1
|
Zhang W, Lee PCW, Jin JO. Anti-Inflammatory Effect of Fucoidan from Costaria costata Inhibited Lipopolysaccharide-Induced Inflammation in Mice. Mar Drugs 2024; 22:401. [PMID: 39330282 PMCID: PMC11433612 DOI: 10.3390/md22090401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Seaweed extracts, especially fucoidan, are well known for their immune-modulating abilities. In this current study, we extracted fucoidan from Costaria costata, a seaweed commonly found in coastal Asia, and examined its anti-inflammatory effect. Fucoidan was extracted from dried C. costata (FCC) using an alcohol extraction method at an extraction rate of 4.5 ± 0.21%. The extracted FCC comprised the highest proportion of carbohydrates, along with sulfate and uronic acid. The immune regulatory effect of FCC was examined using bone marrow-derived dendritic cells (BMDCs). Pretreatment with FCC dose-dependently decreased the lipopolysaccharide (LPS)-induced upregulation of co-stimulatory molecules and major histocompatibility complex. In addition, FCC prevented morphological changes in LPS-induced BMDCs. Moreover, treatment of LPS-induced BMDCs with FCC suppressed the secretion of pro-inflammatory cytokines. In C57BL/6 mice, oral administration of FCC suppressed LPS-induced lung inflammation, reducing the secretion of pro-inflammatory cytokines in the bronchoalveolar lavage fluid. Finally, the administration of FCC suppressed LPS-induced sepsis. Therefore, FCC could be developed as a health supplement based on the observed anti-inflammatory effects.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China;
| | - Peter C. W. Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jun-O Jin
- Department of Microbiology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
2
|
Xu N, Xu K, Xu Y, Ji D, Wang W, Xie C. Interactions between nitrogen and phosphorus modulate the food quality of the marine crop Pyropia haitanensis (T. J. Chang & B. F. Zheng) N. Kikuchi & M. Miyata (Porphyra haitanensis). Food Chem 2024; 448:138973. [PMID: 38522292 DOI: 10.1016/j.foodchem.2024.138973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
The quality of Pyropia haitanensis (T. J. Chang & B. F. Zheng) N. Kikuchi & M. Miyata (Porphyra haitanensis) is directly affected by nutrient availability. However, the molecular mechanism underlying the synergistic regulatory effects of nitrogen (N) and phosphorus (P) availability on P. haitanensis quality is unknown. Here, we performed physiological and multi-omics analyses to reveal the combined effects of N and P on P. haitanensis quality. The pigments accumulated under high N because of increases in N metabolism and porphyrin metabolism, ultimately resulting in intensely colored thalli. High N also promoted amino acid metabolism and inosine 5'-mononucleotide (IMP) synthesis, but inhibited carbohydrates accumulation. This resulted in increased amino acid, IMP and decreased agaro-carrageenan and cellulose contents, thereby improving the nutritional value and taste. Furthermore, high P promoted carbon metabolism and amino acid metabolism.This study provided the basis for elucidating the mechanism behind N and P regulating the seaweed quality.
Collapse
Affiliation(s)
- Ningning Xu
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China
| | - Kai Xu
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| | - Wenlei Wang
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| |
Collapse
|
3
|
Kim SH, Leem YE, Park HE, Jeong HI, Lee J, Kang JS. The Extract of Gloiopeltis tenax Enhances Myogenesis and Alleviates Dexamethasone-Induced Muscle Atrophy. Int J Mol Sci 2024; 25:6806. [PMID: 38928510 PMCID: PMC11203874 DOI: 10.3390/ijms25126806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The decline in the function and mass of skeletal muscle during aging or other pathological conditions increases the incidence of aging-related secondary diseases, ultimately contributing to a decreased lifespan and quality of life. Much effort has been made to surmise the molecular mechanisms underlying muscle atrophy and develop tools for improving muscle function. Enhancing mitochondrial function is considered critical for increasing muscle function and health. This study is aimed at evaluating the effect of an aqueous extract of Gloiopeltis tenax (GTAE) on myogenesis and muscle atrophy caused by dexamethasone (DEX). The GTAE promoted myogenic differentiation, accompanied by an increase in peroxisome proliferator-activated receptor γ coactivator α (PGC-1α) expression and mitochondrial content in myoblast cell culture. In addition, the GTAE alleviated the DEX-mediated myotube atrophy that is attributable to the Akt-mediated inhibition of the Atrogin/MuRF1 pathway. Furthermore, an in vivo study using a DEX-induced muscle atrophy mouse model demonstrated the efficacy of GTAE in protecting muscles from atrophy and enhancing mitochondrial biogenesis and function, even under conditions of atrophy. Taken together, this study suggests that the GTAE shows propitious potential as a nutraceutical for enhancing muscle function and preventing muscle wasting.
Collapse
Affiliation(s)
- Si-Hyung Kim
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.-H.K.); (Y.-E.L.)
| | - Young-Eun Leem
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.-H.K.); (Y.-E.L.)
| | - Hye Eun Park
- Laboratories of Marine New Drugs, Redone Technologies Co., Ltd., Jangseong-gun 57247, Republic of Korea; (H.E.P.); (H.-I.J.)
| | - Hae-In Jeong
- Laboratories of Marine New Drugs, Redone Technologies Co., Ltd., Jangseong-gun 57247, Republic of Korea; (H.E.P.); (H.-I.J.)
| | - Jihye Lee
- Laboratories of Marine New Drugs, Redone Technologies Co., Ltd., Jangseong-gun 57247, Republic of Korea; (H.E.P.); (H.-I.J.)
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.-H.K.); (Y.-E.L.)
| |
Collapse
|
4
|
Barandiaran LN, Taylor VF, Karagas MR. Exposure to iodine, essential and non-essential trace element through seaweed consumption in humans. Sci Rep 2024; 14:13698. [PMID: 38871780 PMCID: PMC11176391 DOI: 10.1038/s41598-024-64556-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Seaweed consumption has gained popularity due to its nutritional value and potential health benefits. However, concerns regarding the bioaccumulation of several trace elements highlight the need for comprehensive studies on exposure associated with seaweed consumption. To address this gap in knowledge, we carried out a feeding intervention study of three common edible seaweeds (Nori, Kombu, and Wakame) in 11 volunteers, aiming to elucidate the extent of both beneficial and harmful trace element exposure through seaweed consumption in humans. Concentrations of total arsenic, cobalt, copper, cadmium, iodine, molybdenum, selenium, and zinc were measured in urine samples before and following seaweed consumption. Elements concentrations were also measured in the seaweeds provided for the study. Descriptive analysis for each element were conducted and we used quantile g-computation approach to assess the association between the 8-element mixture and seaweed consumption. Differences in urine element concentrations and seaweed consumption were analyzed using generalized estimating equations (GEE). Urinary concentrations of iodine and total arsenic increased after seaweed consumption. When we analyze the 8-element mixture, the largest weight was observed for iodine after Kombu consumption while for total arsenic was observed after Wakame consumption. Similar results were observed when we compared the mean differences between the elements before and after seaweed consumption through the GEE. Seaweed consumption relates with increased urinary iodine and total arsenic concentrations, particularly after Kombu and Wakame consumption.
Collapse
Affiliation(s)
- Leyre Notario Barandiaran
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH, 03755-1404, USA.
| | - Vivien F Taylor
- Department of Earth Science, Dartmouth College, 6105 Sherman Fairchild Hall, Hanover, NH, 03755, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH, 03755-1404, USA
| |
Collapse
|
5
|
Geurts KAM, Meijer S, Roeters van Lennep JE, Wang X, Özcan B, Voortman G, Liu H, Castro Cabezas M, Berk KA, Mulder MT. The Effect of Sargassum fusiforme and Fucus vesiculosus on Continuous Glucose Levels in Overweight Patients with Type 2 Diabetes Mellitus: A Feasibility Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024; 16:1837. [PMID: 38931192 PMCID: PMC11206271 DOI: 10.3390/nu16121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Brown seaweed is promising for the treatment of type 2 diabetes mellitus (T2DM). Its bioactive constituents can positively affect plasma glucose homeostasis in healthy humans. We investigated the effect of the brown seaweeds Sargassum (S.) fusiforme and Fucus (F.) vesiculosus in their natural form on glucose regulation in patients with T2DM. METHODS We conducted a randomized, double-blind, placebo-controlled pilot trial. Thirty-six participants with T2DM received, on a daily basis, either 5 g of dried S. fusiforme, 5 g of dried F. vesiculosus, or 0.5 g of dried Porphyra (control) for 5 weeks, alongside regular treatment. The primary outcome was the between-group difference in the change in weekly average blood glucose levels (continuous glucose monitoring). The secondary outcomes were the changes in anthropometrics, plasma lipid levels, and dietary intake. The data were analyzed using a linear mixed-effects model. RESULTS The change in weekly average glucose levels was 8.2 ± 2.1 to 9.0 ± 0.7 mmol/L (p = 0.2) in the S. fusiforme group (n = 12) and 10.1 ± 3.3 to 9.2 ± 0.7 mmol/L (p = 0.9) in the F. vesiculosus group (n = 10). The between-group difference was non-significant. Similarly, no between-group differences were observed for the changes in the secondary outcomes. DISCUSSION A daily intake of 5 g of fresh, dried S. fusiforme or F. vesiculosus alongside regular treatment had no differential effect on weekly average blood glucose levels in T2DM.
Collapse
Affiliation(s)
- Karlijn A. M. Geurts
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Sjoerd Meijer
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Jeanine E. Roeters van Lennep
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Xi Wang
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Behiye Özcan
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Gardi Voortman
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Hongbing Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
| | - Manuel Castro Cabezas
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Schiedamse Vest 180, 3011 BH Rotterdam, The Netherlands
| | - Kirsten A. Berk
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| | - Monique T. Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.A.M.G.)
| |
Collapse
|
6
|
Santana I, Felix M, Bengoechea C. Seaweed as Basis of Eco-Sustainable Plastic Materials: Focus on Alginate. Polymers (Basel) 2024; 16:1662. [PMID: 38932012 PMCID: PMC11207399 DOI: 10.3390/polym16121662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Seaweed, a diverse and abundant marine resource, holds promise as a renewable feedstock for bioplastics due to its polysaccharide-rich composition. This review explores different methods for extracting and processing seaweed polysaccharides, focusing on the production of alginate plastic materials. Seaweed emerges as a promising solution, due to its abundance, minimal environmental impact, and diverse industrial applications, such as feed and food, plant and soil nutrition, nutraceutical hydrocolloids, personal care, and bioplastics. Various manufacturing techniques, such as solvent casting, injection moulding, and extrusion, are discussed for producing seaweed-based bioplastics. Alginate, obtained mainly from brown seaweed, is particularly known for its gel-forming properties and presents versatile applications in many sectors (food, pharmaceutical, agriculture). This review further examines the current state of the bioplastics market, highlighting the growing demand for sustainable alternatives to conventional plastics. The integration of seaweed-derived bioplastics into mainstream markets presents opportunities for reducing plastic pollution and promoting sustainability in material production.
