1
|
Daru BH. Tracking hidden dimensions of plant biogeography from herbaria. THE NEW PHYTOLOGIST 2025. [PMID: 39953672 DOI: 10.1111/nph.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/08/2025] [Indexed: 02/17/2025]
Abstract
Plants are diverse, but investigating their ecology and evolution in nature across geographic and temporal scales to predict how species will respond to global change is challenging. With their geographic and temporal breadth, herbarium data provide physical evidence of the existence of a species in a place and time. The remarkable size of herbarium collections along with growing digitization efforts around the world and the possibility of extracting functional traits and geographic data from preserved plant specimens makes them invaluable resources for advancing our understanding of changing species distributions over time, functional biogeography, and conserving plant communities. Here, I synthesize core aspects of plant biogeography that can be gleaned from herbaria along changing distributions, attributes (functional biogeography), and conservation biogeography across the globe. I advocate for a collaborative, multisite, and multispecies research to harness the full potential of these collections while addressing the inherent challenges of using herbarium data for biogeography and macroecological investigations. Ultimately, these data present untapped resources and opportunities to enable predictions of plant species' responses to global change and inform effective conservation planning.
Collapse
Affiliation(s)
- Barnabas H Daru
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 94305, USA
| |
Collapse
|
2
|
Liu F, Liang Z, Ye J, Li J, Yang F, Li Z, Cui D, Yan L, Li B, Hu J. Conservation implications of climatically heterogeneous areas for species diversity in a biodiversity hotspot. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123275. [PMID: 39527878 DOI: 10.1016/j.jenvman.2024.123275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Climate heterogeneity is commonly associated with exceptionally high species richness, thus bolstering ecological resilience and maximizing long-term biodiversity benefits. However, few studies have been conducted to examine the implications of climatically heterogeneous areas (CHAs) for effective biodiversity conservation. In this study, we collected occurrence records of birds and vascular plants in a biodiversity hotspot in Yunnan, China, and delineated corresponding CHAs. The conservation effectiveness of CHAs for species diversity was demonstrated through a comparison of climate- and species-based prioritization schemes, incorporating surrogacy analysis and species representation. Despite significant spatial discrepancies with species-based conservation prioritization, we found that a prioritization scheme based on CHAs would effectively conserve more than 86.3% of Yunnan's birds and vascular plant species, regardless of spatial scale. The coverage of protected areas for priority conservation areas of two prioritization schemes is relatively low (<14.4%). Therefore, our study also underscores the significant conservation gaps for birds and vascular plants in Yunnan revealed by both prioritization schemes, with the latter emphasizing the crucial roles of mountainous regions, gorges, and particularly dry valleys along the Jinsha River and Yuanjiang River. These conservation gaps provide complementary and previously hidden potential conservation areas for the preservation of species diversity in Yunnan. Overall, our study demonstrates that incorporating CHAs into conservation prioritization represents a smart and effective approach for safeguarding species diversity, serving as a paradigm for integrating abiotic factors into conservation planning and providing valuable strategies to conserve species diversity in biodiversity hotspots.
Collapse
Affiliation(s)
- Feng Liu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Institute of Biodiversity, School of Ecology and Environmental Science and Southwest United Graduate School, Yunnan University, Kunming, Yunnan, 650504, China.
| | | | - Jin Ye
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Jie Li
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Feiling Yang
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Zuocheng Li
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Dongsheng Cui
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Lingyan Yan
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Bo Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Institute of Biodiversity, School of Ecology and Environmental Science and Southwest United Graduate School, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Jinming Hu
- Faculty of Geography, Yunnan Normal University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
3
|
Eckert I, Bruneau A, Metsger DA, Joly S, Dickinson TA, Pollock LJ. Herbarium collections remain essential in the age of community science. Nat Commun 2024; 15:7586. [PMID: 39217174 PMCID: PMC11366035 DOI: 10.1038/s41467-024-51899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The past decade has yielded more biodiversity observations from community science than the past century of traditional scientific collection. This rapid influx of data is promising for overcoming critical biodiversity data shortfalls, but we also have vast untapped resources held in undigitized natural history collections. Yet, the ability of these undigitized collections to fill data gaps, especially compared against the constant accumulation of community science data, remains unclear. Here, we compare how well community science (iNaturalist) observations and digitized herbarium specimens represent the diversity, distributions, and modeling needs of vascular plants in Canada. We find that, despite having only a third as many records, herbarium specimens capture more taxonomic, phylogenetic, and functional diversity and more efficiently capture species' environmental niches. As such, the digitization of Canada's 7.3M remaining specimens has the potential to more than quintuple our ability to model biodiversity. In contrast, it would require over 27M more iNaturalist observations to produce similar benefits. Our findings indicate that digitizing Earth's remaining herbarium specimens is likely an efficient, feasible, and potentially critical investment when it comes to improving our ability to predict and protect biodiversity into the future.
Collapse
Affiliation(s)
- Isaac Eckert
- Department of Biology, McGill University, Montréal, QC, Canada.
