1
|
Ishibashi Y, Nagafuku N, Kimura S, Han X, Suzuki I. Development of an evaluation method for addictive compounds based on electrical activity of human iPS cell-derived dopaminergic neurons using microelectrode array. Addict Biol 2024; 29:e13443. [PMID: 39382235 PMCID: PMC11462589 DOI: 10.1111/adb.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/31/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
Addiction is known to occur through the consumption of substances such as pharmaceuticals, illicit drugs, food, alcohol and tobacco. These addictions can be viewed as drug addiction, resulting from the ingestion of chemical substances contained in them. Multiple neural networks, including the reward system, anti-reward/stress system and central immune system in the brain, are believed to be involved in the onset of drug addiction. Although various compound evaluations using microelectrode array (MEA) as an in vitro testing methods to evaluate neural activities have been conducted, methods for assessing addiction have not been established. In this study, we aimed to develop an in vitro method for assessing the addiction of compounds, as an alternative to animal experiments, using human iPS cell-derived dopaminergic neurons with MEA measurements. MEA data before and after chronic exposure revealed specific changes in addictive compounds compared to non-addictive compounds, demonstrating the ability to estimate addiction of compound. Additionally, conducting gene expression analysis on cultured samples after the tests revealed changes in the expression levels of various receptors (nicotine, dopamine and GABA) due to chronic administration of addictive compounds, suggesting the potential interpretation of these expression changes as addiction-like responses in MEA measurements. The addiction assessment method using MEA measurements in human iPS cell-derived dopaminergic neurons conducted in this study proves effective in evaluating addiction of compounds on human neural networks.
Collapse
Affiliation(s)
- Yuto Ishibashi
- Department of Electronics, Graduate School of EngineeringTohoku Institute of TechnologySendaiMiyagiJapan
| | - Nami Nagafuku
- Department of Electronics, Graduate School of EngineeringTohoku Institute of TechnologySendaiMiyagiJapan
| | - Shingo Kimura
- Department of Electronics, Graduate School of EngineeringTohoku Institute of TechnologySendaiMiyagiJapan
| | - Xiaobo Han
- Department of Electronics, Graduate School of EngineeringTohoku Institute of TechnologySendaiMiyagiJapan
| | - Ikuro Suzuki
- Department of Electronics, Graduate School of EngineeringTohoku Institute of TechnologySendaiMiyagiJapan
| |
Collapse
|
2
|
Koster M, van der Pluijm M, van de Giessen E, Schrantee A, van Hooijdonk CFM, Selten JP, Booij J, de Haan L, Ziermans T, Vermeulen J. The association of tobacco smoking and metabolite levels in the anterior cingulate cortex of first-episode psychosis patients: A case-control and 6-month follow-up 1H-MRS study. Schizophr Res 2024; 271:144-152. [PMID: 39029144 DOI: 10.1016/j.schres.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/07/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024]
Abstract
Tobacco smoking is highly prevalent among patients with psychosis and associated with worse clinical outcomes. Neurometabolites, such as glutamate and choline, are both implicated in psychosis and tobacco smoking. However, the specific associations between smoking and neurometabolites have yet to be investigated in patients with psychosis. The current study examines associations of chronic smoking and neurometabolite levels in the anterior cingulate cortex (ACC) in first-episode psychosis (FEP) patients and controls. Proton magnetic resonance spectroscopy (1H MRS) data of 59 FEP patients and 35 controls were analysed. Associations between smoking status (i.e., smoker yes/no) or cigarettes per day and Glx (glutamate + glutamine, as proxy for glutamate) and total choline (tCh) levels were assessed at baseline in both groups separately. For patients, six months follow-up data were acquired for multi-cross-sectional analysis using linear mixed models. No significant differences in ACC Glx levels were found between smoking (n = 28) and non-smoking (n = 31) FEP patients. Smoking patients showed lower tCh levels compared to non-smoking patients at baseline, although not surving multiple comparisons correction, and in multi-cross-sectional analysis (pFDR = 0.08 and pFDR = 0.044, respectively). Negative associations were observed between cigarettes smoked per day, and ACC Glx (pFDR = 0.02) and tCh levels (pFDR = 0.02) in controls. Differences between patients and controls regarding Glx might be explained by pre-existing disease-related glutamate deficits or alterations at nicotine acetylcholine receptor level, resulting in differences in tobacco-related associations with neurometabolites. Additionally, observed alterations in tCh levels, suggesting reduced cellular proliferation processes, might result from exposure to the neurotoxic effects of smoking.
Collapse
Affiliation(s)
- Merel Koster
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands.
| | - Marieke van der Pluijm
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Carmen F M van Hooijdonk
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands
| | - Jean-Paul Selten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Tim Ziermans
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Jentien Vermeulen
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
3
|
Sardari M, Mohammadpourmir F, Hosseinzadeh Sahafi O, Rezayof A. Neuronal biomarkers as potential therapeutic targets for drug addiction related to sex differences in the brain: Opportunities for personalized treatment approaches. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111068. [PMID: 38944334 DOI: 10.1016/j.pnpbp.2024.111068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Biological sex disparities manifest at various stages of drug addiction, including craving, substance abuse, abstinence, and relapse. These discrepancies are underpinned by notable distinctions in neurobiological substrates, encompassing brain structures, functions, and neurotransmitter systems implicated in drug addiction. Neuronal biomarkers, such as neurotransmitters, signaling proteins, and genes may be associated with the diagnosis, prognosis, and treatment outcomes in both biological sexes afflicted by drug abuse. Sex differences in the neural reward system, mainly through dopaminergic transmission during drug abuse, can be attributed to modifications in neurotransmitter systems and signaling pathways. This results in distinct patterns of neural activation and responsiveness to addictive substances in males and females. Sex hormones, the estrus/menstrual cycle, and cerebral neurochemistry contribute to the progression of psychological and physiological dependence in both male and female individuals grappling with addiction. Moreover, the alteration of sex hormone balance and neurotransmitter release plays a pivotal role in substance use disorders, subsequently modulating cognitive functions pertinent to reward, including memory formation, decision-making, and locomotor activity. Comparative investigations reveal distinctions in brain region volume, gene expression, neuronal firing, and circuitry in substance use disorders affecting individuals of both biological sexes. This review examines prevalent substance use disorders to elucidate the impact of sex hormones as therapeutic biomarkers on the mesocorticolimbic neurotransmitter systems via diverse mechanisms within the addicted brain. We underscore the imperative necessity of considering these variations to gain a deeper comprehension of addiction mechanisms and potentially discern sex-specific neuronal biomarkers for tailored therapeutic interventions.
Collapse
Affiliation(s)
- Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Farina Mohammadpourmir
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Happer JP, Courtney KE, Baca RE, Andrade G, Thompson C, Shen Q, Liu TT, Jacobus J. Nicotine use during late adolescence and young adulthood is associated with changes in hippocampal volume and memory performance. Front Neurosci 2024; 18:1436951. [PMID: 39221006 PMCID: PMC11361958 DOI: 10.3389/fnins.2024.1436951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Background With the advent of electronic nicotine delivery systems, the use of nicotine and tobacco products (NTPs) among adolescents and young adults remains high in the US. Use of e-cigarettes additionally elevates the risk of problematic use of other substances like cannabis, which is often co-used with NTPs. However, their effects on brain health, particularly the hippocampus, and cognition during this neurodevelopmental period are poorly understood. Methods Healthy late adolescents/young adults (N = 223) ages 16-22 completed a structural MRI to examine right and left hippocampal volumes. Memory was assessed with the NIH Toolbox Picture Sequence Memory Test (PSMT) and Rey Auditory Verbal Learning Test (RAVLT). Cumulative 6-month NTP and cannabis episodes were assessed and modeled continuously on hippocampal volumes. Participants were then grouped based on 6-month NTP use to examine relationships with the hippocampus and memory: current users (CU) endorsed weekly or greater use; light/abstinent users (LU) endorsed less than weekly; and never users (NU). Results NTP use predicted larger hippocampal volumes bilaterally while cannabis use had no impact nor interacted with NTP use. For memory, larger left hippocampal volumes were positively associated with PSMT performance, RAVLT total learning, short delay and long delay recall for the NU group. In contrast, there was a negative relationship between hippocampal volumes and performances for LU and CU groups. No differences were detected between NTP-using groups. Conclusion These results suggest that the hippocampus is sensitive to NTP exposure during late adolescence/young adulthood and may alter typical hippocampal morphometry in addition to brain-behavior relationships underlying learning and memory processes.
Collapse
Affiliation(s)
- Joseph P. Happer
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Kelly E. Courtney
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Rachel E. Baca
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Gianna Andrade
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Courtney Thompson
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Qian Shen
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Thomas T. Liu
- Center for Functional MRI, University of California, San Diego, San Diego, CA, United States
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Joanna Jacobus
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
5
|
Koster M, Mannsdörfer L, van der Pluijm M, de Haan L, Ziermans T, van Wingen G, Vermeulen J. The Association Between Chronic Tobacco Smoking and Brain Alterations in Schizophrenia: A Systematic Review of Magnetic Resonance Imaging Studies. Schizophr Bull 2024:sbae088. [PMID: 38824451 DOI: 10.1093/schbul/sbae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
BACKGROUND AND HYPOTHESIS The high co-occurrence of tobacco smoking in patients with schizophrenia spectrum disorders (SSD) poses a serious health concern, linked to increased mortality and worse clinical outcomes. The mechanisms underlying this co-occurrence are not fully understood. STUDY DESIGN Addressing the need for a comprehensive overview of the impact of tobacco use on SSD neurobiology, we conducted a systematic review of neuroimaging studies (including structural, functional, and neurochemical magnetic resonance imaging studies) that investigate the association between chronic tobacco smoking and brain alterations in patients with SSD. STUDY RESULTS Eight structural and fourteen functional studies were included. Structural studies show widespread independent and additive reductions in gray matter in relation to smoking and SSD. The majority of functional studies suggest that smoking might be associated with improvements in connectivity deficits linked to SSD. However, the limited number of and high amount of cross-sectional studies, and high between-studies sample overlap prevent a conclusive determination of the nature and extent of the impact of smoking on brain functioning in patients with SSD. Overall, functional results imply a distinct neurobiological mechanism for tobacco addiction in patients with SSD, possibly attributed to differences at the nicotinic acetylcholine receptor level. CONCLUSIONS Our findings highlight the need for more longitudinal and exposure-dependent studies to differentiate between inherent neurobiological differences and the (long-term) effects of smoking in SSD, and to unravel the complex interaction between smoking and schizophrenia at various disease stages. This could inform more effective strategies addressing smoking susceptibility in SSD, potentially improving clinical outcomes.