Collapse
Affiliation(s)
| | | | - Carlos Bengoechea
- Escuela Politécnica Superior, Universidad de Sevilla, Calle Virgen de África, 7, 41011 Sevilla, Spain; (I.S.); (M.F.)
| |
Collapse
|
7
|
Yahyaoui K, Traikia M, Rihouey C, Picton L, Gardarin C, Ksouri WM, Laroche C. Chemical characterization of polysaccharides from Gracilaria gracilis from Bizerte (Tunisia). Int J Biol Macromol 2024; 266:131127. [PMID: 38527684 DOI: 10.1016/j.ijbiomac.2024.131127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Polysaccharides were extracted from Gracilaria gracilis collected from Manzel Jemil Lake in Bizerte Tunisia, with two different solvents (water and NaOH 0.3 M). Different assays were performed on samples (total sugars, neutral sugars, uronic acids, anhydrogalactose, proteins, sulphates, pyruvates), followed by high performance anion-exchange chromatography (HPAEC) to observe the monosaccharide composition, high pressure size exclusion chromatography with multi-angle laser light scattering (HPSEC-MALS) to obtain the molecular mass, Fourier transform infrared spectroscopy (FTIR), and 1D and 2D nuclear magnetic resonance (NMR) to access to structural data. Results have shown that the polysaccharide extracted from Gracilaria gracilis collected from Manzel Jemil Lake in Bizerte Tunisia, is of agar type but with high molecular mass and some original structural features. Hence, the sample was found to contain 9 % of pyruvate groups and is partly sulphated at the C4 of β-d-galactose and methylated on C2 of anhydro-α-l-galactose. The polymer from G. gracilis from Bizerte thus presents a never described structure that could be interesting for further rheological or biological activities applications.
Collapse
Affiliation(s)
- K Yahyaoui
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Technopark of Borj-Cedria, Hammam-Lif, Tunisia
| | - M Traikia
- Université Clermont Auvergne, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - C Rihouey
- Université de Rouen, Laboratoire Polymères Biopolymères Surfaces, F-76821 Mont Saint Aignan, France
| | - L Picton
- Université de Rouen, Laboratoire Polymères Biopolymères Surfaces, F-76821 Mont Saint Aignan, France
| | - C Gardarin
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - W Megdiche Ksouri
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Technopark of Borj-Cedria, Hammam-Lif, Tunisia
| | - C Laroche
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
8
|
Saadh MJ, Ahmed HM, Alani ZK, Al Zuhairi RAH, Almarhoon ZM, Ahmad H, Ubaid M, Alwan NH. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromolecular Med 2024; 26:14. [PMID: 38630350 DOI: 10.1007/s12017-024-08783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Hani Moslem Ahmed
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
| | - Zaid Khalid Alani
- College of Health and Medical Technical, Al-Bayan University, Baghdad, Iraq
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
9
|
Lee ZJ, Xie C, Duan X, Ng K, Suleria HAR. Optimization of Ultrasonic Extraction Parameters for the Recovery of Phenolic Compounds in Brown Seaweed: Comparison with Conventional Techniques. Antioxidants (Basel) 2024; 13:409. [PMID: 38671858 PMCID: PMC11047748 DOI: 10.3390/antiox13040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Seaweed, in particular, brown seaweed, has gained research interest in the past few years due to its distinctive phenolic profile that has a multitude of bioactive properties. In order to obtain the maximum extraction efficiency of brown seaweed phenolic compounds, Response Surface Methodology was utilized to optimize the ultrasound-assisted extraction (UAE) conditions such as the amplitude, time, solvent:solid ratio, and NaOH concentration. Under optimal conditions, UAE had a higher extraction efficiency of free and bound phenolic compounds compared to conventional extraction (stirred 16 h at 4 °C). This led to higher antioxidant activity in the seaweed extract obtained under UAE conditions. The profiling of phenolic compounds using LC-ESI-QTOF-MS/MS identified a total of 25 phenolics with more phenolics extracted from the free phenolic extraction compared to the bound phenolic extracts. Among them, peonidin 3-O-diglucodise-5-O-glucoside and hesperidin 5,7-O-diglucuronide are unique compounds that were identified in P. comosa, E. radiata and D. potatorum, which are not reported in plants. Overall, our findings provided optimal phenolic extraction from brown seaweed for research into employing brown seaweed as a functional food.
Collapse
Affiliation(s)
| | | | | | | | - Hafiz A. R. Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville 3052, Australia; (Z.J.L.); (C.X.); (X.D.); (K.N.)
| |
Collapse
|
10
|
Gamero-Vega G, Vásquez-Corales E, Ormeño-Llanos M, Cordova-Ruiz M, Quitral V. Characterization of Red Seaweed Chondracanthus Chamissoi from the Coasts of Perú: Chemical Composition, Antioxidant Capacity and Functional Properties. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:137-142. [PMID: 38206480 DOI: 10.1007/s11130-023-01135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
The present investigation finds that Chondracanthus chamissoi seaweed abounding in Peruvian coasts is characterized by its nutritional composition, total polyphenols, antioxidant capacity, and functional properties such as water-holding capacity (WHC), oil-holding capacity (OHC), and swelling capacity (SC). Boiling and steaming were applied before dehydration to evaluate the effect of these thermal treatments, keeping a control sample. The results indicated that the control dried seaweed sample presented 20.2 ± 0.16 g/100 g dw of proteins, 20.0 ± 0.61 g/100 g dw of ash, and 56.6 ± 0.08 g/100 g dw of total dietary fiber. In addition, the control sample presented 1.6 ± 0.07 mg GAE/g of total polyphenol content and 2.4 ± 0.30 mM Trolox mg/g of antioxidant capacity. In boiling samples, the apparent nutrient retention factors for proteins, fat, and dietary fiber are 96, 47 and 74%, respectively. In the steaming sample, the values were 102, 29, and 92%. The boiling before dehydration causes a significant decrease (p < 0.05) in total polyphenols and increases carbohydrates. Steaming before dehydration, a significant (p < 0.05) increase occurs in carbohydrates without significantly altering the concentration of total polyphenols. Regarding the functional properties, C. chamissoi presents 17.6 ± 0.15 g/g of WHC, 2.4 ± 0.78 g/g of OHC, and 9.8 ± 0.75 mL/g of SC. Boiling produces an increase in WHC and OHC; steaming does not affect the properties of the control sample.C. chamissoi seaweed collected from the coasts of Perú is an excellent alternative for use as food and ingredients in processed foods for human consumption.
Collapse
Affiliation(s)
- Giulianna Gamero-Vega
- Escuela Profesional de Farmacia y Bioquímica, Facultad de Ciencias de la Salud, Universidad Católica Los Ángeles de Chimbote, Chimbote, Perú, 02801, Perú
| | - Edison Vásquez-Corales
- Escuela Profesional de Farmacia y Bioquímica, Facultad de Ciencias de la Salud, Universidad Católica Los Ángeles de Chimbote, Chimbote, Perú, 02801, Perú
| | - Mily Ormeño-Llanos
- Escuela Profesional de Farmacia y Bioquímica, Facultad de Ciencias de la Salud, Universidad Católica Los Ángeles de Chimbote, Chimbote, Perú, 02801, Perú
| | - Madeleine Cordova-Ruiz
- Escuela Profesional de Farmacia y Bioquímica, Facultad de Ciencias de la Salud, Universidad Católica Los Ángeles de Chimbote, Chimbote, Perú, 02801, Perú
| | - Vilma Quitral
- Escuela de Nutrición y Dietética, Facultad de Salud, Universidad Santo Tomás, Santiago, 8370003, Chile.
| |
Collapse
|
11
|
Lee YJ, Uh YR, Kim YM, Kim CM, Jang CS. Characterization and comparative analysis of the complete organelle genomes of three red macroalgae species (Neoporphyra dentata, Neoporphyra seriata, and Neopyropia yezoensis) and development of molecular makers for their identification. Genes Genomics 2024; 46:355-365. [PMID: 37995039 DOI: 10.1007/s13258-023-01472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/22/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Many species of red algae belonging to the phylum Rhodophyta are consumed by humans as raw materials for nutrition and medicine. As the seaweed market grows, the importance of the laver species has increased. The classification of red algal species has changed significantly, and the accuracy of this classification has improved significantly in recent years. Here, we report the complete circular genomes of the chloroplasts (cp) and mitochondria (mt) of three laver species (Neoporphyra dentata, Neoporphyra seriata, and Neopyropia yezoensis). OBJECTIVE This study aims to assemble, annotate, and characterize the organization of the organelle genomes of three laver species, conduct comparative genomic studies, and develop molecular markers based on SNPs. METHODS We analyzed organelle genome structures, repeat sequences, sequence divergence, gene rearrangements, and phylogenetic relationships of three laver species. RESULTS The chloroplast genomes of the three species contained an average of 212 protein-coding genes (PCGs), while the mitochondrial genomes contained an average of 25 PCGs. We reconstructed the phylogenetic trees based on both chloroplast and mitochondrial genomes using 201 and 23 PCGs (in cp and mt genomes, respectively) shared in the class Bangiophyceae (and five species of Florideophyceae class used as an outgroup). In addition, 12 species-specific molecular markers were developed for qRT-PCR analysis. CONCLUSIONS This is the first report of Neoporphyra seriata complete organellar genomes. With the results, this study provides useful genetic information regarding taxonomic discrepancies, the reconstruction of phylogenetic trees, and the evolution of red algae. Moreover, the species-specific markers can be used as fast and easy methods to identify a target species.
Collapse
Affiliation(s)
- Yong Jin Lee
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon, Republic of Korea
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| | - Yo Ram Uh
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| | - Yeon Mi Kim
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| | - Cheol Min Kim
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| | - Cheol Seong Jang
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon, Republic of Korea.
