1
|
Klein Y, David E, Pinto N, Khoury Y, Barenholz Y, Chaushu S. Breaking a dogma: orthodontic tooth movement alters systemic immunity. Prog Orthod 2024; 25:38. [PMID: 39370477 PMCID: PMC11456555 DOI: 10.1186/s40510-024-00537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND The prevailing paradigm posits orthodontic tooth movement (OTM) as primarily a localized inflammatory process. In this study, we endeavor to elucidate the potential ramifications of mechanical force on systemic immunity, employing a time-dependent approach. MATERIALS AND METHODS A previously described mouse orthodontic model was used. Ni-Ti. springs were set to move the upper 1st-molar in C57BL/6 mice and the amount of OTM was. measured by µCT. Mice were allocated randomly into four experimental groups, each. corresponding to clinical phases of OTM, relative to force application. Terminal blood. samples were collected and a comprehensive blood count test for 7 cell types as well as. proteome profiling of 111 pivotal cytokines and chemokines were conducted. Two controls. groups were included: one comprised non-treated mice and the other mice with inactivated springs. RESULTS Serum immuno-profiling unveiled alterations in cellular immunity, manifesting as. changes in percentages of leukocytes, monocytes, macrophages, neutrophils, and. lymphocytes, alongside key signaling factors in comparison to both control groups. The systemic cellular and molecular alterations triggered by OTM mirrored the dynamics previously described in the local immune response. CONCLUSIONS Although the exact interplay between local and systemic immune responses to orthodontic forces require further elucidation, our findings demonstrate a tangible link between the two. Future investigations should aim to correlate these results with human subjects, and strive to delve deeper into the specific mechanisms by which mechanical force modulates the systemic immune response.
Collapse
Affiliation(s)
- Yehuda Klein
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Eilon David
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Noy Pinto
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Yasmin Khoury
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Yechezkel Barenholz
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Stella Chaushu
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
2
|
Alsulaiman AA, Alsulaiman OA. Accelerated Orthodontics: A Descriptive Bibliometric Analysis of the Top 50 Cited Articles from 2012 to 2023. Clin Pract 2024; 14:1716-1736. [PMID: 39311287 PMCID: PMC11417789 DOI: 10.3390/clinpract14050137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Accelerated orthodontics represents a significant shift in dental practice aimed at reducing treatment times while maintaining optimal patient outcomes. This bibliometric analysis evaluated the research landscape of accelerated orthodontics from 2012 to 2023, focusing on publication trends, citation patterns, influential journals, leading institutions, and key contributors. MATERIALS AND METHODS A comprehensive search in Scopus identified 600 relevant articles, with the top 50 most-cited papers encompassing systematic reviews, randomized controlled trials, and experimental studies. Key techniques, such as corticotomy and piezocision, have been frequently highlighted for their effectiveness in expediting tooth movement. RESULTS The analysis revealed fluctuating annual scientific outputs, with notable peaks driven by technological advancements and increased patient demand for quicker orthodontic solutions. However, the production of high-impact papers was hindered by delays in citation accumulation and disruptions caused by the COVID-19 pandemic. Keyword analysis identified critical themes, such as orthodontic tooth movement, malocclusion, and demographic factors, while a global collaboration map underscored extensive international research partnerships. Leading journals included the American Journal of Orthodontics and Dentofacial Orthopedics, and prominent institutions such as the University of California at Los Angeles played significant roles in advancing the field. CONCLUSIONS This study provides a comprehensive overview of the current state of accelerated orthodontics, emphasizing the need for continued research, particularly RCTs, to further refine and validate accelerated orthodontic techniques and improve clinical outcomes.
Collapse
Affiliation(s)
- Ahmed A. Alsulaiman
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 32222, Saudi Arabia;
| | | |
Collapse
|
3
|
Chen S, Huang D, Zhu L, Jiang Y, Guan Y, Zou S, Li Y. Contribution of diabetes mellitus to periodontal inflammation during orthodontic tooth movement. Oral Dis 2024; 30:650-659. [PMID: 36050281 DOI: 10.1111/odi.14365] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/03/2022] [Accepted: 08/20/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study aims to clarify the effects of diabetes mellitus (DM) on inflammatory profile during orthodontic tooth movement (OTM) and explore potential mechanisms. METHODS OTM models were established in healthy (Ctrl) and DM rats for 0, 3, 7 or 14 days. The tooth movement distance and bone structural parameters were analyzed through micro-CT. The bone resorption activity and periodontal inflammation status were evaluated through histological staining. RNA sequencing was performed to detect differentially expressed genes in force loading-treated periodontal ligament fibroblasts (PDLFs) with or without high glucose. The differential expression of inflammatory genes associated with NOD-like receptor family pyrin domain containing 3 (NLRP3) between groups was tested in vitro and in vivo. RESULTS DM caused remarkable reduction of alveolar bone height and density around the moved tooth, corresponding with the higher bone resorption activity and inflammatory scores of DM group. For force loading-treated PDLFs, high glucose induced the activation of inflammatory pathways, including NLRP3. Elevated expression of NLRP3 and cascade molecules (Caspase-1, GSDMD, and IL-1β) were validated by RT-qPCR, Western blot, and immunohistochemistry staining. CONCLUSIONS DM alters the inflammatory status of periodontium and affects tissue reconstruction during OTM. NLRP3 inflammasome may involve in diabetes-induced periodontal changes.
Collapse
Affiliation(s)
- Shuo Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Danyuan Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yukun Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuzhe Guan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Zhu L, Tang Z, Hu R, Gu M, Yang Y. Ageing and Inflammation: What Happens in Periodontium? Bioengineering (Basel) 2023; 10:1274. [PMID: 38002398 PMCID: PMC10669535 DOI: 10.3390/bioengineering10111274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease with a high incidence and severity in the elderly population, making it a significant public health concern. Ageing is a primary risk factor for the development of periodontitis, exacerbating alveolar bone loss and leading to tooth loss in the geriatric population. Despite extensive research, the precise molecular mechanisms underlying the relationship between ageing and periodontitis remain elusive. Understanding the intricate mechanisms that connect ageing and inflammation may help reveal new therapeutic targets and provide valuable options to tackle the challenges encountered by the rapidly expanding global ageing population. In this review, we highlight the latest scientific breakthroughs in the pathways by which inflammaging mediates the decline in periodontal function and triggers the onset of periodontitis. We also provide a comprehensive overview of the latest findings and discuss potential avenues for future research in this critical area of investigation.