Collapse
Affiliation(s)
- Merel Koster
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lilli Mannsdörfer
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marieke van der Pluijm
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tim Ziermans
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Guido van Wingen
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jentien Vermeulen
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Chohan MO, Fein H, Mirro S, O'Reilly KC, Veenstra-VanderWeele J. Repeated chemogenetic activation of dopaminergic neurons induces reversible changes in baseline and amphetamine-induced behaviors. Psychopharmacology (Berl) 2023; 240:2545-2560. [PMID: 37594501 PMCID: PMC10872888 DOI: 10.1007/s00213-023-06448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
RATIONALE Repeated chemogenetic stimulation is often employed to study circuit function and behavior. Chronic or repeated agonist administration can result in homeostatic changes, but this has not been extensively studied with designer receptors exclusively activated by designer drugs (DREADDs). OBJECTIVES We sought to evaluate the impact of repeated DREADD activation of dopaminergic (DA) neurons on basal behavior, amphetamine response, and spike firing. We hypothesized that repeated DREADD activation would mimic compensatory effects that we observed with genetic manipulations of DA neurons. METHODS Excitatory hM3D(Gq) DREADDs were virally expressed in adult TH-Cre and WT mice. In a longitudinal design, clozapine N-oxide (CNO, 1.0 mg/kg) was administered repeatedly. We evaluated basal and CNO- or amphetamine (AMPH)-induced locomotion and stereotypy. DA neuronal activity was assessed using in vivo single-unit recordings. RESULTS Acute CNO administration increased locomotion, but basal locomotion decreased after repeated CNO exposure in TH-CrehM3Dq mice relative to littermate controls. Further, after repeated CNO administration, AMPH-induced hyperlocomotion and stereotypy were diminished in TH-CrehM3Dq mice relative to controls. Repeated CNO administration reduced DA neuronal firing in TH-CrehM3Dq mice relative to controls. A two-month CNO washout period rescued the decreases in basal locomotion and AMPH response. CONCLUSIONS We found that repeated DREADD activation of DA neurons evokes homeostatic changes that should be factored into the interpretation of chronic DREADD applications and their impact on circuit function and behavior. These effects are likely to also be seen in other neuronal systems and underscore the importance of studying neuroadaptive changes with chronic or repeated DREADD activation.
Collapse
Affiliation(s)
- Muhammad O Chohan
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA.
- New York State Psychiatric Institute, New York, NY, 10032, USA.
| | - Halli Fein
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, USA
| | - Sarah Mirro
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, USA
| | - Kally C O'Reilly
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| |
Collapse
|
7
|
Carreras-Gallo N, Dwaraka VB, Cáceres A, Smith R, Mendez TL, Went H, Gonzalez JR. Impact of tobacco, alcohol, and marijuana on genome-wide DNA methylation and its relationship with hypertension. Epigenetics 2023; 18:2214392. [PMID: 37216580 DOI: 10.1080/15592294.2023.2214392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/13/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Tobacco, alcohol, and marijuana consumption is an important public health problem because of their high use worldwide and their association with the risk of mortality and many health conditions, such as hypertension, which is the commonest risk factor for death throughout the world. A likely pathway of action of substance consumption leading to persistent hypertension is DNA methylation. Here, we evaluated the effects of tobacco, alcohol, and marijuana on DNA methylation in the same cohort (N = 3,424). Three epigenome-wide association studies (EWAS) were assessed in whole blood using the InfiniumHumanMethylationEPIC BeadChip. We also evaluated the mediation of the top CpG sites in the association between substance consumption and hypertension. Our analyses showed 2,569 CpG sites differentially methylated by alcohol drinking and 528 by tobacco smoking. We did not find significant associations with marijuana consumption after correcting for multiple comparisons. We found 61 genes overlapping between alcohol and tobacco that were enriched in biological processes involved in the nervous and cardiovascular systems. In the mediation analysis, we found 66 CpG sites that significantly mediated the effect of alcohol consumption on hypertension. The top alcohol-related CpG site (cg06690548, P-value = 5.9·10-83) mapped to SLC7A11 strongly mediated 70.5% of the effect of alcohol consumption on hypertension (P-value = 0.006). Our findings suggest that DNA methylation should be considered for new targets in hypertension prevention and management, particularly concerning alcohol consumption. Our data also encourage further research into the use of methylation in blood to study the neurological and cardiovascular effects of substance consumption.
Collapse
Affiliation(s)
| | | | - Alejandro Cáceres
- Epidemiology, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Mathematics, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, Barcelona, Spain
| | | | | | | | - Juan R Gonzalez
- Epidemiology, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Mathematics, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Ganaway A, Tatsuta K, Castillo VCG, Okada R, Sunaga Y, Ohta Y, Ohta J, Ohsawa M, Akay M, Akay YM. Investigating the Influence of Morphine and Cocaine on the Mesolimbic Pathway Using a Novel Microimaging Platform. Int J Mol Sci 2023; 24:16303. [PMID: 38003493 PMCID: PMC10671016 DOI: 10.3390/ijms242216303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Dopamine (DA)'s relationship with addiction is complex, and the related pathways in the mesocorticolimbic system are used to deliver DA, regulating both behavioral and perceptual actions. Specifically, the mesolimbic pathway connecting the ventral tegmental area (VTA) and the nucleus accumbens (NAc) is crucial in regulating memory, emotion, motivation, and behavior due to its responsibility to modulate dopamine. To better investigate the relationship between DA and addiction, more advanced mapping methods are necessary to monitor its production and propagation accurately and efficiently. In this study, we incorporate dLight1.2 adeno-associated virus (AAV) into our latest CMOS (complementary metal-oxide semiconductor) imaging platform to investigate the effects of two pharmacological substances, morphine and cocaine, in the NAc using adult mice. By implanting our self-fabricated CMOS imaging device into the deep brain, fluorescence imaging of the NAc using the dLight1.2 AAV allows for the visualization of DA molecules delivered from the VTA in real time. Our results suggest that changes in extracellular DA can be observed with this adapted system, showing potential for new applications and methods for approaching addiction studies. Additionally, we can identify the unique characteristic trend of DA release for both morphine and cocaine, further validating the underlying biochemical mechanisms used to modulate dopaminergic activation.
Collapse
Affiliation(s)
- Austin Ganaway
- Biomedical Engineering Department, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA; (A.G.); (M.A.)
| | - Kousuke Tatsuta
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (K.T.); (M.O.)
| | - Virgil Christian Garcia Castillo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan; (V.C.G.C.); (R.O.); (Y.S.); (Y.O.); (J.O.)
| | - Ryoma Okada
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan; (V.C.G.C.); (R.O.); (Y.S.); (Y.O.); (J.O.)
| | - Yoshinori Sunaga
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan; (V.C.G.C.); (R.O.); (Y.S.); (Y.O.); (J.O.)
| | - Yasumi Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan; (V.C.G.C.); (R.O.); (Y.S.); (Y.O.); (J.O.)
| | - Jun Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan; (V.C.G.C.); (R.O.); (Y.S.); (Y.O.); (J.O.)
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (K.T.); (M.O.)
| | - Metin Akay
- Biomedical Engineering Department, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA; (A.G.); (M.A.)
| | - Yasemin M. Akay
- Biomedical Engineering Department, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA; (A.G.); (M.A.)
| |
Collapse
|
9
|
Lakosa A, Rahimian A, Tomasi F, Marti F, Reynolds LM, Tochon L, David V, Danckaert A, Canonne C, Tahraoui S, de Chaumont F, Forget B, Maskos U, Besson M. Impact of the gut microbiome on nicotine's motivational effects and glial cells in the ventral tegmental area in male mice. Neuropsychopharmacology 2023; 48:963-974. [PMID: 36932179 PMCID: PMC10156728 DOI: 10.1038/s41386-023-01563-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/19/2023]
Abstract
A link between gut dysbiosis and the pathogenesis of brain disorders has been identified. A role for gut bacteria in drug reward and addiction has been suggested but very few studies have investigated their impact on brain and behavioral responses to addictive drugs so far. In particular, their influence on nicotine's addiction-like processes remains unknown. In addition, evidence shows that glial cells shape the neuronal activity of the mesolimbic system but their regulation, within this system, by the gut microbiome is not established. We demonstrate that a lack of gut microbiota in male mice potentiates the nicotine-induced activation of sub-regions of the mesolimbic system. We further show that gut microbiota depletion enhances the response to nicotine of dopaminergic neurons of the posterior ventral tegmental area (pVTA), and alters nicotine's rewarding and aversive effects in an intra-VTA self-administration procedure. These effects were not associated with gross behavioral alterations and the nicotine withdrawal syndrome was not impacted. We further show that depletion of the gut microbiome modulates the glial cells of the mesolimbic system. Notably, it increases the number of astrocytes selectively in the pVTA, and the expression of postsynaptic density protein 95 in both VTA sub-regions, without altering the density of the astrocytic glutamatergic transporter GLT1. Finally, we identify several sub-populations of microglia in the VTA that differ between its anterior and posterior sub-parts, and show that they are re-organized in conditions of gut microbiota depletion. The present study paves the way for refining our understanding of the pathophysiology of nicotine addiction.
Collapse
Affiliation(s)
- Alina Lakosa
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
| | - Anaïs Rahimian
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
| | - Flavio Tomasi
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
- Neuroscience Paris Seine, Sorbonne Université, INSERM, CNRS, 75005 Paris, France
| | - Fabio Marti
- Plasticité du Cerveau, CNRS UMR 8249, ESPCI Paris, Université PSL, Paris, France
- Neuroscience Paris Seine, Sorbonne Université, INSERM, CNRS, 75005, Paris, France
| | - Lauren M Reynolds
- Plasticité du Cerveau, CNRS UMR 8249, ESPCI Paris, Université PSL, Paris, France
| | - Léa Tochon
- Université de Bordeaux, Bordeaux, France
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Bordeaux, France
| | - Vincent David
- Université de Bordeaux, Bordeaux, France
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Bordeaux, France
| | - Anne Danckaert
- UTechS Photonics Bioimaging/C2RT, Institut Pasteur, Université Paris Cité, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Candice Canonne
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
| | - Sylvana Tahraoui
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
| | - Fabrice de Chaumont
- Génétique humaine et fonctions cognitives, CNRS UMR 3571, Institut Pasteur, Université Paris Cité, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Benoît Forget
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
- Génétique humaine et fonctions cognitives, CNRS UMR 3571, Institut Pasteur, Université Paris Cité, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Uwe Maskos
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
| | - Morgane Besson
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France.
| |
Collapse
|
10
|
Zhang M, Gao X, Yang Z, Niu X, Wang W, Han S, Wei Y, Cheng J, Zhang Y. Integrative brain structural and molecular analyses of interaction between tobacco use disorder and overweight among male adults. J Neurosci Res 2023; 101:232-244. [PMID: 36333937 DOI: 10.1002/jnr.25141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/29/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
Abstract
Tobacco smoking and overweight lead to adverse health effects, which remain an important public health problem worldwide. Researches indicate overlapping pathophysiology may contribute to tobacco use disorder (TUD) and overweight, but the neurobiological interaction mechanism between the two factors is still unclear. This study used a mixed sample design, including the following four groups: (i) overweight long-term smokers (n = 24, age = 31.80 ± 5.70, cigarettes/day = 20.50 ± 7.89); (ii) normal weight smokers (n = 28, age = 31.29 ± 5.56, cigarettes/day = 16.11 ± 8.35); (iii) overweight nonsmokers (n = 19, age = 33.05 ± 5.60), and (iv) normal weight nonsmokers (n = 28, age = 31.68 ± 6.57), a total of 99 male subjects. All subjects underwent T1-weighted high-resolution MRI. We used voxel-based morphometry to compare gray matter volume (GMV) among the four groups. Then, JuSpace toolbox was used for cross-modal correlations of MRI-based modalities with nuclear imaging derived estimates, to examine specific neurotransmitter system changes underlying the two factors. Our results illustrate a significant antagonistic interaction between TUD and weight status in left dorsolateral prefrontal cortex (DLPFC), and a quadratic effect of BMI on DLPFC GMV. For main effect of TUD, long-term smokers were associated with greater GMV in bilateral OFC compared with nonsmokers irrespective of weight status, and such alteration is negatively associated with pack-year and FTND scores. Furthermore, we also found GMV changes related to TUD and overweight are associated with μ-opioid receptor system and TUD-related GMV alterations are associated with noradrenaline transporter maps. This study sheds light on novel multimodal neuromechanistic about the relationship between TUD and overweight, which possibly provides hints into future treatment for the special population of comorbid TUD and overweight.
