1
|
Wang H, Li X, Meng B, Fan Y, Khan SU, Qian M, Zhang M, Yang H, Lu K. Exploring silique number in Brassica napus L.: Genetic and molecular advances for improving yield. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1897-1912. [PMID: 38386569 PMCID: PMC11182599 DOI: 10.1111/pbi.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Silique number is a crucial yield-related trait for the genetic enhancement of rapeseed (Brassica napus L.). The intricate molecular process governing the regulation of silique number involves various factors. Despite advancements in understanding the mechanisms regulating silique number in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), the molecular processes involved in controlling silique number in rapeseed remain largely unexplored. In this review, we identify candidate genes and review the roles of genes and environmental factors in regulating rapeseed silique number. We use genetic regulatory networks for silique number in Arabidopsis and grain number in rice to uncover possible regulatory pathways and molecular mechanisms involved in regulating genes associated with rapeseed silique number. A better understanding of the genetic network regulating silique number in rapeseed will provide a theoretical basis for the genetic improvement of this trait and genetic resources for the molecular breeding of high-yielding rapeseed.
Collapse
Affiliation(s)
- Hui Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Boyu Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Mingchao Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Minghao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Haikun Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
- Engineering Research Center of South Upland Agriculture, Ministry of EducationChongqingP.R. China
- Academy of Agricultural SciencesSouthwest UniversityBeibeiChongqingP.R. China
| |
Collapse
|
2
|
Qi Y, Wang Q, Xie Q, Wu C, Xu M, Han S, Zhou T, Li J, Xia L, Li WC, Pan W. Safety evaluation of FAD2 RNAi transgenic Brassica napus L. based on microbial diversity and metabonomic analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:953476. [PMID: 36531340 PMCID: PMC9751890 DOI: 10.3389/fpls.2022.953476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Oleic acid desaturase (FAD2) is the key enzyme that produces polyunsaturated fatty acids in rapeseed (Brassica napus L), which is one of the main oil crops. RNA interference (RNAi) is an emerging technique that provides new opportunities for the generation of new traits in plants. To increase oleic acid content and reduce linoleic and linolenic acid content in rapeseed, we constructed an ihpRNA plant expression vector of the FAD2 gene and obtained transgenic plants for multiple generations by stable inheritance. In this study, third-generation transgenic plants (T3), seventh-generation transgenic plants (T7), and wild-type plants (WT) were used. The differences in microbial community diversity between transgenic plants and wild-type plants and the up- and downregulation of rhizosphere metabolite contents were investigated. In conclusion, the results showed that the soil microbial community structure was stable, the general microbial community structure was not changed by the transgenic rhizosphere exudates, and no significant harmful root exudate of transgenic rapeseed on the environment was found through the microbial community and metabolomics analysis. This work may provide an understanding of the impact of RNAi on plant metabolites and a safety evaluation method for transgenic plants and a reference for rapeseed breeding.
Collapse
Affiliation(s)
- Yanting Qi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Qiming Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Qingxuan Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha, China
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| | - Minhui Xu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shaofan Han
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Ting Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Libing Xia
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Wai chin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| | - Weisong Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
3
|
Castellanos NL, Smagghe G, Taning CNT, Oliveira EE, Christiaens O. Risk assessment of RNAi-based pesticides to non-target organisms: Evaluating the effects of sequence similarity in the parasitoid wasp Telenomus podisi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154746. [PMID: 35337872 DOI: 10.1016/j.scitotenv.2022.154746] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
RNA interference (RNAi)-based pesticides are promising novel pest management products that might reduce environmental impacts compared to other pesticides. Their sequence-guided mode of action facilitates a high species-selectivity, preventing harm on non-target organisms. However, there is currently no consensus on the minimum needed sequence similarity for efficient RNAi in insects and studies have shown that adverse effects in non-targets cannot always be ruled out a priori. This study investigates the effects of exposing the parasitoid wasp Telenomus podisi to double-stranded RNA (dsRNA) which is lethal to its host, the Neotropical brown stink bug Euschistus heros. Feeding T. podisi with wasp-specific dsRNA targeting the vATPase A and actin-2 genes led to 76.4 ± 9.9% and 76.7 ± 8.8% mortality respectively, demonstrating that dietary RNAi is functional in T. podisi. When feeding T. podisi with E. heros-specific dsRNA targeting the same genes, no lethal or sublethal effects were observed. To link sequence similarity to potential gene silencing effects in the parasitoids, the expression of genes showing the highest degree of similarity (17-21 nucleotide matches) with these two target genes was monitored and was found unaffected by the E. heros-specific dsRNA. Our study confirms that RNAi was in this case highly specific and that for E. heros, RNAi-based pesticides can be used complementary to biological control in an integrated pest management context.