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
12
|
Dayarathne LA, Ko SC, Yim MJ, Lee JM, Kim JY, Oh GW, Kim CH, Kim KW, Lee DS, Je JY. Brown Algae Dictyopteris divaricata Attenuates Adipogenesis by Modulating Adipocyte Differentiation and Promoting Lipolysis through Heme Oxygenase-1 Activation in 3T3-L1 Cells. Mar Drugs 2024; 22:91. [PMID: 38393062 PMCID: PMC10890497 DOI: 10.3390/md22020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The present study aims to explore the probable anti-adipogenesis effect of Dictyopteris divaricata (D. divaricata) in 3T3-L1 preadipocytes by regulating heme oxygenase-1 (HO-1). The extract of D. divaricata retarded lipid accretion and decreased triglyceride (TG) content in 3T3-L1 adipocytes but increased free glycerol levels. Treatment with the extract inhibited lipogenesis by inhibiting protein expressions of fatty acid synthase (FAS) and lipoprotein lipase (LPL), whereas lipolysis increased by activating phosphorylation of hormone-sensitive lipase (p-HSL) and AMP-activated protein kinase (p-AMPK). The extract inhibited adipocyte differentiation of 3T3-L1 preadipocytes through down-regulating adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1). This is attributed to the triggering of Wnt/β-catenin signaling. In addition, this study found that treatment with the extract activated HO-1 expression. Pharmacological approaches revealed that treatment with Zinc Protoporphyrin (ZnPP), an HO-1 inhibitor, resulted in an increase in lipid accumulation and a decrease in free glycerol levels. Finally, three adipogenic transcription factors, such as PPARγ, C/EBPα, and SREBP1, restored their expression in the presence of ZnPP. Analysis of chemical constituents revealed that the extract of D. divaricata is rich in 1,4-benzenediol, 7-tetradecenal, fucosterol, and n-hexadecanoic acid, which are known to have multiple pharmacological properties.
Collapse
Affiliation(s)
- Lakshi A. Dayarathne
- Department of Food and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Seok-Chun Ko
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Mi-Jin Yim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Jeong Min Lee
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Ji-Yul Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Gun-Woo Oh
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Chul Hwan Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Kyung Woo Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Dae-Sung Lee
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
13
|
Cotas J, Lomartire S, Gonçalves AMM, Pereira L. From Ocean to Medicine: Harnessing Seaweed's Potential for Drug Development. Int J Mol Sci 2024; 25:797. [PMID: 38255871 PMCID: PMC10815561 DOI: 10.3390/ijms25020797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Seaweed, a miscellaneous group of marine algae, has long been recognized for its rich nutritional composition and bioactive compounds, being considered nutraceutical ingredient. This revision delves into the promising role of seaweed-derived nutrients as a beneficial resource for drug discovery and innovative product development. Seaweeds are abundant sources of essential vitamins, minerals, polysaccharides, polyphenols, and unique secondary metabolites, which reveal a wide range of biological activities. These bioactive compounds possess potential therapeutic properties, making them intriguing candidates for drug leads in various medical applications and pharmaceutical drug development. It explores their pharmacological properties, including antioxidant, anti-inflammatory, antimicrobial, and anticancer activities, shedding light on their potential as therapeutic agents. Moreover, the manuscript provides insights into the development of formulation strategies and delivery systems to enhance the bioavailability and stability of seaweed-derived compounds. The manuscript also discusses the challenges and opportunities associated with the integration of seaweed-based nutrients into the pharmaceutical and nutraceutical industries. Regulatory considerations, sustainability, and scalability of sustainable seaweed sourcing and cultivation methods are addressed, emphasizing the need for a holistic approach in harnessing seaweed's potential. This revision underscores the immense potential of seaweed-derived compounds as a valuable reservoir for drug leads and product development. By bridging the gap between marine biology, pharmacology, and product formulation, this research contributes to the critical advancement of sustainable and innovative solutions in the pharmaceutical and nutraceutical sectors.
Collapse
Affiliation(s)
- João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| | - Silvia Lomartire
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| | - Ana M. M. Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| |
Collapse
|
14
|
Purayil NC, Thomas B, Tom RT. Microplastics - A major contaminant in marine macro algal population: Review. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106281. [PMID: 38016300 DOI: 10.1016/j.marenvres.2023.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/29/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Microplastics (MPs) are a significant concern in this modern environment, and the marine environment is a sink for them now. Researchers have taken an interest in marine microplastic studies recently, which has opened the door to research in macroalgae and microalgae. Macroalgae are the primary producers in maritime ecosystems and are economically significant. This review aimed to identify the microplastic interactions with marine macroalgae and the impacts of microplastics on macroalgae based on existing literature while also recognizing knowledge gaps. MPs were mostly fibers and polymers with notable production and application levels; their abundance differed among species. More MPs were found in filamentous species than in other types. The results of this study indicated that, in maritime environments, macroalgae contribute to MP biomagnification and bioaccumulation. Adequate studies are needed to fill the research gaps in this area of MPs in macroalgae and their effects.
Collapse
Affiliation(s)
- Navya Chettiam Purayil
- Centre for PG Studies and Research in Botany, St. Joseph's College (Autonomous), Devagiri, Kozhikode, 673008, Kerala, India
| | - Binu Thomas
- Centre for PG Studies and Research in Botany, St. Joseph's College (Autonomous), Devagiri, Kozhikode, 673008, Kerala, India.
| | - Renjis T Tom
- Department of Chemistry, St. Joseph's College (Autonomous), Devagiri, Kozhikode, 673008, Kerala, India
| |
Collapse
|
15
|
Shen C, Hao X, An D, Tillotson MR, Yang L, Zhao X. Unveiling the potential for artificial upwelling in algae derived carbon sink and nutrient mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167150. [PMID: 37722428 DOI: 10.1016/j.scitotenv.2023.167150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Mariculture algae may present a crucial part of ocean-based solutions for climate change, with the ability to sequester carbon and remove nutrients. However, the expansion of mariculture algae faces multiple challenges. Here, we measure the changes in algae derived carbon sinks and nitrogen (N) and phosphorus (P) removal between 2010 and 2020 in Shandong Province, China. We further identify the key driving factors, namely area, algal species proportion, and yield, that influence the changes. The results show that algae derived carbon sinks and nutrient removal growth rates in Shandong Province have slowed significantly since 2014, mainly due to area limitations, laver-oriented species change, and unstable yields. Artificial upwelling (AU) has the potential to enhance the yield and subsequently offset the loss of carbon sinks and nutrient removal caused by negative driving factors. Scenario analysis indicates that a complete deployment of AU by 2030 will offset up to a 44.52 % decrease in the mariculture algae area, or a 72.57 % increase in the laver share of the algal species combination compared to 2020. Similar conclusions are reached regarding the role of AU in N and P removal. This study also identifies ancillary challenges such as low energy efficiency and high costs faced by applying AU.
Collapse
Affiliation(s)
- Chunlei Shen
- School of Business, Shandong University, Weihai 264209, China
| | - Xinya Hao
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, Hong Kong Special Administrative Region of China
| | - Dong An
- School of Business, Shandong University, Weihai 264209, China; School of Bohai, Hebei Agricultural University, Baoding 071000, China
| | | | - Lin Yang
- School of Business, Shandong University, Weihai 264209, China.
| | - Xu Zhao
- Institute of Blue and Green Development, Shandong University, Weihai 264209, China.
| |
Collapse
|
16
|
Lee ZJ, Xie C, Ng K, Suleria HAR. Unraveling the bioactive interplay: seaweed polysaccharide, polyphenol and their gut modulation effect. Crit Rev Food Sci Nutr 2023:1-24. [PMID: 37991467 DOI: 10.1080/10408398.2023.2274453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Seaweed is rich in many unique bioactive compounds such as polyphenols and sulfated polysaccharides that are not found in terrestrial plant. The discovery of numerous biological activities from seaweed has made seaweed an attractive functional food source with the potential to be exploited for human health benefits. During food processing and digestion, cell wall polysaccharide and polyphenols commonly interact, and this may influence the nutritional properties of food. Interactions between cell wall polysaccharide and polyphenols in plant-based system has been extensively studied. However, similar interactions in seaweed have received little attention despite the vast disparity between the structural and chemical composition of plant and seaweed cell wall. This poses a challenge in extracting seaweed bioactive compounds with intact biological properties. This review aims to summarize the cell wall polysaccharide and polyphenols present in brown, red and green seaweed, and current knowledge on their potential interactions. Moreover, this review gives an overview of the gut modulation effect of seaweed polysaccharide and polyphenol.
Collapse
Affiliation(s)
- Zu Jia Lee
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Cundong Xie
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Hafiz A R Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| |
Collapse
|
17
|
Murakami S, Hirazawa C, Mizutani T, Ohya T, Yoshikawa R, Ma N, Ikemori T, Ito T, Matsuzaki C. Edible Red Seaweed Hypnea asiatica Ameliorates High-Fat Diet-Induced Metabolic Diseases in Mice. J Med Food 2023; 26:799-808. [PMID: 37939270 DOI: 10.1089/jmf.2023.k.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Metabolic diseases, including obesity, diabetes, and fatty liver disease, are dramatically increasing around the world. Seaweed is low in calories and rich in many active ingredients that are necessary for maintaining good health, and is expected to be effective for preventing metabolic diseases. The purpose of this study was to examine the effects of a traditional Japanese edible seaweed Hypnea asiatica (H. asiatica) on obesity, using a mouse model. H. asiatica was dried and powdered, mixed with a high-fat diet, and fed to male C57BL/6J mice for 13 weeks. On the last day of the experiment, blood samples were collected under anesthesia and biochemical parameters such as lipids and adipokines were measured. Liver and adipose tissue were excised, weighed, and oxidant/antioxidant parameters were measured. Some mice were perfused with a fixative solution containing formalin, and tissue specimens were prepared. A glucose tolerance test was used to assess insulin resistance. The inhibition of lipase activity was evaluated in vitro. Thirteen-week supplementation with H. asiatica suppressed body weight gain, body fat accumulation, and blood glucose levels. H. asiatica also improved fatty liver and hypercholesterolemia, and reduced the oxidant and inflammatory parameters of serum and liver. H. asiatica increased fecal triglyceride excretion and polyphenol-rich ethanol extract of H. asiatica inhibited lipase activity in vitro. These results suggest that polysaccharides and polyphenols in H. asiatica may ameliorate obesity and diabetes by inhibiting intestinal fat absorption and reducing oxidative stress and inflammation. H. asiatica may be useful in preventing metabolic diseases such as obesity, diabetes, and fatty liver.
