1
|
Klaus M, Öquist M, Macháčová K. Tree stem-atmosphere greenhouse gas fluxes in a boreal riparian forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176243. [PMID: 39278477 DOI: 10.1016/j.scitotenv.2024.176243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Tree stems exchange greenhouse gases with the atmosphere but the magnitude, variability and drivers of these fluxes remain poorly understood. Here, we report stem fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in a boreal riparian forest, and investigate their spatiotemporal variability and ecosystem level importance. For two years, we measured CO2 and CH4 fluxes on a monthly basis in 14 spruces (Picea abies) and 14 birches (Betula pendula) growing near a headwater stream affected by historic ditching. We also measured N2O fluxes on three occasions. All tree stems were net emitters of CO2 and CH4, while N2O fluxes were around zero. CO2 fluxes correlated strongly with air temperature and peaked in summer. CH4 fluxes correlated modestly with air temperature and solar radiation and peaked in late winter and summer. Trees with larger stem diameter emitted more CO2 and less CH4 and trees closer to the stream emitted more CO2 and CH4. The CO2 and CH4 fluxes did not differ between spruce and birch, but correlations of CO2 fluxes with stem diameter and distance to stream differed between the tree species. The absence of vertical trends in CO2 and CH4 fluxes along the stems and their low correlation with groundwater levels and soil CO2 and CH4 partial pressures suggest tree internal production as the primary source of stem emissions. At the ecosystem level, the stem CO2, CH4 and N2O emissions represented 52 ± 16 % of the forest floor CO2 emissions and 3 ± 1 % and 11 ± 40 % of the forest floor CH4 and N2O uptake, respectively, during the snow-free period (median ± SE). The six month snow-cover period contributed 11 ± 45 % and 40 ± 29 % to annual stem CO2 and CH4 emissions, respectively. Overall, the stem gas fluxes were more typical for upland rather than wetland ecosystems likely due to historic ditching and subsequent groundwater level decrease.
Collapse
Affiliation(s)
- Marcus Klaus
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, 90183 Umeå, Sweden; Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic.
| | - Mats Öquist
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, 90183 Umeå, Sweden
| | - Kateřina Macháčová
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| |
Collapse
|
2
|
Stojanović M, Jocher G, Kowalska N, Szatniewska J, Zavadilová I, Urban O, Čáslavský J, Horáček P, Acosta M, Pavelka M, Marshall JD. Disaggregation of canopy photosynthesis among tree species in a mixed broadleaf forest. TREE PHYSIOLOGY 2024; 44:tpae064. [PMID: 38864558 PMCID: PMC11240116 DOI: 10.1093/treephys/tpae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Carbon dioxide sequestration from the atmosphere is commonly assessed using the eddy covariance method. Its net flux signal can be decomposed into gross primary production and ecosystem respiration components, but these have seldom been tested against independent methods. In addition, eddy covariance lacks the ability to partition carbon sequestration among individual trees or species within mixed forests. Therefore, we compared gross primary production from eddy covariance versus an independent method based on sap flow and water-use efficiency, as measured by the tissue heat balance method and δ13C of phloem contents, respectively. The latter measurements were conducted on individual trees throughout a growing season in a mixed broadleaf forest dominated by three tree species, namely English oak, narrow-leaved ash and common hornbeam (Quercus robur L., Fraxinus angustifolia Vahl, and Carpinus betulus L., respectively). In this context, we applied an alternative ecophysiological method aimed at verifying the accuracy of a state-of-the-art eddy covariance system while also offering a solution to the partitioning problem. We observed strong agreement in the ecosystem gross primary production estimates (R2 = 0.56; P < 0.0001), with correlation being especially high and nearly on the 1:1 line in the period before the end of July (R2 = 0.85; P < 0.0001). After this period, the estimates of gross primary production began to diverge. Possible reasons for the divergence are discussed, focusing especially on phenology and the limitation of the isotopic data. English oak showed the highest per-tree daily photosynthetic rates among tree species, but the smaller, more abundant common hornbeam contributed most to the stand-level summation, especially early in the spring. These findings provide a rigorous test of the methods and the species-level photosynthesis offers avenues for enhancing forest management aimed at carbon sequestration.
