1
|
San-Emeterio LM, Lozano E, Arcenegui V, Mataix-Solera J, Jiménez-Morillo NT, González-Pérez JA. Soil-Easily Extractable Glomalin: An Innovative Approach to Deciphering Its Molecular Composition under the Influence of Seasonality, Vegetation Cover, and Wildfire. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22624-22634. [PMID: 39652190 DOI: 10.1021/acs.est.4c10036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Easily extractable glomalin (EEG) is a fraction of soil organic matter thought to contain mainly glomalin-related soil glycoproteins produced by mycorrhizal fungi. The EEG has an impact on various soil ecological functions, primarily related to soil aggregation formation and stability as well as water repellence. Here, analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was used for studying the molecular composition of soil EEG, and a detailed description of the chemical composition is reported. Samples extracted from Mediterranean soils under different vegetation covers (Pinus halepensis and shrubland species, Rosmarinus officinalis, and Brachypodium spp, predominantly), impacted or not by forest fires and collected at different times, were studied. A total of 139 compounds were identified and grouped based on their probable biogenic origin. The EEG chemical composition is dominated by lipids, aromatic compounds, steranes, and hydroaromatics with a remarkable abundance of compounds from plant origin. Significant EEG structural changes can indicate environmental disturbances such as those after a wildfire. The EEG soil organic fraction is found to be a stable and heat-resistant material in nature if soil temperatures remain below 200-250 °C. This study advances the understanding of EEG by providing a detailed molecular characterization and highlighting its role as a stable, heat-resistant component of soil organic matter in Mediterranean ecosystems. The main findings indicate that while EEG is structurally resilient and mostly originates from plant material, its composition is more similar to that of humic acids than to that of glycoproteins.
Collapse
Affiliation(s)
- Layla M San-Emeterio
- Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento (MED), University of Évora, Núcleo da Mitra, Ap. 94, Évora 7006-554, Portugal
| | - Elena Lozano
- Grupo de Edafología y Tecnologías del Medio Ambiente GETECMA. Departamento de Agroquímica y Medio Ambiente, Universidad Miguel Hernández, Avenida de la Universidad s/n, 03202 Elche, Alicante Spain
| | - Victoria Arcenegui
- Grupo de Edafología y Tecnologías del Medio Ambiente GETECMA. Departamento de Agroquímica y Medio Ambiente, Universidad Miguel Hernández, Avenida de la Universidad s/n, 03202 Elche, Alicante Spain
| | - Jorge Mataix-Solera
- Grupo de Edafología y Tecnologías del Medio Ambiente GETECMA. Departamento de Agroquímica y Medio Ambiente, Universidad Miguel Hernández, Avenida de la Universidad s/n, 03202 Elche, Alicante Spain
| | - Nicasio T Jiménez-Morillo
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC)Av. Reina Mercedes, 10, Sevilla 4012, Spain
| | - José A González-Pérez
- Grupo MOSS, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Av. Reina Mercedes, 10, Sevilla 4012, Spain
| |
Collapse
|
2
|
Vallejos-Torres G, Gaona-Jimenez N, Pichis-García R, Ordoñez L, García-Gonzales P, Quinteros A, Lozano A, Saavedra-Ramírez J, Tuesta-Hidalgo JC, Reategui K, Macedo-Córdova W, Baselly-Villanueva JR, Marín C. Carbon reserves in coffee agroforestry in the Peruvian Amazon. FRONTIERS IN PLANT SCIENCE 2024; 15:1410418. [PMID: 39726424 PMCID: PMC11670197 DOI: 10.3389/fpls.2024.1410418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024]
Abstract
Introduction Secondary forests and coffee cultivation systems with shade trees might have great potential for carbon sequestration as a means of climate change adaptation and mitigation. This study aimed to measure carbon stocks in coffee plantations under different managements and secondary forest systems in the Peruvian Amazon rainforest (San Martín Region). Methods The carbon stock in secondary forest trees was estimated using allometric equations, while carbon stocks in soil, herbaceous biomass, and leaf litter were determined through sampling and laboratory analysis. Results The biomass carbon stock in secondary forests was 132.2 t/ha, while in coffee plantations with Inga sp. shade trees was 118.2 t/ha. Carbon stocks were 76.5 t/ha in coffee with polyculture farming, while the lowest amount of carbon was found in coffee without shade trees (31.1 t/ha). The carbon sequestered by coffee plants in all agroforestry systems examined had an average of 2.65 t/ha, corresponding to 4.63 % of the total carbon sequestered, being the highest stored in the coffee system with Inga sp. shade trees. A higher content of glomalin-related soil proteins (GRSP) was found in coffee without shade trees, with 18.5 mg/g. Discussion These results point to Inga sp. as a compatible model of shade system for coffee farms. However, broader-scale time-average measurements and carbon dioxide emissions should be assessed in these study systems to have a full understanding of their climate impacts.
