively regulate ΨL than plants with resistant xylem. We evaluated if this paradigm applied to three important eastern US temperate tree species, Quercus alba L., Acer saccharum Marsh. and Liriodendron tulipifera L., by synthesizing 1600 ΨL observations, 122 xylem embolism curves and xylem anatomical measurements across 10 forests spanning pronounced hydroclimatological gradients and ages. We found that, unexpectedly, the species with the most vulnerable xylem (Q. alba) regulated ΨL less strictly than the other species. This relationship was found across all sites, such that coordination among traits was largely unaffected by climate and stand age. Quercus species are perceived to be among the most drought tolerant temperate US forest species; however, our results suggest their relatively loose ΨL regulation in response to hydrologic stress occurs with a substantial hydraulic cost that may expose them to novel risks in a more drought-prone future.
Collapse
Affiliation(s)
- Michael C Benson
- O'Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Chelcy F Miniat
- USDA Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, Otto, North Carolina, USA
| | - Andrew C Oishi
- USDA Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, Otto, North Carolina, USA
| | - Sander O Denham
- O'Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Jean-Christophe Domec
- Bordeaux Sciences Agro, INRA UMR 1391 ISPA, Gradignan, France
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | - Justine E Missik
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Richard P Phillips
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Jeffrey D Wood
- University of Missouri, School of Natural Resources, Columbia, Missouri, USA
| | - Kimberly A Novick
- O'Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
13
|
Kannenberg SA, Guo JS, Novick KA, Anderegg WRL, Feng X, Kennedy D, Konings AG, Martínez‐Vilalta J, Matheny AM. Opportunities, challenges and pitfalls in characterizing plant water‐use strategies. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13945] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Jessica S. Guo
- Department of Geology and Geophysics University of Utah Salt Lake City UT USA
- Arizona Experiment Station, College of Agriculture and Life Sciences University of Arizona Tucson AZ USA
| | - Kimberly A. Novick
- O’Neill School of Public and Environmental Affairs Indiana University Bloomington IN USA
| | | | - Xue Feng
- Department of Civil, Environmental, and Geo‐Engineering University of Minnesota Minneapolis MN USA
- Saint Anthony Falls Laboratory University of Minnesota Minneapolis MN USA
| | | | | | - Jordi Martínez‐Vilalta
- CREAF, Bellaterra (Cerdanyola del Vallès) Catalonia Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès) Catalonia Spain
| | - Ashley M. Matheny
- Department of Geological Sciences Jackson School of Geosciences University of Texas Austin TX USA
| |
Collapse
|
14
|
Martínez-Vilalta J, Santiago LS, Poyatos R, Badiella L, de Cáceres M, Aranda I, Delzon S, Vilagrosa A, Mencuccini M. Towards a statistically robust determination of minimum water potential and hydraulic risk in plants. THE NEW PHYTOLOGIST 2021; 232:404-417. [PMID: 34153132 DOI: 10.1111/nph.17571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/14/2021] [Indexed: 05/12/2023]
Abstract
Minimum water potential (Ψmin ) is a key variable for characterizing dehydration tolerance and hydraulic safety margins (HSMs) in plants. Ψmin is usually estimated as the absolute minimum tissue Ψ experienced by a species, but this is problematic because sample extremes are affected by sample size and the underlying probability distribution. We compare alternative approaches to estimate Ψmin and assess the corresponding uncertainties and biases; propose statistically robust estimation methods based on extreme value theory (EVT); and assess the implications of our results for the characterization of hydraulic risk. Our results show that current estimates of Ψmin and HSMs are biased, as they are strongly affected by sample size. Because sampling effort is generally higher for species living in dry environments, the differences in current Ψmin estimates between these species and those living under milder conditions are partly artefactual. When this bias is corrected using EVT methods, resulting HSMs tend to increase substantially with resistance to embolism across species. Although data availability and representativeness remain the main challenges for proper determination of Ψmin , a closer look at Ψ distributions and the use of statistically robust methods to estimate Ψmin opens new ground for characterizing plant hydraulic risks.
Collapse
Affiliation(s)
- Jordi Martínez-Vilalta
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
| | - Louis S Santiago
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA, 92521, USA
| | - Rafael Poyatos
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
| | - Llorenç Badiella
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
| | - Miquel de Cáceres
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
- Joint Research Unit CTFC - AGROTECNIO, Solsona, 25280, Spain
| | - Ismael Aranda
- Centro de Investigación Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Carretera Coruña Km 7.5, Madrid, E-28040, Spain
| | | | - Alberto Vilagrosa
- CEAM Foundation, Joint Research Unit University of Alicante-CEAM, Dept Ecology, University of Alicante, Carr. de San Vicente del Raspeig, PO Box 99, Alicante, 03080, Spain
| | - Maurizio Mencuccini
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
15
|
Coupling Relationship of Leaf Economic and Hydraulic Traits of Alhagisparsifolia Shap. in a Hyper-Arid Desert Ecosystem. PLANTS 2021; 10:plants10091867. [PMID: 34579402 PMCID: PMC8465641 DOI: 10.3390/plants10091867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/03/2022]
Abstract
In this study, Alhagisparsifolia Shap. was used to test the hypothesis that leaf economic and hydraulic traits are coupled in plants in a hyper-arid region. Five economic traits and six hydraulic traits were examined to explore the relationship. Results showed that the stomatal density (SD) on both surfaces was coupled with maximum stomatal conductance to water vapor (gwmax) and leaf tissue density (TD). SD on adaxial surface (SDaba) was significantly positively related to vein density (VD) but negatively related to leaf thickness (LT) and stomatal length on adaxial surface (SLada). Nitrogen concentration based on mass (Nmass) was significantly negatively correlated with leaf mass per area (LMA), LT, and VD, whereas nitrogen concentration based on area (Narea) was significantly positively related to LMA and TD. Mean annual precipitation (MAP) contributed the most to the changes in LT and stomatal length (SL). Soil salt contributed the most to TD, SD, and gwmax. Soli nutrients influenced the most of LMA and VD. Mean annual temperature contributed the most to Nmass and Narea. In conclusion, the economics of leaves coupled with their hydraulic traits provides an economical and efficient strategy to adapt to the harsh environment in hyper-arid regions.
Collapse
|