1
|
Garcia-Daga S, Roy SJ, Gilliham M. Redefining the role of sodium exclusion within salt tolerance. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00270-X. [PMID: 39462719 DOI: 10.1016/j.tplants.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
Salt contamination of soils and irrigation water is a significant environmental concern for crop production. Leaf sodium (Na+) exclusion is commonly proposed to be a key subtrait of salt tolerance for many crop plants. High-Affinity Potassium (K+) Transporter 1 (HKT1) proteins have previously been identified as major controllers of leaf Na+ exclusion across diverse species. However, leaf Na+ exclusion does not always correlate with salt tolerance. We discuss literature which shows leaf Na+ accumulation can, in some circumstances, be tolerated without a detrimental effect on yield when HKT1 still functions to exclude Na+ from reproductive tissues. We conclude that, by having an ultimate role in the protection of reproductive performance, HKT1s' role in adaptation to salinity warrants redefinition.
Collapse
Affiliation(s)
- Sebastian Garcia-Daga
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia; School of Biosciences, University of Nottingham, Sutton Bonnington, LE12 5RD, UK; ARC Centre of Excellence in Plants for Space, University of Adelaide, Urrbrae, SA 5064, Australia
| | - Stuart J Roy
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia; ARC Industrial Transformation Training Centre for Future Crops Development, University of Adelaide, Urrbrae, SA 5064, Australia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia; ARC Centre of Excellence in Plants for Space, University of Adelaide, Urrbrae, SA 5064, Australia; ARC Industrial Transformation Training Centre for Future Crops Development, University of Adelaide, Urrbrae, SA 5064, Australia.
| |
Collapse
|
2
|
Fan G, Gao Y, Wu X, Yu Y, Yao W, Jiang J, Liu H, Jiang T. Functional analysis of PagERF021 gene in salt stress tolerance in Populus alba × P. glandulosa. THE PLANT GENOME 2024:e20521. [PMID: 39414577 DOI: 10.1002/tpg2.20521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/10/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
Poplar trees are crucial for timber and greening, but high levels of salt in the soil have severely limited the yield of poplar. ETS2 repressor factor (ERF) transcription factors play an important role in growth, development, and stress response in eukaryotes. Our study focused on the PagERF021 gene from Populus alba × P. glandulosa, which was significantly upregulated in various tissues under salt stress. Both the tissue-specific expression pattern and β-glucuronidase (GUS) staining of proPagERF021-GUS plants indicated that this gene was predominantly expressed in the roots and stems. The subcellular localization showed that the protein was only localized in the nucleus. The yeast assay demonstrated that this protein had transcriptional activation activity at its C-terminal and could specifically binding to the MYB-core cis-element. The overexpression of PagERF021 gene could scavenge the accumulation of reactive oxygen species and reduce the degree of cellular membrane damage, indicating that this gene enhanced the salt tolerance of poplars. This finding will provide a feasible insight for future research into the regulatory mechanisms of ERF genes in resisting to abiotic stress and the development of new stress-resistant varieties in plants.
Collapse
Affiliation(s)
- Gaofeng Fan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yuan Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xinyue Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yingying Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Jiahui Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Huanzhen Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
3
|
Wang Z, Cao Y, Jiang Y, Ding M, Rong J. Characterization and expression analysis of the MADS-box gene AGL8 in cotton: insights into gene function differentiation in plant growth and stress resistance. Mol Biol Rep 2024; 51:1037. [PMID: 39365489 DOI: 10.1007/s11033-024-09902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND AGAMOUS-LIKE 8 (AGL8) belongs to the MADS-box family, which plays important roles in transcriptional regulation, sequence-specific DNA binding and other biological processes and molecular functions. The genome of cotton, a representative polyploid plant, contains multiple AGL8 genes. However, their functional differentiation is still unclear. METHODS AND RESULTS In this study, a comprehensive genomic analysis of AGL8 genes was conducted. Cotton AGL8s were subdivided into four subgroups (Groups 1, 2, 3, and 4) based on phylogenetic analysis, and different subgroups of AGL8s presented different characteristics, including different structures and conserved motifs. With respect to the promoter regions of the GhAGL8 genes, we successfully predicted cis-elements that respond to phytohormone signal transduction and the stress response of plants. Transcriptome data and real-time quantitative PCR validation indicated that three genes, namely, GH_D07G0744, GH_A03G0856 and GH_A07G0749, were highly induced by methyl jasmonate (MeJA), salicylic acid (SA), and abscisic acid (ABA), which indicated that they function in plant resistance to abiotic and biotic stresses. CONCLUSIONS The information from the gene structure, number and types of conserved domains, tissue-specific expression levels, and expression patterns under different treatments highlights the differences in sequence and function of the cotton AGL8 genes. Different AGL8s play roles in vegetative growth, reproductive development, and plant stress resistance. These results lay a foundation for further study of GhAGL8s in cotton.
Collapse
Affiliation(s)
- Zhicheng Wang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Yuefen Cao
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| | - Yurong Jiang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Mingquan Ding
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Junkang Rong
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| |
Collapse
|
4
|
Liu L, Luo S, Ma L, Zhang Y, Wang T, Wang J, Liang X, Xue S. Analysis of Ion Transport Properties of Glycine max HKT Transporters and Identifying a Regulation of GmHKT1;1 by the Non-Functional GmHKT1;4. PLANT & CELL PHYSIOLOGY 2024; 65:1399-1413. [PMID: 38978103 DOI: 10.1093/pcp/pcae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
High-affinity potassium transporters (HKTs) play an important role in plants responding to salt stress, but the transport properties of the soybean HKT transporters at the molecular level are still unclear. Here, using Xenopus oocyte as a heterologous expression system and two-electrode voltage-clamp technique, we identified four HKT transporters, GmHKT1;1, GmHKT1;2, GmHKT1;3 and GmHKT1;4, all of which belong to type I subfamily, but have distinct ion transport properties. While GmHKT1;1, GmHKT1;2 and GmHKT1;3 function as Na+ transporters, GmHKT1;1 is less selective against K+ than the two other transporters. Astonishingly, GmHKT1;4, which lacks transmembrane segments and has no ion permeability, is significantly expressed, and its gene expression pattern is different from the other three GmHKTs under salt stress. Interestingly, GmHKT1;4 reduced the Na+/K+ currents mediated by GmHKT1;1. Further study showed that the transport ability of GmHKT1;1 regulated by GmHKT1;4 was related to the structural differences in the first intracellular domain and the fourth repeat domain. Overall, we have identified one unique GmHKT member, GmHKT1;4, which modulates the Na+ and K+ transport ability of GmHKT1;1 via direct interaction. Thus, we have revealed a new type of HKT interaction model for altering their ion transport properties.
Collapse
Affiliation(s)
- Liu Liu
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Sheng Luo
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Longfei Ma
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Yanli Zhang
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Tiantian Wang
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Jicheng Wang
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Xiushuo Liang
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Shaowu Xue
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| |
Collapse
|
5
|
Adhikari PB, Kasahara RD. An Overview on MADS Box Members in Plants: A Meta-Review. Int J Mol Sci 2024; 25:8233. [PMID: 39125803 PMCID: PMC11311456 DOI: 10.3390/ijms25158233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Most of the studied MADS box members are linked to flowering and fruit traits. However, higher volumes of studies on type II of the two types so far suggest that the florigenic effect of the gene members could just be the tip of the iceberg. In the current study, we used a systematic approach to obtain a general overview of the MADS box members' cross-trait and multifactor associations, and their pleiotropic potentials, based on a manually curated local reference database. While doing so, we screened for the co-occurrence of terms of interest within the title or abstract of each reference, with a threshold of three hits. The analysis results showed that our approach can retrieve multi-faceted information on the subject of study (MADS box gene members in the current case), which could otherwise have been skewed depending on the authors' expertise and/or volume of the literature reference base. Overall, our study discusses the roles of MADS box members in association with plant organs and trait-linked factors among plant species. Our assessment showed that plants with most of the MADS box member studies included tomato, apple, and rice after Arabidopsis. Furthermore, based on the degree of their multi-trait associations, FLC, SVP, and SOC1 are suggested to have relatively higher pleiotropic potential among others in plant growth, development, and flowering processes. The approach devised in this study is expected to be applicable for a basic understanding of any study subject of interest, regardless of the depth of prior knowledge.
