1
|
Fichtner F, Humphreys JL, Barbier FF, Feil R, Westhoff P, Moseler A, Lunn JE, Smith SM, Beveridge CA. Strigolactone signalling inhibits trehalose 6-phosphate signalling independently of BRC1 to suppress shoot branching. THE NEW PHYTOLOGIST 2024; 244:900-913. [PMID: 39187924 DOI: 10.1111/nph.20072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024]
Abstract
The phytohormone strigolactone (SL) inhibits shoot branching, whereas the signalling metabolite trehalose 6-phosphate (Tre6P) promotes branching. How Tre6P and SL signalling may interact and which molecular mechanisms might be involved remains largely unknown. Transcript profiling of Arabidopsis SL mutants revealed a cluster of differentially expressed genes highly enriched in the Tre6P pathway compared with wild-type (WT) plants or brc1 mutants. Tre6P-related genes were also differentially expressed in axillary buds of garden pea (Pisum sativum) SL mutants. Tre6P levels were elevated in the SL signalling mutant more axillary (max) growth 2 compared with other SL mutants or WT plants indicating a role of MAX2-dependent SL signalling in regulating Tre6P levels. A transgenic approach to increase Tre6P levels demonstrated that all SL mutant lines and brc1 flowered earlier, showing all of these mutants were responsive to Tre6P. Elevated Tre6P led to increased branching in WT plants but not in max2 and max4 mutants, indicating some dependency between the SL pathway and Tre6P regulation of shoot branching. By contrast, elevated Tre6P led to an enhanced branching phenotype in brc1 mutants indicating independence between BRC1 and Tre6P. A model is proposed whereby SL signalling represses branching via Tre6P and independently of the BRC1 pathway.
Collapse
Affiliation(s)
- Franziska Fichtner
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
- Faculty of Mathematics and Natural Sciences, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
- Cluster of Excellence in Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, 40225, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Jazmine L Humphreys
- ARC Centre for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Francois F Barbier
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
- Institute for Plant Sciences of Montpellier, University of Montpellier, CNRS, INRAe, Institut Agro, Montpellier, 34060, France
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Philipp Westhoff
- Cluster of Excellence in Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Bonn, 53113, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Steven M Smith
- ARC Centre for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Christine A Beveridge
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
2
|
Xu X, Li P, Li S, Feng G, Wang M, Yang Z, Nie G, Huang L, Zhang X. Genome-wide association analysis reveals novel candidate loci and a gene regulating tiller number in orchardgrass. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109148. [PMID: 39332330 DOI: 10.1016/j.plaphy.2024.109148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Tillers are specialized lateral shoots arising from axillary buds at basal nodes, and are also an important agronomic trait that determines the aboveground biomass and grain yield of various gramineous crops. So far, few genes have been reported to control tiller formation and most have been in the annual crop rice (Oryza sativa). Orchardgrass (Dactylis glomerata) is an important perennial forage crop with great economic and ecological value, but its genes regulating tillering have remained largely unknown. In the present study, we used a natural population of 264 global orchardgrass germplasms to determine genes associated with quantitative variation in tiller number through genome-wide association study analysis. A total of 19 putative loci and 55 genes associated with tiller number were thus identified. Additionally, 26 putative differentially expressed genes with tiller number, including DgCYC-C1, were identified by RNA-seq and genome-wide association study analysis. DgCYC-C1 which is involved in cell division, was overexpressed, revealing that DgCYC-C1 positively regulates tiller number. These results provide some new candidate genes or loci for the improvement of tiller number in crops, which might advance new sustainable strategies to meet global crop production challenges.
Collapse
Affiliation(s)
- Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunfeng Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Miaoli Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Mo T, Wang T, Sun Y, Kumar A, Mkumbwa H, Fang J, Zhao J, Yuan S, Li Z, Li X. The chloroplast pentatricopeptide repeat protein RCN22 regulates tiller number in rice by affecting sugar levels via the TB1-RCN22-RbcL module. PLANT COMMUNICATIONS 2024:101073. [PMID: 39205390 DOI: 10.1016/j.xplc.2024.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
As an important yield component, rice tiller number controls panicle number and determines grain yield. Regulation of rice tiller number by chloroplast pentatricopeptide repeat (PPR) proteins has not been reported previously. Here, we report the rice reduced culm number22 (rcn22) mutant, which produces few tillers owing to suppressed tiller bud elongation. Map-based cloning revealed that RCN22 encodes a chloroplast-localized P-type PPR protein. We found that RCN22 specifically binds to the 5' UTR of RbcL mRNA (encoding the large subunit of Rubisco) and enhances its stability. The reduced abundance of RbcL mRNA in rcn22 leads to a lower photosynthetic rate and decreased sugar levels. Consequently, transcript levels of DWARF3 (D3) and TEOSINTE BRANCHED1 (TB1) (which encode negative regulators of tiller bud elongation) are increased, whereas protein levels of the positive regulator DWARF53 (D53) are decreased. Furthermore, high concentrations of sucrose can rescue the tiller bud growth defect of the rcn22 mutant. On the other hand, TB1 directly binds to the RCN22 promoter and downregulates its expression. The tb1/rcn22 double mutant shows a tillering phenotype similar to that of rcn22. Our results suggest that the TB1-RCN22-RbcL module plays a vital role in rice tiller bud elongation by affecting sugar levels.
Collapse
Affiliation(s)
- Tianyu Mo
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Tianhao Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinglu Sun
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ashmit Kumar
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Humphrey Mkumbwa
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Fang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinfeng Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shoujiang Yuan
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xueyong Li
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Wen R, Zhu M, Yu J, Kou L, Ahmad S, Wei X, Jiao G, Hu S, Sheng Z, Zhao F, Tang S, Shao G, Yu H, Hu P. Photosynthesis regulates tillering bud elongation and nitrogen-use efficiency via sugar-induced NGR5 in rice. THE NEW PHYTOLOGIST 2024; 243:1440-1454. [PMID: 38923565 DOI: 10.1111/nph.19921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Rice tillering is one of the most important agronomical traits largely determining grain yield. Photosynthesis and nitrogen availability are two important factors affecting rice tiller bud elongation; however, underlying mechanism and their cross-talk is poorly understood. Here, we used map-based cloning, transcriptome profiling, phenotypic analysis, and molecular genetics to understand the roles of the Decreased Tiller Number 1 (DTN1) gene that encodes the fructose-1,6-bisphosphate aldolase and involves in photosynthesis required for light-induced axillary bud elongation in rice. Deficiency of DTN1 results in the reduced photosynthetic rate and decreased contents of sucrose and other sugars in both leaves and axillary buds, and the reduced tiller number in dtn1 mutant could be partially rescued by exogenous sucrose treatment. Furthermore, we found that the expression of nitrogen-mediated tiller growth response 5 (NGR5) was remarkably decreased in shoot base of dtn1-2, which can be activated by sucrose treatment. Overexpression of NGR5 in the dtn1-2 could partially rescue the reduced tiller number, and the tiller number of dtn1-2 was insensitive to nitrogen supply. This work demonstrated that the sugar level regulated by photosynthesis and DTN1 could positively regulate NGR5 expression, which coordinates the cross-talk between carbon and nitrate to control tiller bud outgrowth in rice.
Collapse
Affiliation(s)
- Rui Wen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Maodi Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Junming Yu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shakeel Ahmad
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Fengli Zhao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
5
|
Humphreys JL, Beveridge CA, Tanurdžić M. Strigolactone induces D14-dependent large-scale changes in gene expression requiring SWI/SNF chromatin remodellers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38858857 DOI: 10.1111/tpj.16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024]
Abstract
Strigolactones (SL) function as plant hormones in control of multiple aspects of plant development, mostly via the regulation of gene expression. Immediate early-gene regulation by SL remains unexplored due to difficulty in dissecting early from late gene expression responses to SL. We used synthetic SL, rac-GR24 treatment of protoplasts and RNA-seq to explore early SL-induced changes in gene expression over time (5-180 minutes) and discovered rapid, dynamic and SL receptor D14-dependent regulation of gene expression in response to rac-GR24. Importantly, we discovered a significant dependence of SL signalling on chromatin remodelling processes, as the induction of a key SL-induced transcription factor BRANCHED1 requires the SWI/SNF chromatin remodelling ATPase SPLAYED (SYD) and leads to upregulation of a homologue SWI/SNF ATPase BRAHMA. ATAC-seq profiling of genome-wide changes in chromatin accessibility in response to rac-GR24 identified large-scale changes, with over 1400 differentially accessible regions. These changes in chromatin accessibility often precede transcriptional changes and are likely to harbour SL cis-regulatory elements. Importantly, we discovered that this early and extensive modification of the chromatin landscape also requires SYD. This study, therefore, provides evidence that SL signalling requires regulation of chromatin accessibility, and it identifies genomic locations harbouring likely SL cis-regulatory sequences.