Collapse
Affiliation(s)
- Nathaly L Castellanos
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| | - Eugênio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.
| | - Olivier Christiaens
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
4
|
Ciofini A, Negrini F, Baroncelli R, Baraldi E. Management of Post-Harvest Anthracnose: Current Approaches and Future Perspectives. PLANTS 2022; 11:plants11141856. [PMID: 35890490 PMCID: PMC9319655 DOI: 10.3390/plants11141856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
Anthracnose is a severe disease caused by Colletotrichum spp. on several crop species. Fungal infections can occur both in the field and at the post-harvest stage causing severe lesions on fruits and economic losses. Physical treatments and synthetic fungicides have traditionally been the preferred means to control anthracnose adverse effects; however, the urgent need to decrease the use of toxic chemicals led to the investigation of innovative and sustainable protection techniques. Evidence for the efficacy of biological agents and vegetal derivates has been reported; however, their introduction into actual crop protection strategies requires the solutions of several critical issues. Biotechnology-based approaches have also been explored, revealing the opportunity to develop innovative and safe methods for anthracnose management through genome editing and RNA interference technologies. Nevertheless, besides the number of advantages related to their use, e.g., the putative absence of adverse effects due to their high specificity, a number of aspects remain to be clarified to enable their introduction into Integrated Pest Management (IPM) protocols against Colletotrichum spp. disease.
Collapse
|
5
|
Huang C, Wang Z, Zhu P, Wang C, Wang C, Xu W, Li Z, Fu W, Zhu S. RNA Interference-Based Genetic Engineering Maize Resistant to Apolygus lucorum Does Not Manifest Unpredictable Unintended Effects Relative to Conventional Breeding: Short Interfering RNA, Transcriptome, and Metabolome Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:745708. [PMID: 35283891 PMCID: PMC8908210 DOI: 10.3389/fpls.2022.745708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/27/2022] [Indexed: 05/02/2023]
Abstract
The use of omics techniques to analyze the differences between genetic engineering organisms and their parents can identify unintended effects and explore whether such unintended effects will have negative consequences. In order to evaluate whether genetic engineering will cause changes in crops beyond the changes introduced by conventional plant breeding, we compared the extent of transcriptome and metabolome modification in the leaves of three lines developed by RNA interference (RNAi)-based genetic engineering and three lines developed by conventional breeding. The results showed that both types of plant breeding methods can manifest changes at the short interfering RNA (siRNA), transcriptomic, and metabolic levels. Relative expression analysis of potential off-target gene revealed that there was no broad gene decline in the three RNAi-based genetic engineering lines. We found that the number of DEGs and DAMs between RNAi-based genetic engineering lines and the parental line was less than that between conventional breeding lines. These unique DEGs and DAMs between RNAi-based genetic engineering lines and the parental lines were not enriched in detrimental metabolic pathways. The results suggest that RNAi-based genetic engineering do not cause unintended effects beyond those found in conventional breeding in maize.