Collapse
Affiliation(s)
- Prakash Babu Adhikari
- Biotechnology and Bioscience Research Center, Nagoya University, Nagoya 464-8601, Japan
| | | |
Collapse
|
6
|
Sun M, Jiang C, Gao G, An C, Wu W, Kan J, Zhang J, Li L, Yang P. A novel type of malformed floral organs mutant in barley was conferred by loss-of-function mutations of the MADS-box gene HvAGL6. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39037746 DOI: 10.1111/tpj.16936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
The advanced model of floral morphogenesis is based largely on data from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), but this process is less well understood in the Triticeae. Here, we investigated a sterile barley (Hordeum vulgare) mutant with malformed floral organs (designated mfo1), of which the paleae, lodicules, and stamens in each floret were all converted into lemma-like organs, and the ovary was abnormally shaped. Combining bulked-segregant analysis, whole-genome resequencing, and TILLING approaches, the mfo1 mutant was attributed to loss-of-function mutations in the MADS-box transcription factor gene HvAGL6, a key regulator in the ABCDE floral morphogenesis model. Through transcriptomic analysis between young inflorescences of wild-type and mfo1 plants, 380 genes were identified as differentially expressed, most of which function in DNA binding, protein dimerization, cell differentiation, or meristem determinacy. Regulatory pathway enrichment showed HvAGL6 associates with transcriptional abundance of many MADS-box genes, including the B-class gene HvMADS4. Mutants with deficiency in HvMADS4 exhibited the conversion of stamens into supernumerary pistils, producing multiple ovaries resembling the completely sterile multiple ovaries 3.h (mov3.h) mutant. These findings demonstrate that the regulatory model of floral morphogenesis is conserved across plant species and provides insights into the interactions between HvAGL6 and other MADS-box regulators.
Collapse
Affiliation(s)
- Man Sun
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Shanxi Agricultural University, Taiyuan, 032699, China
| | - Congcong Jiang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangqi Gao
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chaodan An
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenxue Wu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinhong Kan
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinpeng Zhang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lihui Li
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ping Yang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
7
|
Zhang X, Luo Z, Marand AP, Yan H, Jang H, Bang S, Mendieta JP, Minow MA, Schmitz RJ. A spatially resolved multiomic single-cell atlas of soybean development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601616. [PMID: 39005400 PMCID: PMC11244997 DOI: 10.1101/2024.07.03.601616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cis-regulatory elements (CREs) precisely control spatiotemporal gene expression in cells. Using a spatially resolved single-cell atlas of gene expression with chromatin accessibility across ten soybean tissues, we identified 103 distinct cell types and 303,199 accessible chromatin regions (ACRs). Nearly 40% of the ACRs showed cell-type-specific patterns and were enriched for transcription factor (TF) motifs defining diverse cell identities. We identified de novo enriched TF motifs and explored conservation of gene regulatory networks underpinning legume symbiotic nitrogen fixation. With comprehensive developmental trajectories for endosperm and embryo, we uncovered the functional transition of the three sub-cell types of endosperm, identified 13 sucrose transporters sharing the DOF11 motif that were co-up-regulated in late peripheral endosperm and identified key embryo cell-type specification regulators during embryogenesis, including a homeobox TF that promotes cotyledon parenchyma identity. This resource provides a valuable foundation for analyzing gene regulatory programs in soybean cell types across tissues and life stages.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Genetics, University of Georgia, Athens, GA, USA
- These authors contributed equally: Xuan Zhang, Ziliang Luo, Alexandre P. Marand
| | - Ziliang Luo
- Department of Genetics, University of Georgia, Athens, GA, USA
- These authors contributed equally: Xuan Zhang, Ziliang Luo, Alexandre P. Marand
| | - Alexandre P. Marand
- Department of Molecular, Cellular, and Development Biology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally: Xuan Zhang, Ziliang Luo, Alexandre P. Marand
| | - Haidong Yan
- Department of Genetics, University of Georgia, Athens, GA, USA
- Current address: College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hosung Jang
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Sohyun Bang
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | | | - Mark A.A. Minow
- Department of Genetics, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
8
|
Chen J, Liu L, Wang G, Chen G, Liu X, Li M, Han L, Song W, Wang S, Li C, Wang Z, Huang Y, Gu C, Yang Z, Zhou Z, Zhao J, Zhang X. The AGAMOUS-LIKE 16-GENERAL REGULATORY FACTOR 1 module regulates axillary bud outgrowth via catabolism of abscisic acid in cucumber. THE PLANT CELL 2024; 36:2689-2708. [PMID: 38581430 PMCID: PMC11218829 DOI: 10.1093/plcell/koae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 03/01/2024] [Indexed: 04/08/2024]
Abstract
Lateral branches are important components of shoot architecture and directly affect crop yield and production cost. Although sporadic studies have implicated abscisic acid (ABA) biosynthesis in axillary bud outgrowth, the function of ABA catabolism and its upstream regulators in shoot branching remain elusive. Here, we showed that the MADS-box transcription factor AGAMOUS-LIKE 16 (CsAGL16) is a positive regulator of axillary bud outgrowth in cucumber (Cucumis sativus). Functional disruption of CsAGL16 led to reduced bud outgrowth, whereas overexpression of CsAGL16 resulted in enhanced branching. CsAGL16 directly binds to the promoter of the ABA 8'-hydroxylase gene CsCYP707A4 and promotes its expression. Loss of CsCYP707A4 function inhibited axillary bud outgrowth and increased ABA levels. Elevated expression of CsCYP707A4 or treatment with an ABA biosynthesis inhibitor largely rescued the Csagl16 mutant phenotype. Moreover, cucumber General Regulatory Factor 1 (CsGRF1) interacts with CsAGL16 and antagonizes CsAGL16-mediated CsCYP707A4 activation. Disruption of CsGRF1 resulted in elongated branches and decreased ABA levels in the axillary buds. The Csagl16 Csgrf1 double mutant exhibited a branching phenotype resembling that of the Csagl16 single mutant. Therefore, our data suggest that the CsAGL16-CsGRF1 module regulates axillary bud outgrowth via CsCYP707A4-mediated ABA catabolism in cucumber. Our findings provide a strategy to manipulate ABA levels in axillary buds during crop breeding to produce desirable branching phenotypes.
Collapse
Affiliation(s)
- Jiacai Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Liu Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Guanghui Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Guangxin Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Min Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Lijie Han
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Weiyuan Song
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Shaoyun Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Chuang Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zhongyi Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Yuxiang Huang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Chaoheng Gu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zhengan Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Zhaoyang Zhou
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Mano NA, Shaikh MA, Widhalm JR, Yoo CY, Mickelbart MV. Transcriptional repression of GTL1 under water-deficit stress promotes anthocyanin biosynthesis to enhance drought tolerance. PLANT DIRECT 2024; 8:e594. [PMID: 38799417 PMCID: PMC11117050 DOI: 10.1002/pld3.594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
The transcription factor GT2-LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water-limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water-deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA-seq analysis in emerging and expanding leaves of wild-type and a drought-tolerant gtl1-4 knockout mutant under well-watered and water-deficit conditions. Our comparative analysis of genotype-treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water-deficit responsive GTL1-regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water-deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought-responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance.