Collapse
Affiliation(s)
- Jazmine L Humphreys
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Christine A Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
6
|
Xie C, Chen R, Sun Q, Hao D, Zong J, Guo H, Liu J, Li L. Physiological and Proteomic Analyses of mtn1 Mutant Reveal Key Players in Centipedegrass Tiller Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:1028. [PMID: 38611557 PMCID: PMC11013472 DOI: 10.3390/plants13071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Tillering directly determines the seed production and propagation capacity of clonal plants. However, the molecular mechanisms involved in the tiller development of clonal plants are still not fully understood. In this study, we conducted a proteome comparison between the tiller buds and stem node of a multiple-tiller mutant mtn1 (more tillering number 1) and a wild type of centipedegrass. The results showed significant increases of 29.03% and 27.89% in the first and secondary tiller numbers, respectively, in the mtn1 mutant compared to the wild type. The photosynthetic rate increased by 31.44%, while the starch, soluble sugar, and sucrose contents in the tiller buds and stem node showed increases of 13.79%, 39.10%, 97.64%, 37.97%, 55.64%, and 7.68%, respectively, compared to the wild type. Two groups comprising 438 and 589 protein species, respectively, were differentially accumulated in the tiller buds and stem node in the mtn1 mutant. Consistent with the physiological characteristics, sucrose and starch metabolism as well as plant hormone signaling were found to be enriched with differentially abundant proteins (DAPs) in the mtn1 mutant. These results revealed that sugars and plant hormones may play important regulatory roles in the tiller development in centipedegrass. These results expanded our understanding of tiller development in clonal plants.
Collapse
Affiliation(s)
- Chenming Xie
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| | - Rongrong Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| | - Qixue Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Dongli Hao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| | - Junqin Zong
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| | - Hailin Guo
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| | - Jianxiu Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| | - Ling Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resource, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (C.X.); (R.C.); (D.H.); (J.Z.); (H.G.); (J.L.)
| |
Collapse
|
7
|
Xin Y, Chen X, Liang J, Wang S, Pan W, Wu J, Zhang M, Zaccai M, Yu X, Zhang X, Wu J, Du Y. Auxin regulates bulbil initiation by mediating sucrose metabolism in Lilium lancifolium. HORTICULTURE RESEARCH 2024; 11:uhae054. [PMID: 38706581 PMCID: PMC11069426 DOI: 10.1093/hr/uhae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/16/2024] [Indexed: 05/07/2024]
Abstract
Lily bulbils, which serve as advantageous axillary organs for vegetative propagation, have not been extensively studied in terms of the mechanism of bulbil initiation. The functions of auxin and sucrose metabolism have been implicated in axillary organ development, but their relationship in regulating bulbil initiation remains unclear. In this study, exogenous indole-3-acetic acid (IAA) treatment increased the endogenous auxin levels at leaf axils and significantly decreased bulbil number, whereas treatment with the auxin polar transport inhibitor N-1-naphthylphthalamic acid (NPA), which resulted in a low auxin concentration at leaf axils, stimulated bulbil initiation and increased bulbil number. A low level of auxin caused by NPA spraying or silencing of auxin biosynthesis genes YUCCA FLAVIN MONOOXYGENASE-LIKE 6 (LlYUC6) and TRYPTOPHAN AMINOTRANSFERASERELATED 1 (LlTAR1) facilitated sucrose metabolism by activating the expression of SUCROSE SYNTHASES 1 (LlSusy1) and CELL WALL INVERTASE 2 (LlCWIN2), resulting in enhanced bulbil initiation. Silencing LlSusy1 or LlCWIN2 hindered bulbil initiation. Moreover, the transcription factor BASIC HELIX-LOOP-HELIX 35 (LlbHLH35) directly bound the promoter of LlSusy1, but not the promoter of LlCWIN2, and activated its transcription in response to the auxin content, bridging the gap between auxin and sucrose metabolism. In conclusion, our results reveal that an LlbHLH35-LlSusy1 module mediates auxin-regulated sucrose metabolism during bulbil initiation.
Collapse
Affiliation(s)
- Yin Xin
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China
| | - Xi Chen
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Landscape Architecture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
| | - Jiahui Liang
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shaokun Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China
| | - Wenqiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China
| | - Jingxiang Wu
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China
| | - Mingfang Zhang
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Michele Zaccai
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Xiaonan Yu
- College of Landscape Architecture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
| | - Xiuhai Zhang
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China
| | - Yunpeng Du
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
8
|
Li Q, Yu H, Chang W, Chang S, Guzmán M, Faure L, Wallner ES, Yan H, Greb T, Wang L, Yao R, Nelson DC. SMXL5 attenuates strigolactone signaling in Arabidopsis thaliana by inhibiting SMXL7 degradation. MOLECULAR PLANT 2024; 17:631-647. [PMID: 38475994 DOI: 10.1016/j.molp.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/10/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Hormone-activated proteolysis is a recurring theme of plant hormone signaling mechanisms. In strigolactone signaling, the enzyme receptor DWARF14 (D14) and an F-box protein, MORE AXILLARY GROWTH2 (MAX2), mark SUPPRESSOR OF MAX2 1-LIKE (SMXL) family proteins SMXL6, SMXL7, and SMXL8 for rapid degradation. Removal of these transcriptional corepressors initiates downstream growth responses. The homologous proteins SMXL3, SMXL4, and SMXL5, however, are resistant to MAX2-mediated degradation. We discovered that the smxl4 smxl5 mutant has enhanced responses to strigolactone. SMXL5 attenuates strigolactone signaling by interfering with AtD14-SMXL7 interactions. SMXL5 interacts with AtD14 and SMXL7, providing two possible ways to inhibit SMXL7 degradation. SMXL5 function is partially dependent on an ethylene-responsive-element binding-factor-associated amphiphilic repression (EAR) motif, which typically mediates interactions with the TOPLESS family of transcriptional corepressors. However, we found that loss of the EAR motif reduces SMXL5-SMXL7 interactions and the attenuation of strigolactone signaling by SMXL5. We hypothesize that integration of SMXL5 into heteromeric SMXL complexes reduces the susceptibility of SMXL6/7/8 proteins to strigolactone-activated degradation and that the EAR motif promotes the formation or stability of these complexes. This mechanism may provide a way to spatially or temporally fine-tune strigolactone signaling through the regulation of SMXL5 expression or translation.
Collapse
Affiliation(s)
- Qingtian Li
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; Yazhouwan National Laboratory, Sanya 572025, China; Hainan Seed Industry Laboratory, Sanya 57205, China.
| | - Haiyang Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Wenwen Chang
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sunhyun Chang
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Michael Guzmán
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Lionel Faure
- School of the Sciences, Biology Division, Texas Woman's University, Denton, TX 76204, USA
| | - Eva-Sophie Wallner
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Heqin Yan
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Lei Wang
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China.
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
9
|
Li M, Li H, Zhu Q, Liu D, Li Z, Chen H, Luo J, Gong P, Ismail AM, Zhang Z. Knockout of the sugar transporter OsSTP15 enhances grain yield by improving tiller number due to increased sugar content in the shoot base of rice (Oryza sativa L.). THE NEW PHYTOLOGIST 2024; 241:1250-1265. [PMID: 38009305 DOI: 10.1111/nph.19411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/27/2023] [Indexed: 11/28/2023]
Abstract
Sugar transporter proteins (STPs) play critical roles in regulating plant stress tolerance, growth, and development. However, the role of STPs in regulating crop yield is poorly understood. This study elucidates the mechanism by which knockout of the sugar transporter OsSTP15 enhances grain yield via increasing the tiller number in rice. We found that OsSTP15 is specifically expressed in the shoot base and vascular bundle sheath of seedlings and encodes a plasma membrane-localized high-affinity glucose efflux transporter. OsSTP15 knockout enhanced sucrose and trehalose-6-phosphate (Tre6P) synthesis in leaves and improved sucrose transport to the shoot base by inducing the expression of sucrose transporters. Higher glucose, sucrose, and Tre6P contents were observed at the shoot base of stp15 plants. Transcriptome and metabolome analyses of the shoot base demonstrated that OsSTP15 knockout upregulated the expression of cytokinin (CK) synthesis- and signaling pathway-related genes and increased CK levels. These findings suggest that OsSTP15 knockout represses glucose export from the cytoplasm and simultaneously enhances sugar transport from source leaves to the shoot base by promoting the synthesis of sucrose and Tre6P in leaves. Subsequent accumulation of glucose, sucrose, and Tre6P in the shoot base promotes tillering by stimulating the CK signaling pathway.
Collapse
Affiliation(s)
- Mingjuan Li
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Hongye Li
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Qidong Zhu
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Dong Liu
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Zhen Li
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Haifei Chen
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Jinsong Luo
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Pan Gong
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Abdelbagi M Ismail
- Crop and Environmental Sciences Division, International Rice Research Institute, Metro Manila, 1301, Philippines
| | - Zhenhua Zhang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Hongqi Road, Changsha, Hunan, 410128, China
| |
Collapse
|
10
|
Seo DH, Jang J, Park D, Yoon Y, Choi YD, Jang G. PEP-ASSOCIATED PROTEIN 3 regulates rice tiller formation and grain yield by controlling chloroplast biogenesis. PLANT PHYSIOLOGY 2024; 194:805-818. [PMID: 37819034 PMCID: PMC10828210 DOI: 10.1093/plphys/kiad536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/15/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Plastid-encoded RNA polymerase (PEP) plays a pivotal role in chloroplast development by governing the transcription of chloroplast genes, and PEP-associated proteins (PAPs) modulate PEP transcriptional activity. Therefore, PAPs provide an intriguing target for those efforts to improve yield, by enhancing chloroplast development. In this study, we identified the rice (Oryza sativa) OsPAP3 gene and characterized its function in chloroplast development. OsPAP3 expression was light-dependent and leaf-specific, similar to the PEP-dependent chloroplast gene RUBISCO LARGE SUBUNIT (OsRbcL), and OsPAP3 protein localized to chloroplast nucleoids where PEP functions. Analysis of loss-of-function and gain-of-function mutants showed that the expression of OsPAP3 is tightly linked to chloroplast gene expression and chloroplast biogenesis in rice. Homozygous knockout mutants of OsPAP3 had fewer chloroplasts than wild type, whereas plants overexpressing OsPAP3 had more chloroplasts. Also, OsPAP3 knockout suppressed the PEP-dependent expression of chloroplast genes, but OsPAP3 overexpression increased their expression. These findings indicate that OsPAP3 regulates chloroplast biogenesis in rice by controlling the PEP-dependent expression of chloroplast genes. More importantly, data from 3 seasons of field cultivation revealed that the overexpression of OsPAP3 improves rice grain yield by approximately 25%, largely due to increased tiller formation. Collectively, these observations suggest that OsPAP3 regulates rice growth and productivity by promoting chloroplast development.