Collapse
Affiliation(s)
| | | | | | | | - Yanqi Yang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR 999077, China; (L.Z.); (Z.T.); (R.H.); (M.G.)
| |
Collapse
|
5
|
Alghamdi B, Jeon HH, Ni J, Qiu D, Liu A, Hong JJ, Ali M, Wang A, Troka M, Graves DT. Osteoimmunology in Periodontitis and Orthodontic Tooth Movement. Curr Osteoporos Rep 2023; 21:128-146. [PMID: 36862360 PMCID: PMC10696608 DOI: 10.1007/s11914-023-00774-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE OF REVIEW To review the role of the immune cells and their interaction with cells found in gingiva, periodontal ligament, and bone that leads to net bone loss in periodontitis or bone remodeling in orthodontic tooth movement. RECENT FINDINGS Periodontal disease is one of the most common oral diseases causing inflammation in the soft and hard tissues of the periodontium and is initiated by bacteria that induce a host response. Although the innate and adaptive immune response function cooperatively to prevent bacterial dissemination, they also play a major role in gingival inflammation and destruction of the connective tissue, periodontal ligament, and alveolar bone characteristic of periodontitis. The inflammatory response is triggered by bacteria or their products that bind to pattern recognition receptors that induce transcription factor activity to stimulate cytokine and chemokine expression. Epithelial, fibroblast/stromal, and resident leukocytes play a key role in initiating the host response and contribute to periodontal disease. Single-cell RNA-seq (scRNA-seq) experiments have added new insight into the roles of various cell types in the response to bacterial challenge. This response is modified by systemic conditions such as diabetes and smoking. In contrast to periodontitis, orthodontic tooth movement (OTM) is a sterile inflammatory response induced by mechanical force. Orthodontic force application stimulates acute inflammatory responses in the periodontal ligament and alveolar bone stimulated by cytokines and chemokines that produce bone resorption on the compression side. On the tension side, orthodontic forces induce the production of osteogenic factors, stimulating new bone formation. A number of different cell types, cytokines, and signaling/pathways are involved in this complex process. Inflammatory and mechanical force-induced bone remodeling involves bone resorption and bone formation. The interaction of leukocytes with host stromal cells and osteoblastic cells plays a key role in both initiating the inflammatory events as well as inducing a cellular cascade that results in remodeling in orthodontic tooth movement or in tissue destruction in periodontitis.
Collapse
Affiliation(s)
- Bushra Alghamdi
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
- Department of Restorative Dental Sciences, College of Dentistry, Taibah University, Medina, 42353, Kingdom of Saudi Arabia
| | - Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Dongxu Qiu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Alyssia Liu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Julie J Hong
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Mamoon Ali
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Albert Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Michael Troka
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA.
| |
Collapse
|
6
|
Akashi Y, Nagasaki A, Okawa H, Matsumoto T, Kondo T, Yatani H, Nishimura I, Egusa H. Cyclic pressure-induced cytokines from gingival fibroblasts stimulate osteoclast activity: Clinical implications for alveolar bone loss in denture wearers. J Prosthodont Res 2023; 67:77-86. [PMID: 35185110 DOI: 10.2186/jpr.jpr_d_21_00238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Purpose The involvement of oral mucosa cells in mechanical stress-induced bone resorption is unclear. The aim of this study was to investigate the effects of cyclic pressure-induced cytokines from oral mucosal cells (human gingival fibroblasts: hGFs) on osteoclast activity in vitro.Methods Cyclic pressure at 50 kPa, which represents high physiologic occlusal force of dentures on the molar area, was applied to hGFs. NFAT-reporter stable RAW264.7 preosteoclasts (NFAT/Luc-RAW cells) were cultured in conditioned medium collected from hGF cultures under cyclic pressure or static conditions. NFAT activity and osteoclast formation were determined by luciferase reporter assay and TRAP staining, respectively. Cyclic pressure-induced cytokines in hGF culture were detected by ELISA, real-time RT-PCR, and cytokine array analyses.Results Conditioned media from hGFs treated with 48 hours of cyclic pressure significantly induced NFAT activity and increased multinucleated osteoclast formation. Furthermore, the cyclic pressure significantly increased the bone resorption activity of RAW264.7 cells. Cyclic pressure significantly increased the expression of major inflammatory cytokines including IL-1β/IL-1β, IL-6/IL-6, IL-8/IL-8 and MCP-1/CCL2 in hGFs compared to hGFs cultured under static conditions, and it suppressed osteoprotegerin (OPG/OPG) expression. A cytokine array detected 12 cyclic pressure-induced candidates. Among them, IL-8, decorin, MCP-1 and ferritin increased, whereas IL-28A and PDGF-BB decreased, NFAT activation of NFAT/Luc-RAW cells.Conclusions These results suggest that cyclic pressure-induced cytokines from hGFs promote osteoclastogenesis, possibly including up-regulation of IL-1β, IL-6, IL-8 and MCP-1, and down-regulation of OPG. These findings introduce the possible involvement of GFs in mechanical stress-induced alveolar ridge resorption, such as in denture wearers.
Collapse
Affiliation(s)
- Yoshihiro Akashi
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Atsuhiro Nagasaki
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Miyagi, Japan
| | - Hiroko Okawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Miyagi, Japan
| | | | - Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Miyagi, Japan.,Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Hirofumi Yatani
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Hiroshi Egusa
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Osaka, Japan.,Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Miyagi, Japan.,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Miyagi, Japan
| |
Collapse
|
7
|
Inhibitory effect of infliximab on orthodontic tooth movement in male rats. Arch Oral Biol 2022; 144:105573. [DOI: 10.1016/j.archoralbio.2022.105573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022]
|
8
|
Gao Y, Min Q, Li X, Liu L, Lv Y, Xu W, Liu X, Wang H. Immune System Acts on Orthodontic Tooth Movement: Cellular and Molecular Mechanisms. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9668610. [PMID: 36330460 PMCID: PMC9626206 DOI: 10.1155/2022/9668610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022]
Abstract
Orthodontic tooth movement (OTM) is a tissue remodeling process based on orthodontic force loading. Compressed periodontal tissues have a complicated aseptic inflammatory cascade, which are considered the initial factor of alveolar bone remodeling. Since skeletal and immune systems shared a wide variety of molecules, osteoimmunology has been generally accepted as an interdisciplinary field to investigate their interactions. Unsurprisingly, OTM is considered a good mirror of osteoimmunology since it involves immune reaction and bone remolding. In fact, besides bone remodeling, OTM involves cementum resorption, soft tissue remodeling, orthodontic pain, and relapse, all correlated with immune cells and/or immunologically active substance. The aim of this paper is to review the interaction of immune system with orthodontic tooth movement, which helps gain insights into mechanisms of OTM and search novel method to short treatment period and control complications.
Collapse
Affiliation(s)
- Yajun Gao
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Qingqing Min
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Xingjia Li
- Department of Prosthodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Linxiang Liu
- Department of Implantology, Wuxi Stomatology Hospital, Wuxi, China
| | - Yangyang Lv
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Wenjie Xu
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, China
| | | | - Hua Wang
- Wuhu Stomatology Hospital, Wuhu, China
| |
Collapse
|
9
|
Klein Y, Levin-Talmor O, Berkstein JG, Wald S, Meirow Y, Maimon A, Leibovich A, Barenholz Y, Polak D, Chaushu S. Resolvin D1 shows osseous-protection via RANK reduction on monocytes during orthodontic tooth movement. Front Immunol 2022; 13:928132. [PMID: 36275768 PMCID: PMC9585452 DOI: 10.3389/fimmu.2022.928132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
The study aimed to investigate the role of RvD1 in acute and prolonged sterile inflammation and bone remodeling. A mouse model of sterile inflammation that involves bone resorption was used to examine endogenous RvD1 kinetics during inflammation. Application of exogenous RvD1 significantly inhibited bone remodeling via osteoclast reduction, alongside an anti-inflammatory secretome shift, increased macrophages recruitment and reduction of T-cytotoxic cells. In vitro and in vivo, RvD1 led to significant reduction in RANK expression which reduce osteoclastogenesis in a dose-dependent manner. Taken together, the data shows a dual role for RvD1, as a potent immunoresolvent agent alongside an osteoresolvent role, showing a potential therapeutic agent in bone resorption associated inflammatory conditions.