- Québec Centre for Biodiversity Science, Montréal, QC, Canada.
| | - Anne Bruneau
- Québec Centre for Biodiversity Science, Montréal, QC, Canada
- Institut de recherche en biologie végétale & Département de Sciences biologiques, Université de Montréal, Montréal, QC, Canada
| | - Deborah A Metsger
- Green Plant Herbarium, Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Simon Joly
- Institut de recherche en biologie végétale & Département de Sciences biologiques, Université de Montréal, Montréal, QC, Canada
- Montreal Botanical Garden, Montréal, QC, Canada
| | - T A Dickinson
- Green Plant Herbarium, Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Laura J Pollock
- Department of Biology, McGill University, Montréal, QC, Canada
- Québec Centre for Biodiversity Science, Montréal, QC, Canada
| |
Collapse
|
4
|
Petipas RH, Antoch AA, Eaker AA, Kehlet-Delgado H, Friesen ML. Back to the future: Using herbarium specimens to isolate nodule-associated bacteria. Ecol Evol 2024; 14:e11719. [PMID: 39011130 PMCID: PMC11246978 DOI: 10.1002/ece3.11719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Herbarium specimens are increasingly being used as sources of information to understand the ecology and evolution of plants and their associated microbes. Most studies have used specimens as a source of genetic material using culture-independent approaches. We demonstrate that herbarium specimens can also be used to culture nodule-associated bacteria, opening the possibility of using specimens to understand plant-microbe interactions at new spatiotemporal scales. We used historic and contemporary nodules of a common legume, Medicago lupulina, to create a culture collection. We were able to recover historic bacteria in 15 genera from three specimens (collected in 1950, 2004, and 2015). This work is the first of its kind to isolate historic bacteria from herbarium specimens. Future work should include inoculating plants with historic strains to see if they produce nodules and if they affect plant phenotype and fitness. Although we were unable to recover any Ensifer, the main symbiont of Medicago lupulina, we recovered some other potential nodulating species, as well as many putative growth-promoting bacteria.
Collapse
Affiliation(s)
- Renee H Petipas
- Department of Plant Pathology Washington State University Pullman Washington USA
| | - Amanda A Antoch
- Department of Plant Pathology Washington State University Pullman Washington USA
- Department of Microbiology University of Washington Seattle Washington USA
| | - Ashton A Eaker
- Department of Plant Pathology Washington State University Pullman Washington USA
| | - Hanna Kehlet-Delgado
- Department of Plant Pathology Washington State University Pullman Washington USA
| | - Maren L Friesen
- Department of Plant Pathology Washington State University Pullman Washington USA
| |
Collapse
|
5
|
Wróbel A, Klichowska E, Nobis M. Hybrids as mirrors of the past: genomic footprints reveal spatio-temporal dynamics and extinction risk of alpine extremophytes in the mountains of Central Asia. FRONTIERS IN PLANT SCIENCE 2024; 15:1369732. [PMID: 38693932 PMCID: PMC11061500 DOI: 10.3389/fpls.2024.1369732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
Hybridization is one of the key processes shaping lineage diversification, particularly in regions that experienced strong climate oscillations. The alpine biome with its rich history of glacial-interglacial cycles and complex patterns of species distribution shifts offers an excellent system to investigate the impact of gene flow on population dynamics and speciation, important issues for evolutionary biology and biodiversity conservation. In this study, we combined genomic data (DArTseq), chloroplast markers, and morphology to examine phylogenetic relationships and the permeability of species boundaries and their evolutionary outcomes among the alpine extremophilic species of Puccinellia (Poaceae) in the Pamir Mountains, a part of the Mountains of Central Asia biodiversity hotspot. We determined the occurrence of interspecific hybrids between P. himalaica and P. pamirica, which demonstrated almost symmetric ancestry from their parental species and did not show signals of introgression. According to our integrative revision, the natural hybrids between P. himalaica and P. pamirica should be classified as Puccinellia ×vachanica (pro species). Using approximate Bayesian computation for population history inference, we uncovered that P. himalaica hybridized with P. pamirica independently in multiple localities over the Holocene. Hybrids inherited the fine-scale genetic structure from their parental species, which developed these patterns earlier, during the Late Pleistocene. Hybridization had different consequences for the involved parental lineages, likely playing an important role in a continuing decline of P. himalaica in the Pamir Mountains over the Holocene. Our results show that P. himalaica should be considered a critically endangered species in the Pamir Mountains and could also be retreating across its entire range of distribution in High Mountain Asia. Using a comparative phylogeographic framework, we revealed the risk of extinction of a cold-adapted alpine species in a global biodiversity hotspot. This study highlights that genomics could unravel diversity trends under climate change and provides valuable evidence for conservation management.
Collapse
Affiliation(s)
- Anna Wróbel
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Ewelina Klichowska
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
6
|
Mandrioli M. From Dormant Collections to Repositories for the Study of Habitat Changes: The Importance of Herbaria in Modern Life Sciences. Life (Basel) 2023; 13:2310. [PMID: 38137911 PMCID: PMC10744909 DOI: 10.3390/life13122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
In recent decades, the advent of new technologies for massive and automatized digitization, together with the availability of new methods for DNA sequencing, strongly increased the interest and relevance of herbarium collections for the study of plant biodiversity and evolution. These new approaches prompted new projects aimed at the creation of a large dataset of molecular and phenological data. This review discusses new challenges and opportunities for herbaria in the context of the numerous national projects that are currently ongoing, prompting the study of herbarium specimens for the understanding of biodiversity loss and habitat shifts as a consequence of climate changes and habitat destruction due to human activities. With regard to this, the National Biodiversity Future Center (active in Italy since 2022) started a large-scale digitization project of the Herbarium Centrale Italicum in Florence (Italy), which is the most important Italian botanical collection, consisting of more than 4 million samples at present.
