1
|
Yang S, Wang Y, Wang W, Wang N, Yan R, Li S, Zhang T, Liu J, Zeng X, Zhao S, Zhang X, Dong Q, Luan H, Guo S, Qi G, Jia P. Analysis of WD40 genes in kiwifruit reveals the key role of the light-induced AcTTG1-AcMYB75-AcbHLH2 complex in anthocyanin accumulation. Int J Biol Macromol 2025; 297:139758. [PMID: 39809390 DOI: 10.1016/j.ijbiomac.2025.139758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
WD40 superfamily genes are integral to various aspects of plant growth and development. Despite the economic importance and agricultural significance of the kiwifruit (Actinidia chinensis), a comprehensive characterization of the WD40 superfamily in this species remains elusive. In this study, we identified 280 WD40-encoding genes within the kiwifruit genome and systematically analyzed their phylogenetic relationships, gene structures, functional domains, and synteny. Our results reveal that AcWD40 genes exhibit diverse expression profiles with distinct spatio-temporal patterns. AcWD40.063, encoding TTG1 homolog (designated AcTTG1), was upregulated during light-induced anthocyanin accumulation. Heterologous expression, yeast two-hybrid (Y2H) interaction assays, and dual-luciferase reporter experiments revealed that AcTTG1 interacts with AcMYB75 and AcbHLH2, collectively promoting anthocyanin accumulation and enhancing the expression of anthocyanin biosynthesis genes, particularly AcANS. This study provides a robust framework for understanding the roles of AcWD40 gene family members and offers valuable insights for molecular breeding strategies aimed at improving kiwifruit quality.
Collapse
Affiliation(s)
- Siyu Yang
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Yuan Wang
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China.
| | - Wenxiu Wang
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Ning Wang
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Rui Yan
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Siyu Li
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Tianle Zhang
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Jiale Liu
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xinfeng Zeng
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Shengnan Zhao
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xuemei Zhang
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Qinglong Dong
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Haoan Luan
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Suping Guo
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Guohui Qi
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China.
| | - Peng Jia
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
2
|
Zhang Z, Zou W, Lin P, Wang Z, Chen Y, Yang X, Zhao W, Zhang Y, Wang D, Que Y, Wu Q. Evolution and Function of MADS-Box Transcription Factors in Plants. Int J Mol Sci 2024; 25:13278. [PMID: 39769043 PMCID: PMC11676252 DOI: 10.3390/ijms252413278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The MADS-box transcription factor (TF) gene family is pivotal in various aspects of plant biology, particularly in growth, development, and environmental adaptation. It comprises Type I and Type II categories, with the MIKC-type subgroups playing a crucial role in regulating genes essential for both the vegetative and reproductive stages of plant life. Notably, MADS-box proteins can influence processes such as flowering, fruit ripening, and stress tolerance. Here, we provide a comprehensive overview of the structural features, evolutionary lineage, multifaceted functions, and the role of MADS-box TFs in responding to biotic and abiotic stresses. We particularly emphasize their implications for crop enhancement, especially in light of recent advances in understanding the impact on sugarcane (Saccharum spp.), a vital tropical crop. By consolidating cutting-edge findings, we highlight potential avenues for expanding our knowledge base and enhancing the genetic traits of sugarcane through functional genomics and advanced breeding techniques. This review underscores the significance of MADS-box TFs in achieving improved yields and stress resilience in agricultural contexts, positioning them as promising targets for future research in crop science.
Collapse
Affiliation(s)
- Zihao Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Wenhui Zou
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peixia Lin
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Zixun Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Ye Chen
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xiaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Wanying Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Yuanyuan Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Dongjiao Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Youxiong Que
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| | - Qibin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (Z.Z.); (W.Z.); (P.L.); (Z.W.); (X.Y.); (W.Z.); (Y.Z.); (D.W.)
| |
Collapse
|
3
|
Pandey SK, Maurya JP, Aryal B, Drynda K, Nair A, Miskolczi P, Singh RK, Wang X, Ma Y, de Souza Moraes T, Bayer EM, Farcot E, Bassel GW, Band LR, Bhalerao RP. A regulatory module mediating temperature control of cell-cell communication facilitates tree bud dormancy release. EMBO J 2024; 43:5793-5812. [PMID: 39363036 PMCID: PMC11612439 DOI: 10.1038/s44318-024-00256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
The control of cell-cell communication via plasmodesmata (PD) plays a key role in plant development. In tree buds, low-temperature conditions (LT) induce a switch in plasmodesmata from a closed to an open state, which restores cell-to-cell communication in the shoot apex and releases dormancy. Using genetic and cell-biological approaches, we have identified a previously uncharacterized transcription factor, Low-temperature-Induced MADS-box 1 (LIM1), as an LT-induced, direct upstream activator of the gibberellic acid (GA) pathway. The LIM1-GA module mediates low temperature-induced plasmodesmata opening, by negatively regulating callose accumulation to promote dormancy release. LIM1 also activates expression of FT1 (FLOWERING LOCUS T), another LT-induced factor, with LIM1-FT1 forming a coherent feedforward loop converging on low-temperature regulation of gibberellin signaling in dormancy release. Mathematical modeling and experimental validation suggest that negative feedback regulation of LIM1 by gibberellin could play a crucial role in maintaining the robust temporal regulation of bud responses to low temperature. These results reveal genetic factors linking temperature control of cell-cell communication with regulation of seasonally-aligned growth crucial for adaptation of trees.