Collapse
Affiliation(s)
- Yehuda Klein
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biochemistry, Israel–Canada Medical Research Institute, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Offir Levin-Talmor
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jaime Garber Berkstein
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharon Wald
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaron Meirow
- Lautenberg Center for General and Tumor Immunology, Israel–Canada Medical Research Institute, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Maimon
- The Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Leibovich
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yechezkel Barenholz
- Department of Biochemistry, Israel–Canada Medical Research Institute, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Polak
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Periodontics, Hadassah Medical Center, Jerusalem, Israel
| | - Stella Chaushu
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Wu J, Ding Y, Wang J, Lyu F, Tang Q, Song J, Luo Z, Wan Q, Lan X, Xu Z, Chen L. Single‐cell RNA
sequencing in oral science: Current awareness and perspectives. Cell Prolif 2022; 55:e13287. [PMID: 35842899 PMCID: PMC9528768 DOI: 10.1111/cpr.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/10/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022] Open
Abstract
The emergence of single‐cell RNA sequencing enables simultaneous sequencing of thousands of cells, making the analysis of cell population heterogeneity more efficient. In recent years, single‐cell RNA sequencing has been used in the investigation of heterogeneous cell populations, cellular developmental trajectories, stochastic gene transcriptional kinetics, and gene regulatory networks, providing strong support in life science research. However, the application of single‐cell RNA sequencing in the field of oral science has not been reviewed comprehensively yet. Therefore, this paper reviews the development and application of single‐cell RNA sequencing in oral science, including fields of tissue development, teeth and jaws diseases, maxillofacial tumors, infections, etc., providing reference and prospects for using single‐cell RNA sequencing in studying the oral diseases, tissue development, and regeneration.
Collapse
Affiliation(s)
- Jie Wu
- Department of Stomatology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology Sun Yat‐sen University Guangzhou China
- School of Stomatology, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- School of Stomatology, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan China
| | - Jinyu Wang
- Department of Stomatology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- School of Stomatology, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan China
| | - Fengyuan Lyu
- School of Stomatology, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan China
- Center of Stomatology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- School of Stomatology, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan China
| | - Jiangyuan Song
- Department of Stomatology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- School of Stomatology, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan China
| | - Zhiqiang Luo
- National Engineering Research Center for Nanomedicine College of Life Science and Technolog Huazhong University of Science and Technology Wuhan China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy Huazhong University of Science and Technology Wuhan China
- Institute of Brain Research Huazhong University of Science and Technology Wuhan China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Molecular Imaging Wuhan China
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- School of Stomatology, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- School of Stomatology, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan China
| |
Collapse
|
11
|
Behm C, Zhao Z, Andrukhov O. Immunomodulatory Activities of Periodontal Ligament Stem Cells in Orthodontic Forces-Induced Inflammatory Processes: Current Views and Future Perspectives. FRONTIERS IN ORAL HEALTH 2022; 3:877348. [PMID: 35601817 PMCID: PMC9114308 DOI: 10.3389/froh.2022.877348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/13/2022] [Indexed: 12/25/2022] Open
Abstract
Orthodontic tooth movement (OTM) is induced by applying active mechanical forces, causing a local non-infectious inflammatory response in the periodontal ligament (PDL). As a prerequisite for OTM, the inflammation status is associated with increased levels of various cytokines and involves the interaction between immune cells and periodontal ligament stem cells (hPDLSCs). It is well established that hPDLSCs respond to orthodontic forces in several ways, such as by secreting multiple inflammatory factors. Another essential feature of hPDLSCs is their immunomodulatory activities, which are executed through cytokine (e.g., TNF-α and IL-1β)-induced production of various soluble immunomediators (e.g., indoleamine-2,3-dioxygenase-1, tumor necrosis factor-inducible gene 6 protein, prostaglandin E2) and direct cell-to-cell contact (e.g., programmed cell death ligand 1, programmed cell death ligand 2). It is well known that these immunomodulatory abilities are essential for local periodontal tissue homeostasis and regeneration. So far, only a handful of studies provides first hints that hPDLSCs change immunological processes during OTM via their immunomodulatory activities. These studies demonstrate the pro-inflammatory aspect of immunomodulation by hPDLSCs. However, no studies exist which investigate cytokine and cell-to-cell contact mediated immunomodulatory activities of hPDLSCs. In this perspective article, we will discuss the potential role of the immunomodulatory potential of hPDLSCs in establishing and resolving the OTM-associated non-infectious inflammation and hence its potential impact on periodontal tissue homeostasis during OTM.
Collapse
|
12
|
Currell SD, Blackmore Grant PD, Esterman A, Nimmo A. The clinical management of orthodontically-induced external root resorption: A questionnaire survey. Am J Orthod Dentofacial Orthop 2021; 160:385-391. [PMID: 34321193 DOI: 10.1016/j.ajodo.2020.04.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 03/01/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION With more dentists performing orthodontics, identifying and managing patients at risk or affected by orthodontically-induced external root resorption (OIERR) is paramount. METHODS This study, conducted according to STROBE (STrengthening the Reporting of OBservational studies in Epidemiology), studied Australian orthodontists. Orthodontists were asked to complete a clinical questionnaire evaluating their diagnostic and management approaches to OIERR. RESULTS Orthodontists most commonly use a history of previous root resorption and the use of an orthopantomogram to screen and monitor patients. An orthopantomogram is used either 6 months for those identified as at risk of OIERR or 10-12 months for those who are not. Once detected, most orthodontists will record OIERR in terms of severity. If severe root resorption was detected, orthodontists would compromise on the treatment outcome and promptly complete treatment; if extraction sites remain closed, most orthodontists will interrupt treatment for 3-6 months. After treatment, orthodontists' retention protocol is unchanged regardless of OIERR experience. Treatment planning for patients with generalized OIERR before treatment (P = 0.002) was the only decision shown to be associated with years of clinical experience (P >0.05). CONCLUSIONS It is shown that no 1 method for managing OIERR exists, with most orthodontists arguing patient specificity to treatment modality. The various selected clinical approaches accurately reflect the current state of scientific literature on the topic.