Collapse
Affiliation(s)
- Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| |
Collapse
|
7
|
Roma-Marzio F, Maccioni S, Dolci D, Astuti G, Magrini N, Pierotti F, Vangelisti R, Amadei L, Peruzzi L. Digitization of the historical Herbarium of Michele Guadagno at Pisa (PI-GUAD). PHYTOKEYS 2023; 234:107-125. [PMID: 37868742 PMCID: PMC10587777 DOI: 10.3897/phytokeys.234.109464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
The herbarium digitization process is an essential first step in transforming the vast amount of data associated with a physical specimen into flexible digital data formats. In this framework, the Herbarium of the University of Pisa (international code PI), at the end of 2018 started a process of digitization focusing on one of its most relevant collections: the Herbarium of Michele Guadagno (1878-1930). This scholar studied flora and vegetation of different areas of southern Italy, building a large herbarium including specimens collected by himself, plus many specimens obtained through exchanges with Italian and foreign botanists. The Herbarium is composed by 547 packages of vascular plants. Metadata were entered into the online database Virtual Herbaria JACQ and mirrored into a personalized virtual Herbarium of the Botanic Museum. After the completion of the digitization process, the number of sheets preserved in the Herbarium amounts to 44,345. Besides Guadagno, who collected 42% of his specimens, a further 1,102 collectors are represented. Most specimens were collected in Europe (91%), but all the continents are represented. As expected, Italy is the most represented country (59%), followed by France, Spain, Germany, and Greece. The specimens cover a time span of 99 years, from 1830 to 1929, whereas the specimens collected by Guadagno range between 1889 and 1928. Furthermore, we traced 134 herbarium sheets associated with documents, among which 75 drawings handmade by Guadagno, 34 letters from various corresponding authors, 16 copies of publications, and 14 copies of published iconographies.
Collapse
Affiliation(s)
- Francesco Roma-Marzio
- Orto e Museo Botanico, Sistema Museale d’Ateneo, Università di Pisa, via Ghini 13, 56126 Pisa, ItalyUniversità di PisaPisaItaly
| | - Simonetta Maccioni
- Orto e Museo Botanico, Sistema Museale d’Ateneo, Università di Pisa, via Ghini 13, 56126 Pisa, ItalyUniversità di PisaPisaItaly
| | - David Dolci
- Orto e Museo Botanico, Sistema Museale d’Ateneo, Università di Pisa, via Ghini 13, 56126 Pisa, ItalyUniversità di PisaPisaItaly
| | - Giovanni Astuti
- Orto e Museo Botanico, Sistema Museale d’Ateneo, Università di Pisa, via Ghini 13, 56126 Pisa, ItalyUniversità di PisaPisaItaly
| | - Nicoletta Magrini
- Orto e Museo Botanico, Sistema Museale d’Ateneo, Università di Pisa, via Ghini 13, 56126 Pisa, ItalyUniversità di PisaPisaItaly
| | - Federica Pierotti
- Orto e Museo Botanico, Sistema Museale d’Ateneo, Università di Pisa, via Ghini 13, 56126 Pisa, ItalyUniversità di PisaPisaItaly
| | - Roberta Vangelisti
- Orto e Museo Botanico, Sistema Museale d’Ateneo, Università di Pisa, via Ghini 13, 56126 Pisa, ItalyUniversità di PisaPisaItaly
| | - Lucia Amadei
- Orto e Museo Botanico, Sistema Museale d’Ateneo, Università di Pisa, via Ghini 13, 56126 Pisa, ItalyUniversità di PisaPisaItaly
| | - Lorenzo Peruzzi
- Orto e Museo Botanico, Sistema Museale d’Ateneo, Università di Pisa, via Ghini 13, 56126 Pisa, ItalyUniversità di PisaPisaItaly
| |
Collapse
|
8
|
López-Tobar R, Herrera-Feijoo RJ, Mateo RG, García-Robredo F, Torres B. Botanical Collection Patterns and Conservation Categories of the Most Traded Timber Species from the Ecuadorian Amazon: The Role of Protected Areas. PLANTS (BASEL, SWITZERLAND) 2023; 12:3327. [PMID: 37765489 PMCID: PMC10536464 DOI: 10.3390/plants12183327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
The Ecuadorian Amazon is home to a rich biodiversity of woody plant species. Nonetheless, their conservation remains difficult, as some areas remain poorly explored and lack georeferenced records. Therefore, the current study aims predominantly to analyze the collection patterns of timber species in the Amazon lowlands of Ecuador and to evaluate the conservation coverage of these species in protected areas. Furthermore, we try to determine the conservation category of the species according to the criteria of the IUCN Red List. We identified that one third of the timber species in the study area was concentrated in three provinces due to historical botanical expeditions. However, a worrying 22.0% of the species had less than five records of presence, and 29.9% had less than ten records, indicating a possible underestimation of their presence. In addition, almost half of the species evaluated were unprotected, exposing them to deforestation risks and threats. To improve knowledge and conservation of forest biodiversity in the Ecuadorian Amazon, it is recommended to perform new botanical samplings in little-explored areas and digitize data in national herbaria. It is critical to implement automated assessments of the conservation status of species with insufficient data. In addition, it is suggested to use species distribution models to identify optimal areas for forest restoration initiatives. Effective communication of results and collaboration between scientists, governments, and local communities are key to the protection and sustainable management of forest biodiversity in the Amazon region.