Collapse
Affiliation(s)
- Noel Anthony Mano
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Biological and Environmental SciencesHeidelberg UniversityTiffinOhioUSA
- Present address:
School of Biological SciencesThe University of UtahSalt Lake CityUtahUSA
| | - Mearaj A. Shaikh
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIndianaUSA
| | - Joshua R. Widhalm
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIndianaUSA
| | - Chan Yul Yoo
- Present address:
School of Biological SciencesThe University of UtahSalt Lake CityUtahUSA
| | - Michael V. Mickelbart
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
10
|
Castañón-Suárez CA, Arrizubieta M, Castelán-Muñoz N, Sánchez-Rodríguez DB, Caballero-Cordero C, Zluhan-Martínez E, Patiño-Olvera SC, Arciniega-González J, García-Ponce B, Sánchez MDLP, Álvarez-Buylla ER, Garay-Arroyo A. The MADS-box genes SOC1 and AGL24 antagonize XAL2 functions in Arabidopsis thaliana root development. FRONTIERS IN PLANT SCIENCE 2024; 15:1331269. [PMID: 38576790 PMCID: PMC10994003 DOI: 10.3389/fpls.2024.1331269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/06/2024] [Indexed: 04/06/2024]
Abstract
MADS-domain transcription factors play pivotal roles in numerous developmental processes in Arabidopsis thaliana. While their involvement in flowering transition and floral development has been extensively examined, their functions in root development remain relatively unexplored. Here, we explored the function and genetic interaction of three MADS-box genes (XAL2, SOC1 and AGL24) in primary root development. By analyzing loss-of-function and overexpression lines, we found that SOC1 and AGL24, both critical components in flowering transition, redundantly act as repressors of primary root growth as the loss of function of either SOC1 or AGL24 partially recovers the primary root growth, meristem cell number, cell production rate, and the length of fully elongated cells of the short-root mutant xal2-2. Furthermore, we observed that the simultaneous overexpression of AGL24 and SOC1 leads to short-root phenotypes, affecting meristem cell number and fully elongated cell size, whereas SOC1 overexpression is sufficient to affect columella stem cell differentiation. Additionally, qPCR analyses revealed that these genes exhibit distinct modes of transcriptional regulation in roots compared to what has been previously reported for aerial tissues. We identified 100 differentially expressed genes in xal2-2 roots by RNA-seq. Moreover, our findings revealed that the expression of certain genes involved in cell differentiation, as well as stress responses, which are either upregulated or downregulated in the xal2-2 mutant, reverted to WT levels in the absence of SOC1 or AGL24.
Collapse
Affiliation(s)
- Claudio A. Castañón-Suárez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maite Arrizubieta
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Natalia Castelán-Muñoz
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Postgrado en Recursos Genéticos y Productividad-Fisiología Vegetal, Colegio de Postgraduados, Texcoco, Estado de México, Mexico
| | - Diana Belén Sánchez-Rodríguez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carolina Caballero-Cordero
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Sandra C. Patiño-Olvera
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - J.Arturo Arciniega-González
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
11
|
Mirzaghaderi G. Genome-wide analysis of MADS-box transcription factor gene family in wild emmer wheat (Triticum turgidum subsp. dicoccoides). PLoS One 2024; 19:e0300159. [PMID: 38451993 PMCID: PMC10919676 DOI: 10.1371/journal.pone.0300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
The members of MADS-box gene family have important roles in regulating the growth and development of plants. MADS-box genes are highly regarded for their potential to enhance grain yield and quality under shifting global conditions. Wild emmer wheat (Triticum turgidum subsp. dicoccoides) is a progenitor of common wheat and harbors valuable traits for wheat improvement. Here, a total of 117 MADS-box genes were identified in the wild emmer wheat genome and classified to 90 MIKCC, 3 MIKC*, and 24 M-type. Furthermore, a phylogenetic analysis and expression profiling of the emmer wheat MADS-box gene family was presented. Although some MADS-box genes belonging to SOC1, SEP1, AGL17, and FLC groups have been expanded in wild emmer wheat, the number of MIKC-type MADS-box genes per subgenome is similar to that of rice and Arabidopsis. On the other hand, M-type genes of wild emmer wheat is less frequent than that of Arabidopsis. Gene expression patterns over different tissues and developmental stages agreed with the subfamily classification of MADS-box genes and was similar to common wheat and rice, indicating their conserved functionality. Some TdMADS-box genes are also differentially expressed under drought stress. The promoter region of each of the TdMADS-box genes harbored 6 to 48 responsive elements, mainly related to light, however hormone, drought, and low-temperature related cis-acting elements were also present. In conclusion, the results provide detailed information about the MADS-box genes of wild emmer wheat. The present work could be useful in the functional genomics efforts toward breeding for agronomically important traits in T. dicoccoides.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
12
|
Hong MJ, Ko CS, Kim JB, Kim DY. Identification and transcriptomic profiling of salinity stress response genes in colored wheat mutant. PeerJ 2024; 12:e17043. [PMID: 38464747 PMCID: PMC10924784 DOI: 10.7717/peerj.17043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Background Salinity is a major abiotic stress that prevents normal plant growth and development, ultimately reducing crop productivity. This study investigated the effects of salinity stress on two wheat lines: PL1 (wild type) and PL6 (mutant line generated through gamma irradiation of PL1). Results The salinity treatment was carried out with a solution consisting of a total volume of 200 mL containing 150 mM NaCl. Salinity stress negatively impacted germination and plant growth in both lines, but PL6 exhibited higher tolerance. PL6 showed lower Na+ accumulation and higher K+ levels, indicating better ion homeostasis. Genome-wide transcriptomic analysis revealed distinct gene expression patterns between PL1 and PL6 under salt stress, resulting in notable phenotypic differences. Gene ontology analysis revealed positive correlations between salt stress and defense response, glutathione metabolism, peroxidase activity, and reactive oxygen species metabolic processes, highlighting the importance of antioxidant activities in salt tolerance. Additionally, hormone-related genes, transcription factors, and protein kinases showed differential expression, suggesting their roles in the differential salt stress response. Enrichment of pathways related to flavonoid biosynthesis and secondary metabolite biosynthesis in PL6 may contribute to its enhanced antioxidant activities. Furthermore, differentially expressed genes associated with the circadian clock system, cytoskeleton organization, and cell wall organization shed light on the plant's response to salt stress. Conclusions Understanding these mechanisms is crucial for developing stress-tolerant crop varieties, improving agricultural practices, and breeding salt-resistant crops to enhance global food production and address food security challenges.
Collapse
Affiliation(s)
- Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk-do, Korea
| | - Chan Seop Ko
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk-do, Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk-do, Korea
| | - Dae Yeon Kim
- Plant Resources, Kongju National University, Yesan-eup, Chungnam, South Korea
| |
Collapse
|
13
|
Chandran AEJ, Finkler A, Hait TA, Kiere Y, David S, Pasmanik-Chor M, Shkolnik D. Calcium regulation of the Arabidopsis Na+/K+ transporter HKT1;1 improves seed germination under salt stress. PLANT PHYSIOLOGY 2024; 194:1834-1852. [PMID: 38057162 PMCID: PMC10904324 DOI: 10.1093/plphys/kiad651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
Calcium is known to improve seed-germination rates under salt stress. We investigated the involvement of calcium ions (Ca2+) in regulating HIGH-AFFINITY K+ TRANSPORTER 1 (HKT1; 1), which encodes a Na+/K+ transporter, and its post-translational regulator TYPE 2C PROTEIN PHOSPHATASE 49 (PP2C49), in germinating Arabidopsis (Arabidopsis thaliana) seedlings. Germination rates of hkt1 mutant seeds under salt stress remained unchanged by CaCl2 treatment in wild-type Arabidopsis, whereas pp2c49 mutant seeds displayed improved salt-stress tolerance in the absence of CaCl2 supplementation. Analysis of HKT1;1 and PP2C49 promoter activity revealed that CaCl2 treatment results in radicle-focused expression of HKT1;1 and reduction of the native radicle-exclusive expression of PP2C49. Ion-content analysis indicated that CaCl2 treatment improves K+ retention in germinating wild-type seedlings under salt stress, but not in hkt1 seedlings. Transgenic seedlings designed to exclusively express HKT1;1 in the radicle during germination displayed higher germination rates under salt stress than the wild type in the absence of CaCl2 treatment. Transcriptome analysis of germinating seedlings treated with CaCl2, NaCl, or both revealed 118 upregulated and 94 downregulated genes as responsive to the combined treatment. Bioinformatics analysis of the upstream sequences of CaCl2-NaCl-treatment-responsive upregulated genes revealed the abscisic acid response element CACGTGTC, a potential CaM-binding transcription activator-binding motif, as most prominent. Our findings suggest a key role for Ca2+ in mediating salt-stress responses during germination by regulating genes that function to maintain Na+ and K+ homeostasis, which is vital for seed germination under salt stress.