Collapse
Affiliation(s)
- Scott Derek Currell
- College of Medicine and Dentistry, James Cook University, Cairns, Queensland, Australia
| | | | - Adrian Esterman
- University of South Australia Cancer Research Institute, University of South Australia, Adelaide, South Australia, and Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Alan Nimmo
- College of Medicine and Dentistry, James Cook University, Cairns, Queensland, Australia.
| |
Collapse
|
13
|
Chaushu S, Klein Y, Mandelboim O, Barenholz Y, Fleissig O. Immune Changes Induced by Orthodontic Forces: A Critical Review. J Dent Res 2021; 101:11-20. [PMID: 34105404 DOI: 10.1177/00220345211016285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Orthodontic tooth movement (OTM) is generated by a mechanical force that induces an aseptic inflammatory response in the periodontal tissues and a subsequent coordinated process of bone resorption and apposition. In this review, we critically summarize the current knowledge on the immune processes involved in OTM inflammation and provide a novel insight into the relationship between classical inflammation and clinical OTM phases. We found that most studies focused on the acute inflammatory process, which ignites the initial alveolar bone resorption. However, the exact mechanisms and the immune reactions involved in the following OTM phases remain obscure. Recent studies highlight the existence of a typical innate response of resident and extravasated immune cells, including granulocytes and natural killer (NK), dendritic, and γδT cells. Based on few available studies, we shed light on an active, albeit incomplete, process of resolution in the lag phase, supported by continuously elevated ratios of M1/M2 macrophage and receptor activator of nuclear factor κB ligand/osteoprotegerin ratio. This partial resolution enables tissue formation and creates the appropriate environment for a transition between the innate and adaptive arms of the immune system, essential for the tissue's return to homeostasis. Nevertheless, as the mechanical trigger persists, the resolution turns into a low-grade chronic inflammation, which underlies the next, acceleration/linear OTM phase. In this stage, the acute inflammation dampens, and a simultaneous process of bone resorption and formation occurs, driven by B and T cells of the adaptive immune arm. Excessive orthodontic forces or tooth movement in periodontally affected inflamed tissues may hamper resolution, leading to "maladaptive homeostasis" and tissue loss due to uncoupled bone resorption and formation. The review ends with a brief description of the translational studies on OTM immunomodulation. Future studies are necessary for further uncovering cellular and molecular immune targets and developing novel strategies for controlling OTM by local and sustained tuning of the inflammatory process.
Collapse
Affiliation(s)
- S Chaushu
- Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Y Klein
- Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel.,Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - O Mandelboim
- Lautenberg Center for Cancer Immunology, Faculty of Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Y Barenholz
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - O Fleissig
- Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
14
|
de Sousa FRN, de Sousa Ferreira VC, da Silva Martins C, Dantas HV, de Sousa FB, Girão-Carmona VCC, Goes P, de Castro Brito GA, de Carvalho Leitão RF. The effect of high concentration of zoledronic acid on tooth induced movement and its repercussion on root, periodontal ligament and alveolar bone tissues in rats. Sci Rep 2021; 11:7672. [PMID: 33828221 PMCID: PMC8027035 DOI: 10.1038/s41598-021-87375-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
Zoledronic acid (ZA) is often prescribed for osteoporosis or resorptive metabolic bone disease. This study aims to evaluate the effect of ZA on orthodontic tooth movement (OTM) and root and bone resorption and its repercussion on root, periodontal ligament and alveolar bone tissues. The experimental group consisted of 72 Wistar rats divided in four subgroups: Naive, Saline and Zoledronic Acid groups at the concentration of 0.2 mg/kg [ZA (0.2)] or 1.0 mg/kg [ZA (1.0)]. The animals were subjected to i.v (dorsal penile vein) administrations of ZA or saline solution, on days 0, 7, 14 and 42. Under anesthesia, NiTi springs were installed in the first left maxillary molar with 50gf allowing the OTM, except for the negative control group (N) for mesial movement of the left first maxillary teeth. The animals were sacrificed and maxillae were removed for macroscopic and histopathological analyzes, scanning electron microscopy, computerized microtomography and confocal microscopy. Treatment with ZA decreased the OTM and the number of osteoclasts and loss of alveolar bone when compared to the naive and saline groups. Reduction of radicular resorption, increased necrotic areas and reduced vascularization in the periodontal ligament were observed in the ZA groups. ZA interferes with OTM and presents anti-resorptive effects on bone and dental tissues associated with a decreased vascularization, without osteonecrosis.
Collapse
Affiliation(s)
- Fátima Regina Nunes de Sousa
- Post-Graduation Program in Morfofuncional Sciences (PCMF), Departamento de Morfologia, Faculdade de Medicina, Medical School, Universidade Federal do Ceará (UFC), Rua Delmiro de Farias, s/n, Rodolfo Teófilo, Fortaleza, CE, 60441-750, Brazil
- Department of Morphology, Medical School, Federal University of Piauí (UFPI), Rua Cícero Duarte, 905, Picos, PI, 64607-670, Brazil
| | - Vanessa Costa de Sousa Ferreira
- Post-Graduation Program in Morfofuncional Sciences (PCMF), Departamento de Morfologia, Faculdade de Medicina, Medical School, Universidade Federal do Ceará (UFC), Rua Delmiro de Farias, s/n, Rodolfo Teófilo, Fortaleza, CE, 60441-750, Brazil
| | - Conceição da Silva Martins
- Post-Graduation Program in Morfofuncional Sciences (PCMF), Departamento de Morfologia, Faculdade de Medicina, Medical School, Universidade Federal do Ceará (UFC), Rua Delmiro de Farias, s/n, Rodolfo Teófilo, Fortaleza, CE, 60441-750, Brazil
| | - Hugo Victor Dantas
- Graduate Program in Dentistry, Health Sciences Center, Federal University of Paraíba (UFPB), Campus I, Cidade Universitária, João Pessoa, PB, 58059-900, Brazil
| | - Frederico Barbosa de Sousa
- Graduate Program in Dentistry, Health Sciences Center, Federal University of Paraíba (UFPB), Campus I, Cidade Universitária, João Pessoa, PB, 58059-900, Brazil
| | - Virgínia Cláudia Carneiro Girão-Carmona
- Post-Graduation Program in Morfofuncional Sciences (PCMF), Departamento de Morfologia, Faculdade de Medicina, Medical School, Universidade Federal do Ceará (UFC), Rua Delmiro de Farias, s/n, Rodolfo Teófilo, Fortaleza, CE, 60441-750, Brazil
| | - Paula Goes
- Post-Graduation Program in Morfofuncional Sciences (PCMF), Departamento de Morfologia, Faculdade de Medicina, Medical School, Universidade Federal do Ceará (UFC), Rua Delmiro de Farias, s/n, Rodolfo Teófilo, Fortaleza, CE, 60441-750, Brazil
- Department of Pathology and Legal Medicine, Medical School, Federal University of Ceará (UFC), Rua Monsenhor Furtado, s/n, Fortaleza, CE, 60441-750, Brazil
| | - Gerly Anne de Castro Brito
- Post-Graduation Program in Morfofuncional Sciences (PCMF), Departamento de Morfologia, Faculdade de Medicina, Medical School, Universidade Federal do Ceará (UFC), Rua Delmiro de Farias, s/n, Rodolfo Teófilo, Fortaleza, CE, 60441-750, Brazil
| | - Renata Ferreira de Carvalho Leitão
- Post-Graduation Program in Morfofuncional Sciences (PCMF), Departamento de Morfologia, Faculdade de Medicina, Medical School, Universidade Federal do Ceará (UFC), Rua Delmiro de Farias, s/n, Rodolfo Teófilo, Fortaleza, CE, 60441-750, Brazil.
