1
|
Mohan G, Choudhury A, Bhat J, Phartyal R, Lal R, Verma M. Human Riboviruses: A Comprehensive Study. J Mol Evol 2024:10.1007/s00239-024-10221-9. [PMID: 39739017 DOI: 10.1007/s00239-024-10221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025]
Abstract
The urgency to understand the complex interactions between viruses, their animal reservoirs, and human populations has been necessitated by the continuous spread of zoonotic viral diseases as evidenced in epidemics and pandemics throughout human history. Riboviruses are involved in some of the most prevalent human diseases, responsible for causing epidemics and pandemics. These viruses have an animal origin and have been known to cross the inter-species barrier time and time again, eventually infecting human beings. Their evolution has been a long road to harbour important adaptations for increasing fitness, mutability and virulence; a result of natural selection and mutation pressure, making these viruses highly infectious and difficult to counter. Accumulating favourable mutations in the course, they imitate the GC content and codon usage patterns of the host for maximising the chances of infection. A myriad of viral and host factors determine the fate of specific viral infections, which may include virus protein and host receptor compatibility, host restriction factors and others. Thus, understanding the biology, transmission and molecular mechanisms of Riboviruses is essential for the development of effective antiviral treatments, vaccine development and strategies to prevent and control viral infections. Keeping these aspects in mind, this review aims to provide a holistic approach towards understanding Riboviruses.
Collapse
Affiliation(s)
- Gauravya Mohan
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Akangkha Choudhury
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Jeevika Bhat
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Rajendra Phartyal
- Department of Zoology, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Rup Lal
- PhiXGen Private Limited, Gurugram, Haryana, 122001, India
| | - Mansi Verma
- Department of Zoology, Hansraj College, University of Delhi, Mahatma Hansraj Marg, Malkaganj, Delhi, 110007, India.
| |
Collapse
|
2
|
Popović ME, Tadić V, Popović M. (R)evolution of Viruses: Introduction to biothermodynamics of viruses. Virology 2024; 603:110319. [PMID: 39642612 DOI: 10.1016/j.virol.2024.110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
As of 26 April 2024, the International Committee on Taxonomy of Viruses has registered 14690 virus species. Of these, only several dozen have been chemically and thermodynamically characterized. Every virus species is characterized by a specific empirical formula and thermodynamic properties - enthalpy, entropy and Gibbs energy. These physical properties are used in a mechanistic model of virus-host interactions at the cell membrane and in the cytoplasm. This review article presents empirical formulas and Gibbs energies for all major variants of SARS-CoV-2. This article also reports and suggests a mechanistic model of evolutionary changes, with the example of time evolution of SARS-CoV-2 from 2019 to 2024.
Collapse
Affiliation(s)
- Marko E Popović
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000, Belgrade, Serbia.
| | - Vojin Tadić
- Department for Experimental Testing of Precious Metals, Mining and Metallurgy Institute, Zeleni Bulevar 35, 19210, Bor, Serbia
| | - Marta Popović
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia
| |
Collapse
|
3
|
Tharanga S, Ünlü ES, Hu Y, Sjaugi MF, Çelik MA, Hekimoğlu H, Miotto O, Öncel MM, Khan AM. DiMA: sequence diversity dynamics analyser for viruses. Brief Bioinform 2024; 26:bbae607. [PMID: 39592151 PMCID: PMC11596295 DOI: 10.1093/bib/bbae607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/22/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Sequence diversity is one of the major challenges in the design of diagnostic, prophylactic, and therapeutic interventions against viruses. DiMA is a novel tool that is big data-ready and designed to facilitate the dissection of sequence diversity dynamics for viruses. DiMA stands out from other diversity analysis tools by offering various unique features. DiMA provides a quantitative overview of sequence (DNA/RNA/protein) diversity by use of Shannon's entropy corrected for size bias, applied via a user-defined k-mer sliding window to an input alignment file, and each k-mer position is dissected to various diversity motifs. The motifs are defined based on the probability of distinct sequences at a given k-mer alignment position, whereby an index is the predominant sequence, while all the others are (total) variants to the index. The total variants are sub-classified into the major (most common) variant, minor variants (occurring more than once and of incidence lower than the major), and the unique (singleton) variants. DiMA allows user-defined, sequence metadata enrichment for analyses of the motifs. The application of DiMA was demonstrated for the alignment data of the relatively conserved Spike protein (2,106,985 sequences) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the relatively highly diverse pol gene (2637) of the human immunodeficiency virus-1 (HIV-1). The tool is publicly available as a web server (https://dima.bezmialem.edu.tr), as a Python library (via PyPi) and as a command line client (via GitHub).
Collapse
Affiliation(s)
- Shan Tharanga
- Centre for Bioinformatics, School of Data Sciences, Perdana University, MAEPS Building, Jalan MAEPS Perdana, Serdang, Kuala Lumpur 50490, Malaysia
| | - Eyyüb Selim Ünlü
- Istanbul Faculty of Medicine, Istanbul University, Turgut Özal Millet St, Topkapi, Istanbul 34093, Türkiye
- Genome Surveillance Unit, Wellcome Sanger Institute, Mill Ln, Hinxton, Saffron Walden CB10 1SA, United Kingdom
| | - Yongli Hu
- Centre for Bioinformatics, School of Data Sciences, Perdana University, MAEPS Building, Jalan MAEPS Perdana, Serdang, Kuala Lumpur 50490, Malaysia
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Muhammad Farhan Sjaugi
- Centre for Bioinformatics, School of Data Sciences, Perdana University, MAEPS Building, Jalan MAEPS Perdana, Serdang, Kuala Lumpur 50490, Malaysia
| | - Muhammet A Çelik
- Celik Sarayı, Yeni Elektrik Santral St. No:29/2, Meram, Konya 42090, Türkiye
| | - Hilal Hekimoğlu
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Ali Ihsan Kalmaz St., No.10 Beykoz, Istanbul 34820, Türkiye
| | - Olivo Miotto
- Nuffield Department of Clinical Medicine, University of Oxford, Old Road, Old Road Campus, Oxford OX3 7LF, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd., Ratchathewi District, Bangkok 10400, Thailand
| | - Muhammed Miran Öncel
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Ali Ihsan Kalmaz St., No.10 Beykoz, Istanbul 34820, Türkiye
| | - Asif M Khan
- Centre for Bioinformatics, School of Data Sciences, Perdana University, MAEPS Building, Jalan MAEPS Perdana, Serdang, Kuala Lumpur 50490, Malaysia
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Ali Ihsan Kalmaz St., No.10 Beykoz, Istanbul 34820, Türkiye
- College of Computing and Information Technology, University of Doha for Science and Technology, Jelaiah Street, Duhail North, Doha, Qatar
| |
Collapse
|
4
|
Denz PJ, Speaks S, Kenney AD, Eddy AC, Papa JL, Roettger J, Scace SC, Rubrum A, Hemann EA, Forero A, Webby RJ, Bowman AS, Yount JS. Innate immune control of influenza virus interspecies adaptation via IFITM3. Nat Commun 2024; 15:9375. [PMID: 39477971 PMCID: PMC11525587 DOI: 10.1038/s41467-024-53792-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/20/2024] [Indexed: 11/02/2024] Open
Abstract
Influenza virus pandemics are caused by viruses from animal reservoirs that adapt to efficiently infect and replicate in human hosts. Here, we investigate whether Interferon-Induced Transmembrane Protein 3 (IFITM3), a host antiviral factor with known human deficiencies, plays a role in interspecies virus infection and adaptation. We find that IFITM3-deficient mice and human cells can be infected with low doses of avian influenza viruses that fail to infect WT counterparts, identifying a new role for IFITM3 in controlling the minimum infectious virus dose threshold. Remarkably, influenza viruses passaged through Ifitm3-/- mice exhibit enhanced host adaptation, a result that is distinct from viruses passaged in mice deficient for interferon signaling, which exhibit attenuation. Our data demonstrate that IFITM3 deficiency uniquely facilitates potentially zoonotic influenza virus infections and subsequent adaptation, implicating IFITM3 deficiencies in the human population as a vulnerability for emergence of new pandemic viruses.
Collapse
Affiliation(s)
- Parker J Denz
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Samuel Speaks
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Adam D Kenney
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Adrian C Eddy
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Jonathan L Papa
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Jack Roettger
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Sydney C Scace
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Adam Rubrum
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Emily A Hemann
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Adriana Forero
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew S Bowman
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA.