Collapse
Affiliation(s)
- Marko Stojanović
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
| | - Georg Jocher
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
- Thünen-Institut für Agrarklimaschutz Bundesallee 68 38116 Braunschweig Germany
| | - Natalia Kowalska
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
| | - Justyna Szatniewska
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
| | - Ina Zavadilová
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
| | - Josef Čáslavský
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
| | - Petr Horáček
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
| | - Manuel Acosta
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
| | - Marian Pavelka
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
| | - John D Marshall
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
- Leibniz-Zentrum für Agrarlandschaftsforschung, Isotope Geochemistry and Gas Fluxes, Müncheberg 15374, Germany
- Department of Geological Sciences, Box 460, Gothenburg University, Gothenburg 40530, Sweden
| |
Collapse
|
3
|
Gundale MJ, Axelsson EP, Buness V, Callebaut T, DeLuca TH, Hupperts SF, Ibáñez TS, Metcalfe DB, Nilsson MC, Peichl M, Spitzer CM, Stangl ZR, Strengbom J, Sundqvist MK, Wardle DA, Lindahl BD. The biological controls of soil carbon accumulation following wildfire and harvest in boreal forests: A review. GLOBAL CHANGE BIOLOGY 2024; 30:e17276. [PMID: 38683126 DOI: 10.1111/gcb.17276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 05/01/2024]
Abstract
Boreal forests are frequently subjected to disturbances, including wildfire and clear-cutting. While these disturbances can cause soil carbon (C) losses, the long-term accumulation dynamics of soil C stocks during subsequent stand development is controlled by biological processes related to the balance of net primary production (NPP) and outputs via heterotrophic respiration and leaching, many of which remain poorly understood. We review the biological processes suggested to influence soil C accumulation in boreal forests. Our review indicates that median C accumulation rates following wildfire and clear-cutting are similar (0.15 and 0.20 Mg ha-1 year-1, respectively), however, variation between studies is extremely high. Further, while many individual studies show linear increases in soil C stocks through time after disturbance, there are indications that C stock recovery is fastest early to mid-succession (e.g. 15-80 years) and then slows as forests mature (e.g. >100 years). We indicate that the rapid build-up of soil C in younger stands appears not only driven by higher plant production, but also by a high rate of mycorrhizal hyphal production, and mycorrhizal suppression of saprotrophs. As stands mature, the balance between reductions in plant and mycorrhizal production, increasing plant litter recalcitrance, and ectomycorrhizal decomposers and saprotrophs have been highlighted as key controls on soil C accumulation rates. While some of these controls appear well understood (e.g. temporal patterns in NPP, changes in aboveground litter quality), many others remain research frontiers. Notably, very little data exists describing and comparing successional patterns of root production, mycorrhizal functional traits, mycorrhizal-saprotroph interactions, or C outputs via heterotrophic respiration and dissolved organic C following different disturbances. We argue that these less frequently described controls require attention, as they will be key not only for understanding ecosystem C balances, but also for representing these dynamics more accurately in soil organic C and Earth system models.
Collapse
Affiliation(s)
- Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - E Petter Axelsson
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Vincent Buness
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Timon Callebaut
- Department of Environmental Science and Ecology, Umeå University, Umeå, Sweden
| | - Thomas H DeLuca
- College of Forestry, Oregon State University, Corvallis, Oregon, USA
| | - Stefan F Hupperts
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Theresa S Ibáñez
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Daniel B Metcalfe
- Department of Environmental Science and Ecology, Umeå University, Umeå, Sweden
| | - Marie-Charlotte Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Matthias Peichl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Clydecia M Spitzer
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Zsofia R Stangl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Joachim Strengbom
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maja K Sundqvist
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - David A Wardle
- Department of Environmental Science and Ecology, Umeå University, Umeå, Sweden
| | - Björn D Lindahl
- Department of Soil Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Jörgensen K, Clemmensen KE, Wallander H, Lindahl BD. Ectomycorrhizal fungi are more sensitive to high soil nitrogen levels in forests exposed to nitrogen deposition. THE NEW PHYTOLOGIST 2024; 242:1725-1738. [PMID: 38213001 DOI: 10.1111/nph.19509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Ectomycorrhizal fungi are essential for nitrogen (N) cycling in many temperate forests and responsive to anthropogenic N addition, which generally decreases host carbon (C) allocation to the fungi. In the boreal region, however, ectomycorrhizal fungal biomass has been found to correlate positively with soil N availability. Still, responses to anthropogenic N input, for instance through atmospheric deposition, are commonly negative. To elucidate whether variation in N supply affects ectomycorrhizal fungi differently depending on geographical context, we investigated ectomycorrhizal fungal communities along fertility gradients located in two nemo-boreal forest regions with similar ranges in soil N : C ratios and inorganic N availability but contrasting rates of N deposition. Ectomycorrhizal biomass and community composition remained relatively stable across the N gradient with low atmospheric N deposition, but biomass decreased and the community changed more drastically with increasing N availability in the gradient subjected to higher rates of N deposition. Moreover, potential activities of enzymes involved in ectomycorrhizal mobilisation of organic N decreased as N availability increased. In forests with low external input, we propose that stabilising feedbacks in tree-fungal interactions maintain ectomycorrhizal fungal biomass and communities even in N-rich soils. By contrast, anthropogenic N input seems to impair ectomycorrhizal functions.