Collapse
Affiliation(s)
- Geomar Vallejos-Torres
- Escuela Profesional de Agronomía, Universidad Nacional de San Martín, Tarapoto, San Martín, Peru
| | - Nery Gaona-Jimenez
- Salud Agroforestal, Instituto de Investigaciones en Salud Agroforestal (IISA), Tarapoto, Peru
| | - Roger Pichis-García
- Escuela Profesional de Ingeniería Ambiental, Universidad César Vallejo, Tarapoto, San Martín, Peru
| | - Luis Ordoñez
- Escuela Profesional de Ingeniería Ambiental, Universidad César Vallejo, Tarapoto, San Martín, Peru
| | - Patricia García-Gonzales
- Escuela Profesional de Agronomía, Universidad Nacional de San Martín, Tarapoto, San Martín, Peru
| | - Aníbal Quinteros
- Escuela Profesional de Agronomía, Universidad Nacional de San Martín, Tarapoto, San Martín, Peru
| | - Andi Lozano
- Escuela Profesional de Agronomía, Universidad Nacional de San Martín, Tarapoto, San Martín, Peru
- Escuela Profesional de Ingeniería Ambiental, Universidad César Vallejo, Tarapoto, San Martín, Peru
| | - Jorge Saavedra-Ramírez
- Facultad de Ingeniería y Ciencias, Universidad Nacional Autónoma de Alto Amazonas, UNAAA, Yurimaguas, Peru
| | - Juan C. Tuesta-Hidalgo
- Facultad de Ingeniería y Ciencias, Universidad Nacional Autónoma de Alto Amazonas, UNAAA, Yurimaguas, Peru
| | - Keneth Reategui
- Facultad de Ingeniería y Ciencias Ambientales, Universidad Nacional Intercultural de la Amazonía, Pucallpa, Peru
| | | | | | - César Marín
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad Santo Tomás, Valdivia, Chile
- Amsterdam Institute for Life and Environment, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Zhou J, Bilyera N, Guillaume T, Yang H, Li FM, Shi L. Microbial necromass and glycoproteins for determining soil carbon formation under arbuscular mycorrhiza symbiosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176732. [PMID: 39395500 DOI: 10.1016/j.scitotenv.2024.176732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/21/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) form symbioses with most terrestrial plants and critically modulate soil organic carbon (C) dynamics. Whether AMF promote soil C storage and stability is, however, largely unknown. Since microbial necromass C (MNC) and glomalin-related soil protein (GRSP) are stable microbial-derived C in soils, we therefore evaluated how AMF symbiosis alters both soil C pools and their contributions to soil organic C (SOC) under nitrogen fertilization, based on a 16-weeks mesocosm experiment using a mutant tomato with highly reduced AMF symbiosis. Results showed that SOC content is 4.5 % higher following AMF symbiosis. Additionally, the content of MNC and total GRSP were 47.5 % and 22.3 % higher under AMF symbiosis than at AMF absence, respectively. The accumulations of GRSP and microbial necromass in soil were closely associated with mineral-associated organic C and the abundance of AMF. The increased soil living microbial biomass under AMF symbiosis was mainly derived from AMF biomass, and fungal necromass C significantly contributed to SOC accumulation, as evidenced by the higher fungal:bacterial necromass C ratio under AMF symbiosis. On the contrary, bacterial necromass was degraded to compensate for the increased microbial nutrient demand because of the aggravated nutrient limitation under AMF symbiosis, leading to a decrease in bacterial necromass. Redundancy analysis showing that bacterial necromass was negatively correlated with soil C:N ratio supported this argument. Moreover, the relative change rate of total GRSP was consistently greater in nitrogen-limited soil than that of microbial necromass. Our findings suggested GRSP accumulates faster and contributes more to SOC pools under AMF symbiosis than microbial necromass. The positive correlation between the contributions of GRSP and MNC to SOC further provided valuable information in terms of enhancing our understanding of mechanisms underlying the maintenance of SOC stocks through microbial-derived C.