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Ristori MV, Guarrasi V, Soda P, Petrosillo N, Gurrieri F, Longo UG, Ciccozzi M, Riva E, Angeletti S. Emerging Microorganisms and Infectious Diseases: One Health Approach for Health Shared Vision. Genes (Basel) 2024; 15:908. [PMID: 39062687 PMCID: PMC11275270 DOI: 10.3390/genes15070908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Emerging infectious diseases (EIDs) are newly emerging and reemerging infectious diseases. The National Institute of Allergy and Infectious Diseases identifies the following as emerging infectious diseases: SARS, MERS, COVID-19, influenza, fungal diseases, plague, schistosomiasis, smallpox, tick-borne diseases, and West Nile fever. The factors that should be taken into consideration are the genetic adaptation of microbial agents and the characteristics of the human host or environment. The new approach to identifying new possible pathogens will have to go through the One Health approach and omics integration data, which are capable of identifying high-priority microorganisms in a short period of time. New bioinformatics technologies enable global integration and sharing of surveillance data for rapid public health decision-making to detect and prevent epidemics and pandemics, ensuring timely response and effective prevention measures. Machine learning tools are being more frequently utilized in the realm of infectious diseases to predict sepsis in patients, diagnose infectious diseases early, and forecast the effectiveness of treatment or the appropriate choice of antibiotic regimen based on clinical data. We will discuss emerging microorganisms, omics techniques applied to infectious diseases, new computational solutions to evaluate biomarkers, and innovative tools that are useful for integrating omics data and electronic medical records data for the clinical management of emerging infectious diseases.
Collapse
Affiliation(s)
- Maria Vittoria Ristori
- Operative Research Unit of Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (M.V.R.); (M.C.); (E.R.)
| | - Valerio Guarrasi
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy; (V.G.); (P.S.)
| | - Paolo Soda
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy; (V.G.); (P.S.)
- Department of Diagnostic and Intervention, Radiation Physics, Biomedical Engineering, Umeå University, 901 87 Umeå, Sweden
| | - Nicola Petrosillo
- Infection Prevention Control/Infectious Disease Service, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy;
| | - Fiorella Gurrieri
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy;
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Umile Giuseppe Longo
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy;
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Massimo Ciccozzi
- Operative Research Unit of Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (M.V.R.); (M.C.); (E.R.)
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Elisabetta Riva
- Operative Research Unit of Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (M.V.R.); (M.C.); (E.R.)
- Unit of Virology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Silvia Angeletti
- Operative Research Unit of Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (M.V.R.); (M.C.); (E.R.)
- Research Unit of Clinical Laboratory Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
6
|
Haq Z, Nazir J, Manzoor T, Saleem A, Hamadani H, Khan AA, Saleem Bhat S, Jha P, Ahmad SM. Zoonotic spillover and viral mutations from low and middle-income countries: improving prevention strategies and bridging policy gaps. PeerJ 2024; 12:e17394. [PMID: 38827296 PMCID: PMC11144393 DOI: 10.7717/peerj.17394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/25/2024] [Indexed: 06/04/2024] Open
Abstract
The increasing frequency of zoonotic spillover events and viral mutations in low and middle-income countries presents a critical global health challenge. Contributing factors encompass cultural practices like bushmeat consumption, wildlife trade for traditional medicine, habitat disruption, and the encroachment of impoverished settlements onto natural habitats. The existing "vaccine gap" in many developing countries exacerbates the situation by allowing unchecked viral replication and the emergence of novel mutant viruses. Despite global health policies addressing the root causes of zoonotic disease emergence, there is a significant absence of concrete prevention-oriented initiatives, posing a potential risk to vulnerable populations. This article is targeted at policymakers, public health professionals, researchers, and global health stakeholders, particularly those engaged in zoonotic disease prevention and control in low and middle-income countries. The article underscores the importance of assessing potential zoonotic diseases at the animal-human interface and comprehending historical factors contributing to spillover events. To bridge policy gaps, comprehensive strategies are proposed that include education, collaborations, specialized task forces, environmental sampling, and the establishment of integrated diagnostic laboratories. These strategies advocate simplicity and unity, breaking down barriers, and placing humanity at the forefront of addressing global health challenges. Such a strategic and mental shift is crucial for constructing a more resilient and equitable world in the face of emerging zoonotic threats.
Collapse
Affiliation(s)
- Zulfqarul Haq
- ICMR project, Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Junaid Nazir
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India
- Division of Animal Biotechnology, Faculty of veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, Faculty of veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Afnan Saleem
- Division of Animal Biotechnology, Faculty of veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - H. Hamadani
- ICMR project, Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Azmat Alam Khan
- ICMR project, Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Faculty of veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Priyanka Jha
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
7
|
Breban R. Emergence failure of early epidemics: A mathematical modeling approach. PLoS One 2024; 19:e0301415. [PMID: 38809831 PMCID: PMC11135784 DOI: 10.1371/journal.pone.0301415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/16/2024] [Indexed: 05/31/2024] Open
Abstract
Epidemic or pathogen emergence is the phenomenon by which a poorly transmissible pathogen finds its evolutionary pathway to become a mutant that can cause an epidemic. Many mathematical models of pathogen emergence rely on branching processes. Here, we discuss pathogen emergence using Markov chains, for a more tractable analysis, generalizing previous work by Kendall and Bartlett about disease invasion. We discuss the probability of emergence failure for early epidemics, when the number of infected individuals is small and the number of the susceptible individuals is virtually unlimited. Our formalism addresses both directly transmitted and vector-borne diseases, in the cases where the original pathogen is 1) one step-mutation away from the epidemic strain, and 2) undergoing a long chain of neutral mutations that do not change the epidemiology. We obtain analytic results for the probabilities of emergence failure and two features transcending the transmission mechanism. First, the reproduction number of the original pathogen is determinant for the probability of pathogen emergence, more important than the mutation rate or the transmissibility of the emerged pathogen. Second, the probability of mutation within infected individuals must be sufficiently high for the pathogen undergoing neutral mutations to start an epidemic, the mutation threshold depending again on the basic reproduction number of the original pathogen. Finally, we discuss the parameterization of models of pathogen emergence, using SARS-CoV1 as an example of zoonotic emergence and HIV as an example for the emergence of drug resistance. We also discuss assumptions of our models and implications for epidemiology.
Collapse
Affiliation(s)
- Romulus Breban
- Institut Pasteur, Unité d’Epidémiologie des Maladies Emergentes, Paris, France
| |
Collapse
|
8
|
Obonyo D, Ouma G, Ikawa R, Odeny DA. Meta-transcriptomic identification of groundnut RNA viruses in western Kenya and the novel detection of groundnut as a host for Cauliflower mosaic virus. Virology 2024; 593:110011. [PMID: 38367474 DOI: 10.1016/j.virol.2024.110011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Groundnut (Arachis hypogaea L.) is the 13th most important global crop grown throughout the tropical and subtropical regions of the world. One of the major constraints to groundnut production is viruses, which are also the most economically important and most abundant pathogens among cultivated legumes. Only a few studies have reported the characterization of RNA viruses in cultivated groundnuts in western Kenya, most of which deployed classical methods of detecting known viruses. METHODS We sampled twenty-one symptomatic and three asymptomatic groundnut leaf samples from farmers' fields in western Kenya. Total RNA was extracted from the samples followed by First-strand cDNA synthesis and sequencing on the Illumina HiSeq 2500 platform. After removing host and rRNA sequences, high-quality viral RNA sequences were de novo assembled and viral genomes annotated using the publicly available NCBI virus database. Multiple sequence alignment and phylogenetic analysis were done using MEGA X. RESULTS Bioinformatics analyses using as low as ∼3.5 million reads yielded complete and partial genomes for Cauliflower mosaic virus (CaMV), Cowpea polerovirus 2 (CPPV2), Groundnut rosette assistor virus (GRAV), Groundnut rosette virus (GRV), Groundnut rosette virus satellite RNA (satRNA) and Peanut mottle virus (PeMoV) falling within the species demarcation criteria. This is the first report of CaMV and the second report of CPPV2 on groundnut hosts in the world. Confirmation of the detected viruses was further verified through phylogenetic analyses alongside reported publicly available highly similar viruses. PeMoV was the only seed-borne virus reported. CONCLUSION Our findings demonstrate the power of Next Generation Sequencing in the discovery and identification of novel viruses in groundnuts. The detection of the new viruses indicates the complexity of virus diseases in groundnuts and would require more focus in future studies to establish the effect of the viruses as sole or mixed infections on the crop. The detection of PeMoV with potential origin from Malawi indicates the importance of seed certification and cross-boundary seed health testing.