Collapse
Affiliation(s)
- Chunmeng Huang
- College of Plant Protection, China Agricultural University, Beijing, China
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Zhi Wang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Pengyu Zhu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Chenguang Wang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Chaonan Wang
- College of Plant Protection, China Agricultural University, Beijing, China
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Wenjie Xu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Zhihong Li
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Wei Fu
- Chinese Academy of Inspection and Quarantine, Beijing, China
- *Correspondence: Wei Fu,
| | - Shuifang Zhu
- Chinese Academy of Inspection and Quarantine, Beijing, China
- Shuifang Zhu,
| |
Collapse
|
6
|
Holeva MC, Sklavounos A, Rajeswaran R, Pooggin MM, Voloudakis AE. Topical Application of Double-Stranded RNA Targeting 2b and CP Genes of Cucumber mosaic virus Protects Plants against Local and Systemic Viral Infection. PLANTS 2021; 10:plants10050963. [PMID: 34066062 PMCID: PMC8151262 DOI: 10.3390/plants10050963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Cucumber mosaic virus (CMV) is a destructive plant virus with worldwide distribution and the broadest host range of any known plant virus, as well as a model plant virus for understanding plant–virus interactions. Since the discovery of RNA interference (RNAi) as a major antiviral defense, RNAi-based technologies have been developed for plant protection against viral diseases. In plants and animals, a key trigger of RNAi is double-stranded RNA (dsRNA) processed by Dicer and Dicer-like (DCL) family proteins in small interfering RNAs (siRNAs). In the present study, dsRNAs for coat protein (CP) and 2b genes of CMV were produced in vitro and in vivo and applied onto tobacco plants representing a systemic solanaceous host as well as on a local host plant Chenopodium quinoa. Both dsRNA treatments protected plants from local and systemic infection with CMV, but not against infection with unrelated viruses, confirming sequence specificity of antiviral RNAi. Antiviral RNAi was effective when dsRNAs were applied simultaneously with or four days prior to CMV inoculation, but not four days post inoculation. In vivo-produced dsRNAs were more effective than the in vitro-produced; in treatments with in vivo dsRNAs, dsRNA-CP was more effective than dsRNA-2b, while the effects were opposite with in vitro dsRNAs. Illumina sequencing of small RNAs from in vivo dsRNA-CP treated and non-treated tobacco plants revealed that interference with CMV infection in systemic leaves coincides with strongly reduced accumulation of virus-derived 21- and 22-nucleotide (nt) siRNAs, likely generated by tobacco DCL4 and DCL2, respectively. While the 21-nt class of viral siRNAs was predominant in non-treated plants, 21-nt and 22-nt classes accumulated at almost equal (but low) levels in dsRNA treated plants, suggesting that dsRNA treatment may boost DCL2 activity. Taken together, our findings confirm the efficacy of topical application of dsRNA for plant protection against viruses and shed more light on the mechanism of antiviral RNAi.
Collapse
Affiliation(s)
- Maria C. Holeva
- Laboratory of Bacteriology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 14561 Kifissia, Greece;
| | - Athanasios Sklavounos
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece;
- Office of Rural Development and Inspections of Kephalonia, Ministry of Rural Development and Food, 28100 Argostoli, Greece
| | - Rajendran Rajeswaran
- Department of Biology, Swiss Federal Institute of Technology (ETH), Universitätsstrasse 2, 8092 Zürich, Switzerland;
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, University of Montpellier, 34980 Montpellier, France;
| | - Andreas E. Voloudakis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece;
- Correspondence: ; Tel.: +30-2105294213
| |
Collapse
|
7
|
|
8
|
Arpaia S, Christiaens O, Giddings K, Jones H, Mezzetti B, Moronta-Barrios F, Perry JN, Sweet JB, Taning CNT, Smagghe G, Dietz-Pfeilstetter A. Biosafety of GM Crop Plants Expressing dsRNA: Data Requirements and EU Regulatory Considerations. FRONTIERS IN PLANT SCIENCE 2020; 11:940. [PMID: 32670333 PMCID: PMC7327110 DOI: 10.3389/fpls.2020.00940] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/09/2020] [Indexed: 05/16/2023]
Abstract