Collapse
Affiliation(s)
- Jie Zhou
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, College of Agriculture, Nanjing Agricultural University, Nanjing, China.
| | - Nataliya Bilyera
- Geo-Biosphere Interactions, Department of Geosciences, Faculty of Sciences, University of Tuebingen, Tuebingen, Germany
| | - Thomas Guillaume
- Agroscope, Field-Crop Systems and Plant Nutrition, Research Division Plant Production Systems, Nyon, Switzerland
| | - Haishui Yang
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, College of Agriculture, Nanjing Agricultural University, Nanjing, China.
| | - Feng-Min Li
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Lingling Shi
- Geo-Biosphere Interactions, Department of Geosciences, Faculty of Sciences, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
4
|
Bate-Weldon MP, Edmondson JL, Field KJ. Impact of zinc on arbuscular mycorrhizal-mediated nutrient acquisition in urban horticulture. iScience 2024; 27:110580. [PMID: 39220411 PMCID: PMC11363573 DOI: 10.1016/j.isci.2024.110580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
A major barrier to sustainably improving food security for a growing global population is the availability of suitable space for growing crops. Urban areas offer a potential solution to increase availability of land, however, horticultural soils often accumulate zinc. These increased levels may affect the interactions between crops and soil microbes with potential implications for crop health and nutrition. Using radio-isotope tracing, we investigated the effect of urban environmentally relevant concentrations of zinc in soils on the nutrient exchange between arbuscular mycorrhizal fungi and pea plants. At higher concentrations of zinc, transfer of phosphorus from fungi to plants and the movement of carbon from plants to fungi was dramatically decreased. Our results suggest that while urban horticulture holds promise for sustainably enhancing local food production and addressing global food security, the unchecked presence of contaminants in these soils may pose a critical hurdle to realizing the potential of urban soils.
Collapse
Affiliation(s)
- Miles P.A. Bate-Weldon
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Jill L. Edmondson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Katie J. Field
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
5
|
Wang L, Cheng Y, Meftaul IM, Luo F, Kabir MA, Doyle R, Lin Z, Naidu R. Advancing Soil Health: Challenges and Opportunities in Integrating Digital Imaging, Spectroscopy, and Machine Learning for Bioindicator Analysis. Anal Chem 2024; 96:8109-8123. [PMID: 38490962 DOI: 10.1021/acs.analchem.3c05311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Affiliation(s)
- Liang Wang
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
- The Cooperative Research Centre for High-Performance Soils, Callaghan, New South Wales 2308, Australia
| | - Ying Cheng
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
- The Cooperative Research Centre for High-Performance Soils, Callaghan, New South Wales 2308, Australia
| | - Islam Md Meftaul
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
- The Cooperative Research Centre for High-Performance Soils, Callaghan, New South Wales 2308, Australia
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fjian 350108, China
| | - Muhammad Ashad Kabir
- The Cooperative Research Centre for High-Performance Soils, Callaghan, New South Wales 2308, Australia
- School of Computing, Mathematics and Engineering, Charles Sturt University, Bathurst, New South Wales 2795, Australia
| | - Richard Doyle
- The Cooperative Research Centre for High-Performance Soils, Callaghan, New South Wales 2308, Australia
- Tasmanian Institute of Agriculture (TIA), University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fjian 350108, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
- The Cooperative Research Centre for High-Performance Soils, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
6
|
Angulo V, Bleichrodt RJ, Dijksterhuis J, Erktan A, Hefting MM, Kraak B, Kowalchuk GA. Enhancement of soil aggregation and physical properties through fungal amendments under varying moisture conditions. Environ Microbiol 2024; 26:e16627. [PMID: 38733112 DOI: 10.1111/1462-2920.16627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 04/05/2024] [Indexed: 05/13/2024]
Abstract
Soil structure and aggregation are crucial for soil functionality, particularly under drought conditions. Saprobic soil fungi, known for their resilience in low moisture conditions, are recognized for their influence on soil aggregate dynamics. In this study, we explored the potential of fungal amendments to enhance soil aggregation and hydrological properties across different moisture regimes. We used a selection of 29 fungal isolates, recovered from soils treated under drought conditions and varying in colony density and growth rate, for single-strain inoculation into sterilized soil microcosms under either low or high moisture (≤-0.96 and -0.03 MPa, respectively). After 8 weeks, we assessed soil aggregate formation and stability, along with soil properties such as soil water content, water hydrophobicity, sorptivity, total fungal biomass and water potential. Our findings indicate that fungal inoculation altered soil hydrological properties and improved soil aggregation, with effects varying based on the fungal strains and soil moisture levels. We found a positive correlation between fungal biomass and enhanced soil aggregate formation and stabilization, achieved by connecting soil particles via hyphae and modifying soil aggregate sorptivity. The improvement in soil water potential was observed only when the initial moisture level was not critical for fungal activity. Overall, our results highlight the potential of using fungal inoculation to improve the structure of agricultural soil under drought conditions, thereby introducing new possibilities for soil management in the context of climate change.