Collapse
Affiliation(s)
- Shashank K Pandey
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| | - Jay Prakash Maurya
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
- Plant Development and Molecular Biology Lab, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Bibek Aryal
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| | - Kamil Drynda
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Aswin Nair
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| | - Pal Miskolczi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| | - Rajesh Kumar Singh
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Xiaobin Wang
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yujiao Ma
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
- Shandong Academy of Grape, Jinan, Shandong, 250100, P. R. China
| | - Tatiana de Souza Moraes
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Etienne Farcot
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - George W Bassel
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Leah R Band
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden.
| |
Collapse
|
4
|
Wang JX, Li Y, Wang XW, Cao K, Chen CW, Wu JL, Fang WC, Zhu GR, Chen XJ, Guo DD, Wang J, Zhao YL, Fan JQ, Liu SN, Li WQ, Bie HL, Xu Q, Wang LR. Haplotype-resolved genome of a heterozygous wild peach reveals the PdaWRKY4-PdaCYP716A1 module mediates resistance to aphids by regulating betulin biosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2716-2735. [PMID: 39451079 DOI: 10.1111/jipb.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024]
Abstract
Wild species of domesticated crops provide valuable genetic resources for resistance breeding. Prunus davidiana, a wild relative of peach with high heterozygosity and diverse stress tolerance, exhibits high resistance against aphids. However, the highly heterozygous genome of P. davidiana makes determining the underlying factors influencing resistance traits challenging. Here, we present the 501.7 Mb haplotype-resolved genome assembly of P. davidiana. Genomic comparisons of the two haplotypes revealed 18,152 structural variations, 2,699 Pda_hap1-specific and 2,702 Pda_hap2-specific genes, and 1,118 allele-specific expressed genes. Genome composition indicated 4.1% of the P. davidiana genome was non-peach origin, out of which 94.5% was derived from almond. Based on the haplotype genome, the aphid resistance quantitative trait locus (QTL) was mapped at the end of Pda03. From the aphid resistance QTL, PdaWRKY4 was identified as the major dominant gene, with a 9-bp deletion in its promoter of the resistant phenotype. Specifically, PdaWRKY4 regulates aphid resistance by promoting PdaCYP716A1-mediated anti-aphid metabolite betulin biosynthesis. Moreover, we employed a genome design to develop a breeding workflow for rapidly and precisely producing aphid-resistant peaches. In conclusion, this study identifies a novel aphid resistance gene and provides insights into genome design for the development of resistant fruit cultivars.
Collapse
Affiliation(s)
- Jun-Xiu Wang
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, 400715, Chongqing, China
| | - Yong Li
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China
- National Horticulture Germplasm Resources Center of China (NPGRC), Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Xin-Wei Wang
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China
- National Horticulture Germplasm Resources Center of China (NPGRC), Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- National Horticulture Germplasm Resources Center of China (NPGRC), Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Chang-Wen Chen
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- National Horticulture Germplasm Resources Center of China (NPGRC), Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Jin-Long Wu
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- National Horticulture Germplasm Resources Center of China (NPGRC), Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Wei-Chao Fang
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Geng-Rui Zhu
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xue-Jia Chen
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Dan-Dan Guo
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Jiao Wang
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Ya-Lin Zhao
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Jia-Qi Fan
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Su-Ning Liu
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Wen-Qing Li
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Hang-Ling Bie
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Qiang Xu
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Rong Wang
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China
- National Horticulture Germplasm Resources Center of China (NPGRC), Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| |
Collapse
|
5
|
Ding J, Wang K, Pandey S, Perales M, Allona I, Khan MRI, Busov VB, Bhalerao RP. Molecular advances in bud dormancy in trees. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6063-6075. [PMID: 38650362 PMCID: PMC11582002 DOI: 10.1093/jxb/erae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Seasonal bud dormancy in perennial woody plants is a crucial and intricate process that is vital for the survival and development of plants. Over the past few decades, significant advancements have been made in understanding many features of bud dormancy, particularly in model species, where certain molecular mechanisms underlying this process have been elucidated. We provide an overview of recent molecular progress in understanding bud dormancy in trees, with a specific emphasis on the integration of common signaling and molecular mechanisms identified across different tree species. Additionally, we address some challenges that have emerged from our current understanding of bud dormancy and offer insights for future studies.
Collapse
Affiliation(s)
- Jihua Ding
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, 430070, Wuhan, China
| | - Kejing Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, 430070, Wuhan, China
| | - Shashank Pandey
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, CNINIA (CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, CNINIA (CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Md Rezaul Islam Khan
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Victor B Busov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| |
Collapse
|
6
|
Zhang W, Liao L, Wan B, Han Y. Deciphering the genetic mechanisms of chilling requirement for bud endodormancy release in deciduous fruit trees. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:70. [PMID: 39391168 PMCID: PMC11461438 DOI: 10.1007/s11032-024-01510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Bud endodormancy in deciduous fruit trees is an adaptive trait evolved by selection for the capacity to survive unfavorable environmental conditions. Deciduous trees require a certain amount of winter chill named chilling requirement (CR) to promote bud endodormancy release. In recent decades, global warming has endangered the chill accumulation in deciduous fruit trees. Developing low-CR cultivars is a practical way to neutralize the effect of climate changes on the cultivation and distribution of deciduous fruit trees. In this review, we focus on the effect of chilling accumulation on bud endodormancy release and the genetic mechanisms underlying the chilling requirement in deciduous fruit trees. Additionally, we put forth a regulatory model for bud endodormancy and provide prospective directions for future research in deciduous fruit trees.