Collapse
Affiliation(s)
- Deok Hyun Seo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jinwoo Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dongryeol Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Yang Do Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
11
|
Lahari Z, van Boerdonk S, Omoboye OO, Reichelt M, Höfte M, Gershenzon J, Gheysen G, Ullah C. Strigolactone deficiency induces jasmonate, sugar and flavonoid phytoalexin accumulation enhancing rice defense against the blast fungus Pyricularia oryzae. THE NEW PHYTOLOGIST 2024; 241:827-844. [PMID: 37974472 DOI: 10.1111/nph.19354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
Strigolactones (SLs) are carotenoid-derived phytohormones that regulate plant growth and development. While root-secreted SLs are well-known to facilitate plant symbiosis with beneficial microbes, the role of SLs in plant interactions with pathogenic microbes remains largely unexplored. Using genetic and biochemical approaches, we demonstrate a negative role of SLs in rice (Oryza sativa) defense against the blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae). We found that SL biosynthesis and perception mutants, and wild-type (WT) plants after chemical inhibition of SLs, were less susceptible to P. oryzae. Strigolactone deficiency also resulted in a higher accumulation of jasmonates, soluble sugars and flavonoid phytoalexins in rice leaves. Likewise, in response to P. oryzae infection, SL signaling was downregulated, while jasmonate and sugar content increased markedly. The jar1 mutant unable to synthesize jasmonoyl-l-isoleucine, and the coi1-18 RNAi line perturbed in jasmonate signaling, both accumulated lower levels of sugars. However, when WT seedlings were sprayed with glucose or sucrose, jasmonate accumulation increased, suggesting a reciprocal positive interplay between jasmonates and sugars. Finally, we showed that functional jasmonate signaling is necessary for SL deficiency to induce rice defense against P. oryzae. We conclude that a reduction in rice SL content reduces P. oryzae susceptibility by activating jasmonate and sugar signaling pathways, and flavonoid phytoalexin accumulation.
Collapse
Affiliation(s)
- Zobaida Lahari
- Department of Biotechnology, Ghent University, Ghent, 9000, Belgium
| | - Sarah van Boerdonk
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Olumide Owolabi Omoboye
- Department of Plants and Crops, Laboratory of Phytopathology, Ghent University, Ghent, 9000, Belgium
- Department of Microbiology, Faculty of Science, Obafemi Awolowo University, Ile-Ife, 220005, Nigeria
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Monica Höfte
- Department of Plants and Crops, Laboratory of Phytopathology, Ghent University, Ghent, 9000, Belgium
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | | | - Chhana Ullah
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| |
Collapse
|
12
|
Zhao Y, Zha M, Xu C, Hou F, Wang Y. Proteomic Analysis Revealed the Antagonistic Effect of Decapitation and Strigolactones on the Tillering Control in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 13:91. [PMID: 38202400 PMCID: PMC10780617 DOI: 10.3390/plants13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Removing the panicle encourages the growth of buds on the elongated node by getting rid of apical dominance. Strigolactones (SLs) are plant hormones that suppress tillering in rice. The present study employed panicle removal (RP) and external application of synthesized strigolactones (GR) to modulate rice bud growth at node 2. We focused on the full-heading stage to investigate proteomic changes related to bud germination (RP-Co) and suppression (GR-RP). A total of 434 represented differentially abundant proteins (DAPs) were detected, with 272 DAPs explicitly specified in the bud germination process, 106 in the bud suppression process, and 28 in both. DAPs in the germination process were most associated with protein processing in the endoplasmic reticulum and ribosome biogenesis. DAPs were most associated with metabolic pathways and glycolysis/gluconeogenesis in the bud suppression process. Sucrose content and two enzymes of sucrose degradation in buds were also determined. Comparisons of DAPs between the two reversed processes revealed that sucrose metabolism might be a key to modulating rice bud growth. Moreover, sucrose or its metabolites should be a signal downstream of the SLs signal transduction that modulates rice bud outgrowth. Contemplating the result so far, it is possible to open new vistas of research to reveal the interaction between SLs and sucrose signaling in the control of tillering in rice.
Collapse
Affiliation(s)
- Yanhui Zhao
- College of Biology Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.Z.); (M.Z.); (F.H.)
| | - Manrong Zha
- College of Biology Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.Z.); (M.Z.); (F.H.)
- Key Laboratory of Plant Resources Conservation and Utilization, College of Hunan Province, Jishou 416000, China
| | - Congshan Xu
- Anhui Science and Technology Achievement Transformation Promotion Center, Anhui Provincial Institute of Science and Technology, Hefei 230002, China;
| | - Fangxu Hou
- College of Biology Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.Z.); (M.Z.); (F.H.)
| | - Yan Wang
- College of Biology Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.Z.); (M.Z.); (F.H.)
- Key Laboratory of Plant Resources Conservation and Utilization, College of Hunan Province, Jishou 416000, China
| |
Collapse
|
13
|
Göbel M, Fichtner F. Functions of sucrose and trehalose 6-phosphate in controlling plant development. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154140. [PMID: 38007969 DOI: 10.1016/j.jplph.2023.154140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
Plants exhibit enormous plasticity in regulating their architecture to be able to adapt to a constantly changing environment and carry out vital functions such as photosynthesis, anchoring, and nutrient uptake. Phytohormones play a role in regulating these responses, but sugar signalling mechanisms are also crucial. Sucrose is not only an important source of carbon and energy fuelling plant growth, but it also functions as a signalling molecule that influences various developmental processes. Trehalose 6-phosphate (Tre6P), a sucrose-specific signalling metabolite, is emerging as an important regulator in plant metabolism and development. Key players involved in sucrose and Tre6P signalling pathways, including MAX2, SnRK1, bZIP11, and TOR, have been implicated in processes such as flowering, branching, and root growth. We will summarize our current knowledge of how these pathways shape shoot and root architecture and highlight how sucrose and Tre6P signalling are integrated with known signalling networks in shaping plant growth.
Collapse
Affiliation(s)
- Moritz Göbel
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Plant Biochemistry, Germany; Cluster of Excellences on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Germany
| | - Franziska Fichtner
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Plant Biochemistry, Germany; Cluster of Excellences on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Germany.
| |
Collapse
|
14
|
Xu X, Feng G, Yang Z, Liu Q, Nie G, Li D, Huang T, Huang L, Zhang X. Transcriptome Analysis Reveals the Potential Molecular Mechanisms of Tiller Bud Development in Orchardgrass. Int J Mol Sci 2023; 24:15762. [PMID: 37958746 PMCID: PMC10650679 DOI: 10.3390/ijms242115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Tillering is a special type of branching and one of the important contributors to the yield of cereal crops. Strigolactone and sucrose play a vital role in controlling tiller formation, but their mechanism has not been elucidated completely in most crops. Orchardgrass (Dactylis glomerata L.) is an important perennial forage with prominent tillering ability among crops. To date, the mechanism of tillering in orchardgrass is still largely unknown. Therefore, we performed a transcriptome and miRNA analysis to reveal the potential RNA mechanism of tiller formation under strigolactone and sucrose treatment in orchardgrass. Our results found that D3, COL5, NCED1, HXK7, miRNA4393-z, and miRNA531-z could be key factors to control tiller bud development in orchardgrass. In addition, strigolactones might affect the ABA biosynthesis pathway to regulate the tiller bud development of orchardgrass, which may be related to the expression changes in miRNA4393-z, NCED1, and D10. miRNA531-z could be involved in the interaction of strigolactones and sucrose in regulating tillering. These results will be further used to clarify the potential mechanism of tillering for breeding new high-tillering and high-production orchardgrass varieties and beneficial to improving the production and reproduction of crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
15
|
Drummond RSM, Lee HW, Luo Z, Dakin JF, Janssen BJ, Snowden KC. Varying the expression pattern of the strigolactone receptor gene DAD2 results in phenotypes distinct from both wild type and knockout mutants. FRONTIERS IN PLANT SCIENCE 2023; 14:1277617. [PMID: 37900765 PMCID: PMC10600376 DOI: 10.3389/fpls.2023.1277617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023]
Abstract
The action of the petunia strigolactone (SL) hormone receptor DAD2 is dependent not only on its interaction with the PhMAX2A and PhD53A proteins, but also on its expression patterns within the plant. Previously, in a yeast-2-hybrid system, we showed that a series of a single and double amino acid mutants of DAD2 had altered interactions with these binding partners. In this study, we tested the mutants in two plant systems, Arabidopsis and petunia. Testing in Arabidopsis was enabled by creating a CRISPR-Cas9 knockout mutant of the Arabidopsis strigolactone receptor (AtD14). We produced SL receptor activity in both systems using wild type and mutant genes; however, the mutants had functions largely indistinguishable from those of the wild type. The expression of the wild type DAD2 from the CaMV 35S promoter in dad2 petunia produced plants neither quite like the dad2 mutant nor the V26 wild type. These plants had greater height and leaf size although branch number and the plant shape remained more like those of the mutant. These traits may be valuable in the context of a restricted area growing system such as controlled environment agriculture.