Collapse
Affiliation(s)
- Shigeru Murakami
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
- Fukui Bioincubation Center, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
| | - Chihiro Hirazawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
| | - Toshiki Mizutani
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
| | - Takuma Ohya
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
| | - Rina Yoshikawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
| | - Ning Ma
- Division of Health Science, Graduate School of Health Science, Suzuka University, Suzuka, Mie, Japan
| | - Takahiko Ikemori
- Ishikawa Prefecture Fisheries Division, Kanazawa, Ishikawa, Japan
| | - Takashi Ito
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
- Fukui Bioincubation Center, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
| | - Chiaki Matsuzaki
- Research Institute for Bioscience and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| |
Collapse
|
18
|
Park H, Jeon H, Lee KJ, Kim CG, Shin D. Seaweed intake modulates the association between VIPR2 variants and the incidence of metabolic syndrome in middle-aged Koreans. Food Funct 2023; 14:9446-9456. [PMID: 37807848 DOI: 10.1039/d3fo02425c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Vasoactive intrinsic peptide receptor (VIPR2), a circadian gene, is involved in metabolic homeostasis and metabolic syndrome (MetS). Seaweeds contain polysaccharides that regulate metabolic homeostasis, possibly by altering the effects of VIPR2 variants. We examined the relationship between VIPR2 expression and the incidence of MetS based on seaweed consumption. This study included 4979 Koreans aged ≥40 years using data from the Ansan-Ansung cohort of the Korean Genome and Epidemiology Study. The total seaweeds included were laver, kelp, and sea mustard. A multivariable Cox proportional hazards model was used to analyze the interactions between the VIPR2 rs6950857 genotype associated with MetS incidence and seaweed intake after adjusting for covariates such as region. A total of 2134 patients with MetS were followed for an average of 8.9 years. In men with the GG genotype of rs6950857, the highest quintile of seaweed consumption was associated with a decreased incidence of MetS compared with that of the lowest quintile (hazard ratio, 0.78; 95% confidence interval, 0.62-0.98). We identified a unique association between the rs6950857 genotype, seaweed intake, and MetS. These findings highlight the importance of VIPR2 and the regulatory role of seaweed consumption in MetS incidence.
Collapse
Affiliation(s)
- Haeun Park
- Department of Food and Nutrition, Inha University, Incheon 22212, Republic of Korea.
| | - Hyunyu Jeon
- Department of Food and Nutrition, Inha University, Incheon 22212, Republic of Korea.
| | - Kyung Ju Lee
- Department of Women's Rehabilitation, National Rehabilitation Center, 58, Samgaksan-ro, Gangbuk-gu, Seoul 01022, Republic of Korea
| | - Choong-Gon Kim
- Ocean Climate Response & Ecosystem Research Department, Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea
| | - Dayeon Shin
- Department of Food and Nutrition, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
19
|
Liang H, Kasiya HC, Huang D, Ren M, Zhang L, Yin H, Mi H. The Role of Algae Extract ( Ulva lactuca and Solieria chordalis) in Fishmeal Substitution in Gibel Carp ( Carrassius auratus gibeilo). Vet Sci 2023; 10:501. [PMID: 37624288 PMCID: PMC10457755 DOI: 10.3390/vetsci10080501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
The function of algae extract (AE) in fishmeal (FM) substitution with plant proteins in the diets of Gibel carp (Carrassius auratus gibeilo) was investigated during a 56-day trial. Diets 1 and 2 contained 10% FM, Diets 3 and 4 contained 5% FM, and Diet 5 and 6 contained 0% FM. In contrast, Diets 2, 4, and 6 were supplemented with 0.2% AE. The results showed that FM reduction inhibited growth performance, while AE supplementation alleviated growth inhibition. FM reduction significantly decreased the crude protein levels of the whole body, while the contents of whole-body lipids were significantly decreased with AE supplementation. There were no significant changes in ALB, ALP, ALT, AST, TP, GLU, GLU, and TC in plasma. FM reduction with AE supplementation mitigated the decrease in antioxidant capacity by heightening the activity of antioxidant enzymes and related gene expressions, which mitigated the decrease in immune capacity by affecting the expression of inflammatory factors. In summary, AE supplementation could alleviate the negative effects of FM reduction in Gibel carp.
Collapse
Affiliation(s)
- Hualiang Liang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China; (H.L.); (D.H.); (M.R.); (L.Z.)
| | - Hopeson Chisomo Kasiya
- Department of Aquatic Bio-Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 13-8654, Japan;
| | - Dongyu Huang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China; (H.L.); (D.H.); (M.R.); (L.Z.)
| | - Mingchun Ren
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China; (H.L.); (D.H.); (M.R.); (L.Z.)
| | - Lin Zhang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China; (H.L.); (D.H.); (M.R.); (L.Z.)
| | - Heng Yin
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China;
| | - Haifeng Mi
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China;
| |
Collapse
|
20
|
Trigo JP, Palmnäs-Bédard M, Juanola MVL, Undeland I. Effects of whole seaweed consumption on humans: current evidence from randomized-controlled intervention trials, knowledge gaps, and limitations. Front Nutr 2023; 10:1226168. [PMID: 37545570 PMCID: PMC10399747 DOI: 10.3389/fnut.2023.1226168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Seaweed is often recognized for its potential health benefits, attributed to its abundance of dietary fibers, protein, and polyphenols. While human observational studies have shown promise, the collective evidence from human intervention trials remains limited. This narrative review aims to comprehensively analyze the effects of seaweed intake on humans, while critically assessing the methodology, including Cochrane risk-of-bias assessment. A search was conducted in online databases, including PubMed, Scopus, and Google Scholar, covering the period from 2000 to May 2023. The focus was on randomized controlled clinical trials (RCTs) evaluating the impact of whole seaweed, either consumed as capsules, integrated into food products or as part of meals. Various health outcomes were examined, including appetite, anthropometric measures, cardiometabolic risk factors, thyroid function, markers of oxidative stress, and blood mineral concentrations. Out of the 25 RCTs reviewed, the findings revealed limited yet encouraging evidence for effects of seaweed on blood glucose metabolism, blood pressure, anthropometric measures, and, to a lesser extent, blood lipids. Notably, these favorable effects were predominantly observed in populations with type-2 diabetes and hypertension. Despite most trials selecting a seaweed dose aligning with estimated consumption levels in Japan, considerable variability was observed in the pretreatment and delivery methods of seaweed across studies. Moreover, most studies exhibited a moderate-to-high risk of bias, posing challenges in drawing definitive conclusions. Overall, this review highlights the necessity for well-designed RCTs with transparent reporting of methods and results. Furthermore, there is a need for RCTs to explore seaweed species cultivated outside of Asia, with a specific emphasis on green and red species. Such studies will provide robust evidence-based support for the growing utilization of seaweed as a dietary component in regions with negligible seaweed consumption, e.g., Europe.
Collapse
|
21
|
Swastha D, Varsha N, Aravind S, Samyuktha KB, Yokesh MM, Balde A, Ayilya BL, Benjakul S, Kim SK, Nazeer RA. Alginate-based drug carrier systems to target inflammatory bowel disease: A review. Int J Biol Macromol 2023:125472. [PMID: 37336375 DOI: 10.1016/j.ijbiomac.2023.125472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disorder that affects the gastrointestinal tract. IBD has become an increasingly common condition in both developed and developing nations over the last few decades, owing to a variety of factors like a rising population and diets packed with processed and junk foods. While the root pathophysiology of IBD is unknown, treatments are focused on medications aimed to mitigate symptoms. Alginate (AG), a marine-derived polysaccharide, is extensively studied for its biocompatibility, pH sensitivity, and crosslinking nature. This polymer is thoroughly researched in drug delivery systems for IBD treatment, as it is naturally available, non-toxic, cost effective, and can be easily and safely cross-linked with other polymers to form an interconnected network, which helps in controlling the release of drugs over an extended period. There are various types of drug delivery systems developed from AG to deliver therapeutic agents; among them, nanotechnology-based systems and hydrogels are popular due to their ability to facilitate targeted drug delivery, reduce dosage, and increase the therapeutic efficiency. AG-based carrier systems are not only used for the sustained release of drug, but also used in the delivery of siRNA, interleukins, and stem cells for site directed drug delivery and tissue regenerating ability respectively. This review is focussed on pathogenesis and currently studied medications for IBD, AG-based drug delivery systems and their properties for the alleviation of IBD. Moreover, future challenges are also be discoursed to improve the research of AG in the field of biopharmaceuticals and drug delivery.
Collapse
Affiliation(s)
- Dinakar Swastha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Nambolan Varsha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Suresh Aravind
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Kavassery Balasubramanian Samyuktha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Muruganandam Mohaneswari Yokesh
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Bakthavatchalam Loganathan Ayilya
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkhla University, 90112 Hat Yai, Songkhla, Thailand
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 11558, Gyeonggi-do, South Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India.
| |
Collapse
|
22
|
Tagliapietra BL, Clerici MTPS. Brown algae and their multiple applications as functional ingredient in food production. Food Res Int 2023; 167:112655. [PMID: 37087243 DOI: 10.1016/j.foodres.2023.112655] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/09/2023]
Abstract
Brown algae are considered one of the resources that can contribute to transforming our global food system by promoting healthier diets and reducing environmental impact. In this sense, this review article aims to provide up-to-date information on the nutritional and functional improvement of brown algae when they are applied to different food matrices. Brown algae present sulfated polysaccharides (alginates, fucoidans, and laminarins), proteins, minerals, vitamins, dietary fibers, fatty acids, pigments, and bioactive compounds that can positively contribute to the development of highly nutritious food products, as well as used reformulate products already existing, to remove, reduce, increase, add and/or replace different components and obtain products that confer health-promoting properties. This review demonstrates that there is a tendency to use seaweed for the production of functional foods and that the number of commercially produced products from seaweed is increasing, that is, seaweed is a sector whose global market is expanding.