Collapse
Affiliation(s)
- Violeta Angulo
- Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Robert-Jan Bleichrodt
- Microbiology Group, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Jan Dijksterhuis
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Amandine Erktan
- Eco&Sols, University Montpellier, IRD, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Mariet M Hefting
- Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
- Amsterdam Institute for Life and Environment (A-LIFE), Systems Ecology Section, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Bart Kraak
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
7
|
Wu S, Fu W, Rillig MC, Chen B, Zhu YG, Huang L. Soil organic matter dynamics mediated by arbuscular mycorrhizal fungi - an updated conceptual framework. THE NEW PHYTOLOGIST 2024; 242:1417-1425. [PMID: 37529867 DOI: 10.1111/nph.19178] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi play an important role in soil organic matter (SOM) formation and stabilization. Previous studies have emphasized organic compounds produced by AM fungi as persistent binding agents for aggregate formation and SOM storage. This concept overlooks the multiple biogeochemical processes mediated by AM fungal activities, which drive SOM generation, reprocessing, reorganization, and stabilization. Here, we propose an updated conceptual framework to facilitate a mechanistic understanding of the role of AM fungi in SOM dynamics. In this framework, four pathways for AM fungi-mediated SOM dynamics are included: 'Generating', AM fungal exudates and biomass serve as key sources of SOM chemodiversity; 'Reprocessing', hyphosphere microorganisms drive SOM decomposition and resynthesis; 'Reorganizing', AM fungi mediate soil physical changes and influence SOM transport, redistribution, transformation, and storage; and 'Stabilizing', AM fungi drive mineral weathering and organo-mineral interactions for SOM stabilization. Moreover, we discuss the AM fungal role in SOM dynamics at different scales, especially when translating results from small scales to complex larger scales. We believe that working with this conceptual framework can allow a better understanding of AM fungal role in SOM dynamics, therefore facilitating the development of mycorrhiza-based technologies toward soil health and global change mitigation.
Collapse
Affiliation(s)
- Songlin Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Wei Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, 14195, Germany
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Qld, 4072, Australia
| |
Collapse
|
8
|
Zhang S, Qi J, Jiang H, Chen X, You Z. Improving vanadium removal from contaminated river water in constructed wetlands: The role of arbuscular mycorrhizal fungi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123804. [PMID: 38493864 DOI: 10.1016/j.envpol.2024.123804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Industrial activities pose a significant ecological risk to water resources as they pollute surrounding waters with vanadium (V). Although the contribution of plants and substrates to V removal in constructed wetlands (CWs) has been reported, the role of arbuscular mycorrhizal fungi (AMF) is unclear. The aim of the present study was to investigate the role of AMF in V removal in CWs and to elucidate the underlying mechanisms. Reed plants (Phragmites australis) were inoculated with an AMF strain (Rhizophagus irregularis) in CW columns, creating AMF-inoculated (+AMF) and non-inoculated (-AMF) treatments. Three levels of influent V concentrations (low: 0.50 mg L-1, medium: 1.14 mg L-1 and high: 1.52 mg L-1) were examined. The + AMF treatment showed higher V removal (60%-98%) than the control (40%-82%) in all three conditions, although the difference was not significant in some cases. The mean mycorrhizal effects were 75%, 19%, and 28% for low, moderate, and high influent V concentrations, respectively. The +AMF treatment showed a higher GRSP-bonded V concentration (5.5 mg g-1) than the -AMF treatment (4.0 mg g-1). Furthermore, +AMF treatment showed larger plants with higher V concentrations in their tissues, accompanied by increased biological concentration factors and biological accumulation factors. Given the remarkable positive effect of AMF on V removal, our study suggests that treating AMF in CWs is a worthwhile approach.
Collapse
Affiliation(s)
- Shujuan Zhang
- College of Urban Construction, Nanjing Tech University, Puzhu Road(S) 30, 211816, Nanjing, China.
| | - Jingfan Qi
- College of Urban Construction, Nanjing Tech University, Puzhu Road(S) 30, 211816, Nanjing, China; Yangtze River Innovation Center for Ecological Civilization, 210019, Nanjing, China.
| | - Huafeng Jiang
- College of Urban Construction, Nanjing Tech University, Puzhu Road(S) 30, 211816, Nanjing, China.
| | - Xinlong Chen
- College of Urban Construction, Nanjing Tech University, Puzhu Road(S) 30, 211816, Nanjing, China; Yangtze River Innovation Center for Ecological Civilization, 210019, Nanjing, China.
| | - Zhaoyang You
- College of Urban Construction, Nanjing Tech University, Puzhu Road(S) 30, 211816, Nanjing, China.