Collapse
Affiliation(s)
- Rolando López-Tobar
- Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo (UTEQ), Quevedo Av. Quito km, 1 1/2 Vía a Santo Domingo de los Tsáchilas, Quevedo 120550, Ecuador;
- Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Unidad de Posgrado, Universidad Técnica Estatal de Quevedo (UTEQ), Quevedo Av. Quito km, 1 1/2 Vía a Santo Domingo de los Tsáchilas, Quevedo 120550, Ecuador
| | - Robinson J. Herrera-Feijoo
- Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo (UTEQ), Quevedo Av. Quito km, 1 1/2 Vía a Santo Domingo de los Tsáchilas, Quevedo 120550, Ecuador;
- Unidad de Posgrado, Universidad Técnica Estatal de Quevedo (UTEQ), Quevedo Av. Quito km, 1 1/2 Vía a Santo Domingo de los Tsáchilas, Quevedo 120550, Ecuador
- Escuela de Doctorado, Centro de Estudios de Posgrado, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, nº 2, 28049 Madrid, Spain
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Rubén G. Mateo
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando García-Robredo
- Departamento de Ingeniería y Gestión Forestal y Ambiental, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, C/José Antonio Novais 10, 28040 Madrid, Spain;
| | - Bolier Torres
- Facultad de Ciencia de la Vida, Universidad Estatal Amazónica (UEA), Puyo 160101, Ecuador;
- Ochroma Consulting and Services, Puerto Napo, Tena 150150, Ecuador
| |
Collapse
|
9
|
Orejuela A, Smith SD, Villanueva B, Deanna R. A new species of Iochroma Benth. (Solanaceae) from the eastern Andes of Colombia. PHYTOKEYS 2023; 232:133-144. [PMID: 37767189 PMCID: PMC10520844 DOI: 10.3897/phytokeys.232.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Iochromaorozcoae A.Orejuela & S.D.Sm., sp. nov. (Solanaceae) is described from the Andean forests of Cundinamarca in the eastern cordillera of Colombia. Iochromaorozcoae was first collected by the eminent Spanish priest and botanist José Celestino Mutis in the late part of the 18th century, but the specimens have lain unrecognised in herbaria for over 200 years. The species shares many features with its closest relative, Iochromabaumii S.D.Sm. & S.Leiva, but it differs from it in having small flowers with five corolla lobes and few inflorescences per branch, located near the shoot apex with 1 to 4 (-8) flowers, fruits that are greenish-yellow when ripe and its restricted geographic distribution. A description of I.orozcoae is provided, along with a detailed illustration, photographs of live plants, a comparison with closely-related species and a key to all Colombian species of Iochroma Benth. In closing, we emphasise the value of historical collections for the knowledge of biodiversity.
Collapse
Affiliation(s)
- Andrés Orejuela
- Grupo de Investigación en Recursos Naturales Amazónicos-GRAM, Facultad de Ingenierías y Ciencias Básicas and Herbario Etnobotánico del Piedemonte Andino Amazónico (HEAA), Instituto Tecnológico del Putumayo-ITP, Mocoa, Putumayo, ColombiaJardín Botánico de Bogotá José Celestino MutisBogotáColombia
- Herbario JBB, Subdirección científica, Jardín Botánico de Bogotá José Celestino Mutis, Bogotá D.C., ColombiaInstituto Tecnológico del Putumayo-ITPMocoaColombia
| | - Stacey D. Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USAUniversity of ColoradoBoulderUnited States of America
| | - Boris Villanueva
- Herbario JBB, Subdirección científica, Jardín Botánico de Bogotá José Celestino Mutis, Bogotá D.C., ColombiaInstituto Tecnológico del Putumayo-ITPMocoaColombia
| | - Rocío Deanna
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USAUniversity of ColoradoBoulderUnited States of America
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-UNC, Universidad Nacional de Córdoba, CC 495, 5000, Córdoba, ArgentinaUniversidad Nacional de CórdobaCórdobaArgentina
| |
Collapse
|
10
|
Weaver WN, Smith SA. FieldPrism: A system for creating snapshot vouchers from field images using photogrammetric markers and QR codes. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11545. [PMID: 37915427 PMCID: PMC10617303 DOI: 10.1002/aps3.11545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/18/2023] [Accepted: 05/26/2023] [Indexed: 11/03/2023]
Abstract
Premise Field images are important sources of information for research in the natural sciences. However, images that lack photogrammetric scale bars, including most iNaturalist observations, cannot yield accurate trait measurements. We introduce FieldPrism, a novel system of photogrammetric markers, QR codes, and software to automate the curation of snapshot vouchers. Methods and Results Our photogrammetric background templates (FieldSheets) increase the utility of field images by providing machine-readable scale bars and photogrammetric reference points to automatically correct image distortion and calculate a pixel-to-metric conversion ratio. Users can generate a QR code flipbook derived from a specimen identifier naming hierarchy, enabling machine-readable specimen identification for automatic file renaming. We also developed FieldStation, a Raspberry Pi-based mobile imaging apparatus that records images, GPS location, and metadata redundantly on up to four USB storage devices and can be monitored and controlled from any Wi-Fi connected device. Conclusions FieldPrism is a flexible software tool designed to standardize and improve the utility of images captured in the field. When paired with the optional FieldStation, researchers can create a self-contained mobile imaging apparatus for quantitative trait data collection.
Collapse
Affiliation(s)
- William N. Weaver
- Department of Ecology and Evolutionary BiologyUniversity of Michigan1105 N. University Ave.Ann Arbor48109MichiganUSA
| | - Stephen A. Smith
- Department of Ecology and Evolutionary BiologyUniversity of Michigan1105 N. University Ave.Ann Arbor48109MichiganUSA
| |
Collapse
|
11
|
Thompson KM, Turnbull R, Fitzgerald E, Birch JL. Identification of herbarium specimen sheet components from high-resolution images using deep learning. Ecol Evol 2023; 13:e10395. [PMID: 37589042 PMCID: PMC10425611 DOI: 10.1002/ece3.10395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023] Open
Abstract
Advanced computer vision techniques hold the potential to mobilise vast quantities of biodiversity data by facilitating the rapid extraction of text- and trait-based data from herbarium specimen digital images, and to increase the efficiency and accuracy of downstream data capture during digitisation. This investigation developed an object detection model using YOLOv5 and digitised collection images from the University of Melbourne Herbarium (MELU). The MELU-trained 'sheet-component' model-trained on 3371 annotated images, validated on 1000 annotated images, run using 'large' model type, at 640 pixels, for 200 epochs-successfully identified most of the 11 component types of the digital specimen images, with an overall model precision measure of 0.983, recall of 0.969 and moving average precision (mAP0.5-0.95) of 0.847. Specifically, 'institutional' and 'annotation' labels were predicted with mAP0.5-0.95 of 0.970 and 0.878 respectively. It was found that annotating at least 2000 images was required to train an adequate model, likely due to the heterogeneity of specimen sheets. The full model was then applied to selected specimens from nine global herbaria (Biodiversity Data Journal, 7, 2019), quantifying its generalisability: for example, the 'institutional label' was identified with mAP0.5-0.95 of between 0.68 and 0.89 across the various herbaria. Further detailed study demonstrated that starting with the MELU-model weights and retraining for as few as 50 epochs on 30 additional annotated images was sufficient to enable the prediction of a previously unseen component. As many herbaria are resource-constrained, the MELU-trained 'sheet-component' model weights are made available and application encouraged.