Collapse
Affiliation(s)
- Bruna Lago Tagliapietra
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, 80th Monteiro Lobato Street, CEP 13.083-870 Campinas, São Paulo, Brazil.
| | - Maria Teresa Pedrosa Silva Clerici
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, 80th Monteiro Lobato Street, CEP 13.083-870 Campinas, São Paulo, Brazil.
| |
Collapse
|
23
|
Magwaza SN, Islam MS. Roles of Marine Macroalgae or Seaweeds and Their Bioactive Compounds in Combating Overweight, Obesity and Diabetes: A Comprehensive Review. Mar Drugs 2023; 21:md21040258. [PMID: 37103396 PMCID: PMC10142144 DOI: 10.3390/md21040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
Obesity and diabetes are matters of serious concern in the health sector due to their rapid increase in prevalence over the last three decades. Obesity is a severe metabolic problem that results in energy imbalance that is persistent over a long period of time, and it is characterized by insulin resistance, suggesting a strong association with type 2 diabetes (T2D). The available therapies for these diseases have side effects and some still need to be approved by the Food and Drug Administration (FDA), and they are expensive for underdeveloped countries. Hence, the need for natural anti-obesity and anti-diabetic drugs has increased in recent years due to their lower costs and having virtually no or negligible side effects. This review thoroughly examined the anti-obesity and anti-diabetic effects of various marine macroalgae or seaweeds and their bioactive compounds in different experimental settings. According to the findings of this review, seaweeds and their bioactive compounds have been shown to have strong potential to alleviate obesity and diabetes in both in vitro and in vivo or animal-model studies. However, the number of clinical trials in this regard is limited. Hence, further studies investigating the effects of marine algal extracts and their bioactive compounds in clinical settings are required for developing anti-obesity and anti-diabetic medicines with better efficacy but lower or no side effects.
Collapse
Affiliation(s)
- S'thandiwe Nozibusiso Magwaza
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban 4000, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban 4000, South Africa
| |
Collapse
|
24
|
Hu DB, Xue R, Zhuang XC, Zhang XS, Shi SL. Ultrasound-assisted extraction optimization of polyphenols from Boletus bicolor and evaluation of its antioxidant activity. Front Nutr 2023; 10:1135712. [PMID: 37063317 PMCID: PMC10090463 DOI: 10.3389/fnut.2023.1135712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionBoletus bicolor (B. bicolor) mushrooms are widely consumed as a valuable medicinal and dietary ingredient in China, but the active ingredients of this mushroom and their extraction methods were not extensively studied.MethodsIn this paper, we propose an optimized ultrasound-assisted extraction (UAE) method to detect natural antioxidant substances in B. bicolor. The antioxidants were quantitatively and quantitatively determined using UPLC-MS, the polyphenols were evaluated based on response surface methodology (RSM), and density functional theory (DFT) calculations were performed.ResultsThe results showed that the optimal extraction was obtained under the following conditions: ethanol concentration 42%; solvent to solid ratio 34:1 mL/g; ultrasonic time 41 min; and temperature 40°C. The optimized experimental polyphenol value obtained under these conditions was (13.69 ± 0.13) mg/g, consistent with the predicted value of 13.72 mg/g. Eight phenolic compounds in the extract were identiffed by UPLC-MS: syringic acid, chlorogenic acid, gallic acid, rosmarinic acid, protocatechuic acid, catechin, caffeic acid, and quercetin. Chlorogenic acid exhibits the highest HOMO energy (−0.02744 eV) and the lowest energy difference (−0.23450 eV) among the studied compounds, suggesting that the compound might be the strongest antioxidant molecule. Eight phenolic compounds from the B. bicolor signiffcantly inhibited intracellular reactive oxygen species (ROS) generation, reduced oxidative stress damage in H2O2-induced HepG-2 cells.DiscussionTherefore, it was confirmed that the UAE technique is an efficient, rapid, and simple approach for extracting polyphenols with antioxidant activity from B. bicolor.
Collapse
|
25
|
Woo GE, Hwang HJ, Park AY, Sim JY, Woo SY, Kim MJ, Jeong SM, Sung NY, Kim DS, Ahn DH. Anti-Atopic Activities of Sargassum horneri Hot Water Extracts in 2,4-Dinitrochlorobezene-Induced Mouse Models. J Microbiol Biotechnol 2023; 33:363-370. [PMID: 36775854 PMCID: PMC10084757 DOI: 10.4014/jmb.2211.11007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/18/2022] [Indexed: 02/14/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammation associated with skin hypersensitivity caused by environmental factors. The objent of this study was to assess the hot water extracts of Sargassum horneri (SHHWE) on AD. AD was induced by spreading 2,4-dinitrochlorobenzene (DNCB) on the BALB/c mice. The efficacy of SHHWE was tested by observing the immunoglobulin E (IgE), cytokine, skin clinical severity score and cytokine secretions in concanavalin A (Con A)-stimulated splenocytes. The levels of interleukine (IL)-4, IL-5 and IgE, the pro-inflammatory cytokines that are closely related, were notably suppressed in a does-dependent manner by SHHWE, whereas the level of interferon γ (IFN-γ), the atopy-related Th1 cytokine inhibiting the production of Th2 cytokines, was increased. Therefore, these results show that SHHWE has a potent anti-inhibitory effect on AD and is highly valuable for cosmetic development.
Collapse
Affiliation(s)
- Ga-Eun Woo
- Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Hye-Ji Hwang
- Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - A-Yeoung Park
- Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Ji-Yoon Sim
- Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Seon-Young Woo
- Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Min-Ji Kim
- Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - So-Mi Jeong
- Institute of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Nak-Yun Sung
- Division of Natural Product Research, Korea Prime Pharmacy CO., LTD., Jeonnam 58144, Korea
| | - Dong-Sub Kim
- Division of Natural Product Research, Korea Prime Pharmacy CO., LTD., Jeonnam 58144, Korea
| | - Dong-Hyun Ahn
- Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
26
|
Gandla K, Babu AK, Unnisa A, Sharma I, Singh LP, Haque MA, Dashputre NL, Baig S, Siddiqui FA, Khandaker MU, Almujally A, Tamam N, Sulieman A, Khan SL, Emran TB. Carotenoids: Role in Neurodegenerative Diseases Remediation. Brain Sci 2023; 13:brainsci13030457. [PMID: 36979267 PMCID: PMC10046158 DOI: 10.3390/brainsci13030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Numerous factors can contribute to the development of neurodegenerative disorders (NDs), such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Oxidative stress (OS), a fairly common ND symptom, can be caused by more reactive oxygen species being made. In addition, the pathological state of NDs, which includes a high number of protein aggregates, could make chronic inflammation worse by activating microglia. Carotenoids, often known as "CTs", are pigments that exist naturally and play a vital role in the prevention of several brain illnesses. CTs are organic pigments with major significance in ND prevention. More than 600 CTs have been discovered in nature, and they may be found in a wide variety of creatures. Different forms of CTs are responsible for the red, yellow, and orange pigments seen in many animals and plants. Because of their unique structure, CTs exhibit a wide range of bioactive effects, such as anti-inflammatory and antioxidant effects. The preventive effects of CTs have led researchers to find a strong correlation between CT levels in the body and the avoidance and treatment of several ailments, including NDs. To further understand the connection between OS, neuroinflammation, and NDs, a literature review has been compiled. In addition, we have focused on the anti-inflammatory and antioxidant properties of CTs for the treatment and management of NDs.
Collapse
Affiliation(s)
- Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to be University), Hanamakonda 506001, Telangana, India
| | - Ancha Kishore Babu
- School of Pharmacy, KPJ Healthcare University, Persiaran Seriemas, Nilai 71800, Negeri Sembilan, Malaysia
| | - Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il 55476, Saudi Arabia
| | - Indu Sharma
- Department of Physics, Career Point University, Hamirpur 176041, Himachal Pradesh, India
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Jamuhar, Sasaram 821305, Bihar, India
| | - Mahammad Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Hyderabad 500088, Telangana, India
| | - Neelam Laxman Dashputre
- Department of Pharmacology, METs, Institute of Pharmacy Bhujbal Knowledge City, Adgaon, Nashik 422003, Maharashtra, India
| | - Shahajan Baig
- Clinical Research Associate, Clinnex, Ahmedabad 380054, Gujarat, India
| | - Falak A Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| | - Abdullah Almujally
- Department of Biomedical Physics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Nissren Tamam
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abdelmoneim Sulieman
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, P.O. Box 422, Alkharj 11942, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
27
|
Truong TPT, Tran TM, Dai TXT, Tran CL. Antihyperglycemic and anti-type 2 diabetic activity of marine hydroquinone isolated from brown algae (Dictyopteris polypodioides). J Tradit Complement Med 2023. [DOI: 10.1016/j.jtcme.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
|
28
|
Kumar A, Hanjabam MD, Kishore P, Uchoi D, Panda SK, Mohan CO, Chatterjee NS, Zynudheen AA, Ravishankar CN. Exploitation of Seaweed Functionality for the Development of Food Products. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
29
|
Rizzo G, Baroni L, Lombardo M. Promising Sources of Plant-Derived Polyunsaturated Fatty Acids: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1683. [PMID: 36767052 PMCID: PMC9914036 DOI: 10.3390/ijerph20031683] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/01/2023]
Abstract
(1) Background: Polyunsaturated fatty acids (PUFAs) are known for their ability to protect against numerous metabolic disorders. The consumption of oily fish is the main source of PUFAs in human nutrition and is commonly used for supplement production. However, seafood is an overexploited source that cannot be guaranteed to cover the global demands. Furthermore, it is not consumed by everyone for ecological, economic, ethical, geographical and taste reasons. The growing demand for natural dietary sources of PUFAs suggests that current nutritional sources are insufficient to meet global needs, and less and less will be. Therefore, it is crucial to find sustainable sources that are acceptable to all, meeting the world population's needs. (2) Scope: This review aims to evaluate the recent evidence about alternative plant sources of essential fatty acids, focusing on long-chain omega-3 (n-3) PUFAs. (3) Method: A structured search was performed on the PubMed search engine to select available human data from interventional studies using omega-3 fatty acids of non-animal origin. (4) Results: Several promising sources have emerged from the literature, such as algae, microorganisms, plants rich in stearidonic acid and GM plants. However, the costs, acceptance and adequate formulation deserve further investigation.