Collapse
Affiliation(s)
- Weihan Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Liao Liao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Baoxiong Wan
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin, 541004 Guangxi China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| |
Collapse
|
7
|
Luo Y, Liu H, Han Y, Li W, Wei W, He N. Alternative splicing of the FLOWERING LOCUS C-like gene MaMADS33 is associated with endodormancy in mulberry. FORESTRY RESEARCH 2024; 4:e029. [PMID: 39524424 PMCID: PMC11524320 DOI: 10.48130/forres-0024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 11/16/2024]
Abstract
Alternative splicing (AS) is an important post-transcriptional process that generates multiple mRNA isoforms. FLOWERING LOCUS C (FLC) is a pivotal gene in both the vernalization and autonomous pathways of flowering plants, and MaMADS33 is one of the FLC homologs in white mulberry (Morus alba). Recent studies have revealed that MaMADS33 is involved in endodormancy, but the underlying molecular mechanism remains to be characterized. Here, a comparison of MaMADS33 expression among three mulberry cultivars with different degrees of dormancy revealed a positive association between MaMADS33 expression and dormancy. Further 3' and 5' rapid amplification of cDNA ends (RACE) analyses led to identifying four MaMADS33 isoforms derived from AS and designated MaMADS33-AS1-4. Analysis of their coding potential revealed that MaMADS33-AS1 was a long non-coding RNA. Expression profiling and splicing-efficiency analyses showed that cold stress during endodormancy induced AS of MaMADS33, resulting in a predominance of truncated isoforms, especially MaMADS33-AS1. MaMADS33-AS2 expression was upregulated during both endodormancy and ecodormancy, whereas MaMADS33-AS3 and MaMADS33-AS4 were endodormancy-associated isoforms that were upregulated during endodormancy and then downregulated during ecodormancy. MaMADS33-AS4 was used as bait for a yeast two-hybrid screen because its gene expression was higher than that of MaMADS33-AS3, and mulberry winter-accumulating 18 kDa protein (MaWAP18) was identified as an MaMADS33-AS4 interaction partner. The interaction between MaWAP18 and MaMADS33-AS4 was confirmed by a bimolecular fluorescence complementation assay. These findings offer insight into the role of FLC homologs in the endodormancy of woody plants.
Collapse
Affiliation(s)
- Yiwei Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Hongjiang Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Yuanxiang Han
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Wei Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Wuqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| |
Collapse
|
8
|
Sun M, Wang D, Li Y, Niu M, Liu C, Liu L, Wang J, Li J. Genome-wide identification and expression pattern analysis of MIKC-Type MADS-box genes in Chionanthus retusus, an androdioecy plant. BMC Genomics 2024; 25:662. [PMID: 38956488 PMCID: PMC11220994 DOI: 10.1186/s12864-024-10569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The MADS-box gene family is widely distributed in the plant kingdom, and its members typically encoding transcription factors to regulate various aspects of plant growth and development. In particular, the MIKC-type MADS-box genes play a crucial role in the determination of floral organ development and identity recognition. As a type of androdioecy plant, Chionanthus retusus have unique gender differentiation. Manifested as male individuals with only male flowers and female individuals with only bisexual flowers. However, due to the lack of reference genome information, the characteristics of MIKC-type MADS-box genes in C. retusus and its role in gender differentiation of C. retusus remain largely unknown. Therefore, it is necessary to identify and characterize the MADS-box gene family within the genome of the C. retusus. RESULTS In this study, we performed a genome-wide identification and analysis of MIKC-type MADS-box genes in C. retusus (2n = 2x = 46), utilizing the latest reference genome, and studied its expression pattern in individuals of different genders. As a result, we identified a total of 61 MIKC-type MADS-box genes in C. retusus. 61 MIKC-type MADS-box genes can be divided into 12 subfamilies and distributed on 18 chromosomes. Genome collinearity analysis revealed their conservation in evolution, while gene structure, domains and motif analysis indicated their conservation in structure. Finally, based on their expression patterns in floral organs of different sexes, we have identified that CrMADS45 and CrMADS60 may potentially be involved in the gender differentiation of C. retusus. CONCLUSIONS Our studies have provided a general understanding of the conservation and characteristics of the MIKC-type MADS-box genes family in C. retusus. And it has been demonstrated that members of the AG subfamily, CrMADS45 and CrMADS60, may play important roles in the gender differentiation of C. retusus. This provides a reference for future breeding efforts to improve flower types in C. retusus and further investigate the role of MIKC-type MADS-box genes in gender differentiation.
Collapse
Affiliation(s)
- Maotong Sun
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai'an, Shandong Province, 271018, China
| | - Dongyue Wang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai'an, Shandong Province, 271018, China
| | - Ying Li
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai'an, Shandong Province, 271018, China
| | - Muge Niu
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai'an, Shandong Province, 271018, China
| | - Cuishuang Liu
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai'an, Shandong Province, 271018, China
| | - Laishuo Liu
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai'an, Shandong Province, 271018, China
| | - Jinnan Wang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China.
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China.
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai'an, Shandong Province, 271018, China.
| | - Jihong Li
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China.
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China.