Collapse
Affiliation(s)
- Dennis Obonyo
- Department of Biotechnology, University of Eldoret, Kenya, P.O Box 1125-30100, Eldoret, Kenya; Centre for Biotechnology and Bioinformatics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - George Ouma
- Institute for Climate Change and Adaptation, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Rachel Ikawa
- Centre for Biotechnology and Bioinformatics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Damaris A Odeny
- International Crops Research Institute for the Semi-Arid Tropics, Eastern and Southern Africa, P.O Box 39063-00623, Nairobi, Kenya.
| |
Collapse
|
9
|
Li K, He Y, Wang L, Li P, Bao H, Huang S, Zhou S, Zhu G, Song Y, Li Y, Wang S, Zhang Q, Sun P, Bai X, Zhao Z, Lou Z, Cao Y, Lu Z, Liu Z. Conserved antigen structures and antibody-driven variations on foot-and-mouth disease virus serotype A revealed by bovine neutralizing monoclonal antibodies. PLoS Pathog 2023; 19:e1011811. [PMID: 37983290 PMCID: PMC10695380 DOI: 10.1371/journal.ppat.1011811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 12/04/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) serotype A is antigenically most variable within serotypes. The structures of conserved and variable antigenic sites were not well resolved. Here, a historical A/AF72 strain from A22 lineage and a latest A/GDMM/2013 strain from G2 genotype of Sea97 lineage were respectively used as bait antigen to screen single B cell antibodies from bovine sequentially vaccinated with A/WH/CHA/09 (G1 genotype of Sea97 lineage), A/GDMM/2013 and A/AF72 antigens. Total of 39 strain-specific and 5 broad neutralizing antibodies (bnAbs) were isolated and characterized. Two conserved antigenic sites were revealed by the Cryo-EM structures of FMDV serotype A with two bnAbs W2 and W125. The contact sites with both VH and VL of W125 were closely around icosahedral threefold axis and covered the B-C, E-F, and H-I loops on VP2 and the B-B knob and H-I loop on VP3; while contact sites with only VH of W2 concentrated on B-B knob, B-C and E-F loops on VP3 scattering around the three-fold axis of viral particle. Additional highly conserved epitopes also involved key residues of VP158, VP1147 and both VP272 / VP1147 as determined respectively by bnAb W153, W145 and W151-resistant mutants. Furthermore, the epitopes recognized by 20 strain-specific neutralization antibodies involved the key residues located on VP3 68 for A/AF72 (11/20) and VP3 175 position for A/GDMM/2013 (9/19), respectively, which revealed antigenic variation between different strains of serotype A. Analysis of antibody-driven variations on capsid of two virus strains showed a relatively stable VP2 and more variable VP3 and VP1. This study provided important information on conserve and variable antigen structures to design broad-spectrum molecular vaccine against FMDV serotype A.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou (P.R. China)
| | - Yong He
- College of Pharmaceutical Sciences, Shandong University, Jinan, China
- MOE Key Laboratory of Protein Science & Collaborative Innovation Center of Biotherapy, School of Medicine, Tsinghua University, Beijing, China
| | - Li Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou (P.R. China)
| | - Pinghua Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou (P.R. China)
| | - Huifang Bao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou (P.R. China)
| | - Shulun Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou (P.R. China)
| | - Shasha Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou (P.R. China)
| | - Guoqiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou (P.R. China)
| | - Yali Song
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou (P.R. China)
| | - Ying Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou (P.R. China)
| | - Sheng Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou (P.R. China)
| | - Qianliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou (P.R. China)
| | - Pu Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou (P.R. China)
| | - Xingwen Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou (P.R. China)
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou (P.R. China)
| | - Zhiyong Lou
- MOE Key Laboratory of Protein Science & Collaborative Innovation Center of Biotherapy, School of Medicine, Tsinghua University, Beijing, China
| | - Yimei Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou (P.R. China)
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou (P.R. China)
| | - Zaixin Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou (P.R. China)
| |
Collapse
|
10
|
Si Y, Wu W, Xue X, Sun X, Qin Y, Li Y, Qiu C, Li Y, Zhuo Z, Mi Y, Zheng P. The evolution of SARS-CoV-2 and the COVID-19 pandemic. PeerJ 2023; 11:e15990. [PMID: 37701824 PMCID: PMC10493083 DOI: 10.7717/peerj.15990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Scientists have made great efforts to understand the evolution of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) to provide crucial information to public health experts on strategies to control this viral pathogen. The pandemic of the coronavirus disease that began in 2019, COVID-19, lasted nearly three years, and nearly all countries have set different epidemic prevention policies for this virus. The continuous evolution of SARS-CoV-2 alters its pathogenicity and infectivity in human hosts, thus the policy and treatments have been continually adjusted. Based on our previous study on the dynamics of binding ability prediction between the COVID-19 spike protein and human ACE2, the present study mined over 10 million sequences and epidemiological data of SARS-CoV-2 during 2020-2022 to understand the evolutionary path of SARS-CoV-2. We analyzed and predicted the mutation rates of the whole genome and main proteins of SARS-CoV-2 from different populations to understand the adaptive relationship between humans and COVID-19. Our study identified a correlation of the mutation rates from each protein of SARS-CoV-2 and various human populations. Overall, this analysis provides a scientific basis for developing data-driven strategies to confront human pathogens.
Collapse
Affiliation(s)
- Yuanfang Si
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Weidong Wu
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xia Xue
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangdong Sun
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yaping Qin
- School of Basic Medical Sciences, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ya Li
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunjing Qiu
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yingying Li
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Ziran Zhuo
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Denz PJ, Speaks S, Kenney AD, Eddy AC, Papa JL, Roettger J, Scace SC, Hemann EA, Forero A, Webby RJ, Bowman AS, Yount JS. Innate immune control of influenza virus interspecies adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554491. [PMID: 37662304 PMCID: PMC10473703 DOI: 10.1101/2023.08.23.554491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Influenza virus pandemics are caused by viruses from animal reservoirs that adapt to efficiently infect and replicate in human hosts. Here, we investigated whether Interferon-Induced Transmembrane Protein 3 (IFITM3), a host antiviral factor with known human deficiencies, plays a role in interspecies virus infection and adaptation. We found that IFITM3-deficient mice and human cells could be infected with low doses of avian influenza viruses that failed to infect WT counterparts, identifying a new role for IFITM3 in controlling the minimum infectious viral dose threshold. Remarkably, influenza viruses passaged through Ifitm3-/- mice exhibited enhanced host adaptation, a result that was distinct from passaging in mice deficient for interferon signaling, which caused virus attenuation. Our data demonstrate that IFITM3 deficiency uniquely facilitates zoonotic influenza virus infections and subsequent adaptation, implicating IFITM3 deficiencies in the human population as a vulnerability for emergence of new pandemic viruses.
Collapse
Affiliation(s)
- Parker J. Denz
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| | - Samuel Speaks
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| | - Adam D. Kenney
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| | - Adrian C. Eddy
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| | - Jonathan L. Papa
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| | - Jack Roettger
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| | - Sydney C. Scace
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| | - Emily A. Hemann
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| | - Adriana Forero
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital; Memphis, TN, USA
| | - Andrew S. Bowman
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
- Department of Veterinary Preventive Medicine, Ohio State University; Columbus, OH, USA
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| |
Collapse
|
12
|
Nigam D, Muthukrishnan E, Flores-López LF, Nigam M, Wamaitha MJ. Comparative Genome Analysis of Old World and New World TYLCV Reveals a Biasness toward Highly Variable Amino Acids in Coat Protein. PLANTS (BASEL, SWITZERLAND) 2023; 12:1995. [PMID: 37653912 PMCID: PMC10223811 DOI: 10.3390/plants12101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Begomoviruses, belonging to the family Geminiviridae and the genus Begomovirus, are DNA viruses that are transmitted by whitefly Bemisia tabaci (Gennadius) in a circulative persistent manner. They can easily adapt to new hosts and environments due to their wide host range and global distribution. However, the factors responsible for their adaptability and coevolutionary forces are yet to be explored. Among BGVs, TYLCV exhibits the broadest range of hosts. In this study, we have identified variable and coevolving amino acid sites in the proteins of Tomato yellow leaf curl virus (TYLCV) isolates from Old World (African, Indian, Japanese, and Oceania) and New World (Central and Southern America). We focused on mutations in the coat protein (CP), as it is highly variable and interacts with both vectors and host plants. Our observations indicate that some mutations were accumulating in Old World TYLCV isolates due to positive selection, with the S149N mutation being of particular interest. This mutation is associated with TYLCV isolates that have spread in Europe and Asia and is dominant in 78% of TYLCV isolates. On the other hand, the S149T mutation is restricted to isolates from Saudi Arabia. We further explored the implications of these amino acid changes through structural modeling. The results presented in this study suggest that certain hypervariable regions in the genome of TYLCV are conserved and may be important for adapting to different host environments. These regions could contribute to the mutational robustness of the virus, allowing it to persist in different host populations.
Collapse
Affiliation(s)
- Deepti Nigam
- Institute for Genomics of Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University (TTU), Lubbock, TX 79409, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | | | - Luis Fernando Flores-López
- Departamento de Biotecnología y Bioquímica, Centro de Investigacióny de Estudios Avanzados de IPN (CINVESTAV) Unidad Irapuato, Irapuato 368224, Mexico
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar 246174, Uttarakhand, India
| | - Mwathi Jane Wamaitha
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi P.O. Box 14733-00800, Kenya
| |
Collapse
|
13
|
Tomaszewski T, Ali MA, Caetano-Anollés K, Caetano-Anollés G. Seasonal effects decouple SARS-CoV-2 haplotypes worldwide. F1000Res 2023; 12:267. [PMID: 37069849 PMCID: PMC10105261 DOI: 10.12688/f1000research.131522.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
Background: Variants of concern (VOCs) have been replacing each other during the still rampant COVID-19 pandemic. As a result, SARS-CoV-2 populations have evolved increasingly intricate constellations of mutations that often enhance transmissibility, disease severity, and other epidemiological characteristics. The origin and evolution of these constellations remain puzzling. Methods: Here we study the evolution of VOCs at the proteome level by analyzing about 12 million genomic sequences retrieved from GISAID on July 23, 2022. A total 183,276 mutations were identified and filtered with a relevancy heuristic. The prevalence of haplotypes and free-standing mutations was then tracked monthly in various latitude corridors of the world. Results: A chronology of 22 haplotypes defined three phases driven by protein flexibility-rigidity, environmental sensing, and immune escape. A network of haplotypes illustrated the recruitment and coalescence of mutations into major VOC constellations and seasonal effects of decoupling and loss. Protein interaction networks mediated by haplotypes predicted communications impacting the structure and function of proteins, showing the increasingly central role of molecular interactions involving the spike (S), nucleocapsid (N), and membrane (M) proteins. Haplotype markers either affected fusogenic regions while spreading along the sequence of the S-protein or clustered around binding domains. Modeling of protein structure with AlphaFold2 showed that VOC Omicron and one of its haplotypes were major contributors to the distortion of the M-protein endodomain, which behaves as a receptor of other structural proteins during virion assembly. Remarkably, VOC constellations acted cooperatively to balance the more extreme effects of individual haplotypes. Conclusions: Our study uncovers seasonal patterns of emergence and diversification occurring amid a highly dynamic evolutionary landscape of bursts and waves. The mapping of genetically-linked mutations to structures that sense environmental change with powerful ab initio modeling tools demonstrates the potential of deep-learning for COVID-19 predictive intelligence and therapeutic intervention.