Collapse
Affiliation(s)
- Ancy E J Chandran
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Aliza Finkler
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tom Aharon Hait
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yvonne Kiere
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Sivan David
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Metsada Pasmanik-Chor
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Doron Shkolnik
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
14
|
Yang X, Zhang M, Xi D, Yin T, Zhu L, Yang X, Zhou X, Zhang H, Liu X. Genome-wide identification and expression analysis of the MADS gene family in sweet orange ( Citrus sinensis) infested with pathogenic bacteria. PeerJ 2024; 12:e17001. [PMID: 38436028 PMCID: PMC10909352 DOI: 10.7717/peerj.17001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
The risk of pathogenic bacterial invasion in plantations has increased dramatically due to high environmental climate change and has seriously affected sweet orange fruit quality. MADS genes allow plants to develop increased resistance, but functional genes for resistance associated with pathogen invasion have rarely been reported. MADS gene expression profiles were analyzed in sweet orange leaves and fruits infested with Lecanicillium psalliotae and Penicillium digitatum, respectively. Eighty-two MADS genes were identified from the sweet orange genome, and they were classified into five prime subfamilies concerning the Arabidopsis MADS gene family, of which the MIKC subfamily could be subdivided into 13 minor subfamilies. Protein structure analysis showed that more than 93% of the MADS protein sequences of the same subfamily between sweet orange and Arabidopsis were very similar in tertiary structure, with only CsMADS8 and AG showing significant differences. The variability of MADS genes protein structures between sweet orange and Arabidopsis subgroups was less than the variabilities of protein structures within species. Chromosomal localization and covariance analysis showed that these genes were unevenly distributed on nine chromosomes, with the most genes on chromosome 9 and the least on chromosome 2, with 36 and two, respectively. Four pairs of tandem and 28 fragmented duplicated genes in the 82 MADS gene sequences were found in sweet oranges. GO (Gene Ontology) functional enrichment and expression pattern analysis showed that the functional gene CsMADS46 was strongly downregulated of sweet orange in response to biotic stress adversity. It is also the first report that plants' MADS genes are involved in the biotic stress responses of sweet oranges. For the first time, L. psalliotae was experimentally confirmed to be the causal agent of sweet orange leaf spot disease, which provides a reference for the research and control of pathogenic L. psalliotae.
Collapse
Affiliation(s)
- Xiuyao Yang
- Southwest Forestry University, Kunming, China
| | | | - Dengxian Xi
- Southwest Forestry University, Kunming, China
| | - Tuo Yin
- Southwest Forestry University, Kunming, China
| | - Ling Zhu
- Southwest Forestry University, Kunming, China
| | - Xiujia Yang
- Southwest Forestry University, Kunming, China
| | - Xianyan Zhou
- Institute of Tropical and Subtropical Economic Crops, Institute of Tropical and Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Ruili, China
| | | | | |
Collapse
|
15
|
Wang Z, Li X, Gao XR, Dai ZR, Peng K, Jia LC, Wu YK, Liu QC, Zhai H, Gao SP, Zhao N, He SZ, Zhang H. IbMYB73 targets abscisic acid-responsive IbGER5 to regulate root growth and stress tolerance in sweet potato. PLANT PHYSIOLOGY 2024; 194:787-804. [PMID: 37815230 DOI: 10.1093/plphys/kiad532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/11/2023]
Abstract
Root development influences plant responses to environmental conditions, and well-developed rooting enhances plant survival under abiotic stress. However, the molecular and genetic mechanisms underlying root development and abiotic stress tolerance in plants remain unclear. In this study, we identified the MYB transcription factor-encoding gene IbMYB73 by cDNA-amplified fragment length polymorphism and RNA-seq analyses. IbMYB73 expression was greatly suppressed under abiotic stress in the roots of the salt-tolerant sweet potato (Ipomoea batatas) line ND98, and its promoter activity in roots was significantly reduced by abscisic acid (ABA), NaCl, and mannitol treatments. Overexpression of IbMYB73 significantly inhibited adventitious root growth and abiotic stress tolerance, whereas IbMYB73-RNAi plants displayed the opposite pattern. IbMYB73 influenced the transcription of genes involved in the ABA pathway. Furthermore, IbMYB73 formed homodimers and activated the transcription of ABA-responsive protein IbGER5 by binding to an MYB binding sites I motif in its promoter. IbGER5 overexpression significantly inhibited adventitious root growth and abiotic stress tolerance concomitantly with a reduction in ABA content, while IbGER5-RNAi plants showed the opposite effect. Collectively, our results demonstrated that the IbMYB73-IbGER5 module regulates ABA-dependent adventitious root growth and abiotic stress tolerance in sweet potato, which provides candidate genes for the development of elite crop varieties with well-developed root-mediated abiotic stress tolerance.
Collapse
Affiliation(s)
- Zhen Wang
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xu Li
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiao-Ru Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhuo-Ru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Kui Peng
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li-Cong Jia
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Yin-Kui Wu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qing-Chang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-Pei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-Zhen He
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Lei J, You Y, Dai P, Yu L, Li Y, Liu C, Liu X. GhAGL16 ( AGAMOUS- LIKE16) Negatively Regulates Tolerance to Water Deficit in Transgenic Arabidopsis and Cotton. PLANTS (BASEL, SWITZERLAND) 2024; 13:282. [PMID: 38256835 PMCID: PMC10820581 DOI: 10.3390/plants13020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024]
Abstract
Cotton is one of the most economically important crops in the world, and drought is a key abiotic factor that can significantly reduce cotton yield. MADS-box transcription factors play essential roles in various aspects of plant growth and development as well as responses to biotic and abiotic stress. However, the use of MADS-box transcription factors to regulate water stress responses has not been fully explored in cotton. Here, we showed that GhAGL16 acts as a negative regulator of water deficit in cotton, at least in part by regulating ABA signaling. GhAGL16-overexpressing (GhAGL16-OE) transgenic Arabidopsis had lower survival rates and relative water contents (RWCs) under water stress. Isolated leaves of GhAGL16-OE Arabidopsis had increased water loss rates, likely attributable to their increased stomatal density. GhAGL16-OE Arabidopsis also showed reduced primary root lengths in response to mannitol treatment and decreased sensitivity of seed germination to ABA treatment. By contrast, silencing GhAGL16 in cotton enhanced tolerance to water deficit by increasing proline (Pro) content, increasing superoxide dismutase (SOD) and peroxidase (POD) activities, and reducing malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents under water stress. Subcellular localization and transcriptional activation assays confirmed that GhAGL16 is a nuclear protein that lacks transcriptional self-activation activity. The expression of ABA biosynthesis-related genes (GhNCED3/7/14), a catabolism-related gene (GhCYP707A), and a gene related to the ABA signaling pathway (GhABF4) was altered in GhAGL16-silenced plants. Taken together, our data demonstrate that GhAGL16 plays an important role in cotton resistance to water stress.