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai'an, Shandong Province, 271018, China.
| |
Collapse
|
9
|
Mirzaghaderi G. Genome-wide analysis of MADS-box transcription factor gene family in wild emmer wheat (Triticum turgidum subsp. dicoccoides). PLoS One 2024; 19:e0300159. [PMID: 38451993 PMCID: PMC10919676 DOI: 10.1371/journal.pone.0300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
The members of MADS-box gene family have important roles in regulating the growth and development of plants. MADS-box genes are highly regarded for their potential to enhance grain yield and quality under shifting global conditions. Wild emmer wheat (Triticum turgidum subsp. dicoccoides) is a progenitor of common wheat and harbors valuable traits for wheat improvement. Here, a total of 117 MADS-box genes were identified in the wild emmer wheat genome and classified to 90 MIKCC, 3 MIKC*, and 24 M-type. Furthermore, a phylogenetic analysis and expression profiling of the emmer wheat MADS-box gene family was presented. Although some MADS-box genes belonging to SOC1, SEP1, AGL17, and FLC groups have been expanded in wild emmer wheat, the number of MIKC-type MADS-box genes per subgenome is similar to that of rice and Arabidopsis. On the other hand, M-type genes of wild emmer wheat is less frequent than that of Arabidopsis. Gene expression patterns over different tissues and developmental stages agreed with the subfamily classification of MADS-box genes and was similar to common wheat and rice, indicating their conserved functionality. Some TdMADS-box genes are also differentially expressed under drought stress. The promoter region of each of the TdMADS-box genes harbored 6 to 48 responsive elements, mainly related to light, however hormone, drought, and low-temperature related cis-acting elements were also present. In conclusion, the results provide detailed information about the MADS-box genes of wild emmer wheat. The present work could be useful in the functional genomics efforts toward breeding for agronomically important traits in T. dicoccoides.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
10
|
Zhang SL, Wu Y, Zhang XH, Feng X, Wu HL, Zhou BJ, Zhang YQ, Cao M, Hou ZX. Characterization of the MIKC C-type MADS-box gene family in blueberry and its possible mechanism for regulating flowering in response to the chilling requirement. PLANTA 2024; 259:77. [PMID: 38421445 DOI: 10.1007/s00425-024-04349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
MAIN CONCLUSION The expression peak of VcAP1.4, VcAP1.6, VcAP3.1, VcAP3.2, VcAG3, VcFLC2, and VcSVP9 coincided with the endo-dormancy release of flower buds. Additionally, GA4+7 not only increased the expression of these genes but also promoted flower bud endo-dormancy release. The MIKCC-type MADS-box gene family is involved in the regulation of flower development. A total of 109 members of the MIKCC-type MADS-box gene family were identified in blueberry. According to the phylogenetic tree, these 109 MIKCC-type MADS-box proteins were divided into 13 subfamilies, which were distributed across 40 Scaffolds. The results of the conserved motif analysis showed that among 20 motifs, motifs 1, 3, and 9 formed the MADS-box structural domain, while motifs 2, 4, and 6 formed the K-box structural domain. The presence of 66 pairs of fragment duplication events in blueberry suggested that gene duplication events contributed to gene expansion and functional differentiation. Additionally, the presence of cis-acting elements revealed that VcFLC2, VcAG3, and VcSVP9 might have significant roles in the endo-dormancy release of flower buds. Meanwhile, under chilling conditions, VcAP3.1 and VcAG7 might facilitate flower bud dormancy release. VcSEP11 might promote flowering following the release of endo-dormancy, while the elevated expression of VcAP1.7 (DAM) could impede the endo-dormancy release of flower buds. The effect of gibberellin (GA4+7) treatment on the expression pattern of MIKCC-type MADS-box genes revealed that VcAP1.4, VcAP1.6, VcAP3.1, VcAG3, and VcFLC2 might promote flower bud endo-dormancy release, while VcAP3.2, VcSEP11, and VcSVP9 might inhibit its endo-dormancy release. These results indicated that VcAP1.4, VcAP1.6, VcAP1.7 (DAM), VcAP3.1, VcAG3, VcAG7, VcFLC2, and VcSVP9 could be selected as key regulatory promoting genes for controlling the endo-dormancy of blueberry flower buds.
Collapse
Affiliation(s)
- Sui-Lin Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Yan Wu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Xiao-Han Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Xin Feng
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Hui-Ling Wu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Bing-Jie Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Ya-Qian Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Man Cao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Zhi-Xia Hou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China.
| |
Collapse
|
11
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
12
|
Chu X, Wang M, Fan Z, Li J, Yin H. Molecular Mechanisms of Seasonal Gene Expression in Trees. Int J Mol Sci 2024; 25:1666. [PMID: 38338945 PMCID: PMC10855862 DOI: 10.3390/ijms25031666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
In trees, the annual cycling of active and dormant states in buds is closely regulated by environmental factors, which are of primary significance to their productivity and survival. It has been found that the parallel or convergent evolution of molecular pathways that respond to day length or temperature can lead to the establishment of conserved periodic gene expression patterns. In recent years, it has been shown in many woody plants that change in annual rhythmic patterns of gene expression may underpin the adaptive evolution in forest trees. In this review, we summarize the progress on the molecular mechanisms of seasonal regulation on the processes of shoot growth, bud dormancy, and bud break in response to day length and temperature factors. We focus on seasonal expression patterns of genes involved in dormancy and their associated epigenetic modifications; the seasonal changes in the extent of modifications, such as DNA methylation, histone acetylation, and histone methylation, at dormancy-associated loci have been revealed for their actions on gene regulation. In addition, we provide an outlook on the direction of research on the annual cycle of tree growth under climate change.