| |
Collapse
|
15
|
Behm C, Nemec M, Blufstein A, Schubert M, Rausch-Fan X, Andrukhov O, Jonke E. Interleukin-1β Induced Matrix Metalloproteinase Expression in Human Periodontal Ligament-Derived Mesenchymal Stromal Cells under In Vitro Simulated Static Orthodontic Forces. Int J Mol Sci 2021; 22:ijms22031027. [PMID: 33498591 PMCID: PMC7864333 DOI: 10.3390/ijms22031027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
The periodontal ligament (PDL) responds to applied orthodontic forces by extracellular matrix (ECM) remodeling, in which human periodontal ligament-derived mesenchymal stromal cells (hPDL-MSCs) are largely involved by producing matrix metalloproteinases (MMPs) and their local inhibitors (TIMPs). Apart from orthodontic forces, the synthesis of MMPs and TIMPs is influenced by the aseptic inflammation occurring during orthodontic treatment. Interleukin (IL)-1β is one of the most abundant inflammatory mediators in this process and crucially affects the expression of MMPs and TIMPs in the presence of cyclic low-magnitude orthodontic tensile forces. In this study we aimed to investigate, for the first time, how IL-1β induced expression of MMPs, TIMPs and how IL-1β in hPDL-MSCs was changed after applying in vitro low-magnitude orthodontic tensile strains in a static application mode. Hence, primary hPDL-MSCs were stimulated with IL-1β in combination with static tensile strains (STS) with 6% elongation. After 6- and 24 h, MMP-1, MMP-2, TIMP-1 and IL-1β expression levels were measured. STS alone had no influence on the basal expression of investigated target genes, whereas IL-1β caused increased expression of these genes. In combination, they increased the gene and protein expression of MMP-1 and the gene expression of MMP-2 after 24 h. After 6 h, STS reduced IL-1β-induced MMP-1 synthesis and MMP-2 gene expression. IL-1β-induced TIMP-1 gene expression was decreased by STS after 6- and 24-h. At both time points, the IL-1β-induced gene expression of IL-1β was increased. Additionally, this study showed that fetal bovine serum (FBS) caused an overall suppression of IL-1β-induced expression of MMP-1, MMP-2 and TIMP-1. Further, it caused lower or opposite effects of STS on IL-1β-induced expression. These observations suggest that low-magnitude orthodontic tensile strains may favor a more inflammatory and destructive response of hPDL-MSCs when using a static application form and that this response is highly influenced by the presence of FBS in vitro.
Collapse
Affiliation(s)
- Christian Behm
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (C.B.); (M.N.); (E.J.)
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (M.S.)
| | - Michael Nemec
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (C.B.); (M.N.); (E.J.)
| | - Alice Blufstein
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (M.S.)
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Maria Schubert
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (M.S.)
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (M.S.)
- Correspondence:
| | - Erwin Jonke
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (C.B.); (M.N.); (E.J.)
| |
Collapse
|
16
|
Dietary Salt Accelerates Orthodontic Tooth Movement by Increased Osteoclast Activity. Int J Mol Sci 2021; 22:ijms22020596. [PMID: 33435280 PMCID: PMC7827744 DOI: 10.3390/ijms22020596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 01/01/2021] [Indexed: 01/18/2023] Open
Abstract
Dietary salt uptake and inflammation promote sodium accumulation in tissues, thereby modulating cells like macrophages and fibroblasts. Previous studies showed salt effects on periodontal ligament fibroblasts and on bone metabolism by expression of nuclear factor of activated T-cells-5 (NFAT-5). Here, we investigated the impact of salt and NFAT-5 on osteoclast activity and orthodontic tooth movement (OTM). After treatment of osteoclasts without (NS) or with additional salt (HS), we analyzed gene expression and the release of tartrate-resistant acid phosphatase and calcium phosphate resorption. We kept wild-type mice and mice lacking NFAT-5 in myeloid cells either on a low, normal or high salt diet and inserted an elastic band between the first and second molar to induce OTM. We analyzed the expression of genes involved in bone metabolism, periodontal bone loss, OTM and bone density. Osteoclast activity was increased upon HS treatment. HS promoted periodontal bone loss and OTM and was associated with reduced bone density. Deletion of NFAT-5 led to increased osteoclast activity with NS, whereas we detected impaired OTM in mice. Dietary salt uptake seems to accelerate OTM and induce periodontal bone loss due to reduced bone density, which may be attributed to enhanced osteoclast activity. NFAT-5 influences this reaction to HS, as we detected impaired OTM and osteoclast activity upon deletion.
Collapse
|
17
|
Pei F, Liu J, Zhang L, Pan X, Huang W, Cen X, Huang S, Jin Y, Zhao Z. The functions of mechanosensitive ion channels in tooth and bone tissues. Cell Signal 2020; 78:109877. [PMID: 33296740 DOI: 10.1016/j.cellsig.2020.109877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Tooth and bone are independent tissues with a close relationship. Both are composed of a highly calcified outer structure and soft inner tissue, and both are constantly under mechanical stress. In particular, the alveolar bone and tooth constitute an occlusion system and suffer from masticatory and occlusal force. Thus, mechanotransduction is a key process in many developmental, physiological and pathological processes in tooth and bone. Mechanosensitive ion channels such as Piezo1 and Piezo2 are important participants in mechanotransduction, but their functions in tooth and bone are poorly understood. This review summarizes our current understanding of mechanosensitive ion channels and their roles in tooth and bone tissues. Research in these areas may shed new light on the regulation of tooth and bone tissues and potential treatments for diseases affecting these tissues.
Collapse
Affiliation(s)
- Fang Pei
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Jialing Liu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Lan Zhang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Xuefeng Pan
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Wei Huang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China
| | - Xiao Cen
- Department of the Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Ying Jin
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, PR China.
| |
Collapse
|
18
|
Groeger M, Spanier G, Wolf M, Deschner J, Proff P, Schröder A, Kirschneck C. Effects of histamine on human periodontal ligament fibroblasts under simulated orthodontic pressure. PLoS One 2020; 15:e0237040. [PMID: 32764823 PMCID: PMC7413485 DOI: 10.1371/journal.pone.0237040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
As type-I-allergies show an increasing prevalence in the general populace, orthodontic patients may also be affected by histamine release during treatment. Human periodontal ligament fibroblasts (PDLF) are regulators of orthodontic tooth movement. However, the impact of histamine on PDLF in this regard is unknown. Therefore PDLF were incubated without or with an orthodontic compressive force of 2g/cm2 with and without additional histamine. To assess the role of histamine-1-receptor (H1R) H1R-antagonist cetirizine was used. Expression of histamine receptors and important mediators of orthodontic tooth movement were investigated. PDLF expressed histamine receptors H1R, H2R and H4R, but not H3R. Histamine increased the expression of H1R, H2R and H4R as well as of interleukin-6, cyclooxygenase-2, and prostaglandin-E2 secretion even without pressure application and induced receptor activator of NF-kB ligand (RANKL) protein expression with unchanged osteoprotegerin secretion. These effects were not observed in presence of H1R antagonist cetirizine. By expressing histamine receptors, PDLF seem to be able to respond to fluctuating histamine levels in the periodontal tissue. Increased histamine concentration was associated with enhanced expression of proinflammatory mediators and RANKL, suggesting an inductive effect of histamine on PDLF-mediated osteoclastogenesis and orthodontic tooth movement. Since cetirizine inhibited these effects, they seem to be mainly mediated via histamine receptor H1R.