Collapse
Affiliation(s)
- Mengzhe Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyu Gao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengui Yang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Niu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Kanniah G, Kumar R. A selective literature review exploring the role of the nicotinic system in schizophrenia. Gen Psychiatr 2023; 36:e100756. [PMID: 36937093 PMCID: PMC10016241 DOI: 10.1136/gpsych-2022-100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/16/2023] [Indexed: 03/17/2023] Open
Abstract
Nicotine use is more prevalent in patients with psychiatric disorders, especially those diagnosed with psychotic illnesses. Previously, this higher prevalence has been partially attributed to the potential ameliorative effects of nicotine on symptom severity and cognitive impairment. Some healthcare professionals and patients perceive there is a beneficial effect of nicotine on mental health. Emerging data show that the harm associated with nicotine in the population of patients with mental health conditions outweighs any potential benefit. This paper will review the evidence surrounding the nicotinic system and schizophrenia, with a focus on any causality between nicotine and psychosis.
Collapse
Affiliation(s)
- Guna Kanniah
- Mental Health and Addictions Services, Waikato DHB, Waikato Hospital, Hamilton, New Zealand
| | - Rishi Kumar
- Department of General Medicine, Middlemore Hospital, Auckland, New Zealand
| |
Collapse
|
12
|
DeVito EE, Sofuoglu M. Catechol-O-Methyltransferase Effects on Smoking: A Review and Proof of Concept of Sex-Sensitive Effects. Curr Behav Neurosci Rep 2022; 9:113-123. [PMID: 36644316 PMCID: PMC9838826 DOI: 10.1007/s40473-022-00251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/19/2023]
Abstract
Purpose of Review This article reviews recent research on how catechol-O-methyltransferase (COMT) may impact cigarette smoking behavior, and how effects may be sex-sensitive. Preliminary data are presented on sex-sensitive effects of COMT on response to short-term abstinence in individuals who smoke. Recent Findings Although research is mixed, functional variants in the COMT gene have been linked with smoking behavior, cessation outcomes and nicotine abstinence-related symptoms. Our proof-of-concept preliminary data from a human laboratory study of individuals who smoke cigarettes found that those with the high COMT enzyme activity genotype (Val/Val) reported more severe smoking urges and withdrawal symptoms following overnight abstinence than Met carriers. These effects were present in women, but not in men and were abstinent-dependent, in that they dissipated following nicotine administration. Summary The preliminary data showing sex-sensitive pharmacogenetic effects may shed light on mechanisms contributing to sex differences in barriers to smoking cessation or potential sex-specific treatment options.
Collapse
Affiliation(s)
- Elise E. DeVito
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | - Mehmet Sofuoglu
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
13
|
White O, Roeder N, Blum K, Eiden RD, Thanos PK. Prenatal Effects of Nicotine on Obesity Risks: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159477. [PMID: 35954830 PMCID: PMC9368674 DOI: 10.3390/ijerph19159477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Nicotine usage by mothers throughout pregnancy has been observed to relate to numerous deleterious effects in children, especially relating to obesity. Children who have prenatally been exposed to nicotine tend to have lower birth weights, with an elevated risk of becoming overweight throughout development and into their adolescent and adult life. There are numerous theories as to how this occurs: catch-up growth theory, thrifty phenotype theory, neurotransmitter or endocrine imbalances theory, and a more recent examination on the genetic factors relating to obesity risk. In addition to the negative effect on bodyweight and BMI, individuals with obesity may also suffer from numerous comorbidities involving metabolic disease. These may include type 1 and 2 diabetes, high cholesterol levels, and liver disease. Predisposition for obesity with nicotine usage may also be associated with genetic risk alleles for obesity, such as the DRD2 A1 variant. This is important for prenatally nicotine-exposed individuals as an opportunity to provide early prevention and intervention of obesity-related risks.
Collapse
Affiliation(s)
- Olivia White
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (O.W.); (N.R.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| | - Nicole Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (O.W.); (N.R.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| | - Kenneth Blum
- Division of Addiction Research, Center for Psychiatry, Medicine & Primary Care (Office of Provost), Western University Health Sciences, Pomona, CA 91766, USA;
| | - Rina D. Eiden
- Department of Psychology, Social Science Research Institute, The Pennsylvania State University, University Park, PA 16801, USA;
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (O.W.); (N.R.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
- Correspondence: ; Tel.: +1-(716)-881-7520
| |
Collapse
|
14
|
Substance use, microbiome and psychiatric disorders. Pharmacol Biochem Behav 2022; 219:173432. [PMID: 35905802 DOI: 10.1016/j.pbb.2022.173432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/29/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
Accumulating evidence from several studies has shown association between substance use, dysregulation of the microbiome and psychiatric disorders such as depression, anxiety, and psychosis. Many of the abused substances such as cocaine and alcohol have been shown to alter immune signaling pathways and cause inflammation in both the periphery and the central nervous system (CNS). In addition, these substances of abuse also alter the composition and function of the gut microbiome which is known to play important roles such as the synthesis of neurotransmitters and metabolites, that affect the CNS homeostasis and consequent behavioral outcomes. The emerging interactions between substance use, microbiome and CNS neurochemical alterations could contribute to the development of psychiatric disorders. This review provides an overview of the associative effects of substance use such as alcohol, cocaine, methamphetamine, nicotine and opioids on the gut microbiome and psychiatric disorders involving anxiety, depression and psychosis. Understanding the relationship between substance use, microbiome and psychiatric disorders will provide insights for potential therapeutic targets, aimed at mitigating these adverse outcomes.
Collapse
|
15
|
Breum AW, Falk S, Svendsen CSA, Nicolaisen TS, Mathiesen CV, Maskos U, Clemmensen C. Divergent Roles of α5 and β4 Nicotinic Receptor Subunits in Food Reward and Nicotine-induced Weight Loss in Male Mice. Endocrinology 2022; 163:6590007. [PMID: 35595472 PMCID: PMC9217964 DOI: 10.1210/endocr/bqac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/19/2022]
Abstract
A major obstacle to successful smoking cessation is the prospect of weight gain. Despite a clear relationship between cigarette smoking and body weight, surprisingly little is known about the physiological and molecular mechanism by which nicotine affects energy homeostasis and food-motivated behaviors. Here we use loss-of-function mouse models to demonstrate that 2 nicotinic acetylcholine receptor (nAChR) subunits encoded by the CHRNA5-CHRNA3-CHRNB4 gene cluster, α5 and β4, exhibit divergent roles in food reward. We also reveal that β4-containing nAChRs are essential for the weight-lowering effects of nicotine in diet-induced obese mice. Finally, our data support the notion of crosstalk between incretin biology and nAChR signaling, as we demonstrate that the glycemic benefits of glucagon-like peptide-1 receptor activation partially relies on β4-containing nAChRs. Together, these data encourage further research into the role of cholinergic neurotransmission in regulating food reward and the translational pursuit of site-directed targeting of β4-containing nAChRs for treatment of metabolic disease.
Collapse
Affiliation(s)
| | | | - Charlotte Sashi Aier Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Sand Nicolaisen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Vad Mathiesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Uwe Maskos
- Institut Pasteur, Université de Paris, Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571, Paris, France
| | - Christoffer Clemmensen
- Correspondence: Christoffer Clemmensen, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Ding Z, Li X, Chen H, Hou H, Hu Q. Harmane Potentiates Nicotine Reinforcement Through MAO-A Inhibition at the Dose Related to Cigarette Smoking. Front Mol Neurosci 2022; 15:925272. [PMID: 35832393 PMCID: PMC9271706 DOI: 10.3389/fnmol.2022.925272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 11/14/2022] Open
Abstract
Nicotine is the primary addictive component in cigarette smoke, and dopamine release induced by nicotine is considered a significant cause of persistent smoking and nicotine dependence. However, the effects of nicotine replacement therapy on smoking cessation were less effective than expected, suggesting that other non-nicotine constituents may potentiate the reinforcing effects of nicotine. Harmane is a potent, selective monoamine oxidase A (MAO-A) inhibitor found in cigarette smoke, but showed no effect on nicotine self-administration in previous studies, possibly due to the surprisingly high doses used. In the present study, we found that harmane potentiated nicotine self-administration on the fixed ration schedule at the dose related to human cigarette smoking by the synergistic effects in up-regulating genes in addiction-related pathways, and the effect was reduced at doses 10 times higher or lower than the smoking-related dose. The smoking-related dose of harmane also enhanced the increase of locomotor activity induced by nicotine, accompanied by increased dopamine basal level and dopamine release in the nucleus accumbens through MAO-A inhibition. Our findings provided new evidence for the important role of non-nicotine ingredients of tobacco products in smoking addiction.
Collapse
Affiliation(s)
- Zheng Ding
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China
| | - Xiangyu Li
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China,*Correspondence: Hongwei Hou,
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China,Qingyuan Hu,
| |
Collapse
|
17
|
Gowrishankar R, Gomez A, Waliki M, Bruchas MR. Kappa-opioid receptor activation reinstates nicotine self-administration in mice. ADDICTION NEUROSCIENCE 2022; 2:100017. [PMID: 36118179 PMCID: PMC9481185 DOI: 10.1016/j.addicn.2022.100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Raajaram Gowrishankar
- Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle WA
- Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle WA
| | - Adrian Gomez
- Department of Anesthesiology, Washington University in St. Louis MO
| | - Marie Waliki
- Department of Anesthesiology, Washington University in St. Louis MO
| | - Michael R Bruchas
- Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle WA
- Department of Anesthesiology, Washington University in St. Louis MO
- Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle WA
| |
Collapse
|
18
|
Wu R, Liu J, Li JX. Trace amine-associated receptor 1 and drug abuse. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:373-401. [PMID: 35341572 PMCID: PMC9826737 DOI: 10.1016/bs.apha.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Trace amine-associated receptor 1 (TAAR1) is the best characterized receptor selectively activated by trace amines. It is broadly expressed in the monoaminergic system in the brain including ventral tegmental area (VTA), nucleus accumbens (NAc), dorsal raphe (DR) and substantial nigra (SN). Extensive studies have suggested that TAAR1 plays an important role in the modulation of monoaminergic system, especially dopamine (DA) transmission which may underlie the mechanisms by which TAAR1 interventions affect drug abuse-like behaviors. TAAR1 activation inhibits the rewarding and reinforcing effects of drugs from different classes including psychostimulants, opioid and alcohol as well as drug-induced increase in DA accumulation. The mechanisms of TAAR1's function in mediating drug abuse-like behaviors are not clear. However, it is hypothesized that TAAR1 interaction with DA transporter (DAT) and dopamine D2 receptor (D2) and the subsequent modulation of cellular cascades may contribute to the effects of TAAR1 in regulating drug abuse. Further studies are needed to investigate the role of TAAR1 in other drugs of abuse-related behaviors and its safety and efficacy for prolonged medications. Together, TAAR1 inhibits drug-induced DA transmission and drug abuse-related behaviors. Therefore, TAAR1 may be a promising therapeutic target for the treatment of drug addiction.