Collapse
Affiliation(s)
- Revel S. M. Drummond
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | | | | | | | | | - Kimberley C. Snowden
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
16
|
Rahmati Ishka M, Julkowska M. Tapping into the plasticity of plant architecture for increased stress resilience. F1000Res 2023; 12:1257. [PMID: 38434638 PMCID: PMC10905174 DOI: 10.12688/f1000research.140649.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 03/05/2024] Open
Abstract
Plant architecture develops post-embryonically and emerges from a dialogue between the developmental signals and environmental cues. Length and branching of the vegetative and reproductive tissues were the focus of improvement of plant performance from the early days of plant breeding. Current breeding priorities are changing, as we need to prioritize plant productivity under increasingly challenging environmental conditions. While it has been widely recognized that plant architecture changes in response to the environment, its contribution to plant productivity in the changing climate remains to be fully explored. This review will summarize prior discoveries of genetic control of plant architecture traits and their effect on plant performance under environmental stress. We review new tools in phenotyping that will guide future discoveries of genes contributing to plant architecture, its plasticity, and its contributions to stress resilience. Subsequently, we provide a perspective into how integrating the study of new species, modern phenotyping techniques, and modeling can lead to discovering new genetic targets underlying the plasticity of plant architecture and stress resilience. Altogether, this review provides a new perspective on the plasticity of plant architecture and how it can be harnessed for increased performance under environmental stress.
Collapse
|
17
|
Caldana C, Carrari F, Fernie AR, Sampathkumar A. How metabolism and development are intertwined in space and time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:347-359. [PMID: 37433681 DOI: 10.1111/tpj.16391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Developmental transitions, occurring throughout the life cycle of plants, require precise regulation of metabolic processes to generate the energy and resources necessary for the committed growth processes. In parallel, the establishment of new cells, tissues, and even organs, alongside their differentiation provoke profound changes in metabolism. It is increasingly being recognized that there is a certain degree of feedback regulation between the components and products of metabolic pathways and developmental regulators. The generation of large-scale metabolomics datasets during developmental transitions, in combination with molecular genetic approaches has helped to further our knowledge on the functional importance of metabolic regulation of development. In this perspective article, we provide insights into studies that elucidate interactions between metabolism and development at the temporal and spatial scales. We additionally discuss how this influences cell growth-related processes. We also highlight how metabolic intermediates function as signaling molecules to direct plant development in response to changing internal and external conditions.
Collapse
Affiliation(s)
- Camila Caldana
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Fernando Carrari
- Facultad de Agronomía, Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Arun Sampathkumar
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
18
|
Chen S, Song X, Zheng Q, Liu Y, Yu J, Zhou Y, Xia X. The transcription factor SPL13 mediates strigolactone suppression of shoot branching by inhibiting cytokinin synthesis in Solanum lycopersicum. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5722-5735. [PMID: 37504507 PMCID: PMC10540736 DOI: 10.1093/jxb/erad303] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
Plant architecture imposes a large impact on crop yield. IDEAL PLANT ARCHITECTURE 1 (IPA1), which encodes a SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor, is a target of molecular design for improving grain yield. However, the roles of SPL transcription factors in regulating tomato (Solanum lycopersicum) plant architecture are unclear. Here, we show that the expression of SPL13 is down-regulated in the lateral buds of strigolactone (SL)-deficient ccd mutants and is induced by GR24 (a synthetic analog of SL). Knockout of SPL13 by CRISPR/Cas9 resulted in higher levels of cytokinins (CKs) and transcripts of the CK synthesis gene ISOPENTENYL TRANSFERASES 1 (IPT1) in the stem nodes, and more growth of lateral buds. GR24 suppresses CK synthesis and lateral bud growth in ccd mutants, but is not effective in spl13 mutants. On the other hand, silencing of the IPT1 gene inhibited bud growth of spl13 mutants. Interestingly, SL levels in root extracts and exudates are significantly increased in spl13 mutants. Molecular studies indicated that SPL13 directly represses the transcription of IPT1 and the SL synthesis genes CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7) and MORE AXILLARY GROWTH 1 (MAX1). The results demonstrate that SPL13 acts downstream of SL to suppress lateral bud growth by inhibiting CK synthesis in tomato. Tuning the expression of SPL13 is a potential approach for decreasing the number of lateral shoots in tomato.
Collapse
Affiliation(s)
- Shangyu Chen
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Xuewei Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Qixiang Zheng
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Yuqi Liu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
- Hainan Institute, Zhejiang University, Sanya 572025, PR China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, PR China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
- Hainan Institute, Zhejiang University, Sanya 572025, PR China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
- Hainan Institute, Zhejiang University, Sanya 572025, PR China
| |
Collapse
|
19
|
Dun EA, Brewer PB, Gillam EMJ, Beveridge CA. Strigolactones and Shoot Branching: What Is the Real Hormone and How Does It Work? PLANT & CELL PHYSIOLOGY 2023; 64:967-983. [PMID: 37526426 PMCID: PMC10504579 DOI: 10.1093/pcp/pcad088] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/02/2023]
Abstract
There have been substantial advances in our understanding of many aspects of strigolactone regulation of branching since the discovery of strigolactones as phytohormones. These include further insights into the network of phytohormones and other signals that regulate branching, as well as deep insights into strigolactone biosynthesis, metabolism, transport, perception and downstream signaling. In this review, we provide an update on recent advances in our understanding of how the strigolactone pathway co-ordinately and dynamically regulates bud outgrowth and pose some important outstanding questions that are yet to be resolved.
Collapse
Affiliation(s)
- Elizabeth A Dun
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Philip B Brewer
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- Waite Research Institute, School of Agriculture Food & Wine, The University of Adelaide, Adelaide, SA 5064, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Christine A Beveridge
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
20
|
Ran F, Bai X, Li J, Yuan Y, Li C, Li P, Chen H. Cytokinin and Metabolites Affect Rhizome Growth and Development in Kentucky Bluegrass ( Poa pratensis). BIOLOGY 2023; 12:1120. [PMID: 37627004 PMCID: PMC10452147 DOI: 10.3390/biology12081120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Rhizome growth and development is regulated by phytohormone. However, endogenous phytohormones affect rhizome initiation, and sustained growth in perennial grass species remains elusive. In this study, we investigated the morphological characteristics and the content of indole-3-acetic acid (IAA), zeatin (ZT), gibberellic acid (GA3), and abscisic acid (ABA) in the rhizomes of two different Kentucky bluegrass. Using ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS), we performed metabolite analysis of two different rhizomes. In our study, the multi-rhizome Kentucky bluegrass material 'Yuzhong' had an average of 1113 rhizomes, while the few-rhizome material 'Anding' had an average of 347 rhizomes. The diameter of rhizome and length of rhizome internode in 'Yuzhong' were 1.68-fold and 1.33-fold higher than that of the 'Anding', respectively. The rhizome dry weight of 'Yuzhong' was 75.06 g, while the 'Anding' was 20.79 g. 'Yuzhong' had a higher ZT content (5.50 μg·g-1), which is 2.4-fold that of 'Anding' (2.27 μg·g-1). In contrast, the IAA, ABA, and GA3 content of rhizome were markedly higher in 'Anding' than 'Yuzhong'. Correlation analysis revealed significant correlations between ZT and ZT/ABA with the number of rhizomes, diameter of rhizome, and length of rhizome internode, whereas IAA, ABA, GA3, and IAA/ZT were opposite. In the metabolic profiles, we identified 163 differentially expressed metabolites (DEMs) (60 upregulated and 103 downregulated) in positive ion mode and 75 DEMs (36 upregulated and 39 downregulated) in negative ion mode. Histidine metabolism and ABC transporters pathways were the most significantly enriched in the positive and negative ion mode, respectively, both of which are involved in the synthesis and transport of cytokinin. These results indicate that cytokinin is crucial for rhizome development and promotes rhizome germination and growth of Kentucky bluegrass.