Collapse
Affiliation(s)
- Jianfeng Lei
- College of Agronomy, Xinjiang Agricultural University, Nongda East Road, Urumqi 830052, China;
| | - Yangzi You
- College of Life Sciences, Xinjiang Agricultural University, Nongda East Road, Urumqi 830052, China; (Y.Y.); (P.D.); (L.Y.); (Y.L.); (C.L.)
| | - Peihong Dai
- College of Life Sciences, Xinjiang Agricultural University, Nongda East Road, Urumqi 830052, China; (Y.Y.); (P.D.); (L.Y.); (Y.L.); (C.L.)
| | - Li Yu
- College of Life Sciences, Xinjiang Agricultural University, Nongda East Road, Urumqi 830052, China; (Y.Y.); (P.D.); (L.Y.); (Y.L.); (C.L.)
| | - Yue Li
- College of Life Sciences, Xinjiang Agricultural University, Nongda East Road, Urumqi 830052, China; (Y.Y.); (P.D.); (L.Y.); (Y.L.); (C.L.)
| | - Chao Liu
- College of Life Sciences, Xinjiang Agricultural University, Nongda East Road, Urumqi 830052, China; (Y.Y.); (P.D.); (L.Y.); (Y.L.); (C.L.)
| | - Xiaodong Liu
- College of Life Sciences, Xinjiang Agricultural University, Nongda East Road, Urumqi 830052, China; (Y.Y.); (P.D.); (L.Y.); (Y.L.); (C.L.)
| |
Collapse
|
17
|
Liang M, Du Z, Yang Z, Luo T, Ji C, Cui H, Li R. Genome-wide characterization and expression analysis of MADS-box transcription factor gene family in Perilla frutescens. FRONTIERS IN PLANT SCIENCE 2024; 14:1299902. [PMID: 38259943 PMCID: PMC10801092 DOI: 10.3389/fpls.2023.1299902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
MADS-box transcription factors are widely involved in the regulation of plant growth, developmental processes, and response to abiotic stresses. Perilla frutescens, a versatile plant, is not only used for food and medicine but also serves as an economical oil crop. However, the MADS-box transcription factor family in P. frutescens is still largely unexplored. In this study, a total of 93 PfMADS genes were identified in P. frutescens genome. These genes, including 37 Type I and 56 Type II members, were randomly distributed across 20 chromosomes and 2 scaffold regions. Type II PfMADS proteins were found to contain a greater number of motifs, indicating more complex structures and diverse functions. Expression analysis revealed that most PfMADS genes (more than 76 members) exhibited widely expression model in almost all tissues. The further analysis indicated that there was strong correlation between some MIKCC-type PfMADS genes and key genes involved in lipid synthesis and flavonoid metabolism, which implied that these PfMADS genes might play important regulatory role in the above two pathways. It was further verified that PfMADS47 can effectively mediate the regulation of lipid synthesis in Chlamydomonas reinhardtii transformants. Using cis-acting element analysis and qRT-PCR technology, the potential functions of six MIKCC-type PfMADS genes in response to abiotic stresses, especially cold and drought, were studied. Altogether, this study is the first genome-wide analysis of PfMADS. This result further supports functional and evolutionary studies of PfMADS gene family and serves as a benchmark for related P. frutescens breeding studies.
Collapse
Affiliation(s)
- Mengjing Liang
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Zhongyang Du
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Ze Yang
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Tao Luo
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunli Ji
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Runzhi Li
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
18
|
Shao W, Zhang X, Zhou Z, Ma Y, Chu D, Wang L, Yang Y, Du L, Du Y, Du J, Zhao Q. Genome- and transcriptome-wide identification of trehalose-6-phosphate phosphatases (TPP) gene family and their expression patterns under abiotic stress and exogenous trehalose in soybean. BMC PLANT BIOLOGY 2023; 23:641. [PMID: 38082382 PMCID: PMC10714469 DOI: 10.1186/s12870-023-04652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Trehalose-6-phosphate phosphatase (TPP) is an essential enzyme catalyzing trehalose synthesis, an important regulatory factor for plant development and stress response in higher plants. However, the TPP gene family in soybean has not been reported. RESULTS A comprehensive analysis of the TPP gene family identified 18 GmTPPs classified into eight groups based on the phylogenetic relationships and the conservation of protein in six monocot and eudicot plants. The closely linked subfamilies had similar motifs and intron/exon numbers. Segmental duplication was the main driving force of soybean GmTPPs expansion. In addition, analysis of the cis-regulatory elements and promoter regions of GmTPPs revealed that GmTPPs regulated the response to several abiotic stresses. Moreover, RNA-seq and qRT-PCR analysis of the tissue-specific GmTPPs under different abiotic stresses revealed that most GmTPPs were associated with response to different stresses, including cold, drought, saline-alkali, and exogenous trehalose. Notably, exogenous trehalose treatment up-regulated the expression of most TPP genes under saline-alkali conditions while increasing the carbohydrate and trehalose levels and reducing reactive oxygen species (ROS) accumulation in soybean sprouts, especially in the saline-alkali tolerant genotype. Furthermore, the interaction network and miRNA target prediction revealed that GmTPPs interacted with abiotic stress response-related transcription factors. CONCLUSIONS The findings in this study lay a foundation for further functional studies on TPP-based breeding to improve soybean development and stress tolerance.
Collapse
Affiliation(s)
- Wenjing Shao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Xinlin Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Zhiheng Zhou
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Yue Ma
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Duo Chu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Lei Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Yiming Yang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Lin Du
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Yanli Du
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China
| | - Jidao Du
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China.
| | - Qiang Zhao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China.
| |
Collapse
|
19
|
Zhu T, Li B, Chen Y, Jing Y, Wang S, Li W, Gao N, Liao C, Wang L, Xiao F, Li T. BRASSINOSTEROID-INSENSITIVE 2 regulates salt stress tolerance in Arabidopsis by promoting AGL16 activity. Biochem Biophys Res Commun 2023; 678:17-23. [PMID: 37611348 DOI: 10.1016/j.bbrc.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Salt stress is a negative environmental factors to affecting plants. Salinity inhibits seed germination and root growth, which reduces the biomass of agricultural plants. BRASSINOSTEROID-INSENSITIVE2 (BIN2) functions as a signalling hub to integrate the perception and transduction of plant growth and stress tolerance by the phosphorylation of target proteins. However, only a small number of target molecules have been discovered thus far. In this study, we present evidence that BIN2 controls the post-transcriptional activity of AGL16. BIN2 interacts and phosphorylates AGL16, which increases AGL16 stability and transcriptional activity. Genetic testing showed that the agl16 mutant can restore the reduction in the seed germination rate and primary root growth of the bin2-1 mutant, while the overexpression of AGL16 in the bin2-3bil1bil2 mutant reduced the salt tolerance compared with bin2-3bil1bil2 in response to salt stress. Taken together, our data identify a BIN2-AGL16 core protein module that is mediates the inhibition of seed germination and primary root growth under salt stress.