Collapse
|
12
|
Conti M, Nimis PL, Tretiach M, Muggia L, Moro A, Martellos S. The Italian lichens dataset from the TSB herbarium (University of Trieste). Biodivers Data J 2023; 11:e96466. [PMID: 38327327 PMCID: PMC10848505 DOI: 10.3897/bdj.11.e96466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Background The "Herbarium Universitatis Tergestinae" (TSB), with a total of ca. 50,000 specimens, includes the largest modern collection of lichens in Italy, with 25,796 samples collected from all over the country since 1984, representing 74% of all taxa known to occur in Italy. Almost all specimens have been georeferenced "a posteriori". The dataset is available through GBIF, as well as in ITALIC, the Information System of Italian Lichens. New information The TSB Herbarium hosts the largest modern lichen collection in Italy, with a total of ca. 50,000 specimens. This dataset contains all of the 25,796 specimens collected within the administrative borders of Italy. Amongst them, 98% are georeferenced and 87% have the date of collection. The dataset includes several type specimens (isotypes and holotypes) and exsiccata.
Collapse
Affiliation(s)
- Matteo Conti
- Dept. Of Life Sciences, University of Trieste, Trieste, ItalyDept. Of Life Sciences, University of TriesteTriesteItaly
| | - Pier Luigi Nimis
- Dept. Of Life Sciences, University of Trieste, Trieste, ItalyDept. Of Life Sciences, University of TriesteTriesteItaly
| | - Mauro Tretiach
- Dept. Of Life Sciences, University of Trieste, Trieste, ItalyDept. Of Life Sciences, University of TriesteTriesteItaly
| | - Lucia Muggia
- Dept. Of Life Sciences, University of Trieste, Trieste, ItalyDept. Of Life Sciences, University of TriesteTriesteItaly
| | - Andrea Moro
- Dept. Of Life Sciences, University of Trieste, Trieste, ItalyDept. Of Life Sciences, University of TriesteTriesteItaly
| | - Stefano Martellos
- Dept. Of Life Sciences, University of Trieste, Trieste, ItalyDept. Of Life Sciences, University of TriesteTriesteItaly
| |
Collapse
|
13
|
Filling the gap to avoid extinction: conservation status of Brazilian species of Epidendrum L. (Orchidaceae). J Nat Conserv 2023. [DOI: 10.1016/j.jnc.2022.126328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Albani Rocchetti G, Carta A, Mondoni A, Godefroid S, Davis CC, Caneva G, Albrecht MA, Alvarado K, Bijmoer R, Borosova R, Bräuchler C, Breman E, Briggs M, Buord S, Cave LH, Da Silva NG, Davey AH, Davies RM, Dickie JB, Fabillo M, Fleischmann A, Franks A, Hall G, Kantvilas G, Klak C, Liu U, Medina L, Reinhammar LG, Sebola RJ, Schönberger I, Sweeney P, Voglmayr H, White A, Wieringa JJ, Zippel E, Abeli T. Selecting the best candidates for resurrecting extinct-in-the-wild plants from herbaria. NATURE PLANTS 2022; 8:1385-1393. [PMID: 36536014 DOI: 10.1038/s41477-022-01296-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/31/2022] [Indexed: 05/12/2023]
Abstract
Resurrecting extinct species is a fascinating and challenging idea for scientists and the general public. Whereas some theoretical progress has been made for animals, the resurrection of extinct plants (de-extinction sensu lato) is a relatively recently discussed topic. In this context, the term 'de-extinction' is used sensu lato to refer to the resurrection of 'extinct in the wild' species from seeds or tissues preserved in herbaria, as we acknowledge the current impossibility of knowing a priori whether a herbarium seed is alive and can germinate. In plants, this could be achieved by germinating or in vitro tissue-culturing old diaspores such as seeds or spores available in herbarium specimens. This paper reports the first list of plant de-extinction candidates based on the actual availability of seeds in herbarium specimens of globally extinct plants. We reviewed globally extinct seed plants using online resources and additional literature on national red lists, resulting in a list of 361 extinct taxa. We then proposed a method of prioritizing candidates for seed-plant de-extinction from diaspores found in herbarium specimens and complemented this with a phylogenetic approach to identify species that may maximize evolutionarily distinct features. Finally, combining data on seed storage behaviour and longevity, as well as specimen age in the novel 'best de-extinction candidate' score (DEXSCO), we identified 556 herbarium specimens belonging to 161 extinct species with available seeds. We expect that this list of de-extinction candidates and the novel approach to rank them will boost research efforts towards the first-ever plant de-extinction.