The use of RNA interference (RNAi) enables the silencing of target genes in plants or plant-dwelling organisms, through the production of double stranded RNA (dsRNA) resulting in altered plant characteristics. Expression of properly synthesized dsRNAs in plants can lead to improved crop quality characteristics or exploit new mechanisms with activity against plant pests and pathogens. Genetically modified (GM) crops exhibiting resistance to viruses or insects via expression of dsRNA have received authorization for cultivation outside Europe. Some products derived from RNAi plants have received a favourable opinion from the European Food Safety Authority (EFSA) for import and processing in the European Union (EU). The authorization process in the EU requires applicants to produce a risk assessment considering food/feed and environmental safety aspects of living organisms or their derived food and feed products. The present paper discusses the main aspects of the safety assessment (comparative assessment, molecular characterization, toxicological assessment, nutritional assessment, gene transfer, interaction with target and non-target organisms) for GM plants expressing dsRNA, according to the guidelines of EFSA. Food/feed safety assessment of products from RNAi plants is expected to be simplified, in the light of the consideration that no novel proteins are produced. Therefore, some of the data requirements for risk assessment do not apply to these cases, and the comparative compositional analysis becomes the main source of evidence for food/feed safety of RNAi plants. During environmental risk assessment, the analysis of dsRNA expression levels of the GM trait, and the data concerning the observable effects on non-target organisms (NTO) will provide the necessary evidence for ensuring safety of species exposed to RNAi plants. Bioinformatics may provide support to risk assessment by selecting target gene sequences with low similarity to the genome of NTOs possibly exposed to dsRNA. The analysis of these topics in risk assessment indicates that the science-based regulatory process in Europe is considered to be applicable to GM RNAi plants, therefore the evaluation of their safety can be effectively conducted without further modifications. Outcomes from the present paper offer suggestions for consideration in future updates of the EFSA Guidance documents on risk assessment of GM organisms.
Collapse
Affiliation(s)
- Salvatore Arpaia
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rotondella, Italy
| | - Olivier Christiaens
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kara Giddings
- Bayer, Crop Science R&D Regulatory Science, Chesterfield, MO, United States
| | - Huw Jones
- Translational Genomics for Plant Breeding, Aberystwyth University, Wales, United Kingdom
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | - Clauvis N. T. Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Antje Dietz-Pfeilstetter
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| |
Collapse
|
9
|
Papadopoulou N, Devos Y, Álvarez-Alfageme F, Lanzoni A, Waigmann E. Risk Assessment Considerations for Genetically Modified RNAi Plants: EFSA's Activities and Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:445. [PMID: 32373145 PMCID: PMC7186845 DOI: 10.3389/fpls.2020.00445] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/25/2020] [Indexed: 05/18/2023]
Abstract
Genetically modified plants (GMPs) intended for market release can be designed to induce "gene silencing" through RNA interference (RNAi). The European Food Safety Authority (EFSA) and other international risk assessment bodies/regulatory agencies have taken several actions to determine whether the existing risk assessment approaches for GMPs are appropriate for the risk assessment of RNAi-based GMPs or require complementary or alternative approaches. To our knowledge, at the international level, no dedicated guidelines have been developed for the risk assessment and regulation of RNAi-based GMPs, confirming that existing science-based risk assessment approaches for GMPs are generally considered suitable for RNAi-based GMPs. However, some specificities have been identified for the risk assessment of RNAi-based GMPs. Here, we report on some of these specificities as identified and addressed by the EFSA GMO Panel for the molecular characterisation, food/feed safety assessment and environmental risk assessment of RNAi-based GMPs, using the DvSnf7 dsRNA-expressing maize MON87411 as a case study.