| |
Collapse
|
9
|
Zhang X, Ji Q, Cheng G, Zhu M, Zhang Z, Jing L, Wang L, Li Q, Tao Q, Zhang X, Wang Q, Zhong Z, Wang H, Wang W. Tree growth and density enhanced, while diversity and spatial clustering reduced soil mycorrhizal C and N sequestration: Strong interaction with soil properties in northeastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169131. [PMID: 38070575 DOI: 10.1016/j.scitotenv.2023.169131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
In this paper, the effects of species diversity, tree growth, and spatial clustering on mycorrhizal carbon and nitrogen sequestration and the interaction of soil physicochemical properties in Northeast China were investigated. Based on 720 10 m ∗ 10 m plots in Harbin Experimental Forest Farm of Northeast Forestry University, we determined mycorrhizal biomarkers of easily extractable Glomalin-related soil protein (EEG) and total Glomalin-related soil protein (TG). Four plant diversity indices, seven structural metrics, and five soil properties were also measured. We found that: 1) The low tree diversity plots had 1.08-1.23 times higher TG, EEG, TG-N/TN (proportion of N in TG to TN), and TG-C/SOC (proportion of C in TG to SOC) than the high plots. 2) Tree diameter was negatively correlated with EEG and TG, but positively correlated with the EEG and TG contribution to soil TN and SOC. Soil EEG and TG were positively correlated with under-branch height and tree density. W (Uniform Angle Index, higher W indicates more clustering of tree distribution in the plot) was negatively correlated with the above four ratios and positively correlated with EEG/TG. 3) pH was the most powerful explainer for the GRSP variations (6.8 %, strongest negative association with GRSP/TN, R2 > 0.13), followed by soil electrical conductance (6.5 %, positive relation with TG, p < 0.05), AP (3.2 %). 4) Plant diversity mainly affected GRSP traits through the interaction with soils (0.07), tree growth and density directly increased TG, TG-N/TN, and TG-C/SOC, while tree spatial distribution directly reduced TG-N/TN. Our finding highlighted the important effects of tree diversity and forest structural traits on GRSP amount, carbon sequestration, and nutrient retentions, and could support glomalin-related forest soil management of temperate forests in the high-latitude northern hemisphere.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Bayannaoer Academy of Agricultural and Animal Sciences, Bayannaoer, Inner Mongolia 015100, China
| | - Qianru Ji
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Guanchao Cheng
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Meina Zhu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Zhonghua Zhang
- College of Resources and Environment, Jiujiang University, Jiujiang 332005, Jiangxi Province, China
| | - Lixin Jing
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Lei Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Qi Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Qinghua Tao
- The College of Life Sciences, Northwest University, Xian 710127, China
| | - Xiting Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Qiong Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhaoliang Zhong
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Huimei Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| | - Wenjie Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, CAS, Changchun 130102, China.
| |
Collapse
|
10
|
Nasr Esfahani M, Sonnewald U. Unlocking dynamic root phenotypes for simultaneous enhancement of water and phosphorus uptake. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108386. [PMID: 38280257 DOI: 10.1016/j.plaphy.2024.108386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
Phosphorus (P) and water are crucial for plant growth, but their availability is challenged by climate change, leading to reduced crop production and global food security. In many agricultural soils, crop productivity is confronted by both water and P limitations. The diminished soil moisture decreases available P due to reduced P diffusion, and inadequate P availability diminishes tissue water status through modifications in stomatal conductance and a decrease in root hydraulic conductance. P and water display contrasting distributions in the soil, with P being concentrated in the topsoil and water in the subsoil. Plants adapt to water- and P-limited environments by efficiently exploring localized resource hotspots of P and water through the adaptation of their root system. Thus, developing cultivars with improved root architecture is crucial for accessing and utilizing P and water from arid and P-deficient soils. To meet this goal, breeding towards multiple advantageous root traits can lead to better cultivars for water- and P-limited environments. This review discusses the interplay of P and water availability and highlights specific root traits that enhance the exploration and exploitation of optimal resource-rich soil strata while reducing metabolic costs. We propose root ideotype models, including 'topsoil foraging', 'subsoil foraging', and 'topsoil/subsoil foraging' for maize (monocot) and common bean (dicot). These models integrate beneficial root traits and guide the development of water- and P-efficient cultivars for challenging environments.