Collapse
Affiliation(s)
| | | | - Andrea Mondoni
- Department of Earth and Environmental Science, University of Pavia, Pavia, Italy
| | - Sandrine Godefroid
- Research Department, Meise Botanic Garden, Meise, Belgium
- Service général de l'Enseignement supérieur et de la Recherche scientifique, Fédération Wallonie, Brussels, Belgium
- Laboratory of Plant Ecology and Biogeochemistry, Université libre de Bruxelles, Brussels, Belgium
| | - Charles C Davis
- Department of Organismic Biology, Harvard University, Cambridge, MA, USA
- Harvard University Herbaria, Cambridge, MA, USA
| | - Giulia Caneva
- Department of Science, University of Roma Tre, Rome, Italy
| | - Matthew A Albrecht
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, MO, USA
| | - Karla Alvarado
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Roxali Bijmoer
- Naturalis Biodiversity Center, Botany Section, Leiden, the Netherlands
| | | | | | - Elinor Breman
- Royal Botanic Gardens, Kew, Wakehurst; Ardingly, Haywards Heath, West Sussex, UK
| | | | - Stephane Buord
- Conservatoire botanique national de Brest, Brest, France
| | | | - Nílber Gonçalves Da Silva
- Departamento de Botânica, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rachael M Davies
- Royal Botanic Gardens Kew, Seed and Lab-Based Collections, Sussex, UK
| | - John B Dickie
- Royal Botanic Gardens Kew, Seed and Lab-Based Collections, Sussex, UK
| | - Melodina Fabillo
- Queensland Herbarium, Department of Environment and Science, Brisbane Botanic Gardens Mt Coot-tha, Toowong, Queensland, Australia
| | - Andreas Fleischmann
- Botanische Staatssammlung München (SNSB-BSM), and GeoBio-Center LMU, Ludwig-Maximilians-University, Munich, Germany
| | - Andrew Franks
- Queensland Herbarium, Department of Environment and Science, Brisbane Botanic Gardens Mt Coot-tha, Toowong, Queensland, Australia
| | - Geoffrey Hall
- Centre sur la biodiversité de l'Université de Montréal (CITES CA-035), Montréal, Québec, Canada
| | - Gintaras Kantvilas
- Tasmanian Herbarium, Tasmanian Museum and Art Gallery, Sandy Bay, Tasmania, Australia
| | - Cornelia Klak
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Udayangani Liu
- Royal Botanic Gardens, Kew, Wellcome Trust Millennium Building, West Sussex, England, UK
| | | | | | - Ramagwai J Sebola
- South African National Biodiversity Institute, Pretoria, South Africa
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand; WITS, Johannesburg, South Africa
| | - Ines Schönberger
- Allan Herbarium, Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Patrick Sweeney
- Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Hermann Voglmayr
- Department for Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Adam White
- CSIRO Black Mountain Laboratories, Black Mountain, Australian Capital Territory, Australia
| | - Jan J Wieringa
- Naturalis Biodiversity Center, Botany Section, Leiden, the Netherlands
| | - Elke Zippel
- Dahlem Seed Bank, Botanical Garden and Botanic Museum Berlin, Berlin, Germany
| | - Thomas Abeli
- Department of Science, University of Roma Tre, Rome, Italy
- IUCN SSC Conservation Translocation Specialist Group, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Rosche C, Baasch A, Runge K, Brade P, Träger S, Parisod C, Hensen I. Tracking population genetic signatures of local extinction with herbarium specimens. ANNALS OF BOTANY 2022; 129:857-868. [PMID: 35670810 PMCID: PMC9292615 DOI: 10.1093/aob/mcac061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Habitat degradation and landscape fragmentation dramatically lower population sizes of rare plant species. Decreasing population sizes may, in turn, negatively affect genetic diversity and reproductive fitness, which can ultimately lead to local extinction of populations. Although such extinction vortex dynamics have been postulated in theory and modelling for decades, empirical evidence from local extinctions of plant populations is scarce. In particular, comparisons between current vs. historical genetic diversity and differentiation are lacking despite their potential to guide conservation management. METHODS We studied the population genetic signatures of the local extinction of Biscutella laevigata subsp. gracilis populations in Central Germany. We used microsatellites to genotype individuals from 15 current populations, one ex situ population, and 81 herbarium samples from five extant and 22 extinct populations. In the current populations, we recorded population size and fitness proxies, collected seeds for a germination trial and conducted a vegetation survey. The latter served as a surrogate for habitat conditions to study how habitat dissimilarity affects functional connectivity among the current populations. KEY RESULTS Bayesian clustering revealed similar gene pool distribution in current and historical samples but also indicated that a distinct genetic cluster was significantly associated with extinction probability. Gene flow was affected by both the spatial distance and floristic composition of population sites, highlighting the potential of floristic composition as a powerful predictor of functional connectivity which may promote decision-making for reintroduction measures. For an extinct population, we found a negative relationship between sampling year and heterozygosity. Inbreeding negatively affected germination. CONCLUSIONS Our study illustrates the usefulness of historical DNA to study extinction vortices in threatened species. Our novel combination of classical population genetics together with data from herbarium specimens, an ex situ population and a germination trial underlines the need for genetic rescue measures to prevent extinction of B. laevigata in Central Germany.