Collapse
Affiliation(s)
- Fu Ran
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
| | - Xiaoming Bai
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Lanzhou 730070, China
| | - Juanxia Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
| | - Yajuan Yuan
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
| | - Changning Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
| | - Ping Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
| | - Hui Chen
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
21
|
Barbier F, Fichtner F, Beveridge C. The strigolactone pathway plays a crucial role in integrating metabolic and nutritional signals in plants. NATURE PLANTS 2023; 9:1191-1200. [PMID: 37488268 DOI: 10.1038/s41477-023-01453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/24/2023] [Indexed: 07/26/2023]
Abstract
Strigolactones are rhizosphere signals and phytohormones that play crucial roles in plant development. They are also well known for their role in integrating nitrate and phosphate signals to regulate shoot and root development. More recently, sugars and citrate (an intermediate of the tricarboxylic acid cycle) were reported to inhibit the strigolactone response, with dramatic effects on shoot architecture. This Review summarizes the discoveries recently made concerning the mechanisms through which the strigolactone pathway integrates sugar, metabolite and nutrient signals. We highlight here that strigolactones and MAX2-dependent signalling play crucial roles in mediating the impacts of nutritional and metabolic cues on plant development and metabolism. We also discuss and speculate concerning the role of these interactions in plant evolution and adaptation to their environment.
Collapse
Affiliation(s)
- Francois Barbier
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, St Lucia, Queensland, Australia.
| | - Franziska Fichtner
- Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine Beveridge
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
22
|
Cao D, Chabikwa T, Barbier F, Dun EA, Fichtner F, Dong L, Kerr SC, Beveridge CA. Auxin-independent effects of apical dominance induce changes in phytohormones correlated with bud outgrowth. PLANT PHYSIOLOGY 2023; 192:1420-1434. [PMID: 36690819 PMCID: PMC10231355 DOI: 10.1093/plphys/kiad034] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 06/01/2023]
Abstract
The inhibition of shoot branching by the growing shoot tip of plants, termed apical dominance, was originally thought to be mediated by auxin. Recently, the importance of the shoot tip sink strength during apical dominance has re-emerged with recent studies highlighting roles for sugars in promoting branching. This raises many unanswered questions on the relative roles of auxin and sugars in apical dominance. Here we show that auxin depletion after decapitation is not always the initial trigger of rapid cytokinin (CK) increases in buds that are instead correlated with enhanced sugars. Auxin may also act through strigolactones (SLs) which have been shown to suppress branching after decapitation, but here we show that SLs do not have a significant effect on initial bud outgrowth after decapitation. We report here that when sucrose or CK is abundant, SLs are less inhibitory during the bud release stage compared to during later stages and that SL treatment rapidly inhibits CK accumulation in pea (Pisum sativum) axillary buds of intact plants. After initial bud release, we find an important role of gibberellin (GA) in promoting sustained bud growth downstream of auxin. We are, therefore, able to suggest a model of apical dominance that integrates auxin, sucrose, SLs, CKs, and GAs and describes differences in signalling across stages of bud release to sustained growth.
Collapse
Affiliation(s)
- Da Cao
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tinashe Chabikwa
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Francois Barbier
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth A Dun
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Franziska Fichtner
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lili Dong
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephanie C Kerr
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Christine A Beveridge
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
23
|
Ran F, Yuan Y, Bai X, Li C, Li J, Chen H. Carbon and nitrogen metabolism affects kentucky bluegrass rhizome expansion. BMC PLANT BIOLOGY 2023; 23:221. [PMID: 37101108 PMCID: PMC10131326 DOI: 10.1186/s12870-023-04230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Rhizome is vital for carbon and nitrogen metabolism of the whole plant. However, the effect of carbon and nitrogen in the rhizome on rhizome expansion remains unclear. RESULTS Three wild Kentucky bluegrass (Poa pratensis L.) germplasms with different rhizome expansion capacity (strong expansion capacity, 'YZ'; medium expansion capacity, 'WY'; and weak expansion capacity, 'AD') were planted in the field and the rhizomes number, tiller number, rhizome dry weight, physiological indicators and enzyme activity associated carbon and nitrogen metabolisms were measured. Liquid chromatography coupled to mass spectrometry (LC-MS) was utilized to analyze the metabolomic of the rhizomes. The results showed that the rhizome and tiller numbers of the YZ were 3.26 and 2.69-fold of that of the AD, respectively. The aboveground dry weight of the YZ was the greatest among all three germplasms. Contents of soluble sugar, starch, sucrose, NO3--N, and free amino acid were significantly higher in rhizomes of the YZ than those of the WY and AD (P < 0.05). The activities of glutamine synthetase (GS), glutamate dehydrogenase (GDH) and sucrose phosphate synthase (SPS) of the YZ were the highest among all three germplasm, with values of 17.73 A·g- 1 h- 1, 5.96 µmol·g- 1 min- 1, and 11.35 mg·g- 1 h- 1, respectively. Metabolomics analyses revealed that a total of 28 differentially expressed metabolites (DEMs) were up-regulated, and 25 DEMs were down-regulated in both comparison groups (AD vs. YZ group and WY vs. YZ group). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis demonstrated that metabolites related to histidine metabolism, tyrosine metabolism, tryptophan metabolism, and phenylalanine metabolism were associated with rhizomes carbon and nitrogen metabolism. CONCLUSIONS Overall, the results suggest that soluble sugar, starch, sucrose, NO3--N, and free amino acid in rhizome are important to and promote rhizome expansion in Kentucky bluegrass, while tryptamine, 3-methylhistidine, 3-indoleacetonitrile, indole, and histamine may be key metabolites in promoting carbon and nitrogen metabolism of rhizome.
Collapse
Affiliation(s)
- Fu Ran
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yajuan Yuan
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaoming Bai
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Changning Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juanxia Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hui Chen
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
24
|
Sloan JM, Mujab AAM, Mashitah J, Zulkarami B, Wilson MJ, Toh LS, Nur Zahirah AJ, Afiq K, Asyraf AT, Zhu XG, Yaapar N, Fleming AJ. Elevated CO 2 Priming as a Sustainable Approach to Increasing Rice Tiller Number and Yield Potential. RICE (NEW YORK, N.Y.) 2023; 16:16. [PMID: 36947269 PMCID: PMC10033790 DOI: 10.1186/s12284-023-00629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Tillering and yield are linked in rice, with significant efforts being invested to understand the genetic basis of this phenomenon. However, in addition to genetic factors, tillering is also influenced by the environment. Exploiting experiments in which seedlings were first grown in elevated CO2 (eCO2) before transfer and further growth under ambient CO2 (aCO2) levels, we found that even moderate exposure times to eCO2 were sufficient to induce tillering in seedlings, which was maintained in plants grown to maturity plants in controlled environment chambers. We then explored whether brief exposure to eCO2 (eCO2 priming) could be implemented to regulate tiller number and yield in the field. We designed a cost-effective growth system, using yeast to increase the CO2 level for the first 24 days of growth, and grew these seedlings to maturity in semi-field conditions in Malaysia. The increased growth caused by eCO2 priming translated into larger mature plants with increased tillering, panicle number, and improved grain filling and 1000 grain weight. In order to make the process more appealing to conventional rice farmers, we then developed a system in which fungal mycelium was used to generate the eCO2 via respiration of sugars derived by growing the fungus on lignocellulosic waste. Not only does this provide a sustainable source of CO2, it also has the added financial benefit to farmers of generating economically valuable oyster mushrooms as an end-product of mycelium growth. Our experiments show that the system is capable of generating sufficient CO2 to induce increased tillering in rice seedlings, leading eventually to 18% more tillers and panicles in mature paddy-grown crop. We discuss the potential of eCO2 priming as a rapidly implementable, broadly applicable and sustainable system to increase tillering, and thus yield potential in rice.
Collapse
Affiliation(s)
- Jennifer M Sloan
- School of Biosciences, Plants, Photosynthesis and Soil, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Azzami Adam Muhamad Mujab
- Commercialization and Business Centre, Malaysian Agricultural Research and Development Institute, MARDI Parit, 32800, Parit, Perak, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Jusoh Mashitah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Berahim Zulkarami
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Matthew J Wilson
- School of Biosciences, Plants, Photosynthesis and Soil, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Liang Su Toh
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - A Jalil Nur Zahirah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Kamaruzali Afiq
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Ahmad Tajuddin Asyraf
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Xin-Guang Zhu
- Center of Excellence for Molecular Plant Science, Institute of Plant Physiology and Ecology, CAS, Shanghai, 200032, China
| | - Nazmin Yaapar
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| | - Andrew J Fleming
- School of Biosciences, Plants, Photosynthesis and Soil, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
25
|
Hellens AM, Chabikwa TG, Fichtner F, Brewer PB, Beveridge CA. Identification of new potential downstream transcriptional targets of the strigolactone pathway including glucosinolate biosynthesis. PLANT DIRECT 2023; 7:e486. [PMID: 36945724 PMCID: PMC10024969 DOI: 10.1002/pld3.486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Strigolactones regulate shoot branching and many aspects of plant growth, development, and allelopathy. Strigolactones are often discussed alongside auxin because they work together to inhibit shoot branching. However, the roles and mechanisms of strigolactones and how they act independently of auxin are still elusive. Additionally, there is still much in general to be discovered about the network of molecular regulators and their interactions in response to strigolactones. Here, we conducted an experiment in Arabidopsis with physiological treatments and strigolactone mutants to determine transcriptional pathways associated with strigolactones. The three physiological treatments included shoot tip removal with and without auxin treatment and treatment of intact plants with the auxin transport inhibitor, N-1-naphthylphthalamic acid (NPA). We identified the glucosinolate biosynthesis pathway as being upregulated across strigolactone mutants indicating strigolactone-glucosinolate crosstalk. Additionally, strigolactone application cannot restore the highly branched phenotype observed in glucosinolate biosynthesis mutants, placing glucosinolate biosynthesis downstream of strigolactone biosynthesis. Oxidative stress genes were enriched across the experiment suggesting that this process is mediated through multiple hormones. Here, we also provide evidence supporting non-auxin-mediated, negative feedback on strigolactone biosynthesis. Increases in strigolactone biosynthesis gene expression seen in strigolactone mutants could not be fully restored by auxin. By contrast, auxin could fully restore auxin-responsive gene expression increases, but not sugar signaling-related gene expression. Our data also point to alternative roles of the strigolactone biosynthesis genes and potential new signaling functions of strigolactone precursors. In this study, we identify a strigolactone-specific regulation of glucosinolate biosynthesis genes indicating that the two are linked and may work together in regulating stress and shoot ranching responses in Arabidopsis. Additionally, we provide evidence for non-auxinmediated feedback on strigolactone biosynthesis and discuss this in the context of sugar signaling.