Collapse
Affiliation(s)
- Gianluca Rizzo
- Independent Researcher, Via Venezuela 66, 98121 Messina, Italy
| | - Luciana Baroni
- Scientific Society for Vegetarian Nutrition, 30171 Venice, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, 00166 Rome, Italy
| |
Collapse
|
30
|
Murakami S, Hirazawa C, Mizutani T, Yoshikawa R, Ohya T, Ma N, Owaki Y, Owaki T, Ito T, Matsuzaki C. The anti-obesity and anti-diabetic effects of the edible seaweed Gloiopeltis furcata (Postels et Ruprecht) J. Agardh in mice fed a high-fat diet. Food Sci Nutr 2023; 11:599-610. [PMID: 36655073 PMCID: PMC9834850 DOI: 10.1002/fsn3.3100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2023] Open
Abstract
Obesity and diabetes are serious, chronic medical conditions associated with a wide range of life-threatening conditions. The aim of this study was to investigate the effects of the edible red seaweed Gloiopeltis furcata (Postels et Ruprecht) J. Agardh (G. furcata) on the development of obesity, diabetes and related metabolic diseases in mice. Male C57BL/6J mice were fed a high-fat (HF) diet (60% energy as fat), or an HF diet containing 2% (w/w) or 6% powdered G. furcata for 13 weeks. Polysaccharides of G. furcata were isolated and their anti-inflammatory effects were evaluated in lipopolysaccharide-stimulated RAW264.7 cells. The HF diet group showed greater weight gain, lipid accumulation in the body and liver, and increased serum levels of glucose and cholesterol in comparison to the normal group fed a normal diet (10% energy as fat). The treatment of HF diet mice with G. furcata reduced these changes and stimulated the fecal excretion of fat. In addition, G. furcata suppressed the HF diet-induced elevation of inflammation and oxidative stress markers in the serum and liver. The isolated sulfated polysaccharide from G. furcata inhibited pancreatic lipase activity and decreased the production of nitric oxide and TNF-α in the murine macrophage cell line RAW264.7. These results show that G. furcata treatment can attenuate obesity, diabetes, hepatic steatosis, and dyslipidemia in mice fed an HF diet, which is associated with inhibited intestinal fat absorption and reduced inflammation and oxidative stress by a sulfated polysaccharide.
Collapse
Affiliation(s)
- Shigeru Murakami
- Department of Bioscience and BiotechnologyFukui Prefectural UniversityFukuiJapan
- Fukui Bioincubation Center (FBIC)Fukui Prefectural UniversityFukuiJapan
| | - Chihiro Hirazawa
- Department of Bioscience and BiotechnologyFukui Prefectural UniversityFukuiJapan
| | - Toshiki Mizutani
- Department of Bioscience and BiotechnologyFukui Prefectural UniversityFukuiJapan
| | - Rina Yoshikawa
- Department of Bioscience and BiotechnologyFukui Prefectural UniversityFukuiJapan
| | - Takuma Ohya
- Department of Bioscience and BiotechnologyFukui Prefectural UniversityFukuiJapan
| | - Ning Ma
- Division of Health Science, Graduate School of Health ScienceSuzuka UniversitySuzukaJapan
| | | | | | - Takashi Ito
- Department of Bioscience and BiotechnologyFukui Prefectural UniversityFukuiJapan
- Fukui Bioincubation Center (FBIC)Fukui Prefectural UniversityFukuiJapan
| | - Chiaki Matsuzaki
- Research Institute for Bioresources and BiotechnologyIshikawa Prefectural UniversityNonoichiJapan
| |
Collapse
|
31
|
Description and Genomic Characterization of Oceaniferula flavus sp. nov., a Novel Potential Polysaccharide-Degrading Candidate of the Difficult-to-Cultivate Phylum Verrucomicrobiota Isolated from Seaweed. Mar Drugs 2022; 21:md21010031. [PMID: 36662204 PMCID: PMC9865893 DOI: 10.3390/md21010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
A novel strain, isolate 5K15T, which belongs to difficult-to-cultivate phylum Verrucomicrobiota, was recovered from kelp collected from Li Island, Rongcheng, China. The genome sequence of the strain (genome size 3.95 Mbp) showed the presence of four putative biosynthetic gene clusters (BGCs), namely, two terpene biosynthetic gene clusters, one aryl polyene biosynthetic cluster, and one type III PKS cluster. Genomic analysis revealed 79 sulfatase-encoded genes, 24 sulfatase-like hydrolase/transferase-encoded genes, and 25 arylsulfatase-encoded genes, which indicated the great potential of 5K15T to degrade sulfated polysaccharides. Comparative analysis of 16S rRNA gene sequence showed that the novel strain was most closely related to Oceaniferula marina N1E253T (96.4%). On the basis of evidence from a polyphasic study, it is proposed that the strain 5K15T (= KCTC 82748T = MCCC 1H00442T = SDUM 810003T) be classified as Oceaniferula flavus sp. nov. The strain has the ability of carbohydrate transport and metabolism. This ability allows it to survive in carbohydrate-rich materials such as kelp. It has the potential to be used in the marine drug industry using seaweed.
Collapse
|
32
|
Gregersen Echers S, Abdul-Khalek N, Mikkelsen RK, Holdt SL, Jacobsen C, Hansen EB, Olsen TH, Sejberg JJ, Overgaard MT. Is Gigartina a potential source of food protein and functional peptide-based ingredients? Evaluating an industrial, pilot-scale extract by proteomics and bioinformatics. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
33
|
Yang Y, Hassan SH, Awasthi MK, Gajendran B, Sharma M, Ji MK, Salama ES. The recent progress on the bioactive compounds from algal biomass for human health applications. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
34
|
A Comprehensive Review of the Cardioprotective Effect of Marine Algae Polysaccharide on the Gut Microbiota. Foods 2022; 11:foods11223550. [PMID: 36429141 PMCID: PMC9689188 DOI: 10.3390/foods11223550] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Cardiovascular disease (CVD) is the number one cause of death worldwide. Recent evidence has demonstrated an association between the gut microbiota and CVD, including heart failure, cerebrovascular illness, hypertension, and stroke. Marine algal polysaccharides (MAPs) are valuable natural sources of diverse bioactive compounds. MAPs have many pharmaceutical activities, including antioxidant, anti-inflammatory, immunomodulatory, and antidiabetic effects. Most MAPs are not utilized in the upper gastrointestinal tract; however, they are fermented by intestinal flora. The relationship between MAPs and the intestinal microbiota has drawn attention in CVD research. Hence, this review highlights the main action by which MAPs are known to affect CVD by maintaining homeostasis in the gut microbiome and producing gut microbiota-generated functional metabolites and short chain fatty acids. In addition, the effects of trimethylamine N-oxide on the gut microbiota composition, bile acid signaling properties, and CVD prevention are also discussed. This review supports the idea that focusing on the interactions between the host and gut microbiota may be promising for the prevention or treatment of CVD. MAPs are a potential sustainable source for the production of functional foods or nutraceutical products for preventing or treating CVD.
Collapse
|
35
|
Marine algae colorants: Antioxidant, anti-diabetic properties and applications in food industry. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Kim YJ, Kim KH, Kim HY, Kang SM, Hong GL, Lee HJ, Lim SS, Jung JY. Sargassum horneri Extract Alleviates Testosterone-Induced Benign Prostatic Hyperplasia In Vitro and In Vivo. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2132126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yae-Ji Kim
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, Republic of Korea
| | - Kyung-Hyun Kim
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun-Yong Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon-si, Republic of Korea
| | - Sung-Mo Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon-si, Republic of Korea
| | - Geum-Lan Hong
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, Republic of Korea
| | - Hui-Ju Lee
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, Republic of Korea
| | - Soon-Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon-si, Republic of Korea
| | - Ju-Young Jung
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
37
|
Sulfated Polysaccharides from Chaetoceros muelleri: Macromolecular Characteristics and Bioactive Properties. BIOLOGY 2022; 11:biology11101476. [PMID: 36290380 PMCID: PMC9598382 DOI: 10.3390/biology11101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
Abstract
Simple Summary Algae are an important source of bioactive compounds. The interest in microalgae is increasing due to their high-value products and the advantage of biomass cultivation under controlled conditions. Polysaccharides are released by algae and microalgae species and have been reported to have bioactivities found beneficial to human health. Despite the recognized importance of these organisms, the structure of polysaccharides in microalgae has been practically unexplored in contrast to that of macroalgae. Only a few microalgae polysaccharide structures have been solved due to the difficulties in the extraction of pure samples and the complexity of their chemical structures. Reports emphasize how the molecular weight, the content of sulfate groups, and the negative charge may be responsible for their multiple bioactivities. To better understand the uses and potential applications of extracellular polysaccharides, it is necessary to know their structure and physicochemical properties, which include molecular weight and chain conformation, since they are decisive in their biochemical behavior. Abstract In the present study, a culture of Chaetoceros muelleri, a cosmopolitan planktonic diatom microalga present in the Sea of Cortez, was established under controlled laboratory conditions. A sulfated polysaccharide (CMSP) extraction was carried out from the biomass obtained, resulting in a yield of 2.2% (w/w of dry biomass). The CMSP sample was analyzed by Fourier transform infrared spectroscopy, showing bands ranging from 3405 to 590 cm−1 and a sulfate substitution degree of 0.10. Scanning electron microscopy with elemental analysis revealed that the CMSP particles are irregularly shaped with non-acute angles and contain sulfur. High-performance liquid chromatography coupled to a dynamic light-scattering detector yielded molecular weight (Mw), polydispersity index (PDI), intrinsic viscosity [η], and hydrodynamic radius (Rh) values of 4.13 kDa, 2.0, 4.68 mL/g, and 1.3 nm, respectively, for the CMSP. This polysaccharide did not present cytotoxicity in CCD-841 colon cells. The antioxidant activity and the glycemic index of the CMSP were 23% and 49, respectively, which gives this molecule an added value by keeping low glycemic levels and exerting antioxidant activity simultaneously.
Collapse
|
38
|
Sultana F, Wahab MA, Nahiduzzaman M, Mohiuddin M, Iqbal MZ, Shakil A, Mamun AA, Khan MSR, Wong L, Asaduzzaman M. Seaweed farming for food and nutritional security, climate change mitigation and adaptation, and women empowerment: A review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Siddiqui NZ, Rehman AU, Yousuf W, khan AI, Farooqui NA, Zang S, Xin Y, Wang L. Effect of crude polysaccharide from seaweed, Dictyopteris divaricata (CDDP) on gut microbiota restoration and anti-diabetic activity in streptozotocin (STZ)-induced T1DM mice. Gut Pathog 2022; 14:39. [PMID: 36115959 PMCID: PMC9482207 DOI: 10.1186/s13099-022-00512-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
Type-1 Diabetes Mellitus (T1DM) is regarded as a multifunctional, immune-related disease which causes massive destruction of islet β-cells in pancreas resulting in hyperglycemic, hypoinsulinemia and hyperlipidimic conditions. The aim of the present study, was to investigate the hypothesis that streptozotocin (STZ)-induced T1DM in Balb/c mice when treated with crude polysaccharide from seaweed, Dictyopteris divaricata (CDDP) depicts improvement in diabetes-related symptoms. Treatment with CDDP resulted in decreased body weight loss, improved food consumption and water intake disbalances. The CDDP effectively improved fasting blood glucose, oral glucose tolerance (OGTT), serum insulin, insulin secretion, rejuvenation of β-cells mass, serum lipid profile and pro-inflammatory cytokines levels. Additionally, treatment with CDDP increased the population of beneficial bacteria such as Firmicutes, Bacteroidetes and Lactobacillus at phylum, family and genus levels by 16S rRNA sequencing. Furthermore, immunohistological examination confirmed that CDDP reduces the inflammation and restored the structural morphology of colon and upraised the levels of insulin receptor substrate-1 (IRS-1), Mucin-2 (MUC-2) and tight-junction proteins (TJs) whereby maintaining the gut structures and barrier permeability. Thus, the above presented data, highlights the safe and therapeutic effects of crude polysaccharide (CDDP) from D. divaricata in the treatment and restoration of T1DM disorders and can be used as a food supplement alternative to diabetes medicine.