Collapse
Affiliation(s)
- Tre Tomaszewski
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Muhammad Asif Ali
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | | | - Gustavo Caetano-Anollés
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- C. R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
14
|
Laso-Pérez R, Wu F, Crémière A, Speth DR, Magyar JS, Zhao K, Krupovic M, Orphan VJ. Evolutionary diversification of methanotrophic ANME-1 archaea and their expansive virome. Nat Microbiol 2023; 8:231-245. [PMID: 36658397 PMCID: PMC9894754 DOI: 10.1038/s41564-022-01297-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/29/2022] [Indexed: 01/21/2023]
Abstract
'Candidatus Methanophagales' (ANME-1) is an order-level clade of archaea responsible for anaerobic methane oxidation in deep-sea sediments. The diversity, ecology and evolution of ANME-1 remain poorly understood. In this study, we use metagenomics on deep-sea hydrothermal samples to expand ANME-1 diversity and uncover the effect of virus-host dynamics. Phylogenetic analyses reveal a deep-branching, thermophilic family, 'Candidatus Methanospirareceae', closely related to short-chain alkane oxidizers. Global phylogeny and near-complete genomes show that hydrogen metabolism within ANME-1 is an ancient trait that was vertically inherited but differentially lost during lineage diversification. Metagenomics also uncovered 16 undescribed virus families so far exclusively targeting ANME-1 archaea, showing unique structural and replicative signatures. The expansive ANME-1 virome contains a metabolic gene repertoire that can influence host ecology and evolution through virus-mediated gene displacement. Our results suggest an evolutionary continuum between anaerobic methane and short-chain alkane oxidizers and underscore the effects of viruses on the dynamics and evolution of methane-driven ecosystems.
Collapse
Affiliation(s)
- Rafael Laso-Pérez
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany.
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| | - Fabai Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.
- Ocean College, Zhejiang University, Zhoushan, China.
- Donghai Laboratory, Zhoushan, China.
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
| | - Antoine Crémière
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Daan R Speth
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
| | - John S Magyar
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Kehan Zhao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
15
|
Trends and focuses of hantavirus researches: a global bibliometric analysis and visualization from 1980 to 2020. Arch Public Health 2022; 80:218. [PMID: 36182906 PMCID: PMC9526533 DOI: 10.1186/s13690-022-00973-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
Background There have been worldwide changes in the researches on hantaviruses in the past several decades. Nevertheless, there are few bibliometric analysis studies this field. We aim to evaluate and visualize the research focuses and trends of this field using a bibliometric analysis way to help understand the developmet and future hotspots of this field. Material and methods Publications related to hantavirus studies were culled from the Web of Science Core Collection to generate trend analysis. The articles and reviews were re-extracted and Countries, institutions, authors, references and keywords in this field were visually analyzed by using VOSviewer and CiteSpace. Results A total of 4408 studies were included and the number of publications regarding hantaviruses significantly increased yearly. Three thousand seven hundred sixteen research articles and reviews were retrieved to generate bibliometric analysis. These studies mainly come from 125 countries led by USA and China and 3312 institutions led by the University of Helsinki. Twelve thousand five hundred twenty nine authors were identified and Vaheri A were the most influential author. Journal of Virology was the journal with the most studies and citations. After analysis, Hemorrhagic fever with renal syndrome, Hantavirus cardiopulmonary syndrome, nephropathia epidemica and related genotypes, clinical symptoms and rodents were the most common keywords and developing areas. Conclusion Research on hantavirus is flourishing. Cooperation among different countries and institutions in this field must be strengthened in the future. The ecology and clinical symptoms of new genotypes, the vaccine development and factors that affect host population distribution and density are current and developing areas of study.
Collapse
|
16
|
Shaw CL, Kennedy DA. Developing an empirical model for spillover and emergence: Orsay virus host range in Caenorhabditis. Proc Biol Sci 2022; 289:20221165. [PMID: 36126684 PMCID: PMC9489279 DOI: 10.1098/rspb.2022.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
A lack of tractable experimental systems in which to test hypotheses about the ecological and evolutionary drivers of disease spillover and emergence has limited our understanding of these processes. Here we introduce a promising system: Caenorhabditis hosts and Orsay virus, a positive-sense single-stranded RNA virus that naturally infects C. elegans. We assayed species across the Caenorhabditis tree and found Orsay virus susceptibility in 21 of 84 wild strains belonging to 14 of 44 species. Confirming patterns documented in other systems, we detected effects of host phylogeny on susceptibility. We then tested whether susceptible strains were capable of transmitting Orsay virus by transplanting exposed hosts and determining whether they transmitted infection to conspecifics during serial passage. We found no evidence of transmission in 10 strains (virus undetectable after passaging in all replicates), evidence of low-level transmission in 5 strains (virus lost between passage 1 and 5 in at least one replicate) and evidence of sustained transmission in 6 strains (including all three experimental C. elegans strains) in at least one replicate. Transmission was strongly associated with viral amplification in exposed populations. Variation in Orsay virus susceptibility and transmission among Caenorhabditis strains suggests that the system could be powerful for studying spillover and emergence.
Collapse
Affiliation(s)
- Clara L. Shaw
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David A. Kennedy
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
17
|
Nuismer SL, Basinski AJ, Schreiner C, Whitlock A, Remien CH. Reservoir population ecology, viral evolution and the risk of emerging infectious disease. Proc Biol Sci 2022; 289:20221080. [PMID: 36100013 PMCID: PMC9470272 DOI: 10.1098/rspb.2022.1080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/18/2022] [Indexed: 11/12/2022] Open
Abstract
The ecology and life history of wild animals influences their potential to harbour infectious disease. This observation has motivated studies identifying empirical relationships between traits of wild animals and historical patterns of spillover and emergence into humans. Although these studies have identified compelling broad-scale patterns, they are generally agnostic with respect to underlying mechanisms. Here, we develop mathematical models that couple reservoir population ecology with viral epidemiology and evolution to clarify existing verbal arguments and pinpoint the conditions that favour spillover and emergence. Our results support the idea that average lifespan influences the likelihood of an animal serving as a reservoir for human infectious disease. At the same time, however, our results show that the magnitude of this effect is sensitive to the rate of viral mutation. Our results also demonstrate that viral pathogens causing persistent infections or a transient immune response within the reservoir are more likely to fuel emergence. Genetically explicit stochastic simulations enrich these mathematical results by identifying relationships between the genetic basis of transmission and the risk of spillover and emergence. Together, our results clarify the scope of applicability for existing hypotheses and refine our understanding of emergence risk.
Collapse
Affiliation(s)
- Scott L. Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Andrew J. Basinski
- Institute for Interdisciplinary Data Science, University of Idaho, Moscow, ID 83844, USA
| | - Courtney Schreiner
- Bioinformatics and Computational Biology, University of Idaho, Moscow, ID 83844, USA
| | - Alexander Whitlock
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Christopher H. Remien
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
18
|
Gavotte L, Frutos R. The stochastic world of emerging viruses. PNAS NEXUS 2022; 1:pgac185. [PMID: 36714875 PMCID: PMC9802394 DOI: 10.1093/pnasnexus/pgac185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/02/2022] [Indexed: 02/01/2023]
Abstract
The acquisition of new hosts is a fundamental mechanism by which parasitic organisms expand their host range and perpetuate themselves on an evolutionary scale. Among pathogens, viruses, due to their speed of evolution, are particularly efficient in producing new emergence events. However, even though these phenomena are particularly important to the human species and therefore specifically studied, the processes of virus emergence in a new host species are very complex and difficult to comprehend in their entirety. In order to provide a structured framework for understanding emergence in a species (including humans), a comprehensive qualitative model is an indispensable cornerstone. This model explicitly describes all the stages necessary for a virus circulating in the wild to come to the crossing of the epidemic threshold. We have therefore developed a complete descriptive model explaining all the steps necessary for a virus circulating in host populations to emerge in a new species. This description of the parameters presiding over the emergence of a new virus allows us to understand their nature and importance in the emergence process.