Collapse
Affiliation(s)
- Nikoletta Papadopoulou
- Genetically Modified Organisms Unit, Department of Scientific Evaluation of Regulated Products Development, European Food Safety Authority, Parma, Italy
| | | | | | | | | |
Collapse
|
10
|
Taning CN, Arpaia S, Christiaens O, Dietz-Pfeilstetter A, Jones H, Mezzetti B, Sabbadini S, Sorteberg HG, Sweet J, Ventura V, Smagghe G. RNA-based biocontrol compounds: current status and perspectives to reach the market. PEST MANAGEMENT SCIENCE 2020. [PMID: 31743573 DOI: 10.1007/s10340-020-01238-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Facing current climate challenges and drastically reduced chemical options for plant protection, the exploitation of RNA interference (RNAi) as an agricultural biotechnology tool has unveiled possible new solutions to the global problems of agricultural losses caused by pests and other biotic and abiotic stresses. While the use of RNAi as a tool in agriculture is still limited to a few transgenic crops, and only adopted in restricted parts of the world, scientists and industry are already seeking innovations in leveraging and exploiting the potential of RNAi in the form of RNA-based biocontrol compounds for external applications. Here, we highlight the expanding research and development pipeline, commercial landscape and regulatory environment surrounding the pursuit of RNA-based biocontrol compounds with improved environmental profiles. The commitments of well-established agrochemical companies to invest in research endeavours and the role of start-up companies are crucial for the successful development of practical applications for these compounds. Additionally, the availability of standardized guidelines to tackle regulatory ambiguities surrounding RNA-based biocontrol compounds will help to facilitate the entire commercialization process. Finally, communication to create awareness and public acceptance will be key to the deployment of these compounds. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Clauvis Nt Taning
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Salvatore Arpaia
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), DTE-BBC, Rotondella, Italy
| | - Olivier Christiaens
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Antje Dietz-Pfeilstetter
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Braunschweig, Germany
| | - Huw Jones
- IBERS, Aberystwyth University, Aberystwyth, Wales, UK
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche (UPM), Ancona, Italy
| | - Silvia Sabbadini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche (UPM), Ancona, Italy
| | | | | | - Vera Ventura
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Kolliopoulou A, Kontogiannatos D, Swevers L. The Use of Engineered Plant Viruses in a Trans-Kingdom Silencing Strategy Against Their Insect Vectors. FRONTIERS IN PLANT SCIENCE 2020; 11:917. [PMID: 32733507 PMCID: PMC7360853 DOI: 10.3389/fpls.2020.00917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/04/2020] [Indexed: 05/04/2023]
Abstract
Plants, plant viruses, and their vectors are co-evolving actors that co-exist and interact in nature. Insects are the most important vectors of plant viruses, serving as both carriers and hosts for the virus. This trans-kingdom interaction can be harnessed for the production of recombinant plant viruses designed to target insect genes via the RNAi machinery. The selection of the adequate viruses is important since they must infect and preferentially replicate in both the host plant and the insect vector. The routes of transmission that determine the extent of the infection inside the insect vary among different plant viruses. In the context of the proposed strategy, plant viruses that are capable of transversing the insect gut-hemocoel barrier and replicating in insect tissues are attractive candidates. Thus, the transmission of such viruses in a persistent and propagative manner is considered as a prerequisite for this strategy to be feasible, a characteristic that is found in viruses from the families Bunyaviridae, Reoviridae, and Rhabdoviridae. In addition, several RNA viruses are known that replicate in both plant and insect tissues via a yet unclarified transmission route. In this review, advances in knowledge of trans-kingdom transmission of plant viruses and future perspectives for their engineering as silencing vectors are thoroughly discussed.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
- Department of Biomedical Sciences, University of West Attica, Egaleo, Greece
- *Correspondence: Anna Kolliopoulou,
| | - Dimitrios Kontogiannatos
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
| | - Luc Swevers
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
| |
Collapse
|
12
|
Devos Y, Craig W, Devlin RH, Ippolito A, Leggatt RA, Romeis J, Shaw R, Svendsen C, Topping CJ. Using problem formulation for fit-for-purpose pre-market environmental risk assessments of regulated stressors. EFSA J 2019; 17:e170708. [PMID: 32626445 PMCID: PMC7055725 DOI: 10.2903/j.efsa.2019.e170708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Pre-market/prospective environmental risk assessments (ERAs) contribute to risk analyses performed to facilitate decisions about the market introduction of regulated stressors. Robust ERAs begin with an explicit problem formulation, which involves among other steps: (1) formally devising plausible pathways to harm that describe how the deployment of a regulated stressor could be harmful; (2) formulating risk hypotheses about the likelihood and severity of such events; (3) identifying the information that will be useful to test the risk hypotheses; and (4) developing a plan to acquire new data for hypothesis testing should tests with existing information be insufficient for decision-making. Here, we apply problem formulation to the assessment of possible adverse effects of RNA interference-based insecticidal genetically modified (GM) plants, GM growth hormone coho salmon, gene drive-modified mosquitoes and classical biological weed control agents on non-target organisms in a prospective manner, and of neonicotinoid insecticides on bees in a retrospective manner. In addition, specific considerations for the problem formulation for the ERA of nanomaterials and for landscape-scale population-level ERAs are given. We argue that applying problem formulation to ERA maximises the usefulness of ERA studies for decision-making, through an iterative process, because: (1) harm is defined explicitly from the start; (2) the construction of risk hypotheses is guided by policy rather than an exhaustive attempt to address any possible differences; (3) existing information is used effectively; (4) new data are collected with a clear purpose; (5) risk is characterised against well-defined criteria of hypothesis corroboration or falsification; and (6) risk assessment conclusions can be communicated clearly. However, problem formulation is still often hindered by the absence of clear policy goals and decision-making criteria (e.g. definition of protection goals and what constitutes harm) that are needed to guide the interpretation of scientific information. We therefore advocate further dialogue between risk assessors and risk managers to clarify how ERAs can address policy goals and decision-making criteria. Ideally, this dialogue should take place for all classes of regulated stressors, as this can promote alignment and consistency on the desired level of protection and maximum tolerable impacts across regulated stressors.