Collapse
Affiliation(s)
- Tao Zhu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China
| | - Bingbing Li
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China
| | - Yanyan Chen
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China
| | - Yi Jing
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China
| | - Suxuan Wang
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China
| | - Wenxin Li
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China
| | - Ningya Gao
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China
| | - Chunli Liao
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China
| | - Lianzhe Wang
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| | - Taotao Li
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China.
| |
Collapse
|
20
|
Zuo D, Hu M, Zhou W, Lei F, Zhao J, Gu L. EcAGL enhances cadmium tolerance in transgenic Arabidopsis thaliana through inhibits cadmium transport and ethylene synthesis pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107900. [PMID: 37482029 DOI: 10.1016/j.plaphy.2023.107900] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal with severe impacts on plant growth and development. Although a multitude of plants have acquired strong tolerance to Cd stress, the underlying molecular mechanism has not been fully elucidated. Here, we identified a Agamous-like MADS-box gene (EcAGL) from Erigeron canadensis. The expression of EcAGL was obviously raised under Cd stress and subcellular localization indicated EcAGL was localized in the nucleus. Overexpression of EcAGL in Arabidopsis thaliana showed marked alleviation of the Cd-induced reduction; Compared to wild-type lines, the antioxidant enzymes activities were increased in EcAGL overexpressing lines under Cd stress. The roots Cd content of transgenic lines was not different with the control plants, whereas significant reduction in shoots Cd content was detected in the transgenic lines, indicating that this gene can enhance Cd tolerance by reducing Cd accumulation in Arabidopsis. Moreover, the expression levels of heavy metal ATPase (AtHMA2 and AtHMA3) and natural resistance-associated macrophage protein (AtNRAMP5) genes in the root of transgenic lines decreased under Cd stress, indicating that EcAGL likely hampered the Cd transport pathway. Gene expression profiles in shoot showed that EcAGL likely modulates the expression of 1-aminocyclopropane-1-carboxylic acid synthase gene (AtACS2), which is involved in the ethylene synthesis pathway, to strengthen the tolerance to Cd. Collectively, these results indicate that EcAGL plays a significant role in regulating Cd tolerance in E. canadensis by alleviating oxidative stress, Cd transport and affecting the ethylene biosynthesis pathway, providing new insight into the molecular mechanism underlying plant tolerance to Cd stress.
Collapse
Affiliation(s)
- Dan Zuo
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Mingyang Hu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Wenwen Zhou
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Fangping Lei
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Jingwen Zhao
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China.
| |
Collapse
|
21
|
Zhang J, Zhao P, Chen S, Sun L, Mao J, Tan S, Xiang C. The ABI3-ERF1 module mediates ABA-auxin crosstalk to regulate lateral root emergence. Cell Rep 2023; 42:112809. [PMID: 37450369 DOI: 10.1016/j.celrep.2023.112809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/03/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Abscisic acid (ABA) is involved in lateral root (LR) development, but how ABA signaling interacts with auxin signaling to regulate LR formation is not well understood. Here, we report that ABA-responsive ERF1 mediates the crosstalk between ABA and auxin signaling to regulate Arabidopsis LR emergence. ABI3 is a negative factor in LR emergence and transcriptionally activates ERF1 by binding to its promoter, and reciprocally, ERF1 activates ABI3, which forms a regulatory loop that enables rapid signal amplification. Notably, ABI3 physically interacts with ERF1, reducing the cis element-binding activities of both ERF1 and ABI3 and thus attenuating the expression of ERF1-/ABI3-regulated genes involved in LR emergence and ABA signaling, such as PIN1, AUX1, ARF7, and ABI5, which may provide a molecular rheostat to avoid overamplification of auxin and ABA signaling. Taken together, our findings identify the role of the ABI3-ERF1 module in mediating crosstalk between ABA and auxin signaling in LR emergence.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Pingxia Zhao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| | - Siyan Chen
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Liangqi Sun
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jieli Mao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Shutang Tan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Chengbin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
22
|
Teshome DT, Zharare GE, Ployet R, Naidoo S. Transcriptional reprogramming during recovery from drought stress in Eucalyptus grandis. TREE PHYSIOLOGY 2023; 43:979-994. [PMID: 36851855 DOI: 10.1093/treephys/tpad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/23/2023] [Indexed: 06/11/2023]
Abstract
The importance of drought as a constraint to agriculture and forestry is increasing with climate change. Genetic improvement of plants' resilience is one of the mitigation strategies to curb this threat. Although recovery from drought stress is important to long-term drought adaptation and has been considered as an indicator of dehydration tolerance in annual crops, this has not been well explored in forest trees. Thus, we aimed to investigate the physiological and transcriptional changes during drought stress and rewatering in Eucalyptus grandis W. Hill ex Maiden. We set up a greenhouse experiment where we imposed drought stress on 2-year-old seedlings and rewatered the recovery group after 17 days of drought. Our measurement of leaf stomatal conductance (gs) showed that, while gs was reduced by drought stress, it fully recovered after 5 days of rewatering. The RNA-seq analysis from stem samples revealed that genes related to known stress responses such as phytohormone and reactive oxygen species signaling were upregulated, while genes involved in metabolism and growth were downregulated due to drought stress. We observed reprogramming of signal transduction pathways and metabolic processes at 1 day of rewatering, indicating a quick response to rewatering. Our results suggest that recovery from drought stress may entail alterations in the jasmonic acid, salicylic acid, ethylene and brassinosteroid signaling pathways. Using co-expression network analysis, we identified hub genes, including the putative orthologs of ABI1, ABF2, ABF3, HAI2, BAM1, GolS2 and SIP1 during drought and CAT2, G6PD1, ADG1 and FD-1 during recovery. Taken together, by highlighting the molecular processes and identifying key genes, this study gives an overview of the mechanisms underlying the response of E. grandis to drought stress and recovery that trees may face repeatedly throughout their long life cycle. This provides a useful reference to the identification and further investigation of signaling pathways and target genes for future tree improvement.
Collapse
Affiliation(s)
- Demissew Tesfaye Teshome
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lynwood Road, Pretoria 0028, South Africa
| | - Godfrey Elijah Zharare
- Department of Agriculture, University of Zululand, 1 Main Road Vulindlela, KwaDlangezwa, 3886, South Africa
| | - Raphael Ployet
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lynwood Road, Pretoria 0028, South Africa
| |
Collapse
|
23
|
Wang F, Zhou Z, Zhu L, Gu Y, Guo B, Lv C, Zhu J, Xu R. Genome-wide analysis of the MADS-box gene family involved in salt and waterlogging tolerance in barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1178065. [PMID: 37229117 PMCID: PMC10203460 DOI: 10.3389/fpls.2023.1178065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/07/2023] [Indexed: 05/27/2023]
Abstract
MADS-box transcription factors are crucial members of regulatory networks underlying multiple developmental pathways and abiotic stress regulatory networks in plants. Studies on stress resistance-related functions of MADS-box genes are very limited in barley. To gain insight into this gene family and elucidate their roles in salt and waterlogging stress resistance, we performed genome-wide identification, characterization and expression analysis of MADS-box genes in barley. A whole-genome survey of barley revealed 83 MADS-box genes, which were categorized into type I (Mα, Mβ and Mγ) and type II (AP1, SEP1, AGL12, STK, AGL16, SVP and MIKC*) lineages based on phylogeny, protein motif structure. Twenty conserved motifs were determined and each HvMADS contained one to six motifs. We also found tandem repeat duplication was the driven force for HvMADS gene family expansion. Additionally, the co-expression regulatory network of 10 and 14 HvMADS genes was predicted in response to salt and waterlogging stress, and we proposed HvMADS11,13 and 35 as candidate genes for further exploration of the functions in abiotic stress. The extensive annotations and transcriptome profiling reported in this study ultimately provides the basis for MADS functional characterization in genetic engineering of barley and other gramineous crops.
Collapse
|
24
|
Dong X, Zhang LP, Tang YH, Yu D, Cheng F, Dong YX, Jiang XD, Qian FM, Guo ZH, Hu JY. Arabidopsis AGAMOUS-LIKE16 and SUPPRESSOR OF CONSTANS1 regulate the genome-wide expression and flowering time. PLANT PHYSIOLOGY 2023; 192:154-169. [PMID: 36721922 PMCID: PMC10152661 DOI: 10.1093/plphys/kiad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 05/03/2023]
Abstract
Flowering transition is tightly coordinated by complex gene regulatory networks, in which AGAMOUS-LIKE 16 (AGL16) plays important roles. Here, we identified the molecular function and binding properties of AGL16 and demonstrated its partial dependency on the SUPPRESSOR OF CONSTANS 1 (SOC1) function in regulating flowering. AGL16 bound to promoters of more than 2,000 genes via CArG-box motifs with high similarity to that of SOC1 in Arabidopsis (Arabidopsis thaliana). Approximately 70 flowering genes involved in multiple pathways were potential targets of AGL16. AGL16 formed a protein complex with SOC1 and shared a common set of targets. Intriguingly, only a limited number of genes were differentially expressed in the agl16-1 loss-of-function mutant. However, in the soc1-2 knockout background, AGL16 repressed and activated the expression of 375 and 182 genes, respectively, with more than a quarter bound by AGL16. Corroborating these findings, AGL16 repressed the flowering time more strongly in soc1-2 than in the Col-0 background. These data identify a partial inter-dependency between AGL16 and SOC1 in regulating genome-wide gene expression and flowering time, while AGL16 provides a feedback regulation on SOC1 expression. Our study sheds light on the complex background dependency of AGL16 in flowering regulation, thus providing additional insights into the molecular coordination of development and environmental adaptation.