Collapse
|
19
|
Maladaptation after a virus host switch leads to increased activation of the pro-inflammatory NF-κB pathway. Proc Natl Acad Sci U S A 2022; 119:e2115354119. [PMID: 35549551 PMCID: PMC9171774 DOI: 10.1073/pnas.2115354119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Myxoma virus (MYXV) is benign in the natural brush rabbit host but causes a fatal disease in European rabbits. Here, we demonstrate that MYXV M156 inhibited brush rabbit protein kinase R (bPKR) more efficiently than European rabbit PKR (ePKR). Because ePKR was not completely inhibited by M156, there was a depletion of short–half-life proteins like the nuclear factor kappa B (NF-κB) inhibitor IκBα, concomitant NF-κB activation and NF-κB target protein expression in ePKR-expressing cells. NF-κB pathway activation was blocked by either hypoactive or hyperactive M156 mutants. This demonstrates that maladaptation of viral immune antagonists can result in substantially different immune responses in aberrant hosts. These different host responses may contribute to altered viral dissemination and may influence viral pathogenesis. Myxoma virus (MYXV) causes localized cutaneous fibromas in its natural hosts, tapeti and brush rabbits; however, in the European rabbit, MYXV causes the lethal disease myxomatosis. Currently, the molecular mechanisms underlying this increased virulence after cross-species transmission are poorly understood. In this study, we investigated the interaction between MYXV M156 and the host protein kinase R (PKR) to determine their crosstalk with the proinflammatory nuclear factor kappa B (NF-κB) pathway. Our results demonstrated that MYXV M156 inhibits brush rabbit PKR (bPKR) more strongly than European rabbit PKR (ePKR). This moderate ePKR inhibition could be improved by hyperactive M156 mutants. We hypothesized that the moderate inhibition of ePKR by M156 might incompletely suppress the signal transduction pathways modulated by PKR, such as the NF-κB pathway. Therefore, we analyzed NF-κB pathway activation with a luciferase-based promoter assay. The moderate inhibition of ePKR resulted in significantly higher NF-κB–dependent reporter activity than complete inhibition of bPKR. We also found a stronger induction of the NF-κB target genes TNFα and IL-6 in ePKR-expressing cells than in bPKR-expressing cells in response to M156 in both transfection and infections assays. Furthermore, a hyperactive M156 mutant did not cause ePKR-dependent NF-κB activation. These observations indicate that M156 is maladapted for ePKR inhibition, only incompletely blocking translation in these hosts, resulting in preferential depletion of short–half-life proteins, such as the NF-κB inhibitor IκBα. We speculate that this functional activation of NF-κB induced by the intermediate inhibition of ePKR by M156 may contribute to the increased virulence of MYXV in European rabbits.
Collapse
|
20
|
Şimşek B, Özilgen M, Utku FŞ. How much energy is stored in SARS‐CoV‐2 and its structural elements? ENERGY STORAGE 2022; 4:e298. [PMCID: PMC8646435 DOI: 10.1002/est2.298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is the virus causing the COVID‐19 disease. Data regarding the morphological properties of this virus are collected from the literature and then the energy stored in each structural element is calculated with Domalski and Hearing's group contribution method. Viruses, including the Corona viruses, derive all of their energy from the host cell and carry out all of their activities with this energy. SARS‐CoV‐2 construct a vehicle needed for the delivery of its mRNA to other hosts to inflict them with the disease. Upon transfer of the viral RNA to the new host, the remaining parts of the viral structure are discarded. Structural and molecular assessments showed that the chemical formula of SARS‐CoV‐2 virus is C7,336,852H12,384,463N1,247,424O1,915,357P100,231S25,084 and its enthalpy of formation is −8.70 × 10−16 kJ. Comparison of SARS‐CoV‐2 with the other viruses shows that its elemental composition does not like any of the others. The results of this study are expected to improve our knowledge of the thermodynamic properties of this virus.
Collapse
Affiliation(s)
- Bartu Şimşek
- Department of Biomedical EngineeringFaculty of Engineering, Yeditepe UniversityIstanbulTurkey
| | - Mustafa Özilgen
- Department of Food EngineeringFaculty of Engineering, Yeditepe UniversityIstanbulTurkey
| | - Feride Şermin Utku
- Department of Biomedical EngineeringFaculty of Engineering, Yeditepe UniversityIstanbulTurkey
| |
Collapse
|
21
|
Kumar S, Ramamurthy C, Choudhary D, Sekar A, Patra A, Bhavesh NS, Vivekanandan P. Contrasting roles for G-quadruplexes in regulating human Bcl-2 and virus homologues KSHV KS-Bcl-2 and EBV BHRF1. Sci Rep 2022; 12:5019. [PMID: 35322051 PMCID: PMC8943185 DOI: 10.1038/s41598-022-08161-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Herpesviruses are known to acquire several genes from their hosts during evolution. We found that a significant proportion of virus homologues encoded by HSV-1, HSV-2, EBV and KSHV and their human counterparts contain G-quadruplex motifs in their promoters. We sought to understand the role of G-quadruplexes in the regulatory regions of viral Bcl-2 homologues encoded by KSHV (KS-Bcl-2) and EBV (BHRF1). We demonstrate that the KSHV KS-Bcl-2 and the EBV BHRF1 promoter G-quadruplex motifs (KSHV-GQ and EBV-GQ) form stable intramolecular G-quadruplexes. Ligand-mediated stabilization of KS-Bcl-2 and BHRF1 promoter G-quadruplexes significantly increased the promoter activity resulting in enhanced transcription of these viral Bcl-2 homologues. Mutations disrupting KSHV-GQ and EBV-GQ inhibit promoter activity and render the KS-Bcl-2 and the BHRF1 promoters non-responsive to G-quadruplex ligand. In contrast, promoter G-quadruplexes of human bcl-2 gene inhibit promoter activity. Further, KS-Bcl-2 and BHRF1 promoter G-quadruplexes augment RTA (a virus-encoded transcription factor)-mediated increase in viral bcl-2 promoter activity. In sum, this work highlights how human herpesviruses have evolved to exploit promoter G-quadruplexes to regulate virus homologues to counter their cellular counterparts.
Collapse
Affiliation(s)
- Shivani Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chitteti Ramamurthy
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Divya Choudhary
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Aashika Sekar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Delhi, New Delhi, 110067, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Delhi, New Delhi, 110067, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
22
|
Recombination in Papillomavirus: Controversy and Possibility. Virus Res 2022; 314:198756. [DOI: 10.1016/j.virusres.2022.198756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
|
23
|
Incidence of Phage Capsid Organization on the Resistance to High Energy Proton Beams. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12030988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The helical geometry of virus capsid allows simple self-assembly of identical protein subunits with a low request of free energy and a similar spiral path to virus nucleic acid. Consequently, small variations in protein subunits can affect the stability of the entire phage particle. Previously, we observed that rearrangement in the capsid structure of M13 engineered phages affected the resistance to UV-C exposure, while that to H2O2 was mainly ascribable to the amino acids’ sequence of the foreign peptide. Based on these findings, in this work, the resistance to accelerated proton beam exposure (5.0 MeV energy) of the same phage clones was determined at different absorbed doses and dose rates. Then, the number of viral particles able to infect and replicate in the natural host, Escherichia coli F+, was evaluated. By comparing the results with the M13 wild-type vector (pC89), we observed that 12III1 phage clones, with the foreign peptide containing amino acids favorable to carbonylation, exhibited the highest reduction in phage titer associated with a radiation damage (RD) of 35 × 10−3/Gy at 50 dose Gy. On the other hand, P9b phage clones, containing amino acids unfavorable to carbonylation, showed the lowest reduction with an RD of 4.83 × 10−3/Gy at 500 dose Gy. These findings could improve the understanding of the molecular mechanisms underlying the radiation resistance of viruses
Collapse
|
24
|
Ntumvi NF, Ndze VN, Gillis A, Le Doux Diffo J, Tamoufe U, Takuo JM, Mouiche MMM, Nwobegahay J, LeBreton M, Rimoin AW, Schneider BS, Monagin C, McIver DJ, Roy S, Ayukekbong JA, Saylors KE, Joly DO, Wolfe ND, Rubin EM, Lange CE. Wildlife in Cameroon harbor diverse coronaviruses, including many closely related to human coronavirus 229E. Virus Evol 2022; 8:veab110. [PMID: 35233291 PMCID: PMC8867583 DOI: 10.1093/ve/veab110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/05/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Zoonotic spillover of animal viruses into human populations is a continuous and increasing public health risk. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the global impact of emergence. Considering the history and diversity of coronaviruses (CoVs), especially in bats, SARS-CoV-2 will likely not be the last to spillover from animals into human populations. We sampled and tested wildlife in the Central African country Cameroon to determine which CoVs are circulating and how they relate to previously detected human and animal CoVs. We collected animal and ecological data at sampling locations and used family-level consensus PCR combined with amplicon sequencing for virus detection. Between 2003 and 2018, samples were collected from 6,580 animals of several different orders. CoV RNA was detected in 175 bats, a civet, and a shrew. The CoV RNAs detected in the bats represented 17 different genetic clusters, coinciding with alpha (n = 8) and beta (n = 9) CoVs. Sequences resembling human CoV-229E (HCoV-229E) were found in 40 Hipposideridae bats. Phylogenetic analyses place the human-derived HCoV-229E isolates closest to those from camels in terms of the S and N genes but closest to isolates from bats for the envelope, membrane, and RNA-dependent RNA polymerase genes. The CoV RNA positivity rate in bats varied significantly (P < 0.001) between the wet (8.2 per cent) and dry seasons (4.5 per cent). Most sampled species accordingly had a wet season high and dry season low, while for some the opposite was found. Eight of the suspected CoV species of which we detected RNA appear to be entirely novel CoV species, which suggests that CoV diversity in African wildlife is still rather poorly understood. The detection of multiple different variants of HCoV-229E-like viruses supports the bat reservoir hypothesis for this virus, with the phylogenetic results casting some doubt on camels as an intermediate host. The findings also support the previously proposed influence of ecological factors on CoV circulation, indicating a high level of underlying complexity to the viral ecology. These results indicate the importance of investing in surveillance activities among wild animals to detect all potential threats as well as sentinel surveillance among exposed humans to determine emerging threats.