Collapse
Affiliation(s)
- Marcella Groeger
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
| | - Gerrit Spanier
- Department of Cranio-Maxillo-Facial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University of Mainz, Mainz, Germany
| | - Peter Proff
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
19
|
Bai X, Li J, Li L, Liu M, Liu Y, Cao M, Tao K, Xie S, Hu D. Extracellular Vesicles From Adipose Tissue-Derived Stem Cells Affect Notch-miR148a-3p Axis to Regulate Polarization of Macrophages and Alleviate Sepsis in Mice. Front Immunol 2020; 11:1391. [PMID: 32719678 PMCID: PMC7347748 DOI: 10.3389/fimmu.2020.01391] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) from adipose tissue-derived stem cells have been reported to attenuate lipopolysaccharide (LPS) induced inflammation and sepsis while the specific mechanism is unclear. This study explored the underlying molecular mechanisms of EVs from adipose tissue-derived stem cells in reducing inflammation. LPS- induced macrophage models and mice model were established to mimic inflammation in vitro and in vivo. EVs were extracted from adipose tissue-derived stem cells and identified. It was found that proinflammatory cytokines, including IL-1β, IL-6, and TNF-α, substantially decreased after EVs were applied to LPS-stimulated macrophages and mice, and thus, LPS induced M1 polarization was inhibited and sepsis was strongly alleviated. In the LPS induced macrophages, the expression of Notch signaling molecules and the activation of the NF-κB pathway were substantially decreased after the administration of EVs. Then, RBP-J -/- mice and macrophages were used. It was found that the miR-148a-3p level was significantly lower in the RBP-J -/- macrophages than in the wildtype macrophages. In the LPS induced macrophages, the increasing of miR-148a-3p was milder in the RBP-J -/- macrophages than in the wild type macrophages. Then, miR-148a-3p was overexpressed in macrophages and mice, and we found that the expression of proinflammatory cytokines was increased both in vivo and in vitro. The protective effect of EVs in LPS induced sepsis was diminished by the overexpression of miR-148a-3p. In conclusion, we proved that EVs could attenuate inflammation and further protect organ function by regulating the Notch-miR148a-3p signaling axis and then decreasing macrophage polarization to M1.
Collapse
Affiliation(s)
- Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Junjie Li
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lincheng Li
- Brigade 4, College of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Mingchuan Liu
- Brigade 4, College of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mengyuan Cao
- Chinese People's Liberation Army Hospital 961, Qiqihar, China
| | - Ke Tao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Songtao Xie
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
20
|
Klein Y, Fleissig O, Polak D, Barenholz Y, Mandelboim O, Chaushu S. Immunorthodontics: in vivo gene expression of orthodontic tooth movement. Sci Rep 2020; 10:8172. [PMID: 32424121 PMCID: PMC7235241 DOI: 10.1038/s41598-020-65089-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/15/2020] [Indexed: 02/04/2023] Open
Abstract
Orthodontic tooth movement (OTM) is a “sterile” inflammatory process. The present study aimed to reveal the underlying biological mechanisms, by studying the force associated-gene expression changes, in a time-dependent manner. Ni-Ti springs were set to move the upper 1st-molar in C57BL/6 mice. OTM was measured by μCT. Total-RNA was extracted from tissue blocks at 1,3,7 and 14-days post force application, and from two control groups: naïve and inactivated spring. Gene-expression profiles were generated by next-generation-RNA-sequencing. Gene Set Enrichment Analysis, K-means algorithm and Ingenuity pathway analysis were used for data interpretation. Genes of interest were validated with qRT-PCR. A total of 3075 differentially expressed genes (DEGs) were identified, with the greatest number at day 3. Two distinct clusters patterns were recognized: those in which DEGs peaked in the first days and declined thereafter (tissue degradation, phagocytosis, leukocyte extravasation, innate and adaptive immune system responses), and those in which DEGs were initially down-regulated and increased at day 14 (cell proliferation and migration, cytoskeletal rearrangement, tissue homeostasis, angiogenesis). The uncovering of novel innate and adaptive immune processes in OTM led us to propose a new term “Immunorthodontics”. This genomic data can serve as a platform for OTM modulation future approaches.
Collapse
Affiliation(s)
- Yehuda Klein
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel.,Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel.,Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Omer Fleissig
- Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel. .,Lautenberg Center for Cancer Immunology, Faculty of Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel.
| | - David Polak
- Department of Periodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Yechezkel Barenholz
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Ofer Mandelboim
- Lautenberg Center for Cancer Immunology, Faculty of Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Stella Chaushu
- Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
21
|
Zhang S, Zhang H, Jin Z, Wang S, Wang Y, Zhu L, Sun W, Yan B. Fucoidan inhibits tooth movement by promoting restorative macrophage polarization through the STAT3 pathway. J Cell Physiol 2020; 235:5938-5950. [PMID: 31967324 DOI: 10.1002/jcp.29519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/09/2020] [Indexed: 12/25/2022]
Abstract
Retention after treatment and effective anchorage control are two essential factors in orthodontics. Our study aimed to explore the effects of fucoidan on orthodontic tooth movement (OTM) and the involvement of macrophages. We established a murine OTM model to test the effect of fucoidan administration. We found that mice injected with fucoidan had a deceleration in OTM and a higher bone mineral density. Moreover, fucoidan increased the proportion of F4/80+ CD206+ macrophages and promoted the messenger RNA expression of Arg-1, CD206, and IL-10 at both in vivo and in vitro levels. In addition, macrophages showed lower expression of TNF-α, IL-1β, and IL-6 and a decrease in F4/80+ CD11c+ cells. Mechanistically, the level of phosphorylated STAT3 was elevated in unpolarized and restorative macrophages after treatment with fucoidan. Taken together, our findings suggest that fucoidan treatment inhibits OTM and enhances the stability of teeth after movement by promoting restorative macrophages through the STAT3 pathway.