Collapse
Affiliation(s)
- Maryam Nasr Esfahani
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| | - Uwe Sonnewald
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
11
|
Zhou X, Wang T, Wang J, Chen S, Ling W. Research progress and prospect of glomalin-related soil protein in the remediation of slightly contaminated soil. CHEMOSPHERE 2023; 344:140394. [PMID: 37813247 DOI: 10.1016/j.chemosphere.2023.140394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/13/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Soil pollution caused by organic pollutants and potentially toxic elements poses a serious threat to sustainable agricultural development, global food security and human health. Therefore, strategies for reducing soil pollution are urgently required. Arbuscular mycorrhizal fungi (AMF)-assisted phytoremediation is widely recognized for its ability to remediate slightly-contaminated soil. Glomalin-related soil protein (GRSP) production by AMF is considered a vital mechanism of AMF-assisted phytoremediation. GRSP is widespread in soils and may contribute to the remediation of slightly contaminated soils. GRSP facilitates stabilization of pollutants in soils by interacting with pollutants owing to its abundant functional groups, recalcitrance, and long turnover time. It also enhances soil bioremediation and phytoremediation by stimulating soil microbial activity, improving soil structure, and providing nutrients for plants. However, research on GRSP is still in its early stages, and studies on contaminated soil remediation are limited. The effectiveness of GRSP in situ remediation remains to be proved. This review summarizes current knowledge regarding the GRSP distribution and its contribution to the remediation of slightly contaminated soils. Additionally, we present strategies to increase the GRSP content in contaminated soils, as well as prospects for future studies on the use of GRSP in contaminated soil remediation. This study focuses on recent developments that aim to improve awareness of the role of GRSP in soil remediation and relevant future directions.
Collapse
Affiliation(s)
- Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tingting Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shuang Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
12
|
Chen X, Su M, Wu S, He L, Zhang B, Zhang Y, Huang X, Liu J, Yan C, Liu W, Lu H. Change in glomalin-related soil protein along latitudinal gradient encompassing subtropical and temperate blue carbon zones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165035. [PMID: 37379927 DOI: 10.1016/j.scitotenv.2023.165035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Glomalin-related soil protein (GRSP), an abundant and eco-friendly bioproduct associated with arbuscular mycorrhizal fungi (AMF), contributes significantly to the soil particle aggregation and carbon sequestration. Although much research has been conducted on the storage of GRSP at different spatio-temporal scales in terrestrial ecosystems. However, the deposition of GRSP in large-scale coastal environments has not been revealed, which hinders an in-depth understanding of GRSP storage patterns and environmental controls, and this knowledge gap has become one of the key uncertainties in understanding the ecological functions of GRSP as blue carbon components in coastal environments. Therefore, we conducted large-scale experiments (spanning subtropical and warm temperate climate zones, coastlines over 2500 km) to test the relative contributions of environmental drivers that shape unique GRSP storage. In salt marshes of China, we found that the abundance of GRSP ranges from 0.29 mg g-1 to 1.10 mg g-1, and its concentration decreases with increasing latitude (R2 = 0.30, p < 0.01). The GRSP-C/SOC of salt marshes ranged from 4 % to 43 % and increased with the increase in latitude (R2 = 0.13, p < 0.05). The carbon contribution of GRSP does not follow the trend of increasing abundance, but is limited by the total amount of background organic carbon. In salt marsh wetlands, precipitation, clay content and pH are the main factors influencing GRSP storage. GRSP is positively correlated with precipitation (R2 = 0.42, p < 0.01) and clay content (R2 = 0.59, p < 0.01), but negatively correlated with pH (R2 = 0.48, p < 0.01). The relative contributions of the main factors to the GRSP differed across climatic zones. Soil properties, such as clay content and pH, explained 19.8 % of the GRSP in subtropical salt marshes (20°N < 34°N), however, in warm temperate salt marshes (34°N < 40°N), precipitation explained 18.9 % of the GRSP variation. Our study provides insight into the distribution and function of GRSP in coastal environments.