Collapse
Affiliation(s)
- Nkom F Ntumvi
- Metabiota Cameroon Ltd, Yaoundé, Centre Region Avenue Mvog-Fouda Ada, Av 1.085, Carrefour Intendance, Yaoundé, BP 15939, Cameroon
| | | | - Amethyst Gillis
- Metabiota Inc, 425 California Street, Suite 1200, San Francisco, CA 94104, USA
- Metabiota Cameroon Ltd, Yaoundé, Centre Region Avenue Mvog-Fouda Ada, Av 1.085, Carrefour Intendance, Yaoundé, BP 15939, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé, Centre Region Route de Kribi, Yaoundé, BP 1364, Cameroon
| | - Joseph Le Doux Diffo
- Metabiota Cameroon Ltd, Yaoundé, Centre Region Avenue Mvog-Fouda Ada, Av 1.085, Carrefour Intendance, Yaoundé, BP 15939, Cameroon
| | - Ubald Tamoufe
- Metabiota Cameroon Ltd, Yaoundé, Centre Region Avenue Mvog-Fouda Ada, Av 1.085, Carrefour Intendance, Yaoundé, BP 15939, Cameroon
| | - Jean-Michel Takuo
- Metabiota Cameroon Ltd, Yaoundé, Centre Region Avenue Mvog-Fouda Ada, Av 1.085, Carrefour Intendance, Yaoundé, BP 15939, Cameroon
| | | | - Julius Nwobegahay
- CRESAR, Yaoundé, Centre Region 7039 Carrefour Intendance, BP 15939, Cameroon
| | | | - Anne W Rimoin
- Department of Epidemiology, University of California, 71-254 Center for Health Sciences, 650 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Bradley S Schneider
- Metabiota Inc, 425 California Street, Suite 1200, San Francisco, CA 94104, USA
- Mosaic, Yaoundé, Centre Region, BP 35353, Cameroon
| | | | - David J McIver
- Metabiota Inc, 7-1611 Bowen Road, Nanaimo BC V9S 1G5, Canada
- CRESAR, Yaoundé, Centre Region 7039 Carrefour Intendance, BP 15939, Cameroon
- One Health Institute, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Sanjit Roy
- Labyrinth Global Health, 546 15TH Ave NE, St.Petersburg, FL 33704, USA
- University of Victoria, 3800 Finnerty Road, Victoria BC V8P 5C2, Canada
| | | | - Karen E Saylors
- Labyrinth Global Health, 546 15TH Ave NE, St.Petersburg, FL 33704, USA
| | - Damien O Joly
- Metabiota Inc, 7-1611 Bowen Road, Nanaimo BC V9S 1G5, Canada
- Metabiota Inc, 425 California Street, Suite 1200, San Francisco, CA 94104, USA
| | | | - Edward M Rubin
- Metabiota Inc, 425 California Street, Suite 1200, San Francisco, CA 94104, USA
| | - Christian E Lange
- Metabiota Inc, 7-1611 Bowen Road, Nanaimo BC V9S 1G5, Canada
- Labyrinth Global Health, 546 15TH Ave NE, St.Petersburg, FL 33704, USA
- Metabiota Inc, 425 California Street, Suite 1200, San Francisco, CA 94104, USA
| |
Collapse
|
25
|
Tirera S, de Thoisy B, Donato D, Bouchier C, Lacoste V, Franc A, Lavergne A. The Influence of Habitat on Viral Diversity in Neotropical Rodent Hosts. Viruses 2021; 13:v13091690. [PMID: 34578272 PMCID: PMC8472065 DOI: 10.3390/v13091690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022] Open
Abstract
Rodents are important reservoirs of numerous viruses, some of which have significant impacts on public health. Ecosystem disturbances and decreased host species richness have been associated with the emergence of zoonotic diseases. In this study, we aimed at (a) characterizing the viral diversity in seven neotropical rodent species living in four types of habitats and (b) exploring how the extent of environmental disturbance influences this diversity. Through a metagenomic approach, we identified 77,767 viral sequences from spleen, kidney, and serum samples. These viral sequences were attributed to 27 viral families known to infect vertebrates, invertebrates, plants, and amoeba. Viral diversities were greater in pristine habitats compared with disturbed ones, and lowest in peri-urban areas. High viral richness was observed in savannah areas. Differences in these diversities were explained by rare viruses that were generally more frequent in pristine forest and savannah habitats. Moreover, changes in the ecology and behavior of rodent hosts, in a given habitat, such as modifications to the diet in disturbed vs. pristine forests, are major determinants of viral composition. Lastly, the phylogenetic relationships of four vertebrate-related viral families (Polyomaviridae, Flaviviridae, Togaviridae, and Phenuiviridae) highlighted the wide diversity of these viral families, and in some cases, a potential risk of transmission to humans. All these findings provide significant insights into the diversity of rodent viruses in Amazonia, and emphasize that habitats and the host’s dietary ecology may drive viral diversity. Linking viral richness and abundance to the ecology of their hosts and their responses to habitat disturbance could be the starting point for a better understanding of viral emergence and for future management of ecosystems.
Collapse
Affiliation(s)
- Sourakhata Tirera
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
| | - Benoit de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
| | - Damien Donato
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
| | | | - Vincent Lacoste
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
- Département de Virologie, Institut Pasteur, 75015 Paris, France
- Arbovirus & Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 3560, Laos
| | - Alain Franc
- UMR BIOGECO, INRAE, University Bordeaux, 33612 Cestas, France;
- Pleiade, EPC INRIA-INRAE-CNRS, University Bordeaux, 33405 Talence, France
| | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
- Correspondence:
| |
Collapse
|
26
|
Parizad S, Bera S. The effect of organic farming on water reusability, sustainable ecosystem, and food toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021:10.1007/s11356-021-15258-7. [PMID: 34235694 DOI: 10.1007/s11356-021-15258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/28/2021] [Indexed: 05/12/2023]
Abstract
Water is a fundamental necessity for people's well-being and the ecosystem's sustainability; however, its toxicity due to agrochemicals usage for food production leads to the deterioration of water quality. The poor water quality diminishes its reusability, thus limiting efficient water usage. Organic farming is one of the best ways that does not only reduce the deterioration of water quality but also decrease food toxicity. In organic farming, the crop is grown with no/less chemical usage. Besides, organic farming maintains biodiversity and reduces the anthropogenic footprint on soil, air, water, wildlife, and especially on the farming communities. Fields that are organically managed continuously for years have fewer pest populations and were attributed to increased biodiversity and abundance of multi-trophic interactions as well as to changes in plant metabolites. Fewer insect pests (pathogen vectors), in turn, would result in fewer crop diseases and increase crop production. This review highlights that organic farming may play a critical role in the reduction of pests and pathogens, which eventually would reduce the need for chemical reagents to protect crops, improving yield quality and water reusability.
Collapse
Affiliation(s)
- Shirin Parizad
- Department of Research and Development (Plant Probiotics), Nature Biotechnology Company (Biorun), Karaj, Iran.
| | - Sayanta Bera
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
27
|
Rasile M, Lauranzano E, Mirabella F, Matteoli M. Neurological consequences of neurovascular unit and brain vasculature damages: potential risks for pregnancy infections and COVID-19-babies. FEBS J 2021; 289:3374-3392. [PMID: 33998773 PMCID: PMC8237015 DOI: 10.1111/febs.16020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023]
Abstract
Intragravidic and perinatal infections, acting through either direct viral effect or immune-mediated responses, are recognized causes of liability for neurodevelopmental disorders in the progeny. The large amounts of epidemiological data and the wealth of information deriving from animal models of gestational infections have contributed to delineate, in the last years, possible underpinning mechanisms for this phenomenon, including defects in neuronal migration, impaired spine and synaptic development, and altered activation of microglia. Recently, dysfunctions of the neurovascular unit and anomalies of the brain vasculature have unexpectedly emerged as potential causes at the origin of behavioral abnormalities and psychiatric disorders consequent to prenatal and perinatal infections. This review aims to discuss the up-to-date literature evidence pointing to the neurovascular unit and brain vasculature damages as the etiological mechanisms in neurodevelopmental syndromes. We focus on the inflammatory events consequent to intragravidic viral infections as well as on the direct viral effects as the potential primary triggers. These authors hope that a timely review of the literature will help to envision promising research directions, also relevant for the present and future COVID-19 longitudinal studies.