Collapse
Affiliation(s)
- Shuting Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hanwen Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhichun Jin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Siyu Wang
- Department of Stomatology, The Second Hospital of Nanjing, Nanjing, Jiangsu, China
| | - Yan Wang
- Department of Orthodontics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu, China
| | - Linlin Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bin Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Narmada I, Rubianto M, Putra S. The effect of low-level light therapy on orthodontic tooth movement rate, heat shock protein 70, and matrix metallopreteinase 8 expression: Animal study. Dent Res J (Isfahan) 2020. [DOI: 10.4103/1735-3327.276227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
Wu L, Su Y, Lin F, Zhu S, Wang J, Hou Y, Du J, Liu Y, Guo L. MicroRNA‐21 promotes orthodontic tooth movement by modulating the RANKL/OPG balance in T cells. Oral Dis 2019; 26:370-380. [DOI: 10.1111/odi.13239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/29/2019] [Accepted: 11/10/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Lili Wu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Capital Medical University Beijing China
| | - Yingying Su
- Department of Stomatology Beijing Tiantan Hospital Capital Medical University Beijing China
| | - Feiran Lin
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Capital Medical University Beijing China
| | - Siying Zhu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Capital Medical University Beijing China
| | - Jingyi Wang
- School of Dental Medicine University of Pennsylvania Philadelphia PA USA
| | - Yanan Hou
- Department of Orthodontics School of Stomatology the Third Dental Center Peking University Beijing China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Capital Medical University Beijing China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Capital Medical University Beijing China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology Capital Medical University Beijing China
| |
Collapse
|
24
|
Currell SD, Liaw A, Blackmore Grant PD, Esterman A, Nimmo A. Orthodontic mechanotherapies and their influence on external root resorption: A systematic review. Am J Orthod Dentofacial Orthop 2019; 155:313-329. [PMID: 30826034 DOI: 10.1016/j.ajodo.2018.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION This systematic review assesses the literature regarding the association between orthodontic tooth movement and external root resorption. By determining the evidence level supporting the association, the results could provide clinical evidence for minimizing the deleterious effect of orthodontic tooth movement. METHODS Electronic databases, including MEDLINE, PubMed, Embase, Scopus, CINAHL, Cochrane Library, and LILACS, were searched up to February 2018, with hand searching of selected orthodontic journals undertaken to identify any preelectronic publications. Searches were undertaken with no restrictions on year, publication status, or language. Selection criteria included randomized controlled trials conducted with the use of fixed orthodontic appliances or sequential thermoplastic aligners on human patients. The quality of included studies was assessed with the use of the Cochrane Risk of Bias Tool and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. Inter-rater agreement of the review authors was used for the inclusion of primary articles, risk of bias assessment, and evaluation of the quality of evidence (GRADE), and it was calculated with the use of the Cohen kappa statistic. RESULTS A total of 654 articles were retrieved in the initial search. After the review process, 25 articles describing 24 individual trials met the inclusion criteria. Sample sizes ranged from 6 to 154 patients. Most articles were classified as having unclear risks of bias and very low to low quality of evidence. CONCLUSIONS There is very low to low evidence for supporting positive associations between root resorption and increased force levels, force continuity, intrusive forces, and treatment duration. Moreover, by including a pause in treatment for patients experiencing root resorption, it may be possible for the clinician to reduce the severity of the condition. Of the included studies, the most common methodologic flaws include the absence of a control group, appropriate randomization strategy, and adequate examinations before and after treatment.
Collapse
Affiliation(s)
- Scott Derek Currell
- College of Medicine and Dentistry, James Cook University, Queensland, Australia
| | - Andrew Liaw
- Oral Health Services Tasmania, Tasmania, Australia
| | | | - Adrian Esterman
- University of South Australia Cancer Research Institute, University of South Australia, South Australia, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Queensland, Australia.
| | - Alan Nimmo
- College of Medicine and Dentistry, James Cook University, Queensland, Australia
| |
Collapse
|
25
|
Al‐Shammery D, Michelogiannakis D, Rossouw E, Romanos GE, Javed F. Influence of psychological stress exposure on orthodontic therapy: A comprehensive review. ACTA ACUST UNITED AC 2019; 10:e12388. [DOI: 10.1111/jicd.12388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 01/03/2023]
Affiliation(s)
| | - Dimitrios Michelogiannakis
- Department of Orthodontics and Dentofacial OrthopedicsEastman Institute for Oral HealthUniversity of Rochester Rochester New York
- Department of Community Dentistry and Oral Disease PreventionEastman Institute for Oral HealthUniversity of Rochester Rochester New York
| | - Emile Rossouw
- Department of Orthodontics and Dentofacial OrthopedicsEastman Institute for Oral HealthUniversity of Rochester Rochester New York
| | - Georgios E. Romanos
- Department of PeriodontologyStony Brook University Stony Brook New York
- Department of Oral Surgery and Implant DentistryUniversity of Frankfurt Frankfurt Germany
| | - Fawad Javed
- Department of PeriodontologyStony Brook University Stony Brook New York
- Department of General DentistryEastman Institute for Oral HealthUniversity of Rochester Rochester New York
| |
Collapse
|
26
|
Padisar P, Hashemi R, Naseh M, Nikfarjam BA, Mohammadi M. Assessment of tumor necrosis factor alpha (TNFα) and interleukin 6 level in gingival crevicular fluid during orthodontic tooth movement: a randomized split-mouth clinical trial. Electron Physician 2018; 10:7146-7154. [PMID: 30214696 PMCID: PMC6122871 DOI: 10.19082/7146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/14/2018] [Indexed: 01/03/2023] Open
Abstract
Background Orthodontic tooth movement (OTM) is based on induction of periodontal tissue remodeling. Mechanical tooth stimulation results in the release of pro-inflammatory mediators. These mediators cause bone resorption and deposition at the pressure and tension sites and play a role in OTM. Thus, assessment of chemical biomarkers can help determine the exact amount of load and its duration of application required for each tooth and select the most efficient treatment plan with minimal complications. Objective This study aimed to determine the level of tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) in gingival crevicular fluid (GCF) during OTM. Methods This randomized split-mouth clinical trial (parallel) was performed on 10 patients who were presenting to the Orthodontic Department of Qazvin University of Medical Sciences from November 2015 to June 2016. A canine tooth was randomly selected as the study group and subjected to distalization force while the contralateral canine tooth served as control. Using paper strip, GCF was collected from the study and control teeth prior to orthodontic force application (T0), one hour after (T1) and 28 days after force application (T2), then the level of TNFα and IL-6 was measured using ELISA. Data were analyzed using SPSS version 20 via Friedman and Wilcoxon test, and considering the significance level at p<0.05. Results The level of TNFα (p=0.0799) and IL-6 (p=0.678) at both sides of study teeth was higher than both side of control teeth at T1. Also, the level of IL-6 (p=0.515) and TNFα (p=0.508) were higher at the tension side compared to the pressure side; but the difference was not statistically significant. Conclusion Due to the free circulation of GCF in gingival sulcus, the level of mediators in the GCF collected from the mesial and distal areas alone cannot serve as a suitable index for assessment of activity at the tension and pressure sites. Trial registration The trial was registered at the Iranian Registry of Clinical Trials with the IRCT ID: IRCT2017030632903N2. Funding The present study was supported by a grant from the Research Council, Qazvin University of Medical Sciences, Qazvin, Iran (thesis no.: 40).
Collapse
Affiliation(s)
- Parviz Padisar
- DMD, Associate Professor, Department of Orthodontic, Dental Faculty, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Roya Hashemi
- DMD, Assistant Professor, Department of Orthodontic, Dental Faculty, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammadreza Naseh
- DMD, Assistant Professor, Department of Periodontology, Dental Faculty, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bahareh Abde Nikfarjam
- Ph.D. of Immunology, Assistant Professor, Department of Immunology, Faculty of Science, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mahdi Mohammadi
- Ph.D. of Biostatistics, Health Promotion Research Center, School of Public Health, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
27
|
Kaneko M, Fujita S, Shimizu N, Motoyoshi M, Kobayashi M. Experimental tooth movement temporally changes neural excitation and topographical map in rat somatosensory cortex. Brain Res 2018; 1698:62-69. [PMID: 29928871 DOI: 10.1016/j.brainres.2018.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 12/29/2022]
Abstract
During orthodontic treatment, binding teeth, may change the topographically organized representation of teeth in the cerebral cortex. To test the hypothesis that experimental tooth movement (ETM) changes the somatotopy of an individual tooth arrangement in the somatosensory cortex, we examined the spatiotemporal features of cortical excitatory propagation in response to mechanical stimulation of the maxillary incisor or molar using optical imaging in late adolescent rats without or with ETM. The ETM models consisted of 1d, 3d, and 7d ETM in which a closed-coil spring was ligated between the maxillary first molar and incisors. In controls, incisor and molar mechanical stimulation evoked excitation in the rostral and dorsocaudal regions of the primary somatosensory cortex (S1), respectively. In addition, the secondary somatosensory cortex and insular oral region (S2/IOR) were also activated. Incisor stimulation-induced excitatory regions in S1 of 3d and 7d ETM shifted without changing the maximum excitatory area or peak amplitude; the incisor stimulation-responding region moved toward the dorsocaudal region, which responded to molar stimulation in the control. This shift in excitatory region was not observed in 1d ETM. One day after removal of the coil spring that was attached for 6 days, the excitatory region shift in S1 was recovered to the control region. On the other hand, 1d ETM exhibited facilitation of the excitatory area and peak amplitude upon molar stimulation, and the facilitation of excitatory propagation disappeared in 3d and 7d ETM. These results may explain the clinical finding that abnormal sensation temporally occurs during orthodontic treatment.