Collapse
Affiliation(s)
- Xian Chu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Minyan Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| | - Zhengqi Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.C.); (M.W.); (Z.F.); (J.L.)
| |
Collapse
|
13
|
Rehman S, Bahadur S, Xia W. An overview of floral regulatory genes in annual and perennial plants. Gene 2023; 885:147699. [PMID: 37567454 DOI: 10.1016/j.gene.2023.147699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The floral initiation in angiosperms is a complex process influenced by endogenous and exogenous signals. With this approach, we aim to provide a comprehensive review to integrate this complex floral regulatory process and summarize the regulatory genes and their functions in annuals and perennials. Seven primary paths leading to flowering have been discovered in Arabidopsis under several growth condition that include; photoperiod, ambient temperature, vernalization, gibberellins, autonomous, aging and carbohydrates. These pathways involve a series of interlinked signaling pathways that respond to both internal and external signals, such as light, temperature, hormones, and developmental cues, to coordinate the expression of genes that are involved in flower development. Among them, the photoperiodic pathway was the most important and conserved as some of the fundamental loci and mechanisms are shared even by closely related plant species. The activation of floral regulatory genes such as FLC, FT, LFY, and SOC1 that determine floral meristem identity and the transition to the flowering stage result from the merging of these pathways. Recent studies confirmed that alternative splicing, antisense RNA and epigenetic modification play crucial roles by regulating the expression of genes related to blooming. In this review, we documented recent progress in the floral transition time in annuals and perennials, with emphasis on the specific regulatory mechanisms along with the application of various molecular approaches including overexpression studies, RNA interference and Virus-induced flowering. Furthermore, the similarities and differences between annual and perennial flowering will aid significant contributions to the field by elucidating the mechanisms of perennial plant development and floral initiation regulation.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228 China
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
14
|
Gramzow L, Sharma R, Theißen G. Evolutionary Dynamics of FLC-like MADS-Box Genes in Brassicaceae. PLANTS (BASEL, SWITZERLAND) 2023; 12:3281. [PMID: 37765445 PMCID: PMC10536770 DOI: 10.3390/plants12183281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
MADS-box genes encode transcription factors that play important roles in the development and evolution of plants. There are more than a dozen clades of MADS-box genes in angiosperms, of which those with functions in the specification of floral organ identity are especially well-known. From what has been elucidated in the model plant Arabidopsis thaliana, the clade of FLC-like MADS-box genes, comprising FLC-like genes sensu strictu and MAF-like genes, are somewhat special among the MADS-box genes of plants since FLC-like genes, especially MAF-like genes, show unusual evolutionary dynamics, in that they generate clusters of tandemly duplicated genes. Here, we make use of the latest genomic data of Brassicaceae to study this remarkable feature of the FLC-like genes in a phylogenetic context. We have identified all FLC-like genes in the genomes of 29 species of Brassicaceae and reconstructed the phylogeny of these genes employing a Maximum Likelihood method. In addition, we conducted selection analyses using PAML. Our results reveal that there are three major clades of FLC-like genes in Brassicaceae that all evolve under purifying selection but with remarkably different strengths. We confirm that the tandem arrangement of MAF-like genes in the genomes of Brassicaceae resulted in a high rate of duplications and losses. Interestingly, MAF-like genes also seem to be prone to transposition. Considering the role of FLC-like genes sensu lato (s.l.) in the timing of floral transition, we hypothesize that this rapid evolution of the MAF-like genes was a main contributor to the successful adaptation of Brassicaceae to different environments.
Collapse
Affiliation(s)
- Lydia Gramzow
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | | |
Collapse
|
15
|
Zhao YL, Li Y, Cao K, Yao JL, Bie HL, Khan IA, Fang WC, Chen CW, Wang XW, Wu JL, Guo WW, Wang LR. MADS-box protein PpDAM6 regulates chilling requirement-mediated dormancy and bud break in peach. PLANT PHYSIOLOGY 2023; 193:448-465. [PMID: 37217835 PMCID: PMC10469376 DOI: 10.1093/plphys/kiad291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Bud dormancy is crucial for winter survival and is characterized by the inability of the bud meristem to respond to growth-promotive signals before the chilling requirement (CR) is met. However, our understanding of the genetic mechanism regulating CR and bud dormancy remains limited. This study identified PpDAM6 (DORMANCY-ASSOCIATED MADS-box) as a key gene for CR using a genome-wide association study analysis based on structural variations in 345 peach (Prunus persica (L.) Batsch) accessions. The function of PpDAM6 in CR regulation was demonstrated by transiently silencing the gene in peach buds and stably overexpressing the gene in transgenic apple (Malus × domestica) plants. The results showed an evolutionarily conserved function of PpDAM6 in regulating bud dormancy release, followed by vegetative growth and flowering, in peach and apple. The 30-bp deletion in the PpDAM6 promoter was substantially associated with reducing PpDAM6 expression in low-CR accessions. A PCR marker based on the 30-bp indel was developed to distinguish peach plants with non-low and low CR. Modification of the H3K27me3 marker at the PpDAM6 locus showed no apparent change across the dormancy process in low- and non-low- CR cultivars. Additionally, H3K27me3 modification occurred earlier in low-CR cultivars on a genome-wide scale. PpDAM6 could mediate cell-cell communication by inducing the expression of the downstream genes PpNCED1 (9-cis-epoxycarotenoid dioxygenase 1), encoding a key enzyme for ABA biosynthesis, and CALS (CALLOSE SYNTHASE), encoding callose synthase. We shed light on a gene regulatory network formed by PpDAM6-containing complexes that mediate CR underlying dormancy and bud break in peach. A better understanding of the genetic basis for natural variations of CR can help breeders develop cultivars with different CR for growing in different geographical regions.