Collapse
Affiliation(s)
- Xiangwen Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Manlin Su
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Shengjie Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Le He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Binghuang Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Xiaohong Huang
- School of Medicine, Xiamen University, Fujian 361102, China
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Wenwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
13
|
Hawkins HJ, Cargill RIM, Van Nuland ME, Hagen SC, Field KJ, Sheldrake M, Soudzilovskaia NA, Kiers ET. Mycorrhizal mycelium as a global carbon pool. Curr Biol 2023; 33:R560-R573. [PMID: 37279689 DOI: 10.1016/j.cub.2023.02.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
For more than 400 million years, mycorrhizal fungi and plants have formed partnerships that are crucial to the emergence and functioning of global ecosystems. The importance of these symbiotic fungi for plant nutrition is well established. However, the role of mycorrhizal fungi in transporting carbon into soil systems on a global scale remains under-explored. This is surprising given that ∼75% of terrestrial carbon is stored belowground and mycorrhizal fungi are stationed at a key entry point of carbon into soil food webs. Here, we analyze nearly 200 datasets to provide the first global quantitative estimates of carbon allocation from plants to the mycelium of mycorrhizal fungi. We estimate that global plant communities allocate 3.93 Gt CO2e per year to arbuscular mycorrhizal fungi, 9.07 Gt CO2e per year to ectomycorrhizal fungi, and 0.12 Gt CO2e per year to ericoid mycorrhizal fungi. Based on this estimate, 13.12 Gt of CO2e fixed by terrestrial plants is, at least temporarily, allocated to the underground mycelium of mycorrhizal fungi per year, equating to ∼36% of current annual CO2 emissions from fossil fuels. We explore the mechanisms by which mycorrhizal fungi affect soil carbon pools and identify approaches to increase our understanding of global carbon fluxes via plant-fungal pathways. Our estimates, although based on the best available evidence, are imperfect and should be interpreted with caution. Nonetheless, our estimations are conservative, and we argue that this work confirms the significant contribution made by mycorrhizal associations to global carbon dynamics. Our findings should motivate their inclusion both within global climate and carbon cycling models, and within conservation policy and practice.
Collapse
Affiliation(s)
- Heidi-Jayne Hawkins
- Department of Biological Sciences, University of Cape Town, Cape Town 7701, South Africa; Conservation International, Forrest House, Belmont Park, Cape Town 7700, South Africa.
| | - Rachael I M Cargill
- Amsterdam Institute for Life and Environment, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands; AMOLF, Science Park 102, Amsterdam, The Netherlands
| | - Michael E Van Nuland
- Amsterdam Institute for Life and Environment, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands; Society for the Protection of Underground Networks, SPUN, 3500 South DuPont Highway, Dover, DE 19901, USA
| | | | - Katie J Field
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Merlin Sheldrake
- Amsterdam Institute for Life and Environment, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands; Society for the Protection of Underground Networks, SPUN, 3500 South DuPont Highway, Dover, DE 19901, USA
| | | | - E Toby Kiers
- Amsterdam Institute for Life and Environment, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands; Society for the Protection of Underground Networks, SPUN, 3500 South DuPont Highway, Dover, DE 19901, USA
| |
Collapse
|
14
|
Li T, Yuan Y, Mou Z, Li Y, Kuang L, Zhang J, Wu W, Wang F, Wang J, Lambers H, Sardans J, Peñuelas J, Ren H, Liu Z. Faster accumulation and greater contribution of glomalin to the soil organic carbon pool than amino sugars do under tropical coastal forest restoration. GLOBAL CHANGE BIOLOGY 2023; 29:533-546. [PMID: 36251710 DOI: 10.1111/gcb.16467] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Microbial metabolic products play a vital role in maintaining ecosystem multifunctionality, such as soil physical structure and soil organic carbon (SOC) preservation. Afforestation is an effective strategy to restore degraded land. Glomalin-related soil proteins (GRSP) and amino sugars are regarded as stable microbial-derived C, and their distribution within soil aggregates affects soil structure stability and SOC sequestration. However, the information about how afforestation affects the microbial contribution to SOC pools within aggregates is poorly understood. We assessed the accumulation and contribution of GRSP and amino sugars within soil aggregates along a restoration chronosequence (Bare land, Eucalyptus exserta plantation, native species mixed forest, and native forest) in tropical coastal terraces. Amino sugars and GRSP concentrations increased, whereas their contributions to the SOC pool decreased along the restoration chronosequence. Although microaggregates harbored greater microbial abundances, amino sugars and GRSP concentrations were not significantly affected by aggregate sizes. Interestingly, the contributions of amino sugars and GRSP to SOC pools decreased with decreasing aggregate size which might be associated with increased accumulation of plant-derived C. However, the relative change rate of GRSP was consistently greater in all restoration chronosequences than that of amino sugars. The accumulation of GRSP and amino sugars in SOC pools was closely associated with the dynamics of soil fertility and the microbial community. Our findings suggest that GRSP accumulates faster and contributes more to SOC pools during restoration than amino sugars did which was greatly affected by aggregate sizes. Afforestation substantially enhanced soil quality with native forest comprising species sequestering more SOC than the monoculture plantation did. Such information is invaluable for improving our mechanistic understanding of microbial control over SOC preservation during degraded ecosystem restoration. Our findings also show that plantations using arbuscular mycorrhizal plants can be an effective practice to sequester more soil carbon during restoration.