Collapse
|
40
|
Yao W, Qiu HM, Cheong KL, Zhong S. Advances in anti-cancer effects and underlying mechanisms of marine algae polysaccharides. Int J Biol Macromol 2022; 221:472-485. [PMID: 36089081 DOI: 10.1016/j.ijbiomac.2022.09.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/08/2022] [Accepted: 09/06/2022] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death in both developing and developed countries. With the increase in the average global life expectancy, it has become a major health problem and burden for most public healthcare systems worldwide. Due to the fewer side effects of natural compounds than of chemotherapeutic drugs, increasing scientific attention is being focused on the development of anti-cancer drugs derived from natural sources. Marine algae are an interesting source of functional compounds with diverse health-promoting activities. Among these compounds, polysaccharides have attracted considerable interest for many years because of their excellent anti-cancer abilities. They improve the efficacy of conventional chemotherapeutic drugs with relatively low toxicity to normal human cells. However, there are few reviews summarising the unique anti-cancer effects and underlying mechanisms of marine algae polysaccharides (MAPs). Thus, the current review focuses on updating the advances in the discovery and evaluation of MAPs with anti-cancer properties and the elucidation of their mechanisms of action, including the signalling pathways involved. This review aims to provide a deeper understanding of the anti-cancer functions of the natural compounds derived from medicinal marine algae and thereby offer a new perspective on cancer prevention and therapy with high effectiveness and safety.
Collapse
Affiliation(s)
- Wanzi Yao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Hua-Mai Qiu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China.
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, PR China.
| |
Collapse
|
41
|
Wang C, Ye Z, Wang Y, Fu L. Effect of the harvest period on the structure and anti-allergic activity of Porphyra haitanensis polysaccharides. Food Funct 2022; 13:10034-10045. [PMID: 36069516 DOI: 10.1039/d2fo01442d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polysaccharides are a major functional component of seaweeds with various biological activities. Porphyra haitanensis is usually harvested in different growth periods, but how the harvest periods influence the Porphyra haitanensis polysaccharide (PHP) activity is unclear. This work aimed to evaluate the anti-allergic activity of PHP from different harvest periods and investigate the potential structure-activity relationship. The water-soluble polysaccharide of P. haitanensis from three different harvest periods was purified and administered to an ovalbumin-sensitized food allergy mouse model. Results showed that PHPs significantly alleviated the allergic symptoms and reduced the production of histamine and allergen-specific IgE. Further experiments elucidated that PHPs suppressed the allergic activity of intestinal epithelial cells, dendritic cells, and Th2 cells and downregulated the proportion of Th2 cells. Noticeably, the molecular weight and sulfate content gradually decreased as the harvest period was delayed; simultaneously, the anti-allergic activity gradually increased, implying a relationship between the harvest period, structure, and anti-allergic activity of PHPs. This work elucidated the anti-allergic activity of PHPs from different harvest periods, facilitated the deep-processing and efficient application of Porphyra haitanensis, and shed light on the development of novel anti-allergic functional foods.
Collapse
Affiliation(s)
- Chong Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| | - Ziqiang Ye
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| |
Collapse
|
42
|
Bioactive phlorotannin as autophagy modulator in cervical cancer cells and advanced glycation end products inhibitor in glucotoxic C. elegans. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
43
|
Fu Y, Xie D, Zhu Y, Zhang X, Yue H, Zhu K, Pi Z, Dai Y. Anti-colorectal cancer effects of seaweed-derived bioactive compounds. Front Med (Lausanne) 2022; 9:988507. [PMID: 36059851 PMCID: PMC9437318 DOI: 10.3389/fmed.2022.988507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/01/2022] [Indexed: 12/12/2022] Open
Abstract
Seaweeds are classified as Chlorophyta, Rhodophyta, and Phaeophyta. They constitute a number of the most significant repositories of new therapeutic compounds for human use. Seaweed has been proven to possess diverse bioactive properties, which include anticancer properties. The present review focuses on colorectal cancer, which is a primary cause of cancer-related mortality in humans. In addition, it discusses various compounds derived from a series of seaweeds that have been shown to eradicate or slow the progression of cancer. Therapeutic compounds extracted from seaweed have shown activity against colorectal cancer. Furthermore, the mechanisms through which these compounds can induce apoptosis in vitro and in vivo were reviewed. This review emphasizes the potential utility of seaweeds as anticancer agents through the consideration of the capability of compounds present in seaweeds to fight against colorectal cancer.
Collapse
Affiliation(s)
- Yunhua Fu
- Changchun University of Chinese Medicine, Changchun, China
| | - Dong Xie
- Changchun University of Chinese Medicine, Changchun, China
| | - Yinghao Zhu
- Changchun University of Chinese Medicine, Changchun, China
| | - Xinyue Zhang
- Jilin Academy of Agricultural Machinery, Changchun, China
| | - Hao Yue
- Changchun University of Chinese Medicine, Changchun, China
| | - Kai Zhu
- Changchun University of Chinese Medicine, Changchun, China
| | - Zifeng Pi
- Changchun University of Chinese Medicine, Changchun, China
- Zifeng Pi
| | - Yulin Dai
- Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Yulin Dai
| |
Collapse
|
44
|
Yang Y, Yu D, Piao W, Huang K, Zhao L. Nutrient-Derived Beneficial for Blood Pressure Dietary Pattern Associated with Hypertension Prevention and Control: Based on China Nutrition and Health Surveillance 2015–2017. Nutrients 2022; 14:nu14153108. [PMID: 35956285 PMCID: PMC9370233 DOI: 10.3390/nu14153108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Background: Greater adherence of Dietary Approach to Stop Hypertension (DASH) or the Mediterranean dietary pattern were reported to be beneficial for blood pressure. However, both were established based on Western populations. Our current study aimed to explore a dietary pattern which might be suitable for hypertension prevention and control among Chinese adults nationwide. Methods: A total of 61,747 Chinese adults aged over 18 years from China Nutrition and Health Surveillance 2015–2017 was included in this study. Using reduced-rank regression (RRR) method, a dietary pattern with higher intakes of those nutrients which are inversely associated with the risk of hypertension was identified. DASH-score was also calculated for each participant for further validate the dietary pattern derived by RRR method. Multi-adjustment logistic regression was applied to examine the association between above two dietary patterns and hypertension prevention and control. Results: Dietary pattern named Beneficial for Blood Pressure (BBP) diet was characterized by higher fresh vegetables and fruits, mushrooms/edible fungi, dairy products, seaweeds, fresh eggs, nuts and seeds, legumes and related products, aquatic products, coarse cereals, and less refined grains and alcohol consumption. After multiple adjustment, protective effects showed on both hypertension prevention and control (for prevention: Q5 vs. Q1, OR = 0.842, 95% CI = 0.791–0.896; for control: Q5 vs. Q1, OR = 0.762, 95% CI = 0.629–0.924). For the DASH-diet, significant results were also observed (for prevention: Q5 vs. Q1, OR = 0.912, 95% CI = 0.854–0.973; for control: Q5 vs. Q1, OR = 0.76, 95% CI = 0.616–0.938). Conclusions: BBP-diet derived from Chinese adults has high conformity with the DASH-diet, and it might serve as an adjuvant method for both hypertension prevention and control.
Collapse
|
45
|
Enhancement of the Antihypertensive Effect of Fermented Sargassum horneri with Lactiplantibacillus pentosus SN001. FERMENTATION 2022. [DOI: 10.3390/fermentation8070330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sargassum horneri is a seaweed with antihypertensive properties. However, it is underutilized in some areas, and effective utilization methods are being sought. In this study, we prepared a fermented S. horneri using lactic acid bacteria Lactiplantibacillus pentosus SN001 and investigated its effective utilization by enhancing its antihypertensive effect. The ACE inhibitory activity of S. horneri ranged from 3.6% to a maximum of 63.3% after fermentation. In vivo studies using mice and spontaneously hypertensive rats (SHR) suggested an antihypertensive effect of fermented S. horneri. Purification and NMR analysis of the ACE inhibitory component in fermented S. horneri identified glycerol. Therefore, it is suggested that glycerol is responsible for the strong antihypertensive effect of fermented S. horneri. In conclusion, S. horneri is expected to be used as a dietary ingredient with enhanced antihypertensive effect by fermentation with L. pentosus SN001.
Collapse
|
46
|
Chen H, Qi H, Xiong P. Phycobiliproteins-A Family of Algae-Derived Biliproteins: Productions, Characterization and Pharmaceutical Potentials. Mar Drugs 2022; 20:md20070450. [PMID: 35877743 PMCID: PMC9318637 DOI: 10.3390/md20070450] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Phycobiliproteins (PBPs) are colored and water-soluble biliproteins found in cyanobacteria, rhodophytes, cryptomonads and cyanelles. They are divided into three main types: allophycocyanin, phycocyanin and phycoerythrin, according to their spectral properties. There are two methods for PBPs preparation. One is the extraction and purification of native PBPs from Cyanobacteria, Cryptophyta and Rhodophyta, and the other way is the production of recombinant PBPs by heterologous hosts. Apart from their function as light-harvesting antenna in photosynthesis, PBPs can be used as food colorants, nutraceuticals and fluorescent probes in immunofluorescence analysis. An increasing number of reports have revealed their pharmaceutical potentials such as antioxidant, anti-tumor, anti-inflammatory and antidiabetic effects. The advances in PBP biogenesis make it feasible to construct novel PBPs with various activities and produce recombinant PBPs by heterologous hosts at low cost. In this review, we present a critical overview on the productions, characterization and pharmaceutical potentials of PBPs, and discuss the key issues and future perspectives on the exploration of these valuable proteins.