Collapse
Affiliation(s)
- Marco Rasile
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Michela Matteoli
- IRCCS Humanitas Clinical and Research Center, Rozzano, Italy.,CNR Institute of Neuroscience, Milano, Italy
| |
Collapse
|
28
|
Virus Host Jumping Can Be Boosted by Adaptation to a Bridge Plant Species. Microorganisms 2021; 9:microorganisms9040805. [PMID: 33920394 PMCID: PMC8070427 DOI: 10.3390/microorganisms9040805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022] Open
Abstract
Understanding biological mechanisms that regulate emergence of viral diseases, in particular those events engaging cross-species pathogens spillover, is becoming increasingly important in virology. Species barrier jumping has been extensively studied in animal viruses, and the critical role of a suitable intermediate host in animal viruses-generated human pandemics is highly topical. However, studies on host jumping involving plant viruses have been focused on shifting intra-species, leaving aside the putative role of “bridge hosts” in facilitating interspecies crossing. Here, we take advantage of several VPg mutants, derived from a chimeric construct of the potyvirus Plum pox virus (PPV), analyzing its differential behaviour in three herbaceous species. Our results showed that two VPg mutations in a Nicotiana clevelandii-adapted virus, emerged during adaptation to the bridge-host Arabidopsis thaliana, drastically prompted partial adaptation to Chenopodium foetidum. Although both changes are expected to facilitate productive interactions with eIF(iso)4E, polymorphims detected in PPV VPg and the three eIF(iso)4E studied, extrapolated to a recent VPg:eIF4E structural model, suggested that two adaptation ways can be operating. Remarkably, we found that VPg mutations driving host-range expansion in two non-related species, not only are not associated with cost trade-off constraints in the original host, but also improve fitness on it.
Collapse
|
29
|
Costa VA, Mifsud JCO, Gilligan D, Williamson JE, Holmes EC, Geoghegan JL. Metagenomic sequencing reveals a lack of virus exchange between native and invasive freshwater fish across the Murray-Darling Basin, Australia. Virus Evol 2021; 7:veab034. [PMID: 34017611 PMCID: PMC8121191 DOI: 10.1093/ve/veab034] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Biological invasions are among the biggest threats to freshwater biodiversity. This is increasingly relevant in the Murray-Darling Basin, Australia, particularly since the introduction of the common carp (Cyprinus carpio). This invasive species now occupies up to ninety per cent of fish biomass, with hugely detrimental impacts on native fauna and flora. To address the ongoing impacts of carp, cyprinid herpesvirus 3 (CyHV-3) has been proposed as a potentially effective biological control agent. Crucially, however, it is unknown whether CyHV-3 and other cyprinid herpesviruses already exist in the Murray-Darling. Further, little is known about those viruses that naturally occur in wild freshwater fauna, and the frequency with which these viruses jump species boundaries. To document the evolution and diversity of freshwater fish viromes and better understand the ecological context to the proposed introduction of CyHV-3, we performed a meta-transcriptomic viral survey of invasive and native fish across the Murray-Darling Basin, covering over 2,200 km of the river system. Across a total of thirty-six RNA libraries representing ten species, we failed to detect CyHV-3 nor any closely related viruses. Rather, meta-transcriptomic analysis identified eighteen vertebrate-associated viruses that could be assigned to the Arenaviridae, Astroviridae, Bornaviridae, Caliciviridae, Coronaviridae, Chuviridae, Flaviviridae, Hantaviridae, Hepeviridae, Paramyxoviridae, Picornaviridae, Poxviridae, Reoviridae and Rhabdoviridae families, and a further twenty-seven that were deemed to be associated with non-vertebrate hosts. Notably, we revealed a marked lack of viruses that are shared among invasive and native fish sampled here, suggesting that there is little virus transmission from common carp to native fish species, despite co-existing for over fifty years. Overall, this study provides the first data on the viruses naturally circulating in a major river system and supports the notion that fish harbour a large diversity of viruses with often deep evolutionary histories.
Collapse
Affiliation(s)
- Vincenzo A Costa
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jonathon C O Mifsud
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Dean Gilligan
- NSW Department of Primary Industries, Batemans Bay Fisheries Office, Batemans Bay 2536, Australia
| | - Jane E Williamson
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jemma L Geoghegan
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- Institute of Environmental Science and Research, Wellington, Porirua 5022, New Zealand
| |
Collapse
|
30
|
Kuno G. The Absence of Yellow Fever in Asia: History, Hypotheses, Vector Dispersal, Possibility of YF in Asia, and Other Enigmas. Viruses 2020; 12:E1349. [PMID: 33255615 PMCID: PMC7759908 DOI: 10.3390/v12121349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 01/11/2023] Open
Abstract
Since the recent epidemics of yellow fever in Angola and Brazil as well as the importation of cases to China in 2016, there has been an increased interest in the century-old enigma, absence of yellow fever in Asia. Although this topic has been repeatedly reviewed before, the history of human intervention has never been considered a critical factor. A two-stage literature search online for this review, however, yielded a rich history indispensable for the debate over this medical enigma. As we combat the pandemic of COVID-19 coronavirus worldwide today, we can learn invaluable lessons from the historical events in Asia. In this review, I explore the history first and then critically examine in depth major hypotheses proposed in light of accumulated data, global dispersal of the principal vector, patterns of YF transmission, persistence of urban transmission, and the possibility of YF in Asia. Through this process of re-examination of the current knowledge, the subjects for research that should be conducted are identified. This review also reveals the importance of holistic approach incorporating ecological and human factors for many unresolved subjects, such as the enigma of YF absence in Asia, vector competence, vector dispersal, spillback, viral persistence and transmission mechanisms.
Collapse
Affiliation(s)
- Goro Kuno
- Centers for Disease Control and Prevention, Formerly Division of Vector-Borne Infectious Diseases, Fort Collins, CO 80521, USA
| |
Collapse
|
31
|
Palacios R, Shah SK. When could human challenge trials be deployed to combat emerging infectious diseases? Lessons from the case of a Zika virus human challenge trial. Trials 2019; 20:702. [PMID: 31852506 PMCID: PMC6921433 DOI: 10.1186/s13063-019-3843-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human challenge trials (HCTs) deliberately infect participants in order to test vaccines and treatments in a controlled setting, rather than enrolling individuals with natural exposure to a disease. HCTs are therefore potentially powerful tools to prepare for future outbreaks of emerging infectious diseases. Yet when an infectious disease is emerging, there is often substantial risk and uncertainty about its complications, and few available interventions, making an HCT ethically complex. In light of the need to consider ethical issues proactively as a part of epidemic preparedness, we use the case of a Zika virus HCT to explore whether and when HCTs might be ethically justified to combat emerging infectious diseases. We conclude that emerging infectious diseases could be appropriate candidates for HCTs and we identify relevant considerations and provide a case example to illustrate when they might be ethically acceptable.
Collapse
Affiliation(s)
- Ricardo Palacios
- Division of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, SP, Brazil. .,School of Philosophy, Literature and Human Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - Seema K Shah
- Mary Ann & J. Milburn Smith Child Health Research, Outreach, and Advocacy Center, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
32
|
Wasik BR, de Wit E, Munster V, Lloyd-Smith JO, Martinez-Sobrido L, Parrish CR. Onward transmission of viruses: how do viruses emerge to cause epidemics after spillover? Philos Trans R Soc Lond B Biol Sci 2019; 374:20190017. [PMID: 31401954 PMCID: PMC6711314 DOI: 10.1098/rstb.2019.0017] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The critical step in the emergence of a new epidemic or pandemic viral pathogen occurs after it infects the initial spillover host and then is successfully transmitted onwards, causing an outbreak chain of transmission within that new host population. Crossing these choke points sets a pathogen on the pathway to epidemic emergence. While many viruses spill over to infect new or alternative hosts, only a few accomplish this transition—and the reasons for the success of those pathogens are still unclear. Here, we consider this issue related to the emergence of animal viruses, where factors involved likely include the ability to efficiently infect the new animal host, the demographic features of the initial population that favour onward transmission, the level of shedding and degree of susceptibility of individuals of that population, along with pathogen evolution favouring increased replication and more efficient transmission among the new host individuals. A related form of emergence involves mutations that increased spread or virulence of an already-known virus within its usual host. In all of these cases, emergence may be due to altered viral properties, changes in the size or structure of the host populations, ease of transport, climate change or, in the case of arboviruses, to the expansion of the arthropod vectors. Here, we focus on three examples of viruses that have gained efficient onward transmission after spillover: influenza A viruses that are respiratory transmitted, HIV, a retrovirus, that is mostly blood or mucosal transmitted, and canine parvovirus that is faecal:oral transmitted. We describe our current understanding of the changes in the viruses that allowed them to overcome the barriers that prevented efficient replication and spread in their new hosts. We also briefly outline how we could gain a better understanding of the mechanisms and variability in order to better anticipate these events in the future. This article is part of the theme issue ‘Dynamic and integrative approaches to understanding pathogen spillover’.