Collapse
Affiliation(s)
- Alicia M. Hellens
- School of Biological SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
- ARC Centre for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQueenslandAustralia
| | - Tinashe G. Chabikwa
- School of Biological SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Franziska Fichtner
- School of Biological SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
- ARC Centre for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQueenslandAustralia
- Institute for Plant BiochemistryHeinrich Heine UniversityDüsseldorfGermany
| | - Philip B. Brewer
- School of Biological SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
- ARC Centre for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQueenslandAustralia
- School of Agriculture, Food and WineThe University of AdelaideGlen OsmondSouth AustraliaAustralia
| | - Christine A. Beveridge
- School of Biological SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
- ARC Centre for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
26
|
Waters MT, Nelson DC. Karrikin perception and signalling. THE NEW PHYTOLOGIST 2023; 237:1525-1541. [PMID: 36333982 DOI: 10.1111/nph.18598] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Karrikins (KARs) are a class of butenolide compounds found in smoke that were first identified as seed germination stimulants for fire-following species. Early studies of KARs classified the germination and postgermination responses of many plant species and investigated crosstalk with plant hormones that regulate germination. The discovery that Arabidopsis thaliana responds to KARs laid the foundation for identifying mutants with altered KAR responses. Genetic analysis of KAR signalling revealed an unexpected link to strigolactones (SLs), a class of carotenoid-derived plant hormones. Substantial progress has since been made towards understanding how KARs are perceived and regulate plant growth, in no small part due to advances in understanding SL perception. KAR and SL signalling systems are evolutionarily related and retain a high degree of similarity. There is strong evidence that KARs are natural analogues of an endogenous signal(s), KAI2 ligand (KL), which remains unknown. KAR/KL signalling regulates many developmental processes in plants including germination, seedling photomorphogenesis, and root and root hair growth. KAR/KL signalling also affects abiotic stress responses and arbuscular mycorrhizal symbiosis. Here, we summarise the current knowledge of KAR/KL signalling and discuss current controversies and unanswered questions in this field.
Collapse
Affiliation(s)
- Mark T Waters
- School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
27
|
Wang L, Li B, Dai C, Ding A, Wang W, Shi H, Cui M, Sun Y, Lv J. Genome-wide identification of MAXs genes for strigolactones synthesis/signaling in solanaceous plants and analysis of their potential functions in tobacco. PeerJ 2023; 11:e14669. [PMID: 36650839 PMCID: PMC9840856 DOI: 10.7717/peerj.14669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/09/2022] [Indexed: 01/14/2023] Open
Abstract
The more axillary growth (MAX) gene family is a group of key genes involved in the synthesis and signal transduction of strigolactones (SLs) in plants. Although MAX genes play vital roles in plant growth and development, characterization of the MAX gene family has been limited in solanaceous crops, especially in tobacco. In this study, 74 members of the MAX family were identified in representative Solanaceae crops and classified into four groups. The physicochemical properties, gene structure, conserved protein structural domains, cis-acting elements, and expression patterns could be clearly distinguished between the biosynthetic and signal transduction subfamilies; furthermore, MAX genes in tobacco were found to be actively involved in the regulation of meristem development by responding to hormones. MAX genes involved in SL biosynthesis were more responsive to abiotic stresses than genes involved in SL signaling. Tobacco MAX genes may play an active role in stress resistance. The results of this study provide a basis for future in-depth analysis of the molecular mechanisms of MAX genes in tobacco meristem development and stress resistance.
Collapse
Affiliation(s)
- Lixianqiu Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China,Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing, China
| | - Bingjie Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China,Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing, China
| | - Changbo Dai
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Anming Ding
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Weifeng Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Haoqi Shi
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China,Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Beijing, China
| | - Mengmeng Cui
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yuhe Sun
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jing Lv
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
28
|
Yao F, Hu Q, Yu Y, Yang L, Jiao S, Huang G, Zhang S, Hu F, Huang L. Regeneration pattern and genome-wide transcription profile of rhizome axillary buds after perennial rice harvest. FRONTIERS IN PLANT SCIENCE 2022; 13:1071038. [PMID: 36518502 PMCID: PMC9742242 DOI: 10.3389/fpls.2022.1071038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Perennial rice is a new type of rice that allows the harvest of rice for multiple years without growing new seedlings annually. This technology represents a green and sustainable agricultural production mode with many advantages for balancing agricultural ecology and food security. However, the differences in regeneration patterns between perennial and annual rice and the gene regulatory pathways of the apical dominance in axillary bud growth after harvest in perennial rice are still unclear. In this study, perennial rice (PR23) and annual rice (Chugeng28) were used to investigate axillary bud growth patterns before and after apical spike removal. After elimination of apical dominance at different development stages, perennial rice rhizome axillary buds at the compression nodes germinated more rapidly than others and developed into new seedlings. The axillary buds at the high-position nodes in annual rice grew faster than those at other nodes. Furthermore, the global gene expression patterns of PR23 rhizome buds at compression nodes grown for 1, 3, 4, and 5 days after apical spike removal were analyzed by transcriptome sequencing. Compared with the control buds without apical removal, 264, 3,484, 2,095, and 3,398 genes were up-regulated, and 674, 3,484, 1,594, and 1,824 genes were down-regulated in the buds grown for 1, 3, 4, and 5 days after apical spike removal, respectively. Trend analysis of the expressed genes at different time points was performed and co-expression network was constructed to identify key genes in rhizome axillary bud regrowth. The results showed that 85 hub genes involved in 12 co-regulatory networks were mainly enriched in the light system, photosynthesis-antenna protein, plant hormone signal transduction, ABC transporter and metabolic pathways, which suggested that hormone and photosynthetic signals might play important roles in the regulation of rhizome axillary bud regeneration in perennial rice. Overall, this study clarified the differences in the regeneration patterns of axillary buds between perennial and annual rice and provided insight into the complex regulatory networks during the regeneration of rhizome axillary buds in perennial rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fengyi Hu
- *Correspondence: Liyu Huang, ; Fengyi Hu,
| | - Liyu Huang
- *Correspondence: Liyu Huang, ; Fengyi Hu,
| |
Collapse
|
29
|
Genome-Wide Identification of SMXL Gene Family in Soybean and Expression Analysis of GmSMXLs under Shade Stress. PLANTS 2022; 11:plants11182410. [PMID: 36145811 PMCID: PMC9500757 DOI: 10.3390/plants11182410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
SMXL6,7,8 are important target proteins in strigolactone (SL) signal pathway, which negatively regulate the reception and response of SL signal, and play an important role in regulating plant branching. However, there is a relative lack of research on soybean SMXL gene family. In this study, 31 soybean SMXL genes were identified by phylogenetic analysis and divided into three groups. Based on the analysis of GmSMXL gene’s structure and motif composition, it was found that the GmSMXL members in the same group were similar. The results of cis-element analysis showed that GmSMXL genes may regulate the growth and development of soybean by responding to hormones and environment. Based on the tissue specificity analysis and GR24 treatment, the results showed that four GmSMXLs in G1 group were predominantly expressed in stems, axillary buds and leaves and involved in SL signal pathway. Finally, under shading stress, the expression of four genes in G1 group was slightly different in different varieties, which may be the reason for the difference in branching ability of different varieties under shading stress. We have systematically studied the SMXL gene family in soybean, which may lay a foundation for the study of the function of GmSMXL gene in the future.