Collapse
Affiliation(s)
- Ruyan Wu
- Medical College of Yangzhou University, Yangzhou, China,Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Jianfeng Liu
- Department of Psychological and Brain Sciences, College of Liberal Arts, Texas A&M University, College Station, TX, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA,Corresponding authors: Dr. Jun-Xu Li, , Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY 14214. Tel: +1 716 829 2482; Fax: +1 716 829 2801
| |
Collapse
|
19
|
Wills L, Ables JL, Braunscheidel KM, Caligiuri SPB, Elayouby KS, Fillinger C, Ishikawa M, Moen JK, Kenny PJ. Neurobiological Mechanisms of Nicotine Reward and Aversion. Pharmacol Rev 2022; 74:271-310. [PMID: 35017179 PMCID: PMC11060337 DOI: 10.1124/pharmrev.121.000299] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the rewarding actions of nicotine contained in tobacco that establish and maintain the smoking habit. nAChRs also regulate the aversive properties of nicotine, sensitivity to which decreases tobacco use and protects against tobacco use disorder. These opposing behavioral actions of nicotine reflect nAChR expression in brain reward and aversion circuits. nAChRs containing α4 and β2 subunits are responsible for the high-affinity nicotine binding sites in the brain and are densely expressed by reward-relevant neurons, most notably dopaminergic, GABAergic, and glutamatergic neurons in the ventral tegmental area. High-affinity nAChRs can incorporate additional subunits, including β3, α6, or α5 subunits, with the resulting nAChR subtypes playing discrete and dissociable roles in the stimulatory actions of nicotine on brain dopamine transmission. nAChRs in brain dopamine circuits also participate in aversive reactions to nicotine and the negative affective state experienced during nicotine withdrawal. nAChRs containing α3 and β4 subunits are responsible for the low-affinity nicotine binding sites in the brain and are enriched in brain sites involved in aversion, including the medial habenula, interpeduncular nucleus, and nucleus of the solitary tract, brain sites in which α5 nAChR subunits are also expressed. These aversion-related brain sites regulate nicotine avoidance behaviors, and genetic variation that modifies the function of nAChRs in these sites increases vulnerability to tobacco dependence and smoking-related diseases. Here, we review the molecular, cellular, and circuit-level mechanisms through which nicotine elicits reward and aversion and the adaptations in these processes that drive the development of nicotine dependence. SIGNIFICANCE STATEMENT: Tobacco use disorder in the form of habitual cigarette smoking or regular use of other tobacco-related products is a major cause of death and disease worldwide. This article reviews the actions of nicotine in the brain that contribute to tobacco use disorder.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Kevin M Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Masago Ishikawa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|
20
|
Dutra-Tavares AC, Manhães AC, Semeão KA, Maia JG, Couto LA, Filgueiras CC, Ribeiro-Carvalho A, Abreu-Villaça Y. Does nicotine exposure during adolescence modify the course of schizophrenia-like symptoms? Behavioral analysis in a phencyclidine-induced mice model. PLoS One 2021; 16:e0257986. [PMID: 34587208 PMCID: PMC8480744 DOI: 10.1371/journal.pone.0257986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/14/2021] [Indexed: 01/18/2023] Open
Abstract
The first symptoms of schizophrenia (SCHZ) are usually observed during adolescence, a developmental period during which first exposure to psychoactive drugs also occurs. These epidemiological findings point to adolescence as critical for nicotine addiction and SCHZ comorbidity, however it is not clear whether exposure to nicotine during this period has a detrimental impact on the development of SCHZ symptoms since there is a lack of studies that investigate the interactions between these conditions during this period of development. To elucidate the impact of a short course of nicotine exposure across the spectrum of SCHZ-like symptoms, we used a phencyclidine-induced adolescent mice model of SCHZ (2.5mg/Kg, s.c., daily, postnatal day (PN) 38-PN52; 10mg/Kg on PN53), combined with an established model of nicotine minipump infusions (24mg/Kg/day, PN37-44). Behavioral assessment began 4 days after the end of nicotine exposure (PN48) using the following tests: open field to assess the hyperlocomotion phenotype; novel object recognition, a declarative memory task; three-chamber sociability, to verify social interaction and prepulse inhibition, a measure of sensorimotor gating. Phencyclidine exposure evoked deficits in all analyzed behaviors. Nicotine history reduced the magnitude of phencyclidine-evoked hyperlocomotion and impeded the development of locomotor sensitization. It also mitigated the deficient sociability elicited by phencyclidine. In contrast, memory and sensorimotor gating deficits evoked by phencyclidine were neither improved nor worsened by nicotine history. In conclusion, our results show for the first time that nicotine history, restricted to a short period during adolescence, does not worsen SCHZ-like symptoms evoked by a phencyclidine-induced mice model.
Collapse
Affiliation(s)
- Ana Carolina Dutra-Tavares
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Alex C. Manhães
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Keila A. Semeão
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Julyana G. Maia
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Luciana A. Couto
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Claudio C. Filgueiras
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, Brazil
| | - Yael Abreu-Villaça
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
- * E-mail: ,
| |
Collapse
|
21
|
Mahajan SD, Homish GG, Quisenberry A. Multifactorial Etiology of Adolescent Nicotine Addiction: A Review of the Neurobiology of Nicotine Addiction and Its Implications for Smoking Cessation Pharmacotherapy. Front Public Health 2021; 9:664748. [PMID: 34291026 PMCID: PMC8287334 DOI: 10.3389/fpubh.2021.664748] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Nicotine is the primary pharmacologic component of tobacco, and its highly addictive nature is responsible for its widespread use and significant withdrawal effects that result in challenges to smoking cessation therapeutics. Nicotine addiction often begins in adolescence and this is at least partially attributed to the fact that adolescent brain is most susceptible to the neuro-inflammatory effects of nicotine. There is increasing evidence for the involvement of microglial cells, which are the brain's primary homeostatic sensor, in drug dependence and its associated behavioral manifestations particularly in the adolescent brain. A hallmark of neuro-inflammation is microglial activation and activation of microglia by nicotine during adolescent development, which may result in long-term addiction to nicotine. This non-systematic review examines multifactorial etiology of adolescent nicotine addiction, neurobiology of nicotine addiction and the potential mechanisms that underlie the effects of nicotine on inflammatory signaling in the microglia, understanding how nicotine affects the adolescent brain. We speculate, that modulating homeostatic balance in microglia, could have promising therapeutic potential in withdrawal, tolerance, and abstinence-related neural adaptations in nicotine addiction, in the adolescent brain. Further, we discuss nicotine addiction in the context of the sensitization-homeostasis model which provides a theoretical framework for addressing the potential role of microglial homeostasis in neural adaptations underlying nicotine abuse.
Collapse
Affiliation(s)
- Supriya D. Mahajan
- Department of Community Health and Health Behavior, School of Public Health, University at Buffalo, Buffalo, NY, United States
| | - Gregory G. Homish
- Department of Community Health and Health Behavior, School of Public Health, University at Buffalo, Buffalo, NY, United States
| | - Amanda Quisenberry
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
22
|
Tobacco and Nervous System Development and Function-New Findings 2015-2020. Brain Sci 2021; 11:brainsci11060797. [PMID: 34208753 PMCID: PMC8234722 DOI: 10.3390/brainsci11060797] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/07/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Tobacco is a one of the most common addictive stimulants used by people around the world. The smoke generated during tobacco combustion is a toxic mixture of more than 5000 chemicals of which over 30 are known human carcinogens. While its negative effects on the human body are well understood, it remains a serious public health problem. One of the multiple effects of smoking is tobacco’s effect on the nervous system—its development and function. This review aims to summarize the progress made in research on the effects of tobacco on the nervous system both of the perinatal period and adults and both in animals and humans in 2015–2020. The 1245 results that corresponded to the keywords “tobacco, cigarette, nervous system, brain, morphology, function” were reviewed, of which 200 abstracts were considered significant. Most of those articles broadened the knowledge about the negative effects of smoking on the human nervous system. Tobacco has a significant negative impact on the development of nervous structures, neurotransmission and cognitive functions, and promotes the development of neurodegenerative diseases, insomnia and cerebrovascular diseases. The only exception is the protective effect of the dopaminergic system in Parkinson’s disease. In conclusion, in recent years much effort has been devoted to describing, revealing and uncovering new aspects of tobacco detrimental to human life. The nicotine contained in tobacco smoke affects the human body in a multidimensional way, including a serious impact on the broadly understood neurological health.
Collapse
|
23
|
Wills L, Kenny PJ. Addiction-related neuroadaptations following chronic nicotine exposure. J Neurochem 2021; 157:1652-1673. [PMID: 33742685 DOI: 10.1111/jnc.15356] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
The addiction-relevant molecular, cellular, and behavioral actions of nicotine are derived from its stimulatory effects on neuronal nicotinic acetylcholine receptors (nAChRs) in the central nervous system. nAChRs expressed by dopamine-containing neurons in the ventral midbrain, most notably in the ventral tegmental area (VTA), contribute to the reward-enhancing properties of nicotine that motivate the use of tobacco products. nAChRs are also expressed by neurons in brain circuits that regulate aversion. In particular, nAChRs expressed by neurons in the medial habenula (mHb) and the interpeduncular nucleus (IPn) to which the mHb almost exclusively projects regulate the "set-point" for nicotine aversion and control nicotine intake. Different nAChR subtypes are expressed in brain reward and aversion circuits and nicotine intake is titrated to maximally engage reward-enhancing nAChRs while minimizing the recruitment of aversion-promoting nAChRs. With repeated exposure to nicotine, reward- and aversion-related nAChRs and the brain circuits in which they are expressed undergo adaptations that influence whether tobacco use will transition from occasional to habitual. Genetic variation that influences the sensitivity of addiction-relevant brain circuits to the actions of nicotine also influence the propensity to develop habitual tobacco use. Here, we review some of the key advances in our understanding of the mechanisms by which nicotine acts on brain reward and aversion circuits and the adaptations that occur in these circuits that may drive addiction to nicotine-containing tobacco products.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| |
Collapse
|
24
|
Noda Y, Soeda K, Uchida M, Goto S, Ito T, Kitagaki S, Mamiya T, Yoshimi A, Ozaki N, Mouri A. Multiple nicotinic acetylcholine receptor subtypes regulate social or cognitive behaviors in mice repeatedly administered phencyclidine. Behav Brain Res 2021; 408:113284. [PMID: 33819533 DOI: 10.1016/j.bbr.2021.113284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/21/2021] [Accepted: 03/30/2021] [Indexed: 11/15/2022]
Abstract
Habitual smoking in patients with schizophrenia (SCZ) is considered to improve their own psychoses or to develop a vulnerability to psychological dependence on (-)-nicotine ([-]-NIC) by stimulating nicotinic acetylcholine receptors (nAChRs) in the central nervous system. In the present study, we investigated whether habitual smoking is due to get therapeutic effect or to psychological dependence and which nAChR subunits are associated with them using mice that were repeatedly administered phencyclidine (PCP: 10 mg/kg/day, s.c. for 14 days) as SCZ-like model mice. Mice that were repeatedly administered PCP showed impairments in social or cognitive behaviors; decreased expression of α7 and/or α4 nAChR subunits in the prefrontal cortex (PFC); and increased expression of α7, α4, and β2 nAChR subunits in the nucleus accumbens (NAc). These changes were attenuated by repeated administration of (-)-NIC. The attenuating effects on behavioral impairments were prevented by a selective α7 nAChR antagonist and a selective α4β2 nAChR antagonist. At non- or weak effective dose by themselves, co-administration of (-)-NIC (0.03 mg/kg) and risperidone (0.03 mg/kg) showed synergistic effects on behavioral impairments in PCP-administered mice. Repeated (-)-NIC administration did not affect the performance of conditioned place preference, while it showed behavioral sensitization to (-)-NIC in the PCP-administered mice. Repeated (-)-NIC administration did not affect the performance of conditioned place preference, while it showed behavioral sensitization to (-)-NIC and attenuating effect on haloperidol-induced catalepsy in the PCP-administered mice. Our findings suggest that habitual smoking in SCZ might be attributed to get therapeutic and reduce side effects mediated by α7 and α4β2 nAChR activation by (-)-NIC.