Collapse
Affiliation(s)
- Tengteng Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, China
| | - Ye Yuan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhijian Mou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yue Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, China
| | - Luhui Kuang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, China
| | - Jing Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, China
| | - Wenjia Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, China
| | - Faming Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, China
| | - Jun Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, China
| | - Hans Lambers
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Catalonia, Spain
- CREAF, Catalonia, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Catalonia, Spain
- CREAF, Catalonia, Spain
| | - Hai Ren
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, China
| | - Zhanfeng Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, China
| |
Collapse
|
15
|
Luo J, Yan Q, Yang G, Wang Y. Impact of the Arbuscular Mycorrhizal Fungus Funneliformis mosseae on the Physiological and Defence Responses of Canna indica to Copper Oxide Nanoparticles Stress. J Fungi (Basel) 2022; 8:513. [PMID: 35628768 PMCID: PMC9146287 DOI: 10.3390/jof8050513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
Copper oxide nanoparticles (nano-CuO) are recognized as an emerging pollutant. Arbuscular mycorrhizal fungi (AMF) can mitigate the adverse impacts of various pollutants on host plants. However, AMF's mechanism for alleviating nano-CuO phytotoxicity remains unclear. The goal of this study was to evaluate how AMF inoculations affect the physiological features of Canna indica seedlings exposed to nano-CuO stress. Compared with the non-AMF inoculated treatment, AMF inoculations noticeably improved plant biomass, mycorrhizal colonization, leaf chlorophyll contents, and the photosynthetic parameters of C. indica under nano-CuO treatments. Moreover, AMF inoculation was able to significantly mitigate nano-CuO stress by enhancing antioxidant enzyme activities and decreasing ROS levels in the leaves and roots of C. indica, thus increasing the expression of genes involved in the antioxidant response. In addition, AMF inoculation reduced the level of Cu in seedlings and was associated with an increased expression of Cu transport genes and metallothionein genes. Furthermore, AMF inoculations increased the expression levels of organic acid metabolism-associated genes while facilitating organic acid secretion, thus reducing the accumulation of Cu. The data demonstrate that AMF-plant symbiosis is a feasible biocontrol approach to remediate nano-CuO pollution.
Collapse
Affiliation(s)
- Jie Luo
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China;
- School of Yuanpei, Shaoxing University, Shaoxing 312000, China;
| | - Qiuxia Yan
- School of Yuanpei, Shaoxing University, Shaoxing 312000, China;
| | - Guo Yang
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Youbao Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China;
| |
Collapse
|
16
|
Schultz CJ, Wu Y, Baumann U. A targeted bioinformatics approach identifies highly variable cell surface proteins that are unique to Glomeromycotina. MYCORRHIZA 2022; 32:45-66. [PMID: 35031894 PMCID: PMC8786786 DOI: 10.1007/s00572-021-01066-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Diversity in arbuscular mycorrhizal fungi (AMF) contributes to biodiversity and resilience in natural environments and healthy agricultural systems. Functional complementarity exists among species of AMF in symbiosis with their plant hosts, but the molecular basis of this is not known. We hypothesise this is in part due to the difficulties that current sequence assembly methodologies have assembling sequences for intrinsically disordered proteins (IDPs) due to their low sequence complexity. IDPs are potential candidates for functional complementarity because they often exist as extended (non-globular) proteins providing additional amino acids for molecular interactions. Rhizophagus irregularis arabinogalactan-protein-like proteins (AGLs) are small secreted IDPs with no known orthologues in AMF or other fungi. We developed a targeted bioinformatics approach to identify highly variable AGLs/IDPs in RNA-sequence datasets. The approach includes a modified multiple k-mer assembly approach (Oases) to identify candidate sequences, followed by targeted sequence capture and assembly (mirabait-mira). All AMF species analysed, including the ancestral family Paraglomeraceae, have small families of proteins rich in disorder promoting amino acids such as proline and glycine, or glycine and asparagine. Glycine- and asparagine-rich proteins also were found in Geosiphon pyriformis (an obligate symbiont of a cyanobacterium), from the same subphylum (Glomeromycotina) as AMF. The sequence diversity of AGLs likely translates to functional diversity, based on predicted physical properties of tandem repeats (elastic, amyloid, or interchangeable) and their broad pI ranges. We envisage that AGLs/IDPs could contribute to functional complementarity in AMF through processes such as self-recognition, retention of nutrients, soil stability, and water movement.
Collapse
Affiliation(s)
- Carolyn J Schultz
- School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia.
| | - Yue Wu
- School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Ute Baumann
- School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
17
|
Marín C, Godoy R, Rubio J. Gaps in South American Mycorrhizal Biodiversity and Ecosystem Function Research. Fungal Biol 2022. [DOI: 10.1007/978-3-031-12994-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|