Collapse
Affiliation(s)
- Xue Dong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Li-Ping Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Yin-Hua Tang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Dongmei Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Fang Cheng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Yin-Xin Dong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Fu-Ming Qian
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| |
Collapse
|
25
|
Wang X, Huang Q, Shen Z, Baron GC, Li X, Lu X, Li Y, Chen W, Xu L, Lv J, Li W, Zong Y, Guo W. Genome-Wide Identification and Analysis of the MADS-Box Transcription Factor Genes in Blueberry ( Vaccinium spp.) and Their Expression Pattern during Fruit Ripening. PLANTS (BASEL, SWITZERLAND) 2023; 12:1424. [PMID: 37050050 PMCID: PMC10096547 DOI: 10.3390/plants12071424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
MADS-box is a class of transcriptional regulators that are ubiquitous in plants and plays important roles in the process of plant growth and development. Identification and analysis of blueberry MADS-box genes can lay a foundation for their function investigations. In the present study, 249 putative MADS-box genes were identified in the blueberry genome. Those MADS-box genes were distributed on 47 out of 48 chromosomes. The phylogenetic and evolutionary analyses showed that blueberry MADS-box genes were divided into 131 type I members and 118 type II members. The type I genes contained an average of 1.89 exons and the type II genes contained an average of 7.83 exons. Motif analysis identified 15 conserved motifs, of which 4 were related to the MADS domain and 3 were related to the K-box domain. A variety of cis-acting elements were found in the promoter region of the blueberry MADS-box gene, indicating that the MADS-box gene responded to various hormones and environmental alterations. A total of 243 collinear gene pairs were identified, most of which had a Ka/Ks value of less than 1. Nine genes belonging to SEP, AP3/PI, and AGL6 subfamilies were screened based on transcriptomic data. The expression patterns of those nine genes were also verified using quantitative PCR, suggesting that VcMADS6, VcMADS35, VcMADS44, VcMADS58, VcMADS125, VcMADS188, and VcMADS212 had potential functions in blueberry fruit ripening. The results of this study provide references for an in-depth understanding of the biological function of the blueberry MADS-box genes and the mechanism of blueberry fruit ripening.
Collapse
Affiliation(s)
- Xuxiang Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Qiaoyu Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhuli Shen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | | | - Xiaoyi Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoying Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yongqiang Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Provincial Key Laboratory of Plant Biotechnology, Jinhua 321004, China
| | - Wenrong Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Provincial Key Laboratory of Plant Biotechnology, Jinhua 321004, China
| | - Lishan Xu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Provincial Key Laboratory of Plant Biotechnology, Jinhua 321004, China
| | - Jinchao Lv
- Zhejiang Jinguo Environmental Protection Technology Company Limited, Jinhua 321000, China
| | - Wenjian Li
- Zhejiang Jinguo Environmental Protection Technology Company Limited, Jinhua 321000, China
| | - Yu Zong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Provincial Key Laboratory of Plant Biotechnology, Jinhua 321004, China
| | - Weidong Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Provincial Key Laboratory of Plant Biotechnology, Jinhua 321004, China
| |
Collapse
|
26
|
Alfatih A, Zhang J, Song Y, Jan SU, Zhang ZS, Xia JQ, Zhang ZY, Nazish T, Wu J, Zhao PX, Xiang CB. Nitrate-responsive OsMADS27 promotes salt tolerance in rice. PLANT COMMUNICATIONS 2023; 4:100458. [PMID: 36199247 PMCID: PMC10030316 DOI: 10.1016/j.xplc.2022.100458] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/08/2022] [Accepted: 10/03/2022] [Indexed: 05/04/2023]
Abstract
Salt stress is a major constraint on plant growth and yield. Nitrogen (N) fertilizers are known to alleviate salt stress. However, the underlying molecular mechanisms remain unclear. Here, we show that nitrate-dependent salt tolerance is mediated by OsMADS27 in rice. The expression of OsMADS27 is specifically induced by nitrate. The salt-inducible expression of OsMADS27 is also nitrate dependent. OsMADS27 knockout mutants are more sensitive to salt stress than the wild type, whereas OsMADS27 overexpression lines are more tolerant. Transcriptomic analyses revealed that OsMADS27 upregulates the expression of a number of known stress-responsive genes as well as those involved in ion homeostasis and antioxidation. We demonstrate that OsMADS27 directly binds to the promoters of OsHKT1.1 and OsSPL7 to regulate their expression. Notably, OsMADS27-mediated salt tolerance is nitrate dependent and positively correlated with nitrate concentration. Our results reveal the role of nitrate-responsive OsMADS27 and its downstream target genes in salt tolerance, providing a molecular mechanism for the enhancement of salt tolerance by nitrogen fertilizers in rice. OsMADS27 overexpression increased grain yield under salt stress in the presence of sufficient nitrate, suggesting that OsMADS27 is a promising candidate for the improvement of salt tolerance in rice.
Collapse
Affiliation(s)
- Alamin Alfatih
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jing Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Ying Song
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Sami Ullah Jan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zi-Sheng Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jin-Qiu Xia
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zheng-Yi Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Tahmina Nazish
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jie Wu
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| | - Ping-Xia Zhao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
27
|
Tang Y, Peng J, Lin J, Zhang M, Tian Y, Shang Y, Chen S, Bao X, Wang Q. A HD-Zip I transcription factor from physic nut, JcHDZ21, confers sensitive to salinity in transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1097265. [PMID: 36875584 PMCID: PMC9977192 DOI: 10.3389/fpls.2023.1097265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
HD-Zip is a plant-specific transcription factor that plays an important regulatory role in plant growth and stress response. However, there have been few reports on the functions of members of the physic nut HD-Zip gene family. In this study, we cloned a HD-Zip I family gene from physic nut by RT-PCR, and named JcHDZ21. Expression pattern analysis showed that JcHDZ21 gene had the highest expression in physic nut seeds, and salt stress inhibited the expression of JcHDZ21 gene. Subcellular localization and transcriptional activity analysis showed that JcHDZ21 protein is localized in the nucleus and has transcriptional activation activity. Salt stress results indicated that JcHDZ21 transgenic plants were smaller and had more severe leaf yellowing compared to those of the wild type. Physiological indicators showed that transgenic plants had higher electrical conductivity and MDA content, and lower proline and betaine content compared with wild-type plants under salt stress. In addition, the expression of abiotic stress-related genes in JcHDZ21 transgenic plants was significantly lower than that in wild type under salt stress. Our results showed that ectopic expression of JcHDZ21 increased the sensitivity of transgenic Arabidopsis to salt stress. This study provides a theoretical basis for the future application of JcHDZ21 gene in the breeding of physic nut stress-tolerant varieties.