Collapse
Affiliation(s)
- Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 9095-7239, USA.,Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
33
|
Tschá MK, Suzukawa AA, Gräf T, Piancini LDS, da Silva AM, Faoro H, Riediger IN, Medeiros LC, Wowk PF, Zanluca C, Duarte Dos Santos CN. Identification of a novel alphavirus related to the encephalitis complexes circulating in southern Brazil. Emerg Microbes Infect 2019; 8:920-933. [PMID: 31237479 PMCID: PMC6598490 DOI: 10.1080/22221751.2019.1632152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In early 2017, an outbreak caused by an unknown and supposedly viral agent in the Marilena region of southern Brazil was investigated. Since the etiological agent causing the outbreak was not identified from human samples, mosquitoes from this region were collected. Three out of 121 mosquito pools collected from the region tested positive for alphavirus in molecular tests. Next generation sequencing results revealed the presence of a novel alphavirus, tentatively named here as Caainguá virus (CAAV). DNA barcoding analyses indicated that different species of Culex are hosts for CAAV. This new virus was basal to the New World encephalitic alphaviruses in a comprehensive and robust phylogenetic approach using complete genomes. Viral particles were observed in the cytosol and inside of intracellular compartments of cells in mosquito-derived cell cultures. Despite being noninfectious in vertebrate derived cell cultures, primary culturing of CAAV in human mononuclear cells suggests monocytes and lymphocytes as CAAV targets. However, the epidemiological link of CAAV on the human outbreak should be further explored.
Collapse
Affiliation(s)
- Marcel Kruchelski Tschá
- a Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz PR , Curitiba , Brazil
| | - Andreia Akemi Suzukawa
- a Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz PR , Curitiba , Brazil
| | - Tiago Gräf
- b Departamento de Genética , Instituto de Biologia, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | | | - Allan Martins da Silva
- c Laboratório Central, Secretaria da Saúde do Estado do Paraná , São José dos Pinhais , Brazil
| | - Helisson Faoro
- d Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas/Fiocruz PR , Curitiba , Brazil
| | | | - Lia Carolina Medeiros
- e Laboratório de Biologia Celular, Instituto Carlos Chagas/Fiocruz PR , Curitiba , Brazil
| | - Pryscilla Fanini Wowk
- a Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz PR , Curitiba , Brazil
| | - Camila Zanluca
- a Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz PR , Curitiba , Brazil
| | | |
Collapse
|
34
|
Geoghegan JL, Di Giallonardo F, Cousins K, Shi M, Williamson JE, Holmes EC. Hidden diversity and evolution of viruses in market fish. Virus Evol 2018; 4:vey031. [PMID: 30397510 PMCID: PMC6208713 DOI: 10.1093/ve/vey031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aquaculture is the fastest growing industry worldwide. Aquatic diseases have had enormous economic and environmental impacts in the recent past and the emergence of new aquatic pathogens, particularly viruses, poses a continuous threat. Nevertheless, little is known about the diversity, abundance and evolution of fish viruses. We used a meta-transcriptomic approach to help determine the virome of seemingly healthy fish sold at a market in Sydney, Australia. Specifically, by identifying and quantifying virus transcripts we aimed to determine (i) the abundance of viruses in market fish, (ii) test a key component of epidemiological theory that large and dense host populations harbour a greater number of viruses compared to their more solitary counterparts and (iii) reveal the relative roles of virus–host co-divergence and cross-species transmission in the evolution of fish viruses. The species studied comprised both shoaling fish—eastern sea garfish (Hyporhamphus australis) and Australasian snapper (Chrysophrys auratus)—and more solitary fish—eastern red scorpionfish (Scorpaena jacksoniensis) and largetooth flounder (Pseudorhombus arsius). Our analysis identified twelve potentially novel viruses, eight of which were likely vertebrate-associated across four viral families and that exhibited frequent cross-species transmission. Notably, the most solitary of the fish species studied, the largetooth flounder, harboured the least number of viruses while eastern sea garfish, a densely shoaling fish, had the highest number of viruses. These results support the emerging view that fish harbour a large and largely uncharacterised virome.
Collapse
Affiliation(s)
- Jemma L Geoghegan
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Francesca Di Giallonardo
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia.,The Kirby Institute, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Kate Cousins
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Jane E Williamson
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
35
|
Katz A, Peña S, Alimova A, Gottlieb P, Xu M, Block KA. Heteroaggregation of an enveloped bacteriophage with colloidal sediments and effect on virus viability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:104-111. [PMID: 29747115 PMCID: PMC7112063 DOI: 10.1016/j.scitotenv.2018.04.425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 04/14/2023]
Abstract
Four sediments in the colloidal size range: goethite, montmorillonite, illite, and kaolinite, were suspended with the bacteriophage φ6, a model enveloped virus, to determine relative rates of heteroaggregation and the effect of aggregation on virus viability. Turbidity was measured on combinations of virus and each sediment type at low concentration to determine aggregation rates. Aggregation of sediment with virus occurred regardless of mineral type, and larger fraction of virus is expected to aggregate with increasing sediment concentration leading to higher deposition rates. The negatively charged sediments, aggregated with φ6 (also negatively charged at neutral pH) at a faster rate than the positively charged sediments, yielding turbidity slopes of 4.94 × 10-3 s-1 and 7.50 × 10-4 s-1 for φ6-montmorillonite and φ6-illite aggregates, respectively, and 2.98 × 10-5 s-1 and 2.84 × 10-5 s-1, for φ6-goethite and φ6-kaolinite, respectively. This indicates that the interaction between sediments and virus is hydrophobic, rather than electrostatic. Large numbers of virions remained viable post-aggregation, despite the fragility of the viral envelope, indicating that small-sized aggregates, which may travel more readily through porous media, may pose an infection risk. The fraction of φ6 that remained viable varied with sediment type, with montmorillonite-φ6 aggregates experiencing the greatest reduction in infectivity at 35%. TEM analyses reveal that in all sediment-φ6 combinations, infectivity loss was likely due to disassembly of the viral envelope as a result of aggregation.
Collapse
Affiliation(s)
- Al Katz
- Department of Physics Department of Earth and Atmospheric Science, The City College of New York, 160 Convent Ave., New York, NY 10031, United States
| | - Stephanie Peña
- Department of Earth and Atmospheric Science, The City College of New York, 160 Convent Ave., New York, NY 10031, United States
| | - Alexandra Alimova
- Sophie Davis School of Biomedical Education, The City College of New York, 160 Convent Ave., New York, NY 10031, United States
| | - Paul Gottlieb
- Sophie Davis School of Biomedical Education, The City College of New York, 160 Convent Ave., New York, NY 10031, United States
| | - Min Xu
- Department of Physics, Fairfield University, Fairfield, CT 06824, United States
| | - Karin A Block
- Department of Earth and Atmospheric Science, The City College of New York, 160 Convent Ave., New York, NY 10031, United States.
| |
Collapse
|
36
|
Kazlauskas D, Varsani A, Krupovic M. Pervasive Chimerism in the Replication-Associated Proteins of Uncultured Single-Stranded DNA Viruses. Viruses 2018; 10:v10040187. [PMID: 29642587 PMCID: PMC5923481 DOI: 10.3390/v10040187] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/04/2018] [Accepted: 04/08/2018] [Indexed: 12/16/2022] Open
Abstract
Numerous metagenomic studies have uncovered a remarkable diversity of circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses, the majority of which are uncultured and unclassified. Unlike capsid proteins, the Reps show significant similarity across different groups of CRESS DNA viruses and have conserved domain organization with the N-terminal nuclease and the C-terminal helicase domain. Consequently, Rep is widely used as a marker for identification, classification and assessment of the diversity of CRESS DNA viruses. However, it has been shown that in certain viruses the Rep nuclease and helicase domains display incongruent evolutionary histories. Here, we systematically evaluated the co-evolutionary patterns of the two Rep domains across classified and unclassified CRESS DNA viruses. Our analysis indicates that the Reps encoded by members of the families Bacilladnaviridae, Circoviridae, Geminiviridae, Genomoviridae, Nanoviridae and Smacoviridae display largely congruent evolutionary patterns in the two domains. By contrast, among the unclassified CRESS DNA viruses, 71% appear to have chimeric Reps. Such massive chimerism suggests that unclassified CRESS DNA viruses represent a dynamic population in which exchange of gene fragments encoding the nuclease and helicase domains is extremely common. Furthermore, purging of the chimeric sequences uncovered six monophyletic Rep groups that may represent new families of CRESS DNA viruses.
Collapse
Affiliation(s)
- Darius Kazlauskas
- Institute of Biotechnology, Vilnius University, Saulėtekio Av. 7, Vilnius 10257, Lithuania.
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France.
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory 7700, South Africa.
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France.
| |
Collapse
|
37
|
Laleye A, Joannis T, Shittu I, Meseko C, Zamperin G, Milani A, Zecchin B, Fusaro A, Monne I, Abolnik C. A two-year monitoring period of the genetic properties of clade 2.3.2.1c H5N1 viruses in Nigeria reveals the emergence and co-circulation of distinct genotypes. INFECTION GENETICS AND EVOLUTION 2018; 57:98-105. [DOI: 10.1016/j.meegid.2017.10.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022]
|