Collapse
|
30
|
Li Y, He Y, Liu Z, Qin T, Wang L, Chen Z, Zhang B, Zhang H, Li H, Liu L, Zhang J, Yuan W. OsSPL14 acts upstream of OsPIN1b and PILS6b to modulate axillary bud outgrowth by fine-tuning auxin transport in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1167-1182. [PMID: 35765202 DOI: 10.1111/tpj.15884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
As a multigenic trait, rice tillering can optimize plant architecture for the maximum agronomic yield. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE14 (OsSPL14) has been demonstrated to be necessary and sufficient to inhibit rice branching, but the underlying mechanism remains largely unclear. Here, we demonstrated that OsSPL14, which is cleaved by miR529 and miR156, inhibits tillering by fine-tuning auxin transport in rice. RNA interference of OsSPL14 or miR529 and miR156 overexpression significantly increased the tiller number, whereas OsSPL14 overexpression decreased the tiller number. Histological analysis revealed that the OsSPL14-overexpressing line had normal initiation of axillary buds but inhibited outgrowth of tillers. Moreover, OsSPL14 was found to be responsive to indole-acetic acid and 1-naphthylphthalamic acid, and RNA interference of OsSPL14 reduced polar auxin transport and increased 1-naphthylphthalamic acid sensitivity of rice plants. Further analysis revealed that OsSPL14 directly binds to the promoter of PIN-FORMED 1b (OsPIN1b) and PIN-LIKE6b (PILS6b) to regulate their expression positively. OsPIN1b and PILS6b were highly expressed in axillary buds and proved involved in bud outgrowth. Loss of function of OsPIN1b or PILS6b increased the tiller number of rice. Taken together, our findings suggested that OsSPL14 could control axillary bud outgrowth and tiller number by activating the expression of OsPIN1b and PILS6b to fine-tune auxin transport in rice.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Huazhong Agricultural University, Wuhan, 430070, China
| | - Yizhou He
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Zhixin Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Tian Qin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Lei Wang
- Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhihui Chen
- Huazhong Agricultural University, Wuhan, 430070, China
| | - Biaoming Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Haitao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Haitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Wenya Yuan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|
31
|
Methionine Promotes the Growth and Yield of Wheat under Water Deficit Conditions by Regulating the Antioxidant Enzymes, Reactive Oxygen Species, and Ions. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070969. [PMID: 35888059 PMCID: PMC9318804 DOI: 10.3390/life12070969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022]
Abstract
The individual application of pure and active compounds such as methionine may help to address water scarcity issues without compromising the yield of wheat. As organic plant growth stimulants, amino acids are popularly used to promote the productivity of crops. However, the influence of the exogenous application of methionine in wheat remains elusive. The present investigation was planned in order to understand the impact of methionine in wheat under drought stress. Two wheat genotypes were allowed to grow with 100% field capacity (FC) up to the three-leaf stage. Twenty-five-day-old seedlings of two wheat genotypes, Galaxy-13 and Johar-16, were subjected to 40% FC, denoted as water deficit-stress (D), along with 100% FC, called control (C), with and without L-methionine (Met; 4 mM) foliar treatment. Water deficit significantly reduced shoot length, shoot fresh and dry weights, seed yield, photosynthetic, gas exchange attributes except for transpiration rate (E), and shoot mineral ions (potassium, calcium, and phosphorus) in both genotypes. A significant increase was recorded in superoxide dismutase (SOD), catalase (CAT), hydrogen peroxide (H2O2), malondialdehyde (MDA), and sodium ions (Na+) due to water deficiency. However, foliar application of Met substantially improved the studied growth, photosynthetic, and gas exchange attributes with water deficit conditions in both genotypes. The activities of SOD, POD, and CAT were further enhanced under stress with Met application. Met improved potassium (K), calcium (Ca2+), and phosphorus (P) content. In a nutshell, the foliar application of Met effectively amended water deficit stress tolerance by reducing MDA and H2O2 content under water deficit conditions in wheat plants. Thus, we are able to deduce a positive association between Met-induced improved growth attributes and drought tolerance.
Collapse
|
32
|
Evaluation of Green Super Rice Lines for Agronomic and Physiological Traits under Salinity Stress. PLANTS 2022; 11:plants11111461. [PMID: 35684234 PMCID: PMC9182741 DOI: 10.3390/plants11111461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
Rice (Oryza sativa) is an important staple food crop worldwide, especially in east and southeast Asia. About one-third of rice cultivated area is under saline soil, either natural saline soils or irrigation with brackish water. Salinity stress is among the devastating abiotic stresses that not only affect rice growth and crop productivity but also limit its cultivation area globally. Plants adopt multiple tolerance mechanisms at the morphological, physiological, and biochemical levels to tackle salinity stress. To identify these tolerance mechanisms, this study was carried out under both a controlled glass house as well as natural saline field conditions using 22 green super rice (GSR) lines along with two local varieties (“IRRI 6 and Kissan Basmati”). Several morpho-physiological and biochemical parameters along with stress-responsive genes were used as evaluation criteria under normal and salinity stress conditions. Correlation and Principal Component Analysis (PCA) suggested that shoot-related parameters and the salt susceptible index (SSI) can be used for the identification of salt-tolerant genotypes. Based on Agglomerative Hierarchical Cluster (AHC) analysis, two saline-tolerant (“S19 and S20”) and saline-susceptible (“S3 and S24”) lines were selected for further molecular evaluation. Quantitative RT-PCR was performed, and results showed that expression of 1-5-phosphoribosyl -5-5-phosphoribosyl amino methylidene amino imidazole-4-carboxamide isomerase, DNA repair protein recA, and peptide transporter PTR2 related genes were upregulated in salt-tolerant genotypes, suggesting their potential role in salinity tolerance. However, additional validation using reverse genetics approaches will further confirm their specific role in salt tolerance. Identified saline-tolerant lines in this study will be useful genetic resources for future salinity breeding programs.
Collapse
|
33
|
Jin K, Wang Y, Zhuo R, Xu J, Lu Z, Fan H, Huang B, Qiao G. TCP Transcription Factors Involved in Shoot Development of Ma Bamboo ( Dendrocalamus latiflorus Munro). FRONTIERS IN PLANT SCIENCE 2022; 13:884443. [PMID: 35620688 PMCID: PMC9127963 DOI: 10.3389/fpls.2022.884443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/08/2022] [Indexed: 05/10/2023]
Abstract
Ma bamboo (Dendrocalamus latiflorus Munro) is the most widely cultivated clumping bamboo in Southern China and is valuable for both consumption and wood production. The development of bamboo shoots involving the occurrence of lateral buds is unique, and it affects both shoot yield and the resulting timber. Plant-specific TCP transcription factors are involved in plant growth and development, particularly in lateral bud outgrowth and morphogenesis. However, the comprehensive information of the TCP genes in Ma bamboo remains poorly understood. In this study, 66 TCP transcription factors were identified in Ma bamboo at the genome-wide level. Members of the same subfamily had conservative gene structures and conserved motifs. The collinear analysis demonstrated that segmental duplication occurred widely in the TCP transcription factors of Ma bamboo, which mainly led to the expansion of a gene family. Cis-acting elements related to growth and development and stress response were found in the promoter regions of DlTCPs. Expression patterns revealed that DlTCPs have tissue expression specificity, which is usually highly expressed in shoots and leaves. Subcellular localization and transcriptional self-activation experiments demonstrated that the five candidate TCP proteins were typical self-activating nuclear-localized transcription factors. Additionally, the transcriptome analysis of the bamboo shoot buds at different developmental stages helped to clarify the underlying functions of the TCP members during the growth of bamboo shoots. DlTCP12-C, significantly downregulated as the bamboo shoots developed, was selected to further verify its molecular function in Arabidopsis. The DlTCP12-C overexpressing lines exhibited a marked reduction in the number of rosettes and branches compared with the wild type in Arabidopsis, suggesting that DlTCP12-C conservatively inhibits lateral bud outgrowth and branching in plants. This study provides useful insights into the evolutionary patterns and molecular functions of the TCP transcription factors in Ma bamboo and provides a valuable reference for further research on the regulatory mechanism of bamboo shoot development and lateral bud growth.
Collapse
Affiliation(s)
- Kangming Jin
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Forestry Faculty, Nanjing Forestry University, Nanjing, China
| | - Yujun Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Huijin Fan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Biyun Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
34
|
Finlayson SA. Branching's sweet spot: strigolactone signaling mediates sucrose effects on bud outgrowth. THE NEW PHYTOLOGIST 2022; 234:7-9. [PMID: 35171510 DOI: 10.1111/nph.18000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Scott A Finlayson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
35
|
Wang M, Ogé L, Pérez Garcia MD, Launay-Avon A, Clément G, Le Gourrierec J, Hamama L, Sakr S. Antagonistic Effect of Sucrose Availability and Auxin on Rosa Axillary Bud Metabolism and Signaling, Based on the Transcriptomics and Metabolomics Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:830840. [PMID: 35392520 PMCID: PMC8982072 DOI: 10.3389/fpls.2022.830840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Shoot branching is crucial for successful plant development and plant response to environmental factors. Extensive investigations have revealed the involvement of an intricate regulatory network including hormones and sugars. Recent studies have demonstrated that two major systemic regulators-auxin and sugar-antagonistically regulate plant branching. However, little is known regarding the molecular mechanisms involved in this crosstalk. We carried out two complementary untargeted approaches-RNA-seq and metabolomics-on explant stem buds fed with different concentrations of auxin and sucrose resulting in dormant and non-dormant buds. Buds responded to the combined effect of auxin and sugar by massive reprogramming of the transcriptome and metabolome. The antagonistic effect of sucrose and auxin targeted several important physiological processes, including sink strength, the amino acid metabolism, the sulfate metabolism, ribosome biogenesis, the nucleic acid metabolism, and phytohormone signaling. Further experiments revealed a role of the TOR-kinase signaling pathway in bud outgrowth through at least downregulation of Rosa hybrida BRANCHED1 (RhBRC1). These new findings represent a cornerstone to further investigate the diverse molecular mechanisms that drive the integration of endogenous factors during shoot branching.