Collapse
Affiliation(s)
- Huaxin Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China;
- Correspondence:
| | - Hongtao Qi
- School of Life Sciences, Qingdao University, Qingdao 266000, China;
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China;
| |
Collapse
|
47
|
Cheong KL, Li JK, Zhong S. Preparation and Structure Characterization of High-Value Laminaria digitata Oligosaccharides. Front Nutr 2022; 9:945804. [PMID: 35873409 PMCID: PMC9301192 DOI: 10.3389/fnut.2022.945804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/06/2022] [Indexed: 12/19/2022] Open
Abstract
Algae-derived marine oligosaccharides have been reported to be promising bioactive compounds because of their various properties with health benefits and potential significance in numerous applications in industrial biotechnology. In this study, laminaran oligosaccharides (LOs) with varying degrees of polymerization were obtained through partial acid hydrolysis of laminaran derived from Laminaria digitata. Based on response surface methodology, the optimum LOs yield was obtained for acid hydrolysis laminaran at a hydrolysis time of 55 min, temperature of 71°C, and acid concentration of 1.00 mol/L. The size-exclusion resin Bio-Gel P-2 was considered to be a better option for LOs purification. The structure of the purified oligosaccharides was analyzed through mass spectrometry and nuclear magnetic resonance. They demonstrated the main oligosaccharide structure corresponding to the connection of glucose with β-D-Glcp-(1→3)-β-D-Glcp, which was identified as laminaribiose (DP2), laminaritriose (DP3), laminaritetrose (DP4), and laminaripentaose (DP5). LOs demonstrate excellent antioxidant activities, as evidenced from their reactions with oxidizing free radicals, 1, 1-diphenyl-2-picryl-hydrazyl, and 2, 2′-azino-bis (3-etilbenzotiazoline-6-sulfonic acid) radicals. LOs exhibited a prebiotic effect on the growth of Bifidobacterium adolescentis and Lactobacillus plantarum. Therefore, we propose the development of LOs as natural antioxidants and prebiotics in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Jia-Kang Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- *Correspondence: Saiyi Zhong,
| |
Collapse
|
48
|
Mendes MC, Navalho S, Ferreira A, Paulino C, Figueiredo D, Silva D, Gao F, Gama F, Bombo G, Jacinto R, Aveiro SS, Schulze PSC, Gonçalves AT, Pereira H, Gouveia L, Patarra RF, Abreu MH, Silva JL, Navalho J, Varela JCS, Speranza LG. Algae as Food in Europe: An Overview of Species Diversity and Their Application. Foods 2022; 11:foods11131871. [PMID: 35804686 PMCID: PMC9265617 DOI: 10.3390/foods11131871] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 01/16/2023] Open
Abstract
Algae have been consumed for millennia in several parts of the world as food, food supplements, and additives, due to their unique organoleptic properties and nutritional and health benefits. Algae are sustainable sources of proteins, minerals, and fiber, with well-balanced essential amino acids, pigments, and fatty acids, among other relevant metabolites for human nutrition. This review covers the historical consumption of algae in Europe, developments in the current European market, challenges when introducing new species to the market, bottlenecks in production technology, consumer acceptance, and legislation. The current algae species that are consumed and commercialized in Europe were investigated, according to their status under the European Union (EU) Novel Food legislation, along with the market perspectives in terms of the current research and development initiatives, while evaluating the interest and potential in the European market. The regular consumption of more than 150 algae species was identified, of which only 20% are approved under the EU Novel Food legislation, which demonstrates that the current legislation is not broad enough and requires an urgent update. Finally, the potential of the European algae market growth was indicated by the analysis of the trends in research, technological advances, and market initiatives to promote algae commercialization and consumption.
Collapse
Affiliation(s)
- Madalena Caria Mendes
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Sofia Navalho
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Alice Ferreira
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy Unit, 1649-038 Lisbon, Portugal;
| | - Cristina Paulino
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Daniel Figueiredo
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Daniel Silva
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Fengzheng Gao
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands;
| | - Florinda Gama
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Gabriel Bombo
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Rita Jacinto
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Susana S. Aveiro
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Peter S. C. Schulze
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Ana Teresa Gonçalves
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Hugo Pereira
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
| | - Luisa Gouveia
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy Unit, 1649-038 Lisbon, Portugal;
| | - Rita F. Patarra
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, Faculty of Sciences and Technology, University of the Azores, 500-321 Ponta Delgada, Portugal;
- Expolab—Ciência Viva Science Centre, Avenida da Ciência—Beta, 9560-421 Lagoa, Portugal
| | - Maria Helena Abreu
- ALGAplus, Produção e Comercialização de Algas e Seus Derivados, Lda., 3830-196 Ílhavo, Portugal;
| | - Joana L. Silva
- Allmicroalgae—Natural Products, 2445-413 Pataias, Portugal;
| | - João Navalho
- Necton S.A., Belamandil s/n, 8700-152 Olhão, Portugal;
| | - João C. S. Varela
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Lais Galileu Speranza
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.C.M.); (S.N.); (C.P.); (D.F.); (D.S.); (F.G.); (G.B.); (R.J.); (S.S.A.); (P.S.C.S.); (A.T.G.); (H.P.); (L.G.); (J.C.S.V.)
- Correspondence:
| |
Collapse
|
49
|
Cheng CS, Gu QH, Zhang JK, Tao JH, Zhao TR, Cao JX, Cheng GG, Lai GF, Liu YP. Phenolic Constituents, Antioxidant and Cytoprotective Activities, Enzyme Inhibition Abilities of Five Fractions from Vaccinium dunalianum Wight. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113432. [PMID: 35684371 PMCID: PMC9181978 DOI: 10.3390/molecules27113432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
The bud of Vaccinium dunalianum Wight has been traditionally consumed as health herbal tea by “Yi” people in Yunnan Province, China, which was locally named “Que Zui tea”. This paper studied the chemical constituents of five fractions from Vaccinium dunalianum, and their enzyme inhibitory effects of α-glucosidase and pancreatic lipase, antioxidant activity, and cytoprotective effects on H2O2-induced oxidative damage in HepG2 cells. The methanol extract of V. dunalianum was successively partitioned with petroleum ether (PF), chloroform (CF), ethyl acetate (EF), n-butanol (BF), and aqueous (WF) to obtain five fractions. The chemical profiling of the five fractions was analyzed by ultra-high-performance liquid chromatography coupled with a tandem mass spectrometry (UHPLC-MS/MS), and 18 compounds were tentatively identified. Compared to PF, CF, BF and WF, the EF revealed the highest total phenols (TPC) and total flavonoids (TFC), and displayed the strongest enzyme inhibition ability (α-glucosidase and pancreatic lipase) and antioxidant capacity (DPPH, ABTS and FRAP). Furthermore, these five fractions, especially EF, could effectively inhibit reactive oxygen species (ROS) production and cell apoptosis on H2O2-induced oxidative damage protection in HepG2 cells. This inhibitory effect might be caused by the up-regulation of intracellular antioxidant enzyme activity (CAT, SOD, and GSH). The flavonoids and phenolic acids of V. dunalianum might be the bioactive substances responsible for enzyme inhibitory, antioxidant, and cytoprotective activities.
Collapse
Affiliation(s)
- Chang-Shu Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Qing-Hui Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Jin-Ke Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Jun-Hong Tao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Tian-Rui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Jian-Xin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Gui-Guang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Guo-Fang Lai
- Yunnan Institute for Food and Drug Control, Kunming 650106, China
- Correspondence: (G.-F.L.); (Y.-P.L.)
| | - Ya-Ping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
- Correspondence: (G.-F.L.); (Y.-P.L.)
| |
Collapse
|
50
|
Matsuyama S, Shimazu T, Tomata Y, Zhang S, Abe S, Lu Y, Tsuji I. Japanese Diet and Mortality, Disability, and Dementia: Evidence from the Ohsaki Cohort Study. Nutrients 2022; 14:nu14102034. [PMID: 35631172 PMCID: PMC9146082 DOI: 10.3390/nu14102034] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/14/2022] Open
Abstract
The Japanese dietary pattern has long been discussed as one of the factors behind the longevity of Japanese people. However, the health benefits of the Japanese dietary pattern have not been fully elucidated. We published the first report in the world regarding the relation between the Japanese dietary pattern and cardiovascular disease mortality in 2007 using cohort studies including Japanese residents of Ohsaki City, Miyagi Prefecture, Japan. Since then, we have developed the Japanese Diet Index (JDI) that was based on previous findings to assess the degree of the Japanese dietary pattern and to advance the evidence on the health effects of the Japanese dietary pattern. So far, we have explored the associations between the JDI score (in quartiles) and various outcomes. For all-cause mortality, in comparison to Q1 (the lowest), the multivariable hazard ratios (HRs) and 95% confidence intervals (95%CIs) were 0.92 (0.85–1.00) for Q2, 0.91 (0.83–0.99) for Q3, and 0.91 (0.83–0.99) for Q4 (the highest). For functional disability, the multivariable HRs (95%CIs) were 0.94 (0.81–1.09) for Q2, 0.90 (0.77–1.05) for Q3, and 0.79 (0.68–0.92) for Q4. For dementia, the multivariable HRs (95%CIs) were 0.88 (0.74–1.05) for Q2, 0.87 (0.73–1.04) for Q3, 0.79 (0.66–0.95) for Q4. In addition, people with higher adherence to the Japanese dietary pattern also showed decreases in disability and dementia risks. The purpose of this article was to review all six papers, summarize the health effects of the Japanese dietary pattern, and discuss implications for future research.
Collapse
Affiliation(s)
- Sanae Matsuyama
- Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku University School of Public Health, Graduate School of Medicine, Sendai 980-8575, Japan; (S.M.); (Y.L.)
| | - Taichi Shimazu
- Division of Behavioral Sciences, Institute for Cancer Control, National Cancer Center, Tokyo 104-0045, Japan;
| | - Yasutake Tomata
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, Yokosuka 238-8522, Japan;
| | - Shu Zhang
- Department of Epidemiology of Aging, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan;
| | - Saho Abe
- General Affairs and Human Resources Division, ROHTO Pharmaceutical Co., Ltd., Osaka 544-8666, Japan;
| | - Yukai Lu
- Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku University School of Public Health, Graduate School of Medicine, Sendai 980-8575, Japan; (S.M.); (Y.L.)
| | - Ichiro Tsuji
- Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku University School of Public Health, Graduate School of Medicine, Sendai 980-8575, Japan; (S.M.); (Y.L.)
- Correspondence: ; Tel.: +81-22-717-8123; Fax: +81-22-717-8125
| |
Collapse
|