Collapse
Affiliation(s)
- Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, 468-8503, Japan.
| | - Koki Soeda
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, 468-8503, Japan
| | - Mizuki Uchida
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, 468-8503, Japan
| | - Sakika Goto
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, 468-8503, Japan
| | - Takahiro Ito
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, 468-8503, Japan
| | - Shinji Kitagaki
- Department of Medical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, 468-8503, Japan
| | - Takayoshi Mamiya
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, 468-8503, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, 468-8503, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals and Devices, Graduate School of Health Science, Fujita Health University, Toyoake, 470-1192, Japan
| |
Collapse
|
25
|
Bucklin M. A 5-Factor Framework for Assessing Tobacco Use Disorder. Tob Use Insights 2021; 14:1179173X21998355. [PMID: 33716514 PMCID: PMC7922618 DOI: 10.1177/1179173x21998355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/04/2021] [Indexed: 11/30/2022] Open
Abstract
Cigarette use is the leading cause of preventable death in the United States. Despite the well documented dangers of smoking, nearly 20% of adults report regular use of tobacco. A majority desire to discontinue but the long-term cessation success rate remains near 4%. One challenge to reducing the prevalence of tobacco use is an incomplete understanding of the individual correlates that reinforce continued use. Evidence from research on nicotine and tobacco suggests that Tobacco Use Disorder is a complex, and multifactorial condition. Personality traits, comorbidities, habits and lifestyle, genetics, socioeconomic status, and mental and physical health all contribute to the risk for dependence and to the likelihood of quitting. This perspective review provides an overview of some common factors that contribute to liability risk for Tobacco Use Disorder and a framework for assessing individual tobacco users. The framework includes 5 areas that research suggests contribute to continued tobacco use: nicotine addiction, psychological influences, behavioral dependencies, neurobiological factors, and social reinforcement. Nicotine addiction includes drug-seeking behavior and the role of withdrawal avoidance. Psychological and emotional states contribute to a perceived reliance on tobacco. Behavioral dependence is reinforced by associative and non-associative learning mechanisms. Neurobiological factors include genetic variables, variations in neurotransmitters and receptors, pharmacogenetics, and interaction between psychiatric illnesses and nicotine use and dependence. Finally, social reinforcement of smoking behavior is explained by a network phenomenon and consistent visual cues to smoke. A comprehensive assessment of individual tobacco users will help better determine appropriate treatment options to achieve improved efficacy and outcomes.
Collapse
|
26
|
Systemic nicotine enhances opioid self-administration and modulates the formation of opioid-associated memories partly through actions within the insular cortex. Sci Rep 2021; 11:3321. [PMID: 33558613 PMCID: PMC7870813 DOI: 10.1038/s41598-021-81955-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/13/2021] [Indexed: 11/24/2022] Open
Abstract
Habitual use of nicotine containing products increases propensity to misuse prescription opioids and its prevalence is substantially increased in individuals currently involved in opioid-treatment programs. Nicotine enhances self-administration of many classes of drugs in rodents, though evidence for direct effects on opioids is lacking. We sought to measure the effects of nicotine pretreatment on the reinforcing efficacy of opioids in both self-administration and contextual conditioning paradigms. First, we measured the effect of systemic nicotine pretreatment on self-administration of two opioids. Additionally, we measured the degree to which systemic nicotine pretreatment impacts the formation of morphine-associated contextual memories in conditioned taste avoidance and place preference paradigms. Given the involvement of the insula in the maintenance of substance abuse, its importance in nicotine addiction, and findings that insular inactivation impairs contextual drug conditioning, we examined whether nicotine administered directly to the insula could recapitulate the effects of systemic nicotine. We demonstrate that systemic nicotine pretreatment significantly enhances opioid self-administration and alters contextual conditioning. Furthermore, intra-insula nicotine similarly altered morphine contextual conditioning by blocking the formation of taste avoidance at all three morphine doses tested (5.0, 10, and 20 mg/kg), while shifting the dose–response curve of morphine in the place preference paradigm rightward. In conclusion, these data demonstrate that nicotine facilitates opioid intake and is partly acting within the insular cortex to obfuscate aversive opiate memories while potentiating approach to morphine-associated stimuli at higher doses.
Collapse
|
27
|
Cigarette Smoking and Schizophrenia: Etiology, Clinical, Pharmacological, and Treatment Implications. SCHIZOPHRENIA RESEARCH AND TREATMENT 2021; 2021:7698030. [PMID: 34938579 PMCID: PMC8687814 DOI: 10.1155/2021/7698030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022]
Abstract
Recent data suggests that the prevalence of smoking in schizophrenia remains high. While reports suggest that smoking increases the risk of developing schizophrenia, the potential causative role of smoking in this relationship needs further investigation. Smokers with schizophrenia are more likely to have more intense positive symptoms and lower cognitive function, but diminished intensity of extrapyramidal side effects than nonsmoking patients with schizophrenia. They were also more likely to exhibit aggressive behaviour compared to nonsmokers, which could suggest higher levels of baseline aggression. The significant cost associated with regular tobacco expenditure can detract from investment in key domains. Large-scale trials have shown that pharmacotherapy for smoking cessation is effective and does not worsen the risk of developing neuropsychiatric symptoms compared to placebo. Electronic cigarette use among schizophrenia patients is high, and there is emerging evidence supportive of its efficacy. Future improvements include large-scale trials assessing the utility, efficacy, and safety of electronic cigarettes in schizophrenia patients.
Collapse
|
28
|
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther 2020; 213:107583. [PMID: 32473160 PMCID: PMC7434700 DOI: 10.1016/j.pharmthera.2020.107583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Dopamine D2 autoreceptors (D2ARs), located in somatodendritic and axon terminal compartments of dopamine (DA) neurons, function to provide a negative feedback regulatory control on DA neuron firing, DA synthesis, reuptake and release. Dysregulation of D2AR-mediated DA signaling is implicated in vulnerability to substance use disorder (SUD). Due to the extreme low abundance of D2ARs compared to postsynaptic D2 receptors (D2PRs) and the lack of experimental tools to differentiate the signaling of D2ARs from D2PRs, the regulation of D2ARs by drugs of abuse is poorly understood. The recent availability of conditional D2AR knockout mice and newly developed virus-mediated gene delivery approaches have provided means to specifically study the function of D2ARs at the molecular, cellular and behavioral levels. There is a growing revelation of novel mechanisms and new proteins that mediate D2AR activity, suggesting that D2ARs act cooperatively with an array of membrane and intracellular proteins to tightly control DA transmission. This review highlights D2AR-interacting partners including transporters, G-protein-coupled receptors, ion channels, intracellular signaling modulators, and protein kinases. The complexity of the D2AR interaction network illustrates the functional divergence of D2ARs. Pharmacological targeting of multiple D2AR-interacting partners may be more effective to restore disrupted DA homeostasis by drugs of abuse.
Collapse
Affiliation(s)
- Rong Chen
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America.
| | - Mark J Ferris
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| | - Shiyu Wang
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| |
Collapse
|
29
|
Müller TE, Fontana BD, Bertoncello KT, Franscescon F, Mezzomo NJ, Canzian J, Stefanello FV, Parker MO, Gerlai R, Rosemberg DB. Understanding the neurobiological effects of drug abuse: Lessons from zebrafish models. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109873. [PMID: 31981718 DOI: 10.1016/j.pnpbp.2020.109873] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
Abstract
Drug abuse and brain disorders related to drug comsumption are public health problems with harmful individual and social consequences. The identification of therapeutic targets and precise pharmacological treatments to these neuropsychiatric conditions associated with drug abuse are urgently needed. Understanding the link between neurobiological mechanisms and behavior is a key aspect of elucidating drug abuse-related targets. Due to various molecular, biochemical, pharmacological, and physiological features, the zebrafish (Danio rerio) has been considered a suitable vertebrate for modeling complex processes involved in drug abuse responses. In this review, we discuss how the zebrafish has been successfully used for modeling neurobehavioral phenotypes related to drug abuse and review the effects of opioids, cannabinoids, alcohol, nicotine, and psychedelic drugs on the central nervous system (CNS). Moreover, we summarize recent advances in zebrafish-based studies and outline potential advantages and limitations of the existing zebrafish models to explore the neurochemical bases of drug abuse and addiction. Finally, we discuss how the use of zebrafish models may present fruitful approaches to provide valuable clinically translatable data.
Collapse
Affiliation(s)
- Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, Portsmouth PO1 2DT, UK
| | - Kanandra T Bertoncello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Nathana J Mezzomo
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Flavia V Stefanello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, Portsmouth PO1 2DT, UK
| | - Robert Gerlai
- Department of Psychology, University of Toronto, Mississauga, Canada; Department of Cell and Systems Biology, University of Toronto, Canada
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
30
|
Opposing effects of acute and repeated nicotine exposure on boldness in zebrafish. Sci Rep 2020; 10:8570. [PMID: 32444782 PMCID: PMC7244486 DOI: 10.1038/s41598-020-65382-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Nicotine is an addictive compound that activates neuronal nicotinic acetylcholine receptors (nAChRs) and causes behavioural effects that vary with dose, schedule of administration, and animal model. In zebrafish (Danio rerio), acute doses of nicotine have been consistently found to have anxiolytic properties, whereas, chronic exposure elicits anxiogenic effects. To date, however, studies on repeated nicotine administration and the effects of nicotine withdrawal have not been well explored using this model. In this study, we administered nicotine with three different dosing regimens: 1. Single exposures of a "high" dose (25, 50, 100, or 400 mg/L) for 3 minutes. 2. Single exposures to a "low" dose (2.5, 5, or 20 mg/L) for one hour. 3. Repeated one-hour exposure to a "low" dose (2.5, 5, or 20 mg/L) for 21 days. The novel object approach test was used to examine boldness based on the tendency of the fish to explore a novel object. Acutely, nicotine significantly increased the time spent approaching the object with both three-minute and onehour durations of exposure, indicating increased boldness. Conversely, after repeated nicotine exposure for 21 days, fish spent less time approaching the object suggesting a decrease in boldness. Distance moved was unaffected one hour after repeated nicotine exposure, yet decreased after a two-day withdrawal period. Our work suggests that nicotine can have opposing effects on boldness that vary based on dosage and schedule of exposure.