Collapse
Affiliation(s)
- Ming Wang
- Dryland-Technology Key Laboratory of Shandong Province, College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Laurent Ogé
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | | | - Alexandra Launay-Avon
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Jose Le Gourrierec
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Latifa Hamama
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Soulaiman Sakr
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| |
Collapse
|
36
|
Fichtner F, Barbier FF, Kerr SC, Dudley C, Cubas P, Turnbull C, Brewer PB, Beveridge CA. Plasticity of bud outgrowth varies at cauline and rosette nodes in Arabidopsis thaliana. PLANT PHYSIOLOGY 2022; 188:1586-1603. [PMID: 34919723 PMCID: PMC8896621 DOI: 10.1093/plphys/kiab586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Shoot branching is a complex mechanism in which secondary shoots grow from buds that are initiated from meristems established in leaf axils. The model plant Arabidopsis (Arabidopsis thaliana) has a rosette leaf growth pattern in the vegetative stage. After flowering initiation, the main stem elongates with the top leaf primordia developing into cauline leaves. Meristems in Arabidopsis initiate in the axils of rosette or cauline leaves, giving rise to rosette or cauline buds, respectively. Plasticity in the process of shoot branching is regulated by resource and nutrient availability as well as by plant hormones. However, few studies have attempted to test whether cauline and rosette branching are subject to the same plasticity. Here, we addressed this question by phenotyping cauline and rosette branching in three Arabidopsis ecotypes and several Arabidopsis mutants with varied shoot architectures. Our results showed no negative correlation between cauline and rosette branch numbers in Arabidopsis, demonstrating that there is no tradeoff between cauline and rosette bud outgrowth. Through investigation of the altered branching pattern of flowering pathway mutants and Arabidopsis ecotypes grown in various photoperiods and light regimes, we further elucidated that the number of cauline branches is closely related to flowering time. The number of rosette branches has an enormous plasticity compared with cauline branches and is influenced by genetic background, flowering time, light intensity, and temperature. Our data reveal different levels of plasticity in the regulation of branching at rosette and cauline nodes, and promote a framework for future branching analyses.
Collapse
Affiliation(s)
- Franziska Fichtner
- School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia QLD 4072, Australia
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Francois F Barbier
- School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia QLD 4072, Australia
| | - Stephanie C Kerr
- School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Caitlin Dudley
- School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia QLD 4072, Australia
| | - Pilar Cubas
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Colin Turnbull
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Philip B Brewer
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Precinct, The University of Adelaide, Glen Osmond SA 5064, Australia
| | - Christine A Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia QLD 4072, Australia
| |
Collapse
|
37
|
Ma J, Xie L, Zhao Q, Sun Y, Zhang D. Cyclanilide Induces Lateral Bud Outgrowth by Modulating Cytokinin Biosynthesis and Signalling Pathways in Apple Identified via Transcriptome Analysis. Int J Mol Sci 2022; 23:ijms23020581. [PMID: 35054767 PMCID: PMC8776233 DOI: 10.3390/ijms23020581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Cyclanilide (CYC), a plant growth regulator, is a potent shoot branching agent in apple. However, its mechanism remains unclear. The current study revealed that CYC treatment resulted in massive reprogramming of the axillary bud transcriptome, implicating several hormones in the response. We observed a marked increase (approximately 2-fold) in the level of zeatin riboside and a significant decrease (approximately 2-fold) in the level of abscisic acid (ABA). Zeatin metabolism gene cytokinin (CTK) oxidase 1 (CKX 1) was down-regulated at 168 h after CYC treatment compared with the control. Weighted gene co-expression network analysis of differentially expressed genes demonstrated the turquoise module clusters exhibited the highest positive correlation with zeatin riboside (r = 0.92) and the highest negative correlation with ABA (r = -0.8). A total of 37 genes were significantly enriched in the plant hormone signal transduction pathway in the turquoise module. Among them, the expressions of CTK receptor genes WOODEN LEG and the CTK type-A response regulators genes ARR3 and ARR9 were up-regulated. ABA signal response genes protein phosphatase 2C genes ABI2 and ABI5 were down-regulated in lateral buds after CYC treatment at 168 h. In addition, exogenous application of 6-benzylaminopurine (6-BA, a synthetic type of CTK) and CYC enhanced the inducing effect of CYC, whereas exogenous application of lovastatin (a synthetic type of inhibitor of CTK biosynthesis) or ABA and CYC weakened the promoting effect of CYC. These results collectively revealed that the stimulation of bud growth by CYC might involve CTK biosynthesis and signalling, including genes CKX1 and ARR3/9, which provided a direction for further study of the branching promoting mechanism of CYC.
Collapse
Affiliation(s)
| | | | | | | | - Dong Zhang
- Correspondence: ; Tel./Fax: +86-029-87082849
| |
Collapse
|
38
|
Wu F, Gao Y, Yang W, Sui N, Zhu J. Biological Functions of Strigolactones and Their Crosstalk With Other Phytohormones. FRONTIERS IN PLANT SCIENCE 2022; 13:821563. [PMID: 35283865 PMCID: PMC8908206 DOI: 10.3389/fpls.2022.821563] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/24/2022] [Indexed: 05/10/2023]
Abstract
Phytohormones are small chemicals critical for plant development and adaptation to a changing environment. Strigolactones (SLs), carotenoid-derived small signalling molecules and a class of phytohormones, regulate multiple developmental processes and respond to diverse environmental signals. SLs also coordinate adjustments in the balance of resource distribution by strategic modification of the plant development, allowing plants to adapt to nutrient deficiency. Instead of operating independently, SL interplays with abscisic acid, cytokinin, auxin, ethylene, and some other plant phytohormones, forming elaborate signalling networks. Hormone signalling crosstalk in plant development and environmental response may occur in a fully concerted manner or as a cascade of sequential events. In many cases, the exact underlying mechanism is unclear because of the different effects of phytohormones and the varying backgrounds of their actions. In this review, we systematically summarise the synthesis, signal transduction, and biological functions of SLs and further highlight the significance of crosstalk between SLs and other phytohormones during plant development and resistance to ever-changing environments.
Collapse
|
39
|
Khuvung K, Silva Gutierrez FAO, Reinhardt D. How Strigolactone Shapes Shoot Architecture. FRONTIERS IN PLANT SCIENCE 2022; 13:889045. [PMID: 35903239 PMCID: PMC9315439 DOI: 10.3389/fpls.2022.889045] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/10/2022] [Indexed: 05/21/2023]
Abstract
Despite its central role in the control of plant architecture, strigolactone has been recognized as a phytohormone only 15 years ago. Together with auxin, it regulates shoot branching in response to genetically encoded programs, as well as environmental cues. A central determinant of shoot architecture is apical dominance, i.e., the tendency of the main shoot apex to inhibit the outgrowth of axillary buds. Hence, the execution of apical dominance requires long-distance communication between the shoot apex and all axillary meristems. While the role of strigolactone and auxin in apical dominance appears to be conserved among flowering plants, the mechanisms involved in bud activation may be more divergent, and include not only hormonal pathways but also sugar signaling. Here, we discuss how spatial aspects of SL biosynthesis, transport, and sensing may relate to apical dominance, and we consider the mechanisms acting locally in axillary buds during dormancy and bud activation.
Collapse
|
40
|
Chen DG, Zhou XQ, Chen K, Chen PL, Guo J, Liu CG, Chen YD. Fine-mapping and candidate gene analysis of a major locus controlling leaf thickness in rice ( Oryza sativa L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:6. [PMID: 35103045 PMCID: PMC8792131 DOI: 10.1007/s11032-022-01275-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/13/2022] [Indexed: 05/16/2023]
Abstract
UNLABELLED Leaf thickness is an important trait in rice (Oryza sativa L.). It affects both photosynthesis and sink-resource efficiency. However, compared to leaf length and length width, reports seldom focused on leaf thickness due to the complicated measurement and minor difference. To identify the quantitative trait loci (QTL) and explore the genetic mechanism regulating the natural variation of leaf thickness, we crossed a high leaf thickness variety Aixiuzhan (AXZ) to a thin leaf thickness variety Yangdao No.6 (YD 6) and evaluated 585 F2 individuals. We further use bulked sergeant analysis with whole-genome resequencing (BSA-seq) to identify five genomic regions, including chromosomes 1, 6, 9, 10, and 12. These regions represented significant allele frequency differentiation between thick and thin leaf thickness among the mixed pool offspring. Moreover, we conducted a linkage mapping using 276 individuals derived from the F2 population. We fine-mapped and confirmed that chromosome 9 contributed the primary explanation of phenotypic variance. We fine-mapped the candidate regions and confirmed that the chromosome 9 region contributed to flag leaf thickness in rice. We observed the virtual cellular slices and found that the bundle sheath cells in YD 6 flag leaf veins are fewer than AXZ. We analyzed the potential regions on chromosome 9 and narrowed the QTL candidate intervals in the 928-kb region. Candidate genes of this major QTL were listed as potentially controlled leaf thickness. These results provide promising evidence that cloning leaf thickness is associated with yield production in rice. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11032-022-01275-y.
Collapse
Affiliation(s)
- Da-gang Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Xin-qiao Zhou
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Ke Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Ping-li Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Jie Guo
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Chuan-guang Liu
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - You-ding Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| |
Collapse
|