Collapse
Affiliation(s)
- Christoph Rosche
- Martin Luther University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Große Steinstraße 79/80, 06108 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Annett Baasch
- Anhalt University of Applied Sciences, Department of Agriculture, Ecotrophology and Landscape Development, Strenzfelder Allee 28, 06406 Bernburg (Saale), Germany
| | - Karen Runge
- Anhalt University of Applied Sciences, Department of Agriculture, Ecotrophology and Landscape Development, Strenzfelder Allee 28, 06406 Bernburg (Saale), Germany
| | - Philipp Brade
- Anhalt University of Applied Sciences, Department of Agriculture, Ecotrophology and Landscape Development, Strenzfelder Allee 28, 06406 Bernburg (Saale), Germany
| | - Sabrina Träger
- Martin Luther University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Große Steinstraße 79/80, 06108 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Christian Parisod
- University of Fribourg, Department of Biology, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Isabell Hensen
- Martin Luther University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Große Steinstraße 79/80, 06108 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| |
Collapse
|
16
|
de Lutio R, Park JY, Watson KA, D'Aronco S, Wegner JD, Wieringa JJ, Tulig M, Pyle RL, Gallaher TJ, Brown G, Guymer G, Franks A, Ranatunga D, Baba Y, Belongie SJ, Michelangeli FA, Ambrose BA, Little DP. The Herbarium 2021 Half-Earth Challenge Dataset and Machine Learning Competition. FRONTIERS IN PLANT SCIENCE 2022; 12:787127. [PMID: 35178056 PMCID: PMC8846375 DOI: 10.3389/fpls.2021.787127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 05/17/2023]
Abstract
Herbarium sheets present a unique view of the world's botanical history, evolution, and biodiversity. This makes them an all-important data source for botanical research. With the increased digitization of herbaria worldwide and advances in the domain of fine-grained visual classification which can facilitate automatic identification of herbarium specimen images, there are many opportunities for supporting and expanding research in this field. However, existing datasets are either too small, or not diverse enough, in terms of represented taxa, geographic distribution, and imaging protocols. Furthermore, aggregating datasets is difficult as taxa are recognized under a multitude of names and must be aligned to a common reference. We introduce the Herbarium 2021 Half-Earth dataset: the largest and most diverse dataset of herbarium specimen images, to date, for automatic taxon recognition. We also present the results of the Herbarium 2021 Half-Earth challenge, a competition that was part of the Eighth Workshop on Fine-Grained Visual Categorization (FGVC8) and hosted by Kaggle to encourage the development of models to automatically identify taxa from herbarium sheet images.
Collapse
Affiliation(s)
- Riccardo de Lutio
- EcoVision Lab, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zurich, Switzerland
| | - John Y. Park
- New York Botanical Garden, Bronx, NY, United States
| | | | - Stefano D'Aronco
- EcoVision Lab, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zurich, Switzerland
| | - Jan D. Wegner
- EcoVision Lab, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zurich, Switzerland
- Faculty of Science, Institute for Computational Science, University of Zurich, Zurich, Switzerland
| | | | | | | | | | - Gillian Brown
- Queensland Herbarium, Department of Environment and Science, Toowong, QLD, Australia
| | - Gordon Guymer
- Queensland Herbarium, Department of Environment and Science, Toowong, QLD, Australia
| | - Andrew Franks
- Queensland Herbarium, Department of Environment and Science, Toowong, QLD, Australia
| | - Dhahara Ranatunga
- Auckland War Memorial Museum Tāmaki Paenga Hira, Auckland, New Zealand
| | - Yumiko Baba
- Auckland War Memorial Museum Tāmaki Paenga Hira, Auckland, New Zealand
| | - Serge J. Belongie
- Department of Computer Science, University of Copenhagen, and Pioneer Centre for AI, Copenhagen, Denmark
| | | | | | | |
Collapse
|
17
|
Turner NJ, Geralda Armstrong C, Lepofsky D. Adopting a Root: Documenting Ecological and Cultural Signatures of Plant Translocations in Northwestern North America. AMERICAN ANTHROPOLOGIST 2021. [DOI: 10.1111/aman.13658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nancy J. Turner
- School of Environmental Studies University of Victoria Canada
| | | | - Dana Lepofsky
- Department of Archaeology Simon Fraser University Canada
| |
Collapse
|
18
|
Lofgren LA, Stajich JE. Fungal biodiversity and conservation mycology in light of new technology, big data, and changing attitudes. Curr Biol 2021; 31:R1312-R1325. [PMID: 34637742 PMCID: PMC8516061 DOI: 10.1016/j.cub.2021.06.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fungi have successfully established themselves across seemingly every possible niche, substrate, and biome. They are fundamental to biogeochemical cycling, interspecies interactions, food production, and drug bioprocessing, as well as playing less heroic roles as difficult to treat human infections and devastating plant pathogens. Despite community efforts to estimate and catalog fungal diversity, we have only named and described a minute fraction of the fungal world. The identification, characterization, and conservation of fungal diversity is paramount to preserving fungal bioresources, and to understanding and predicting ecosystem cycling and the evolution and epidemiology of fungal disease. Although species and ecosystem conservation are necessarily the foundation of preserving this diversity, there is value in expanding our definition of conservation to include the protection of biological collections, ecological metadata, genetic and genomic data, and the methods and code used for our analyses. These definitions of conservation are interdependent. For example, we need metadata on host specificity and biogeography to understand rarity and set priorities for conservation. To aid in these efforts, we need to draw expertise from diverse fields to tie traditional taxonomic knowledge to data obtained from modern -omics-based approaches, and support the advancement of diverse research perspectives. We also need new tools, including an updated framework for describing and tracking species known only from DNA, and the continued integration of functional predictions to link genetic diversity to functional and ecological diversity. Here, we review the state of fungal diversity research as shaped by recent technological advancements, and how changing viewpoints in taxonomy, -omics, and systematics can be integrated to advance mycological research and preserve fungal biodiversity.
Collapse
Affiliation(s)
- Lotus A Lofgren
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, USA.