Collapse
Affiliation(s)
- Ya-Lin Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Hang-Ling Bie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Irshad Ahmad Khan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Wei-Chao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Chang-Wen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xin-Wei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Jin-Long Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Wen-Wu Guo
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Li-Rong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| |
Collapse
|
16
|
Herath D, Wang T, Voogd C, Peng Y, Douglas M, Putterill J, Varkonyi-Gasic E, Allan AC. Strategies for fast breeding and improvement of Actinidia species. HORTICULTURE RESEARCH 2023; 10:uhad016. [PMID: 36968184 PMCID: PMC10031733 DOI: 10.1093/hr/uhad016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Affiliation(s)
| | | | - Charlotte Voogd
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Yongyan Peng
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Mikaela Douglas
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Joanna Putterill
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | |
Collapse
|
17
|
Long Non-Coding RNAs of Plants in Response to Abiotic Stresses and Their Regulating Roles in Promoting Environmental Adaption. Cells 2023; 12:cells12050729. [PMID: 36899864 PMCID: PMC10001313 DOI: 10.3390/cells12050729] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Abiotic stresses triggered by climate change and human activity cause substantial agricultural and environmental problems which hamper plant growth. Plants have evolved sophisticated mechanisms in response to abiotic stresses, such as stress perception, epigenetic modification, and regulation of transcription and translation. Over the past decade, a large body of literature has revealed the various regulatory roles of long non-coding RNAs (lncRNAs) in the plant response to abiotic stresses and their irreplaceable functions in environmental adaptation. LncRNAs are recognized as a class of ncRNAs that are longer than 200 nucleotides, influencing a variety of biological processes. In this review, we mainly focused on the recent progress of plant lncRNAs, outlining their features, evolution, and functions of plant lncRNAs in response to drought, low or high temperature, salt, and heavy metal stress. The approaches to characterize the function of lncRNAs and the mechanisms of how they regulate plant responses to abiotic stresses were further reviewed. Moreover, we discuss the accumulating discoveries regarding the biological functions of lncRNAs on plant stress memory as well. The present review provides updated information and directions for us to characterize the potential functions of lncRNAs in abiotic stresses in the future.
Collapse
|
18
|
Ma Z, Ma L, Zhou J. Applications of CRISPR/Cas genome editing in economically important fruit crops: recent advances and future directions. MOLECULAR HORTICULTURE 2023; 3:1. [PMID: 37789479 PMCID: PMC10515014 DOI: 10.1186/s43897-023-00049-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/10/2023] [Indexed: 10/05/2023]
Abstract
Fruit crops, consist of climacteric and non-climacteric fruits, are the major sources of nutrients and fiber for human diet. Since 2013, CRISPR/Cas (Clustered Regularly Interspersed Short Palindromic Repeats and CRISPR-Associated Protein) genome editing system has been widely employed in different plants, leading to unprecedented progress in the genetic improvement of many agronomically important fruit crops. Here, we summarize latest advancements in CRISPR/Cas genome editing of fruit crops, including efforts to decipher the mechanisms behind plant development and plant immunity, We also highlight the potential challenges and improvements in the application of genome editing tools to fruit crops, including optimizing the expression of CRISPR/Cas cassette, improving the delivery efficiency of CRISPR/Cas reagents, increasing the specificity of genome editing, and optimizing the transformation and regeneration system. In addition, we propose the perspectives on the application of genome editing in crop breeding especially in fruit crops and highlight the potential challenges. It is worth noting that efforts to manipulate fruit crops with genome editing systems are urgently needed for fruit crops breeding and demonstration.
Collapse
Affiliation(s)
- Zhimin Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Lijing Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Junhui Zhou
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China.
| |
Collapse
|
19
|
Wang J, Ding J. Molecular mechanisms of flowering phenology in trees. FORESTRY RESEARCH 2023; 3:2. [PMID: 39526261 PMCID: PMC11524233 DOI: 10.48130/fr-2023-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/26/2022] [Indexed: 11/16/2024]
Abstract
Flower initiation is a phenological developmental process strictly regulated in all flowering plants. Studies in Arabidopsis thaliana, a model plant organism in plant biology and genetics, and major cereal crops have provided fundamental knowledge and understanding of the underlying molecular mechanisms and regulation in annuals. However, this flowering process and underly molecular mechanisms in perennials are much more complicated than those in annuals and remain poorly understood and documented. In recent years, the increasing availability of perennial plant genomes and advances in biotechnology have allowed the identification and characterization of flowering-associated gene orthologs in perennials. In this review, we compared and summarized the recent progress in regulation of flowering time in perennial trees, with an emphasis on the perennial-specific regulatory mechanisms. Pleiotropic effects on tree growth habits such as juvenility, seasonal activity-dormancy growth, and the applications of tree flowering phenology are discussed.
Collapse
Affiliation(s)
- Jun Wang
- College of Horticulture and Forestry, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| | - Jihua Ding
- College of Horticulture and Forestry, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
20
|
Yang Q, Wu X, Gao Y, Ni J, Li J, Pei Z, Bai S, Teng Y. PpyABF3 recruits the COMPASS-like complex to regulate bud dormancy maintenance via integrating ABA signaling and GA catabolism. THE NEW PHYTOLOGIST 2023; 237:192-203. [PMID: 36151925 DOI: 10.1111/nph.18508] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Bud dormancy is essential for perennial trees that survive the cold winters and to flower on time in the following spring. Histone modifications have been reported to be involved in the control of the dormancy cycle and DAM/SVPs are considered targets. However, how the histone modification marks are added to the specific gene loci during bud dormancy cycle is still unknown. Using yeast-two hybrid library screening and co-immunoprecipitation assays, we found that PpyABF3, a key protein regulating bud dormancy, recruits Complex of Proteins Associated with Set1-like complex via interacting with PpyWDR5a, which increases the H3K4me3 deposition at DAM4 locus. Chromatin immunoprecipitation-quantitative polymerase chain reaction showed that PpyGA2OX1 was downstream gene of PpyABF3 and it was also activated by H3K4me3 deposition. Silencing of GA2OX1 in pear calli and pear buds resulted in a similar phenotype with silencing of ABF3. Furthermore, overexpression of PpyWDR5a increased H3K4me3 levels at DAM4 and GA2OX1 loci and inhibited the growth of pear calli, whereas silencing of PpyWDR5a in pear buds resulted in a higher bud-break percentage. Our findings provide new insights into how H3K4me3 marks are added to dormancy-related genes in perennial woody plants and reveal a novel mechanism by which ABF3 integrates abscisic acid signaling and gibberellic acid catabolism during bud dormancy maintenance.