Collapse
Affiliation(s)
- Yuehui Tang
- College of Life Science and Agronomy, Zhoukou Normal University, Henan, Zhoukou, China
| | - Jingrui Peng
- College of Life Science and Agronomy, Zhoukou Normal University, Henan, Zhoukou, China
| | - Jin Lin
- College of Life Science and Agronomy, Zhoukou Normal University, Henan, Zhoukou, China
| | - Miaomiao Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Henan, Zhoukou, China
| | - Yun Tian
- College of Life Science and Agronomy, Zhoukou Normal University, Henan, Zhoukou, China
| | - Yaqian Shang
- College of Life Science and Agronomy, Zhoukou Normal University, Henan, Zhoukou, China
| | - Shuying Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Henan, Zhoukou, China
| | - Xinxin Bao
- School of Journalism and Communication, Zhoukou Normal University, Henan, Zhoukou, China
| | - Qiyuan Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Henan, Zhoukou, China
| |
Collapse
|
28
|
Yang Z, Nie G, Feng G, Xu X, Li D, Wang X, Huang L, Zhang X. Genome-wide identification of MADS-box gene family in orchardgrass and the positive role of DgMADS114 and DgMADS115 under different abiotic stress. Int J Biol Macromol 2022; 223:129-142. [PMID: 36356860 DOI: 10.1016/j.ijbiomac.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Abiotic stress, a major factor limit growth and productivity of major crops. Orchardgrass is one of the most important cool-season forage grasses in the world, and it is highly tolerant to abiotic stress. The MADS-box transcription factor family is one of the largest families in plants, and it plays vital roles in multiple biological processes. However, MADS-box transcription factors in orchardgrass, especially those involved in abiotic stress, have not yet been elucidated. Here, 123 DgMADS-box members were identified in orchardgrass and a detailed overview has been presented. Syntenic analysis indicated that the expansion of the DgMADS-box genes in orchardgrass is mainly dependent on tandem duplication events. Some DgMADS-box genes were induced by multiple abiotic stresses, indicating that these genes may play critical regulatory roles in orchardgrass response to various abiotic stresses. Heterologous expression showed that DgMADS114 and DgMADS115 could enhance stress tolerance of transgenic Arabidopsis, as revealed by longer root length or higher survival rates under PEG, NaCl, ABA, and heat stress. The results of this study provide a scientific basis for clarifying the functional characterization of MADS-box genes in orchardgrass in response to environmental stress can be further used to improve forages and crops via breeding programs.
Collapse
Affiliation(s)
- Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dandan Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xia Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
29
|
Herath D, Voogd C, Mayo‐Smith M, Yang B, Allan AC, Putterill J, Varkonyi‐Gasic E. CRISPR-Cas9-mediated mutagenesis of kiwifruit BFT genes results in an evergrowing but not early flowering phenotype. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2064-2076. [PMID: 35796629 PMCID: PMC9616528 DOI: 10.1111/pbi.13888] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 06/11/2023]
Abstract
Phosphatidylethanolamine-binding protein (PEBP) genes regulate flowering and architecture in many plant species. Here, we study kiwifruit (Actinidia chinensis, Ac) PEBP genes with homology to BROTHER OF FT AND TFL1 (BFT). CRISPR-Cas9 was used to target AcBFT genes in wild-type and fast-flowering kiwifruit backgrounds. The editing construct was designed to preferentially target AcBFT2, whose expression is elevated in dormant buds. Acbft lines displayed an evergrowing phenotype and increased branching, while control plants established winter dormancy. The evergrowing phenotype, encompassing delayed budset and advanced budbreak after defoliation, was identified in multiple independent lines with edits in both alleles of AcBFT2. RNA-seq analyses conducted using buds from gene-edited and control lines indicated that Acbft evergrowing plants had a transcriptome similar to that of actively growing wild-type plants, rather than dormant controls. Mutations in both alleles of AcBFT2 did not promote flowering in wild-type or affect flowering time, morphology and fertility in fast-flowering transgenic kiwifruit. In summary, editing of AcBFT2 has the potential to reduce plant dormancy with no adverse effect on flowering, giving rise to cultivars better suited for a changing climate.
Collapse
Affiliation(s)
- Dinum Herath
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt AlbertAucklandNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Charlotte Voogd
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt AlbertAucklandNew Zealand
| | | | - Bo Yang
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt AlbertAucklandNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt AlbertAucklandNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Joanna Putterill
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Erika Varkonyi‐Gasic
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt AlbertAucklandNew Zealand
| |
Collapse
|
30
|
Wu Y, Liu H, Bing J, Zhang G. Integrative transcriptomic and TMT-based proteomic analysis reveals the mechanism by which AtENO2 affects seed germination under salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1035750. [PMID: 36340336 PMCID: PMC9634073 DOI: 10.3389/fpls.2022.1035750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Seed germination is critical for plant survival and agricultural production and is affected by many cues, including internal factors and external environmental conditions. As a key enzyme in glycolysis, enolase 2 (ENO2) also plays a vital role in plant growth and abiotic stress responses. In our research, we found that the seed germination rate was lower in the AtENO2 mutation (eno2- ) than in the wild type (WT) under salt stress in Arabidopsis thaliana, while there was no significant difference under normal conditions. However, the mechanisms by which AtENO2 regulates seed germination under salt stress remain limited. In the current study, transcriptome and proteome analyses were used to compare eno2- and the WT under normal and salt stress conditions at the germination stage. There were 417 and 4442 differentially expressed genes (DEGs) identified by transcriptome, and 302 and 1929 differentially expressed proteins (DEPs) qualified by proteome under normal and salt stress conditions, respectively. The combined analysis found abundant DEGs and DEPs related to stresses and hydrogen peroxide removal were highly down-regulated in eno2- . In addition, several DEGs and DEPs encoding phytohormone transduction pathways were identified, and the DEGs and DEPs related to ABA signaling were relatively greatly up-regulated in eno2- . Moreover, we constructed an interactive network and further identified GAPA1 and GAPB that could interact with AtENO2, which may explain the function of AtENO2 under salt stress during seed germination. Together, our results reveal that under salt stress, AtENO2 mainly affects the expression of genes and proteins related to the phytohormone signal transduction pathways, stress response factors, and reactive oxygen species (ROS), and then affects seed germination. Our study lays the foundation for further exploration of the molecular function of AtENO2 under salt stress at the seed germination stage in Arabidopsis thaliana.
Collapse
Affiliation(s)
| | | | - Jie Bing
- *Correspondence: Genfa Zhang, ; Jie Bing,
| | | |
Collapse
|
31
|
Jia Y, Niu Y, Zhao H, Wang Z, Gao C, Wang C, Chen S, Wang Y. Hierarchical transcription factor and regulatory network for drought response in Betula platyphylla. HORTICULTURE RESEARCH 2022; 9:uhac040. [PMID: 35184174 PMCID: PMC9070641 DOI: 10.1093/hr/uhac040] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/03/2022] [Accepted: 02/05/2022] [Indexed: 05/16/2023]
Abstract
Although many genes and biological processes involved in abiotic stress response have been identified, how they are regulated remains largely unclear. Here, to study the regulatory mechanism of birch (Betula platyphylla) responding to drought induced by polyethylene glycol (PEG) 6000 (20%, w/v), a partial correlation coefficient-based algorithm for constructing gene regulatory network (GRN) was proposed, and a three-layer hierarchical GRN was constructed, including 68 transcription factors (TFs), and 252 structural genes. Totally, 1448 predicted regulatory relationships are included, and most of them are novel. The reliability of GRN was verified by ChIP-PCR and qRT-PCR based on transient transformation. About 55% of genes in the bottom layer of GRN could confer drought tolerance. We selected the two TFs, BpMADS11 and BpNAC090, from the up layer and characterized their function in drought tolerance. Overexpression of BpMADS11 and BpNAC090 both reduces electrolyte leakage, ROS and MDA contents, displaying increased drought tolerance than wild-type birch. According to this GRN, the important biological processes involved in drought were identified, including "signaling hormone pathways", "water transport", "regulation of stomatal movement" and "response to oxidative stress". This work indicated that BpERF017, BpAGL61 and BpNAC090 are the key upstream regulators in birch drought tolerance. Our data clearly revealed the upstream regulators and TF-DNA interaction regulate different biological processes to adapt drought stress.
Collapse
Affiliation(s)
- Yaqi Jia
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Yani Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Huimin Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|