Collapse
|
31
|
Thomeer MB, Hernandez E, Umberson D, Thomas PA. Influence of Social Connections on Smoking Behavior across the Life Course. ADVANCES IN LIFE COURSE RESEARCH 2019; 42:100294. [PMID: 31903090 PMCID: PMC6941891 DOI: 10.1016/j.alcr.2019.100294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although we know much about demographic patterns of smoking, we know less about people's explanations for when, how and why they avoid, develop, or alter smoking habits and how these explanations are linked to social connections across the life course. We analyze data from in-depth interviews with 60 adults aged 25-89 from a large southwestern U.S. city to consider how social connections shape smoking behavior across the life course. Respondents provided explanations for how and why they avoided, initiated, continued, and/or quit smoking. At various times, social connections were viewed as having both positive and negative influences on smoking behavior. Both people who never smoked and continuous smokers pointed to the importance of early life social connections in shaping decisions to smoke or not smoke, and viewed later connections (e.g., marriage, coworkers) as less important. People who quit smoking or relapsed tended to attribute their smoking behavior to social connections in adulthood rather than early life. People who changed their smoking behavior highlighted the importance of transitions as related to social connections, with more instability in social connections often discussed by relapsed smokers as a reason for instability in smoking status. A qualitative approach together with a life course perspective highlights the pivotal role of social connections in shaping trajectories of smoking behavior throughout the life course.
Collapse
|
32
|
Thorpe HHA, Hamidullah S, Jenkins BW, Khokhar JY. Adolescent neurodevelopment and substance use: Receptor expression and behavioral consequences. Pharmacol Ther 2019; 206:107431. [PMID: 31706976 DOI: 10.1016/j.pharmthera.2019.107431] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Adolescence is the transitional period between childhood and adulthood, during which extensive brain development occurs. Since this period also overlaps with the initiation of drug use, it is important to consider how substance use during this time might produce long-term neurobiological alterations, especially against the backdrop of developmental changes in neurotransmission. Alcohol, cannabis, nicotine, and opioids all produce marked changes in the expression and function of the neurotransmitter and receptor systems with which they interact. These acute and chronic alterations also contribute to behavioral consequences ranging from increased addiction risk to cognitive or neuropsychiatric behavioral dysfunctions. The current review provides an in-depth overview and update of the developmental changes in neurotransmission during adolescence, as well as the impact of drug exposure during this neurodevelopmental window. While most of these factors have been studied in animal models, which are the focus of this review, future longitudinal studies in humans that assess neural function and behavior will help to confirm pre-clinical findings. Furthermore, the neural changes induced by each drug should also be considered in the context of other contributing factors, such as sex. Further understanding of these consequences can help in the identification of novel approaches for preventing and reversing the neurobiological effects of adolescent substance use.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Shahnaza Hamidullah
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Bryan W Jenkins
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada.
| |
Collapse
|
33
|
Abstract
Drug consumption is driven by a drug's pharmacological effects, which are experienced as rewarding, and is influenced by genetic, developmental, and psychosocial factors that mediate drug accessibility, norms, and social support systems or lack thereof. The reinforcing effects of drugs mostly depend on dopamine signaling in the nucleus accumbens, and chronic drug exposure triggers glutamatergic-mediated neuroadaptations in dopamine striato-thalamo-cortical (predominantly in prefrontal cortical regions including orbitofrontal cortex and anterior cingulate cortex) and limbic pathways (amygdala and hippocampus) that, in vulnerable individuals, can result in addiction. In parallel, changes in the extended amygdala result in negative emotional states that perpetuate drug taking as an attempt to temporarily alleviate them. Counterintuitively, in the addicted person, the actual drug consumption is associated with an attenuated dopamine increase in brain reward regions, which might contribute to drug-taking behavior to compensate for the difference between the magnitude of the expected reward triggered by the conditioning to drug cues and the actual experience of it. Combined, these effects result in an enhanced motivation to "seek the drug" (energized by dopamine increases triggered by drug cues) and an impaired prefrontal top-down self-regulation that favors compulsive drug-taking against the backdrop of negative emotionality and an enhanced interoceptive awareness of "drug hunger." Treatment interventions intended to reverse these neuroadaptations show promise as therapeutic approaches for addiction.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Michael Michaelides
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Ruben Baler
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
34
|
Alasmari F, Crotty Alexander LE, Hammad AM, Bojanowski CM, Moshensky A, Sari Y. Effects of Chronic Inhalation of Electronic Cigarette Vapor Containing Nicotine on Neurotransmitters in the Frontal Cortex and Striatum of C57BL/6 Mice. Front Pharmacol 2019; 10:885. [PMID: 31456684 PMCID: PMC6699083 DOI: 10.3389/fphar.2019.00885] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Electronic (E)-cigarettes are the latest form of nicotine delivery device and are highly popular in the general population. It is currently unknown whether vaping E-cigarettes (E-CIGs) leads to nicotine addiction. Alterations in the levels of the neurotransmitters in the mesocorticolimbic areas have been reported to mediate the initiation and development of nicotine addiction. Therefore, to determine whether E-CIGs activate the same addiction pathways as conventional cigarettes, we investigated for the effects of daily inhalation of nicotine (24 mg/ml)-containing E-CIG vapor for 6 months on the concentrations of these neurotransmitters in the frontal cortex (FC) and striatum (STR) of male C57BL/6 mice as compared to control group that was exposed to air only. We reported here that 6-month E-CIG vapor containing nicotine inhalation decreased dopamine concentration only in the STR. There were no changes in serotonin concentrations in the FC or STR. Chronic E-CIG exposure also increased glutamate concentration in the STR alone, while glutamine concentrations were increased in both the FC and STR. We found that E-CIG exposure also decreased GABA concentration only in the FC. These data suggest that chronic E-CIG use alters homeostasis of several neurotransmitters in the mesocorticolimbic areas, which may result in the development of nicotine dependence in E-CIG users.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States.,Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laura E Crotty Alexander
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, San Diego, CA, United States.,Department of Medicine, Division of Pulmonary and Critical Care, University of California at San Diego (UCSD), La Jolla, CA, United States
| | - Alaa M Hammad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States.,Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Christine M Bojanowski
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, San Diego, CA, United States.,Department of Medicine, Division of Pulmonary and Critical Care, University of California at San Diego (UCSD), La Jolla, CA, United States
| | - Alex Moshensky
- Pulmonary and Critical Care Section, VA San Diego Healthcare System, San Diego, CA, United States.,Department of Medicine, Division of Pulmonary and Critical Care, University of California at San Diego (UCSD), La Jolla, CA, United States
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
35
|
Quigley H, MacCabe JH. The relationship between nicotine and psychosis. Ther Adv Psychopharmacol 2019; 9:2045125319859969. [PMID: 31308936 PMCID: PMC6604123 DOI: 10.1177/2045125319859969] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/15/2019] [Indexed: 01/20/2023] Open
Abstract
Cigarette smoking is strongly associated with psychotic disorders such as schizophrenia. For several decades it was assumed that the relationship could be explained by reverse causation; that smoking was secondary to the illness itself, either through self-medication or a process of institutionalization, or was entirely explained by confounding by cannabis use or social factors. However, studies have exposed that such hypotheses cannot fully explain the association, and more recently a bidirectional relationship has been proposed wherein cigarette smoking may be causally related to risk of psychosis, possibly via a shared genetic liability to smoking and psychosis. We review the evidence for these candidate explanations, using findings from the latest epidemiological, neuroimaging, genetic and preclinical work.
Collapse
Affiliation(s)
- Harriet Quigley
- Department of Psychosis Studies, Institute of
Psychiatry, Psychology and Neuroscience, Kings College London, SE5 8AF,
Denmark Hill, London, UK
| | - James H. MacCabe
- Department of Psychosis Studies, Institute of
Psychiatry, Psychology and Neuroscience, Kings College London, London,
UK
| |
Collapse
|
36
|
Shivange AV, Borden PM, Muthusamy AK, Nichols AL, Bera K, Bao H, Bishara I, Jeon J, Mulcahy MJ, Cohen B, O'Riordan SL, Kim C, Dougherty DA, Chapman ER, Marvin JS, Looger LL, Lester HA. Determining the pharmacokinetics of nicotinic drugs in the endoplasmic reticulum using biosensors. J Gen Physiol 2019; 151:738-757. [PMID: 30718376 PMCID: PMC6571994 DOI: 10.1085/jgp.201812201] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/05/2018] [Accepted: 01/09/2019] [Indexed: 12/27/2022] Open
Abstract
Nicotine dependence is thought to arise in part because nicotine permeates into the endoplasmic reticulum (ER), where it binds to nicotinic receptors (nAChRs) and begins an "inside-out" pathway that leads to up-regulation of nAChRs on the plasma membrane. However, the dynamics of nicotine entry into the ER are unquantified. Here, we develop a family of genetically encoded fluorescent biosensors for nicotine, termed iNicSnFRs. The iNicSnFRs are fusions between two proteins: a circularly permutated GFP and a periplasmic choline-/betaine-binding protein engineered to bind nicotine. The biosensors iNicSnFR3a and iNicSnFR3b respond to nicotine by increasing fluorescence at [nicotine] <1 µM, the concentration in the plasma and cerebrospinal fluid of a smoker. We target iNicSnFR3 biosensors either to the plasma membrane or to the ER and measure nicotine kinetics in HeLa, SH-SY5Y, N2a, and HEK293 cell lines, as well as mouse hippocampal neurons and human stem cell-derived dopaminergic neurons. In all cell types, we find that nicotine equilibrates in the ER within 10 s (possibly within 1 s) of extracellular application and leaves as rapidly after removal from the extracellular solution. The [nicotine] in the ER is within twofold of the extracellular value. We use these data to run combined pharmacokinetic and pharmacodynamic simulations of human smoking. In the ER, the inside-out pathway begins when nicotine becomes a stabilizing pharmacological chaperone for some nAChR subtypes, even at concentrations as low as ∼10 nM. Such concentrations would persist during the 12 h of a typical smoker's day, continually activating the inside-out pathway by >75%. Reducing nicotine intake by 10-fold decreases activation to ∼20%. iNicSnFR3a and iNicSnFR3b also sense the smoking cessation drug varenicline, revealing that varenicline also permeates into the ER within seconds. Our iNicSnFRs enable optical subcellular pharmacokinetics for nicotine and varenicline during an early event in the inside-out pathway.