Collapse
Affiliation(s)
- Qinsong Yang
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xinyue Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jinjin Li
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Ziqi Pei
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, 572000, China
| |
Collapse
|
21
|
A Tea Plant ( Camellia sinensis) FLOWERING LOCUS C-like Gene, CsFLC1, Is Correlated to Bud Dormancy and Triggers Early Flowering in Arabidopsis. Int J Mol Sci 2022; 23:ijms232415711. [PMID: 36555355 PMCID: PMC9779283 DOI: 10.3390/ijms232415711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Flowering and bud dormancy are crucial stages in the life cycle of perennial angiosperms in temperate climates. MADS-box family genes are involved in many plant growth and development processes. Here, we identified three MADS-box genes in tea plant belonging to the FLOWERING LOCUS C (CsFLC) family. We monitored CsFLC1 transcription throughout the year and found that CsFLC1 was expressed at a higher level during the winter bud dormancy and flowering phases. To clarify the function of CsFLC1, we developed transgenic Arabidopsis thaliana plants heterologously expressing 35S::CsFLC1. These lines bolted and bloomed earlier than the WT (Col-0), and the seed germination rate was inversely proportional to the increased CsFLC1 expression level. The RNA-seq of 35S::CsFLC1 transgenic Arabidopsis showed that many genes responding to ageing, flower development and leaf senescence were affected, and phytohormone-related pathways were especially enriched. According to the results of hormone content detection and RNA transcript level analysis, CsFLC1 controls flowering time possibly by regulating SOC1, AGL42, SEP3 and AP3 and hormone signaling, accumulation and metabolism. This is the first time a study has identified FLC-like genes and characterized CsFLC1 in tea plant. Our results suggest that CsFLC1 might play dual roles in flowering and winter bud dormancy and provide new insight into the molecular mechanisms of FLC in tea plants as well as other plant species.
Collapse
|
22
|
Lieberman-Lazarovich M, Kaiserli E, Bucher E, Mladenov V. Natural and induced epigenetic variation for crop improvement. CURRENT OPINION IN PLANT BIOLOGY 2022; 70:102297. [PMID: 36108411 DOI: 10.1016/j.pbi.2022.102297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Maintaining global food security is a major challenge that requires novel strategies for crop improvement. Epigenetic regulation of plant responses to adverse environmental conditions provides a tunable mechanism to optimize plant growth, adaptation and ultimately yield. Epibreeding employs agricultural practices that rely on key epigenetic features as a means of engineering favorable phenotypic traits in target crops. This review summarizes recent findings on the role of epigenetic marks such as DNA methylation and histone modifications, in controlling phenotypic variation in crop species in response to environmental factors. The potential use of natural and induced epigenetic features as platforms for crop improvement via epibreeding, is discussed.
Collapse
Affiliation(s)
- Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel.
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Etienne Bucher
- Crop Genome Dynamics Group, Agroscope Changins, 1260, Nyon, Switzerland
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| |
Collapse
|
23
|
Ye LX, Luo MM, Wang Z, Bai FX, Luo X, Gao L, Peng J, Chen QH, Zhang L. Genome-wide analysis of MADS-box gene family in kiwifruit (Actinidia chinensis var. chinensis) and their potential role in floral sex differentiation. Front Genet 2022; 13:1043178. [PMID: 36468015 PMCID: PMC9714460 DOI: 10.3389/fgene.2022.1043178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Kiwifruit (Actinidia chinensis Planch.) is a functionally dioecious plant, which displays diverse morphology in male and female flowers. MADS-box is an ancient and huge gene family that plays a key role in plant floral organ differentiation. In this study, we have identified 89 MADS-box genes from A. chinensis Red 5 genome. These genes are distributed on 26 chromosomes and are classified into type I (21 genes) and type II (68 genes). Overall, type II AcMADS-box genes have more complex structures than type I with more exons, protein domains, and motifs, indicating that type II genes may have more diverse functions. Gene duplication analysis showed that most collinearity occurred in type II AcMADS-box genes, which was consistent with a large number of type II genes. Analysis of cis-acting elements in promoters showed that AcMADS-box genes are mainly associated with light and phytohormone responsiveness. The expression profile of AcMADS-box genes in different tissues showed that most genes were highly expressed in flowers. Further, the qRT-PCR analysis of the floral organ ABCDE model-related genes in male and female flowers revealed that AcMADS4, AcMADS56, and AcMADS70 were significantly expressed in female flowers. It indicated that those genes may play an important role in the sex differentiation of kiwifruit. This work provided a comprehensive analysis of the AcMADS-box genes and may help facilitate our understanding of the sex differentiation regulatory mechanism in kiwifruit.