Collapse
Affiliation(s)
- Karolina Jörgensen
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, SE-750 07, Uppsala, Sweden
| | - Karina E Clemmensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, SE-750 07, Uppsala, Sweden
| | - Håkan Wallander
- Department of Biology, Lund University, Sölvegatan 37, 223 26, Lund, Sweden
| | - Björn D Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, SE-750 07, Uppsala, Sweden
| |
Collapse
|
5
|
Fernandez-Tschieder E, Marshall JD, Binkley D. Carbon budget at the individual-tree scale: dominant Eucalyptus trees partition less carbon belowground. THE NEW PHYTOLOGIST 2024. [PMID: 38641865 DOI: 10.1111/nph.19764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/06/2024] [Indexed: 04/21/2024]
Abstract
Large trees in plantations generally produce more wood per unit of resource use than small trees. Two processes may account for this pattern: greater photosynthetic resource use efficiency or greater partitioning of carbon to wood production. We estimated gross primary production (GPP) at the individual scale by combining transpiration with photosynthetic water-use efficiency of Eucalyptus trees. Aboveground production fluxes were estimated using allometric equations and modeled respiration; total belowground carbon fluxes (TBCF) were estimated by subtracting aboveground fluxes from GPP. Partitioning was estimated by dividing component fluxes by GPP. Dominant trees produced almost three times as much wood as suppressed trees. They used 25 ± 10% (mean ± SD) of their photosynthates for wood production, whereas suppressed trees only used 12 ± 2%. By contrast, dominant trees used 27 ± 19% of their photosynthate belowground, whereas suppressed trees used 58 ± 5%. Intermediate trees lay between these extremes. Photosynthetic water-use efficiency of dominant trees was c. 13% greater than the efficiency of suppressed trees. Suppressed trees used more than twice as much of their photosynthate belowground and less than half as much aboveground compared with dominant trees. Differences in carbon partitioning were much greater than differences in GPP or photosynthetic water-use efficiency.
Collapse
Affiliation(s)
- Ezequiel Fernandez-Tschieder
- National Institute of Agricultural Technology (INTA), Agricultural Experimental Station of Delta del Paraná, Campana, B2804, Argentina
- Graduate Degree Program in Ecology, Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, 80523, USA
| | - John D Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
- Leibniz-Zentrum für Agrarlandschaftsforschung, Müncheberg, 15374, Germany
- Department of Geological Sciences, Gothenburg University, Gothenburg, 405 30, Sweden
- Department of Energy and Matter Fluxes, Czech Globe, Belidla, 603 00, Czechia
| | - Dan Binkley
- School of Forestry, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
6
|
Rog I, Hilman B, Fox H, Yalin D, Qubaja R, Klein T. Increased belowground tree carbon allocation in a mature mixed forest in a dry versus a wet year. GLOBAL CHANGE BIOLOGY 2024; 30:e17172. [PMID: 38343030 DOI: 10.1111/gcb.17172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
Tree species differ in their carbon (C) allocation strategies during environmental change. Disentangling species-specific strategies and contribution to the C balance of mixed forests requires observations at the individual tree level. We measured a complete set of C pools and fluxes at the tree level in five tree species, conifers and broadleaves, co-existing in a mature evergreen mixed Mediterranean forest. Our study period included a drought year followed by an above-average wet year, offering an opportunity to test the effect of water availability on tree C allocation. We found that in comparison to the wet year, C uptake was lower in the dry year, C use was the same, and allocation to belowground sinks was higher. Among the five major C sinks, respiration was the largest (ca. 60%), while root exudation (ca. 10%) and reproduction (ca. 2%) were those that increased the most in the dry year. Most trees relied on stored starch for maintaining a stable soluble sugars balance, but no significant differences were detected in aboveground storage between dry and wet years. The detailed tree-level analysis of nonstructural carbohydrates and δ13 C dynamics suggest interspecific differences in C allocation among fluxes and tissues, specifically in response to the varying water availability. Overall, our findings shed light on mixed forest physiological responses to drought, an increasing phenomenon under the ongoing climate change.
Collapse
Affiliation(s)
- Ido Rog
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Boaz Hilman
- Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, Germany
- The Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagar Fox
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - David Yalin
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Rafat Qubaja
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Ryan MG. The enduring mystery of differences between eddy covariance and biometric measurements for ecosystem respiration and net carbon storage in forests. THE NEW PHYTOLOGIST 2023; 239:2060-2063. [PMID: 37381104 DOI: 10.1111/nph.19105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
This article is a Commentary on Marshall et al. (2023), 239: 2166–2179.
Collapse
Affiliation(s)
- Michael G Ryan
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, 80523, CO, USA
- USDA Forest Service, Rocky Mountain Research Station, Fort Collins, 80526, CO, USA
| |
Collapse
|