Collapse
Affiliation(s)
- Amol V Shivange
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Philip M Borden
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Anand K Muthusamy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Aaron L Nichols
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Kallol Bera
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Huan Bao
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, WI
| | - Ishak Bishara
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Janice Jeon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Matthew J Mulcahy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Bruce Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Saidhbhe L O'Riordan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Charlene Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, WI
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| |
Collapse
|
37
|
Adermark L, Morud J, Lotfi A, Ericson M, Söderpalm B. Acute and chronic modulation of striatal endocannabinoid-mediated plasticity by nicotine. Addict Biol 2019; 24:355-363. [PMID: 29292565 PMCID: PMC6585825 DOI: 10.1111/adb.12598] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/09/2017] [Accepted: 12/05/2017] [Indexed: 11/27/2022]
Abstract
The endocannabinoid (eCB) system modulates several phenomena related to addictive behaviors, and drug‐induced changes in eCB signaling have been postulated to be important mediators of physiological and pathological reward‐related synaptic plasticity. Here, we studied eCB‐mediated long‐term depression (eCB‐LTD) in the dorsolateral striatum, a brain region critical for acquisition of habitual and automatic behavior. We report that nicotine differentially affects ex vivo eCB signaling depending on previous exposure in vivo. In the nicotine‐naïve brain, nicotine facilitates eCB‐signaling and LTD, whereas tolerance develops to this facilitating effect after subchronic exposure in vivo. In the end, a progressive impairment of eCB‐induced LTD is established after protracted withdrawal from nicotine. Endocannabinoid‐LTD is reinstated 6 months after the last drug injection, but a brief period of nicotine re‐exposure is sufficient to yet again impair eCB‐signaling. LTD induced by the cannabinoid 1 receptor agonist WIN55,212‐2 is not affected, suggesting that nicotine modulates eCB production or release. Nicotine‐induced facilitation of eCB‐LTD is occluded by the dopamine D2 receptor agonist quinpirole, and by the muscarinic acetylcholine receptor antagonist scopolamine. In addition, the same compounds restore eCB‐LTD during protracted withdrawal. Nicotine may thus modulate eCB‐signaling by affecting dopaminergic and cholinergic neurotransmission in a long‐lasting manner. Overall, the data presented here suggest that nicotine facilitates eCB‐LTD in the initial phase, which putatively could promote neurophysiological and behavioral adaptations to the drug. Protracted withdrawal, however, impairs eCB‐LTD, which may influence or affect the ability to maintain cessation.
Collapse
Affiliation(s)
- Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of Gothenburg Sweden
| | - Julia Morud
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of Gothenburg Sweden
| | - Amir Lotfi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of Gothenburg Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of Gothenburg Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of Gothenburg Sweden
- Beroendekliniken, Sahlgrenska University Hospital Sweden
| |
Collapse
|
38
|
Zarrindast MR, Khakpai F. The modulatory role of nicotine on cognitive and non-cognitive functions. Brain Res 2019; 1710:92-101. [DOI: 10.1016/j.brainres.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/12/2023]
|
39
|
Abstract
PURPOSE OF REVIEW The Centers for Medicare and Medicaid Services' requirement to integrate tobacco treatment with lung cancer screening (LCS) has served as a catalyst for motivating pulmonary medicine clinicians to improve upon their ability to effectively treat tobacco dependence. To do so, clinicians need to be well versed in the behavioral and pharmacologic tools that promote smoking cessation. RECENT FINDINGS The current review outlines current strategies for treating tobacco dependence, focusing on the important interplay between counseling and pharmacotherapy. Studies that have been found to be particularly effective in patients with smoking-related lung disease and in the LCS setting are reviewed. New therapies that are in the pipeline, as well as novel strategies aimed at improving both adoption and effectiveness of existing therapies, are discussed. SUMMARY Treating tobacco dependence improves mortality and quality of life far more than the limited therapies available to treat smoking-related lung disease. Novel strategies to making tobacco treatment services more widely available, particularly to vulnerable patient populations, are needed to further decrease smoking-related morbidity and mortality. The Affordable Care Act's greater focus on prevention represents a moment of opportunity for healthcare providers and systems to engage in these efforts.
Collapse
|
40
|
Schmidt HD, Rupprecht LE, Addy NA. Neurobiological and Neurophysiological Mechanisms Underlying Nicotine Seeking and Smoking Relapse. MOLECULAR NEUROPSYCHIATRY 2019; 4:169-189. [PMID: 30815453 PMCID: PMC6388439 DOI: 10.1159/000494799] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
Tobacco-related morbidity and mortality continue to be a significant public health concern. Unfortunately, current FDA-approved smoking cessation pharmacotherapies have limited efficacy and are associated with high rates of relapse. Therefore, a better understanding of the neurobiological and neurophysiological mechanisms that promote smoking relapse is needed to develop novel smoking cessation medications. Here, we review preclinical studies focused on identifying the neurotransmitter and neuromodulator systems that mediate nicotine relapse, often modeled in laboratory animals using the reinstatement paradigm, as well as the plasticity-dependent neurophysiological mechanisms that facilitate nicotine reinstatement. Particular emphasis is placed on how these neuroadaptations relate to smoking relapse in humans. We also highlight a number of important gaps in our understanding of the neural mechanisms underlying nicotine reinstatement and critical future directions, which may lead toward the development of novel, target pharmacotherapies for smoking cessation.
Collapse
Affiliation(s)
- Heath D. Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura E. Rupprecht
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nii A. Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
- Interdepartmental Neuroscience Program, Yale Graduate School of Arts and Sciences, New Haven, Connecticut, USA
| |
Collapse
|
41
|
Han H, Liu Q, Yang Z, Wang M, Ma Y, Cao L, Cui W, Yuan W, Payne TJ, Li L, Li MD. Association and cis-mQTL analysis of variants in serotonergic genes associated with nicotine dependence in Chinese Han smokers. Transl Psychiatry 2018; 8:243. [PMID: 30405098 PMCID: PMC6221882 DOI: 10.1038/s41398-018-0290-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022] Open
Abstract
Variants in serotonergic genes are implicated in nicotine dependence (ND) in subjects of European and African origin, but their involvement with smoking in Asians is largely unknown. Moreover, mechanisms underlying the ND risk-associated single-nucleotide polymorphisms (SNPs) in these genes are rarely investigated. The Fagerström Test for Nicotine Dependence (FTND) score was used to assess ND in 2616 male Chinese Han smokers. Both association and interaction analysis were used to examine the association of variants in the serotonergic genes with FTND. Further, expression and methylation quantitative trait loci (cis-mQTL) analysis was employed to determine the association of individual SNPs with the extent of methylation of each CpG locus. Individual SNP-based association analysis revealed that rs1176744 in HTR3B was marginally associated with FTND (p = 0.042). Haplotype-based association analysis found that one major haplotype, T-T-A-G, formed by SNPs rs3758987-rs4938056-rs1176744-rs2276305, located in the 5' region of HTR3B, showed a significant association with FTND (p = 0.00025). Further, a significant genetic interactive effect affecting ND was detected among SNPs rs10160548 in HTR3A, and rs3758987, rs2276305, and rs1672717 in HTR3B (p = 0.0074). Finally, we found four CpG sites (CpG_4543549, CpG_4543464, CpG_4543682, and CpG_4546888) to be significantly associated with three cis-mQTL SNPs (i.e., rs3758987, rs4938056, and rs1176744) located in our detected haplotype within HTR3B. In sum, we showed SNP rs1176744 (Tyr129Ser) to be associated with ND. Together with the SNPs rs3758987 and rs4938056 in HTR3B, they formed a major haplotype, which had significant association with ND. We further showed these SNPs contribute to ND through four methylated sites in HTR3B. All these findings suggest that variants in the serotonergic system play an important role in ND in the Chinese Han population. More importantly, these findings demonstrated that the involvement of this system in ND is through gene-by-gene interaction and methylation.
Collapse
Affiliation(s)
- Haijun Han
- 0000 0004 1759 700Xgrid.13402.34State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Liu
- 0000 0004 1759 700Xgrid.13402.34State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- 0000 0004 1759 700Xgrid.13402.34State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Mu Wang
- 0000 0004 1759 700Xgrid.13402.34State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- 0000 0004 1759 700Xgrid.13402.34State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Liyu Cao
- 0000 0004 1759 700Xgrid.13402.34State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyan Cui
- 0000 0004 1759 700Xgrid.13402.34State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- 0000 0004 1759 700Xgrid.13402.34State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Thomas J. Payne
- 0000 0004 1937 0407grid.410721.1ACT Center for Tobacco Treatment, Education and Research, Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS USA
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ming D. Li
- 0000 0004 1759 700Xgrid.13402.34State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China ,0000 0004 1759 700Xgrid.13402.34Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China ,0000 0001 2172 0072grid.263379.aInstitute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ USA
| |
Collapse
|
42
|
D'Alessandro M, Richard M, Stigloher C, Gache V, Boulin T, Richmond JE, Bessereau JL. CRELD1 is an evolutionarily-conserved maturational enhancer of ionotropic acetylcholine receptors. eLife 2018; 7:39649. [PMID: 30407909 PMCID: PMC6245729 DOI: 10.7554/elife.39649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
The assembly of neurotransmitter receptors in the endoplasmic reticulum limits the number of receptors delivered to the plasma membrane, ultimately controlling neurotransmitter sensitivity and synaptic transfer function. In a forward genetic screen conducted in the nematode C. elegans, we identified crld-1 as a gene required for the synaptic expression of ionotropic acetylcholine receptors (AChR). We demonstrated that the CRLD-1A isoform is a membrane-associated ER-resident protein disulfide isomerase (PDI). It physically interacts with AChRs and promotes the assembly of AChR subunits in the ER. Mutations of Creld1, the human ortholog of crld-1a, are responsible for developmental cardiac defects. We showed that Creld1 knockdown in mouse muscle cells decreased surface expression of AChRs and that expression of mouse Creld1 in C. elegans rescued crld-1a mutant phenotypes. Altogether these results identify a novel and evolutionarily-conserved maturational enhancer of AChR biogenesis, which controls the abundance of functional receptors at the cell surface.
Collapse
Affiliation(s)
- Manuela D'Alessandro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Magali Richard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Christian Stigloher
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Vincent Gache
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Thomas Boulin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
| | - Jean-Louis Bessereau
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| |
Collapse
|
43
|
Liu JF, Seaman R, Siemian JN, Bhimani R, Johnson B, Zhang Y, Zhu Q, Hoener MC, Park J, Dietz DM, Li JX. Role of trace amine-associated receptor 1 in nicotine's behavioral and neurochemical effects. Neuropsychopharmacology 2018; 43:2435-2444. [PMID: 29472642 PMCID: PMC6180004 DOI: 10.1038/s41386-018-0017-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 12/21/2022]
Abstract
Nicotine addiction and abuse remains a global health issue. To date, the fundamental neurobiological mechanism of nicotine addiction remains incompletely understood. Trace amine-associated receptor 1 (TAAR1) is thought to directly modulate dopaminergic system and are thought to be a neural substrate underlying addictive-like behaviors. We aimed to investigate the role of TAAR1 in nicotine addictive-like behaviors. TAAR1 expression after nicotine treatment was evaluated by western blotting. c-Fos immunofluorescence and in vivo fast-scan cyclic voltammetry were used to examine the activation of brain regions and dopamine release, respectively. We then thoroughly and systematically examined the role of TAAR1 in mediating nicotine-induced sensitization, nicotine discrimination, nicotine self-administration, nicotine demand curve, and the reinstatement of nicotine-seeking. Local pharmacological manipulation was conducted to determine the role of TAAR1 in the nucleus accumbens (NAcs) in the reinstatement of nicotine-seeking. We found that the expression of TAAR1 protein was selectively downregulated in the NAc, with no change in either dorsal striatum or prefrontal cortex. TAAR1 activation was sufficient to block nicotine-induced c-Fos expression in the NAc, while also reducing nicotine-induced dopamine release in the NAc. Systemic administration of TAAR1 agonists attenuated the expression and development of nicotine-induced sensitization, nicotine self-administration, the reinstatement of nicotine-seeking, and increased the elasticity of nicotine demand curve, while intra-NAc infusions of a TAAR1 agonist was sufficient to attenuate nicotine reinstatement. Moreover, TAAR1-knockout rats showed augmented cue-induced and drug-induced reinstatement of nicotine-seeking. These results indicated that modulation of TAAR1 activity regulates nicotine addictive-like behaviors and TAAR1 represents a novel target towards the treatment of nicotine addiction.