Collapse
Affiliation(s)
- Mari Kaneko
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Satoshi Fujita
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Noriyoshi Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Mitsuru Motoyoshi
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Molecular Imaging Research Center, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW To examine the evidence in support of light continuous forces for enhancing bone adaptation (modeling and remodeling) in orthodontics and dentofacial orthopedics. RECENT FINDINGS Clinical evidence suggests that light continuous orthodontic force can achieve physiologic expansion of the maxillary arch, but the long-term stability and the biological effects of the procedure are unclear. Compared to conventional orthodontic appliances that deliver heavy interrupted forces for tooth movement, the application of low-magnitude forces in animal models leads to anabolic modeling and remodeling of the alveolar bone in the path of orthodontic tooth movement. This results in dental translation and expansion of the alveolar process. Light continuous forces are preferable to heavy forces for more physiologic dentofacial orthopedics. The interaction of low-magnitude loads with soft tissue posture achieves therapeutic adaptation of the craniofacial skeleton. The increasing emphasis on genomic medicine and personalized treatment planning should focus on low-magnitude loads in orthodontics and dentofacial orthopedics.
Collapse
Affiliation(s)
- Achint Utreja
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, 1121 W Michigan St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
29
|
Balci Yuce H, Gokturk O, Aydemir Turkal H, Inanir A, Benli I, Demir O. Assessment of local and systemic 25-hydroxy-vitamin D, RANKL, OPG, and TNF levels in patients with rheumatoid arthritis and periodontitis. J Oral Sci 2017; 59:397-404. [DOI: 10.2334/josnusd.16-0677] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Hatice Balci Yuce
- Department of Periodontology, Gaziosmanpasa University Faculty of Dentistry
| | - Ozge Gokturk
- Department of Periodontology, Gaziosmanpasa University Faculty of Dentistry
| | | | - Ahmet Inanir
- Department of Physical Medicine and Rehabilitation, Gaziosmanpasa University Faculty of Medicine
| | - Ismail Benli
- Department of Biochemistry, Gaziosmanpasa University Faculty of Medicine
| | - Osman Demir
- Department of Biostatistics, Gaziosmanpasa University Faculty of Medicine
| |
Collapse
|
30
|
Souza-Silva BN, Rodrigues JLSDA, Moreira JC, Matos FDS, Cesar CPHAR, Repeke CEP, Paranhos LR. The influence of teriparatide in induced tooth movement: A systematic review. J Clin Exp Dent 2016; 8:e615-e621. [PMID: 27957280 PMCID: PMC5149101 DOI: 10.4317/jced.52997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 04/07/2016] [Indexed: 01/06/2023] Open
Abstract
Background Teriparatide is a synthetic drug similar than PTH (parathyroid hormone), which is currently used as long-term treatment option for patients with bone chronic diseases, as osteoporosis; and this drug can interfere in a positive way in orthodontic movement.
Objectives: The medical literature was assessed in the present systematic review in order to determine the level of scientific evidence supporting the influence of teriparatide in induced tooth movement. Material and Methods The PRISMA Checklist was followed in this systematic review. Four electronic databases (PubMed; Scopus; ScienceDirect; OpenGrey) were searched without implementing restrictions of year, status, and language of publications. The inclusion criteria consisted of selecting only experimental studies comparing the influence of teriparatide in tooth movement of male Wistar rats. The exclusion criteria consisted of experiments with female rats or other experimental animals, and animals with pathologic conditions. The eligible studies were evaluated based on methodological quality. Two trained examiners performed all the research steps. Results The initial sample comprised 700 studies, which was reduced to 664 after the exclusion of duplicates (n=36). Three articles were selected for the final qualitative analysis. The local administration of parathyroid hormone (PTH) 1-34 or PTH 1-84 revealed major effectiveness when compared with control groups and systematic administration. Additionally, the dilution of PTH 1-34 within methyl cellulose (MC) gel increased the time range for drug release, enabling to reduce the drug concentration without decreasing the effectiveness of tooth movement. Conclusions Teriparatide demonstrated potential acceleration of tooth movement in Wistar rats depending on the drug concentration; drug administration; and time for drug release. Key words:Teriparatide, tooth movement, parathyroid hormone, orthodontics.
Collapse
Affiliation(s)
- Bianca-Núbia Souza-Silva
- Undergraduate student, Department of Dentistry, Federal University of Sergipe, Lagarto, SE, Brazil
| | | | - Jefferson-Chaves Moreira
- Undergraduate student, Department of Dentistry, Federal University of Sergipe, Lagarto, SE, Brazil
| | - Felipe-de Souza Matos
- DDS, MSc, Postgraduate Program in Dentistry, Federal University of Sergipe, Aracaju, SE, Brazil
| | | | | | - Luiz-Renato Paranhos
- DDS, MSc, PhD, Professor, Department of Dentistry, Federal University of Sergipe, Lagarto, SE, Brazil
| |
Collapse
|
31
|
Corrigendum. Oral Dis 2016. [DOI: 10.1111/odi.12441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Osteoimmunology: Major and Costimulatory Pathway Expression Associated with Chronic Inflammatory Induced Bone Loss. J Immunol Res 2015; 2015:281287. [PMID: 26064999 PMCID: PMC4433696 DOI: 10.1155/2015/281287] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/10/2014] [Indexed: 12/28/2022] Open
Abstract
The field of osteoimmunology has emerged in response to the range of evidences demonstrating the close interrelationship between the immune system and bone metabolism. This is pertinent to immune-mediated diseases, such as rheumatoid arthritis and periodontal disease, where there are chronic inflammation and local bone erosion. Periprosthetic osteolysis is another example of chronic inflammation with associated osteolysis. This may also involve immune mediation when occurring in a patient with rheumatoid arthritis (RA). Similarities in the regulation and mechanisms of bone loss are likely to be related to the inflammatory cytokines expressed in these diseases. This review highlights the role of immune-related factors influencing bone loss particularly in diseases of chronic inflammation where there is associated localized bone loss. The importance of the balance of the RANKL-RANK-OPG axis is discussed as well as the more recently appreciated role that receptors and adaptor proteins involved in the immunoreceptor tyrosine-based activation motif (ITAM) signaling pathway play. Although animal models are briefly discussed, the focus of this review is on the expression of ITAM associated molecules in relation to inflammation induced localized bone loss in RA, chronic periodontitis, and periprosthetic osteolysis, with an emphasis on the soluble and membrane bound factor osteoclast-associated receptor (OSCAR).
Collapse
|