Collapse
Affiliation(s)
- Li-Xia Ye
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Min-Min Luo
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Zhi Wang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fu-Xi Bai
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xuan Luo
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lei Gao
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jue Peng
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qing-Hong Chen
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Qing-Hong Chen, ; Lei Zhang,
| | - Lei Zhang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Qing-Hong Chen, ; Lei Zhang,
| |
Collapse
|
24
|
Herath D, Voogd C, Mayo‐Smith M, Yang B, Allan AC, Putterill J, Varkonyi‐Gasic E. CRISPR-Cas9-mediated mutagenesis of kiwifruit BFT genes results in an evergrowing but not early flowering phenotype. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2064-2076. [PMID: 35796629 PMCID: PMC9616528 DOI: 10.1111/pbi.13888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 06/11/2023]
Abstract
Phosphatidylethanolamine-binding protein (PEBP) genes regulate flowering and architecture in many plant species. Here, we study kiwifruit (Actinidia chinensis, Ac) PEBP genes with homology to BROTHER OF FT AND TFL1 (BFT). CRISPR-Cas9 was used to target AcBFT genes in wild-type and fast-flowering kiwifruit backgrounds. The editing construct was designed to preferentially target AcBFT2, whose expression is elevated in dormant buds. Acbft lines displayed an evergrowing phenotype and increased branching, while control plants established winter dormancy. The evergrowing phenotype, encompassing delayed budset and advanced budbreak after defoliation, was identified in multiple independent lines with edits in both alleles of AcBFT2. RNA-seq analyses conducted using buds from gene-edited and control lines indicated that Acbft evergrowing plants had a transcriptome similar to that of actively growing wild-type plants, rather than dormant controls. Mutations in both alleles of AcBFT2 did not promote flowering in wild-type or affect flowering time, morphology and fertility in fast-flowering transgenic kiwifruit. In summary, editing of AcBFT2 has the potential to reduce plant dormancy with no adverse effect on flowering, giving rise to cultivars better suited for a changing climate.
Collapse
Affiliation(s)
- Dinum Herath
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt AlbertAucklandNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Charlotte Voogd
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt AlbertAucklandNew Zealand
| | | | - Bo Yang
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt AlbertAucklandNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt AlbertAucklandNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Joanna Putterill
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Erika Varkonyi‐Gasic
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt AlbertAucklandNew Zealand
| |
Collapse
|
25
|
Winter warming post floral initiation delays flowering via bud dormancy activation and affects yield in a winter annual crop. Proc Natl Acad Sci U S A 2022; 119:e2204355119. [PMID: 36122201 PMCID: PMC9522361 DOI: 10.1073/pnas.2204355119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In temperate climates many plant species use long-term detection of winter chilling as a seasonal cue. Previously the timing of flowering in winter annual plants has been shown to be controlled by the promotion of the floral transition by chilling, known as vernalization. In contrast, many temperate perennial species produce flower buds prior to winter and require winter chilling to break bud dormancy to enable bud break and flowering in the following spring. Here we show that flowering time in winter annuals can be controlled by bud dormancy and that in winter oilseed rape–reduced chilling during flower bud dormancy is associated with yield declines. Winter annual life history is conferred by the requirement for vernalization to promote the floral transition and control the timing of flowering. Here we show using winter oilseed rape that flowering time is controlled by inflorescence bud dormancy in addition to vernalization. Winter warming treatments given to plants in the laboratory and field increase flower bud abscisic acid levels and delay flowering in spring. We show that the promotive effect of chilling reproductive tissues on flowering time is associated with the activity of two FLC genes specifically silenced in response to winter temperatures in developing inflorescences, coupled with activation of a BRANCHED1-dependent bud dormancy transcriptional module. We show that adequate winter chilling is required for normal inflorescence development and high yields in addition to the control of flowering time. Because warming during winter flower development is associated with yield losses at the landscape scale, our work suggests that bud dormancy activation may be important for effects of climate change on winter arable crop yields.
Collapse
|
26
|
Chen W, Tamada Y, Yamane H, Matsushita M, Osako Y, Gao-Takai M, Luo Z, Tao R. H3K4me3 plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1015-1031. [PMID: 35699670 DOI: 10.1111/tpj.15868] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Bud dormancy helps woody perennials survive winter and activate robust plant development in the spring. For apple (Malus × domestica), short-term chilling induces bud dormancy in autumn, then prolonged chilling leads to dormancy release and a shift to a quiescent state in winter, with subsequent warm periods promoting bud break in spring. Epigenetic regulation contributes to seasonal responses such as vernalization. However, how histone modifications integrate seasonal cues and internal signals during bud dormancy in woody perennials remains largely unknown. Here, we show that H3K4me3 plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. The global changes in gene expression strongly correlated with changes in H3K4me3, but not H3K27me3. High expression of DORMANCY-ASSOCIATED MADS-box (DAM) genes, key regulators of dormancy, in autumn was associated with high H3K4me3 levels. In addition, known DAM/SHORT VEGETATIVE PHASE (SVP) target genes significantly overlapped with H3K4me3-modified genes as bud dormancy progressed. These data suggest that H3K4me3 contributes to the central dormancy circuit, consisting of DAM/SVP and abscisic acid (ABA), in autumn. In winter, the lower expression and H3K4me3 levels at DAMs and gibberellin metabolism genes control chilling-induced release of dormancy. Warming conditions in spring facilitate the expression of genes related to phytohormones, the cell cycle, and cell wall modification by increasing H3K4me3 toward bud break. Our study also revealed that activation of auxin and repression of ABA sensitivity in spring are conditioned at least partly through temperature-mediated epigenetic regulation in winter.
Collapse
Affiliation(s)
- Wenxing Chen
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, China
| | - Yosuke Tamada
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
- National Institute for Basic Biology, Okazaki, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Miura-gun, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Yutaro Osako
- Faculty of Agriculture, Shinshu University, Kamiina-gun, Japan
| | - Mei Gao-Takai
- Agricultural Experimental Station, Ishikawa Prefectural University, Nonoichi, Japan
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, China
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|