Collapse
Affiliation(s)
- Jian-Feng Liu
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA ,0000 0000 9530 8833grid.260483.bSchool of Pharmacy, Nantong University, 226001 Nantong, China
| | - Robert Seaman
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Justin N. Siemian
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Rohan Bhimani
- 0000 0004 1936 9887grid.273335.3Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214 USA
| | - Bernard Johnson
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Yanan Zhang
- 0000000100301493grid.62562.35Research Triangle Institute, Research Triangle Park, NC 27709 USA
| | - Qing Zhu
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA ,0000 0000 9530 8833grid.260483.bSchool of Pharmacy, Nantong University, 226001 Nantong, China
| | - Marius C. Hoener
- 0000 0004 0374 1269grid.417570.0Neuroscience, Ophthalmology and Rare Disease DTA, pRED, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jinwoo Park
- 0000 0004 1936 9887grid.273335.3Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214 USA
| | - David M. Dietz
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
44
|
A Human Polymorphism in CHRNA5 Is Linked to Relapse to Nicotine Seeking in Transgenic Rats. Curr Biol 2018; 28:3244-3253.e7. [PMID: 30293722 DOI: 10.1016/j.cub.2018.08.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/09/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022]
Abstract
Tobacco addiction is a chronic and relapsing disorder with an important genetic component that represents a major public health issue. Meta-analysis of large-scale human genome-wide association studies (GWASs) identified a frequent non-synonymous SNP in the gene coding for the α5 subunit of nicotinic acetylcholine receptors (α5SNP), which significantly increases the risk for tobacco dependence and delays smoking cessation. To dissect the neuronal mechanisms underlying the vulnerability to nicotine addiction in carriers of the α5SNP, we created rats expressing this polymorphism using zinc finger nuclease technology and evaluated their behavior under the intravenous nicotine-self-administration paradigm. The electrophysiological responses of their neurons to nicotine were also evaluated. α5SNP rats self-administered more nicotine at high doses and exhibited higher nicotine-induced reinstatement of nicotine seeking than wild-type rats. Higher reinstatement was associated with altered neuronal activity in several discrete areas that are interconnected, including in the interpeduncular nucleus (IPN), a GABAergic structure that strongly expresses α5-containing nicotinic receptors. The altered reactivity of IPN neurons of α5SNP rats to nicotine was confirmed electrophysiologically. In conclusion, the α5SNP polymorphism is a major risk factor for nicotine intake at high doses and for relapse to nicotine seeking in rats, a dual effect that reflects the human condition. Our results also suggest an important role for the IPN in the higher relapse to nicotine seeking observed in α5SNP rats.
Collapse
|
45
|
Muladore E, Brown JA, Haefner J, Kupferschmid B. Improving patient education about tobacco withdrawal and nicotine gum use by registered nurses in inpatient psychiatry: A feasibility study. J Psychiatr Ment Health Nurs 2018; 25:496-505. [PMID: 30129262 DOI: 10.1111/jpm.12495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 11/26/2022]
Abstract
UNLABELLED WHAT IS KNOWN ON THE SUBJECT?: Many psychiatric inpatients use tobacco, but most psychiatric hospital units prohibit tobacco use. Psychiatric nurses do not receive adequate education about how to teach patients to best manage tobacco withdrawal symptoms. WHAT DOES THIS PAPER ADD TO EXISTING KNOWLEDGE?: Psychiatric nurses who receive a brief educational intervention about tobacco withdrawal symptoms and best practices for using nicotine gum may be more prepared to teach patients about these topics. In turn, patients may use nicotine gum more often during their hospitalization, leading to improved outcomes for them as well as for staff. WHAT ARE THE IMPLICATIONS FOR PRACTICE?: A simple educational intervention aimed at psychiatric nurses can result in positive outcomes for psychiatric inpatients who use tobacco. Patients who have a positive experience with stopping tobacco use while hospitalized may be more likely to commit to lifelong tobacco cessation afterwards. The results of this feasibility study demonstrate that additional research that builds on the work presented here is warranted. ABSTRACT Introduction Tobacco use is prohibited in most psychiatric facilities in the United States, yet many psychiatric inpatients are tobacco users. Psychiatric nurses have reported inadequate education about best practices for managing tobacco dependence. Aim To explore the feasibility of an educational intervention for psychiatric nurses designed to improve their ability to educate patients about best practices for managing tobacco dependence, as well as effective use of nicotine gum. Method Fourteen nurses on a psychiatric inpatient unit at a community hospital were educated about the targeted topics. Chart reviews of nonequivalent pre-intervention and post-intervention patient groups were conducted to explore the outcomes of the intervention. Results Patients received more teaching, and used nicotine gum more often, following the intervention. However, no statistically significant differences between the pre-intervention and post-intervention patient groups were found. Discussion Educating nurses about best practices for managing tobacco withdrawal symptoms may have positive outcomes. Existing research suggests that such interventions may be most effective when support and structure are provided to ensure long-term practice changes. Implications for practice This feasibility study demonstrates that a brief nurse education intervention has the potential to improve the experience of tobacco withdrawal for psychiatric inpatients. Future research that expands upon the current project is warranted.
Collapse
|
46
|
Leone FT, Baldassarri SR, Galiatsatos P, Schnoll R. Nicotine Dependence: Future Opportunities and Emerging Clinical Challenges. Ann Am Thorac Soc 2018; 15:1127-1130. [PMID: 30059632 PMCID: PMC6321992 DOI: 10.1513/annalsats.201802-099ps] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/08/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Frank T. Leone
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Panagis Galiatsatos
- Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Robert Schnoll
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
47
|
Nicotine dependence, internalizing symptoms, mood variability and daily tobacco use among young adult smokers. Addict Behav 2018; 83:87-94. [PMID: 28943065 DOI: 10.1016/j.addbeh.2017.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/07/2017] [Accepted: 09/13/2017] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Cigarette use among young adults continues to rise. As young adults transition to college and assume other adult roles and responsibilities, they are at risk for the development of mental health problems and for the progression of substance use problems. Previous studies suggest that individual differences in negative and positive mood contribute to cigarette use in established college-aged smokers, but less is known whether fluctuations in mood influence daily cigarette use, controlling for trait levels of internalizing symptoms and nicotine dependence. METHODS Data for this study came from a sample of college students (N=39, 59% female, mean age 20.4years) who reported regular cigarette use and participated in a 21-day ecological momentary assessment (EMA) study assessing within-individual variation in cigarette use and mood. RESULTS A three-level hierarchical linear model accounting for the structure of 1896 occasions of cigarette use nested within days and individuals indicated that within-individual variability in positive mood was associated with cigarette use at each occasion, after taking into account baseline levels of nicotine dependence and internalizing problems. CONCLUSIONS Daily shifts in positive moods are importantly associated with consuming cigarettes throughout the day.
Collapse
|
48
|
Chiamulera C, West RJ. What role does dopamine really play in tobacco addiction? Addiction 2018; 113:1379-1380. [PMID: 29766605 DOI: 10.1111/add.14235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/21/2018] [Accepted: 04/04/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Cristiano Chiamulera
- Department of Diagnostics and Public Health, Section Pharmacology, University of Verona, Verona, Italy
| | - Robert J West
- Department of Behavioural Science and Health, University College London, London, UK
| |
Collapse
|
49
|
Ziani PR, Müller TE, Stefanello FV, Fontana BD, Duarte T, Canzian J, Rosemberg DB. Nicotine increases fear responses and brain acetylcholinesterase activity in a context-dependent manner in zebrafish. Pharmacol Biochem Behav 2018; 170:36-43. [DOI: 10.1016/j.pbb.2018.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 01/04/2023]
|
50
|
Complex Control of Striatal Neurotransmission by Nicotinic Acetylcholine Receptors via Excitatory Inputs onto Medium Spiny Neurons. J Neurosci 2018; 38:6597-6607. [PMID: 29941445 DOI: 10.1523/jneurosci.0071-18.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/06/2018] [Accepted: 05/10/2018] [Indexed: 01/12/2023] Open
Abstract
The prevalence of nicotine dependence is higher than that for any other substance abuse disorder; still, the underlying mechanisms are not fully established. To this end, we studied acute effects by nicotine on neurotransmission in the dorsolateral striatum, a key brain region with respect to the formation of habits. Electrophysiological recordings in acutely isolated brain slices from rodent showed that nicotine (10 nm to 10 μm) produced an LTD of evoked field potentials. Current-clamp recordings revealed no significant effect by nicotine on membrane voltage or action potential frequency, indicating that the effect by nicotine is primarily synaptic. Nicotine did not modulate sIPSCs, or the connectivity between fast-spiking interneurons and medium spiny neurons, as assessed by whole-cell recordings combined with optogenetics. However, the frequency of sEPSCs was significantly depressed by nicotine. The effect by nicotine was mimicked by agonists targeting α7- or α4-containing nAChRs and blocked in slices pretreated with a mixture of antagonists targeting these receptor subtypes. Nicotine-induced LTD was furthermore inhibited by dopamine D2 receptor antagonist and occluded by D2 receptor agonist. In addition, modulation of cholinergic neurotransmission suppressed the responding to nicotine, which might reflect upon the postulated role for nAChRs as a presynaptic filter to differentially govern dopamine release depending on neuronal activity. Nicotine-induced suppression of excitatory inputs onto medium spiny neurons may promote nicotine-induced locomotor stimulation and putatively initiate neuroadaptations that could contribute to the transition toward compulsive drug taking.SIGNIFICANCE STATEMENT To decrease smoking, prevalence factors that may contribute to the development of nicotine addiction need to be identified. The data presented here show that nicotine suppresses striatal neurotransmission by selectively reducing the frequency of excitatory inputs to medium spiny neurons (MSNs) while rendering excitability, inhibitory neurotransmission, and fast-spiking interneuron-MSN connectivity unaltered. In addition, we show that the effect displayed by nicotine outlasts the presence of the drug, which could be fundamental for the addictive properties of nicotine. Considering the inhibitory tone displayed by MSNs on dopaminergic cell bodies and local terminals, nicotine-induced long-lasting depression of striatal output could play a role in behavioral transformations associated with nicotine use, and putatively elicit neuroadaptations underlying compulsive drug-seeking habits.
Collapse
|