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, USA
| |
Collapse
|
19
|
Xu J, Chai N, Zhang T, Zhu T, Cheng Y, Sui S, Li M, Liu D. Prediction of temperature tolerance in Lilium based on distribution and climate data. iScience 2021; 24:102794. [PMID: 34355143 PMCID: PMC8324855 DOI: 10.1016/j.isci.2021.102794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/24/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
There are plenty publications providing guidance for resistant taxa selection by experimental researches while the number of experimental taxa is often restricted. In this study, we presented a concise method to predict the temperature tolerance of wild Lilium in China based on open access botanical and associated environmental datasets. We divided all taxa into five groups to present an overview of Lilium's adaptability to temperature stress. Furthermore, according to the environmental conditions, the prediction of heat and cold tolerance in Lilium was made based on the combined multi-sources data at taxon level. Thirteen taxa with potential temperature tolerance were predicted of 42 taxa. The results showed that not only is tolerance prediction created by large-scale data analysis possible, but that it may supplement traditional laboratory researches with a comprehensive list of taxa.
Collapse
Affiliation(s)
- Jie Xu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| | - Nan Chai
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| | - Ting Zhang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| | - Ting Zhu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| | - Yulin Cheng
- School of Life Science, Chongqing University, Chongqing 401331, China
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| | - Daofeng Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
20
|
Hardisty A, Addink W, Glöckler F, Güntsch A, Islam S, Weiland C. A choice of persistent identifier schemes for the Distributed System of Scientific Collections (DiSSCo). RESEARCH IDEAS AND OUTCOMES 2021. [DOI: 10.3897/rio.7.e67379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Persistent identifiers (PID) to identify digital representations of physical specimens in natural science collections (i.e., digital specimens) unambiguously and uniquely on the Internet are one of the mechanisms for digitally transforming collections-based science. Digital Specimen PIDs contribute to building and maintaining long-term community trust in the accuracy and authenticity of the scientific data to be managed and presented by the Distributed System of Scientific Collections (DiSSCo) research infrastructure planned in Europe to commence implementation in 2024. Not only are such PIDs valid over the very long timescales common in the heritage sector but they can also transcend changes in underlying technologies of their implementation. They are part of the mechanism for widening access to natural science collections. DiSSCo technical experts previously selected the Handle System as the choice to meet core PID requirements.
Using a two-step approach, this options appraisal captures, characterises and analyses different alternative Handle-based PID schemes and the possible operational modes of use. In a first step a weighting and ranking the options has been applied followed by a structured qualitative assessment of social and technical compliance across several assessment dimensions: levels of scalability, community trust, persistence, governance, appropriateness of the scheme and suitability for future global adoption. The results are discussed in relation to branding, community perceptions and global context to determine a preferred PID scheme for DiSSCo that also has potential for adoption and acceptance globally.
DiSSCo will adopt a ‘driven-by DOI’ persistent identifier (PID) scheme customised with natural sciences community characteristics. Establishing a new Registration Agency in collaboration with the International DOI Foundation is a practical way forward to support the FAIR (findable, accessible interoperable, reusable) data architecture of DiSSCo research infrastructure. This approach is compatible with the policies of the European Open Science Cloud (EOSC) and is aligned to existing practices across the global community of natural science collections.
Collapse
|
21
|
Citizen Science Contributions to Address Biodiversity Loss and Conservation Planning in a Rapidly Developing Region. DIVERSITY 2021. [DOI: 10.3390/d13060255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biodiversity data support conservation research and inform conservation decisions addressing the wicked problem of biodiversity loss. However, these data often need processing and compilation before use, which exceed the time availability of professional scientists. Nevertheless, scientists can recruit, train, and support a network of citizen scientists to prepare these data using online platforms. Here, we describe three citizen science projects sponsored by the Arkansas Natural Heritage Commission to transcribe and georeference historic herbarium specimens and document current biodiversity through iNaturalist for two highly biodiverse and rapidly developing counties in Northwest Arkansas, USA. Citizen science-generated data will be used in a county natural heritage inventory (CNHI) report, including a comprehensive list of taxa tied to voucher specimens and records for rare plant populations. Since the CNHI project started in 2018, citizen scientists have transcribed 8855 and georeferenced 2636 specimen records. From iNaturalist observations, 125 rare plant populations of 39 taxa have been documented. This CNHI report will determine the most critical taxa, habitats, and sites for conservation action in the region and will inform conservation stakeholders at the local, state, and federal levels as they engage in land acquisition, ecological restoration, natural resource management, planning of growth and development, and environmental review/regulation.
Collapse
|
22
|
Folk RA, Siniscalchi CM. Biodiversity at the global scale: the synthesis continues. AMERICAN JOURNAL OF BOTANY 2021; 108:912-924. [PMID: 34181762 DOI: 10.1002/ajb2.1694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/14/2021] [Indexed: 06/13/2023]
Abstract
Traditionally, the generation and use of biodiversity data and their associated specimen objects have been primarily the purview of individuals and small research groups. While deposition of data and specimens in herbaria and other repositories has long been the norm, throughout most of their history, these resources have been accessible only to a small community of specialists. Through recent concerted efforts, primarily at the level of national and international governmental agencies over the last two decades, the pace of biodiversity data accumulation has accelerated, and a wider array of biodiversity scientists has gained access to this massive accumulation of resources, applying them to an ever-widening compass of research pursuits. We review how these new resources and increasing access to them are affecting the landscape of biodiversity research in plants today, focusing on new applications across evolution, ecology, and other fields that have been enabled specifically by the availability of these data and the global scope that was previously beyond the reach of individual investigators. We give an overview of recent advances organized along three lines: broad-scale analyses of distributional data and spatial information, phylogenetic research circumscribing large clades with comprehensive taxon sampling, and data sets derived from improved accessibility of biodiversity literature. We also review synergies between large data resources and more traditional data collection paradigms, describe shortfalls and how to overcome them, and reflect on the future of plant biodiversity analyses in light of increasing linkages between data types and scientists in our field.
Collapse
Affiliation(s)
- Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Carolina M Siniscalchi
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|