Collapse
Affiliation(s)
- Yann Devos
- GMO Unit European Food Safety Authority (EFSA) Italy
| | - Wendy Craig
- Biosafety Group International Centre for Genetic Engineering & Biotechnology (ICGEB) Italy
| | | | | | | | - Jörg Romeis
- Research Division Agroecology and Environment Agroscope Switzerland
| | - Richard Shaw
- Centre for Agriculture and Biosciences International (CABI) United Kingdom
| | - Claus Svendsen
- Ecotoxicology and Chemical Risk Group United Kingdom Research and Innovation Centre for Ecology and Hydrology (CEH) United Kingdom
| | | |
Collapse
|
13
|
Agapito-Tenfen SZ, Okoli AS, Bernstein MJ, Wikmark OG, Myhr AI. Revisiting Risk Governance of GM Plants: The Need to Consider New and Emerging Gene-Editing Techniques. FRONTIERS IN PLANT SCIENCE 2018; 9:1874. [PMID: 30622546 PMCID: PMC6308909 DOI: 10.3389/fpls.2018.01874] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/04/2018] [Indexed: 05/14/2023]
Abstract
New and emerging gene-editing techniques make it possible to target specific genes in species with greater speed and specificity than previously possible. Of major relevance for plant breeding, regulators and scientists are discussing how to regulate products developed using these gene-editing techniques. Such discussions include whether to adopt or adapt the current framework for GMO risk governance in evaluating the impacts of gene-edited plants, and derived products, on the environment, human and animal health and society. Product classification or definition is one of several aspects of the current framework being criticized. Further, knowledge gaps related to risk assessments of gene-edited organisms-for example of target and off-target effects of intervention in plant genomes-are also of concern. Resolving these and related aspects of the current framework will involve addressing many subjective, value-laden positions, for example how to specify protection goals through ecosystem service approaches. A process informed by responsible research and innovation practices, involving a broader community of people, organizations, experts, and interest groups, could help scientists, regulators, and other stakeholders address these complex, value-laden concerns related to gene-editing of plants with and for society.
Collapse
Affiliation(s)
| | - Arinze S. Okoli
- GenØk - Centre for Biosafety, SIVA Innovation Centre, Tromsø, Norway
| | | | - Odd-Gunnar Wikmark
- GenØk - Centre for Biosafety, SIVA Innovation Centre, Tromsø, Norway
- Unit for Environmental Science and Management, North West University, Potchefstroom, South Africa
| | - Anne I. Myhr
- GenØk - Centre for Biosafety, SIVA Innovation Centre, Tromsø, Norway
| |
Collapse
|
14
|
Oberemok VV, Laikova KV, Repetskaya AI, Kenyo IM, Gorlov MV, Kasich IN, Krasnodubets AM, Gal'chinsky NV, Fomochkina II, Zaitsev AS, Bekirova VV, Seidosmanova EE, Dydik KI, Meshcheryakova AO, Nazarov SA, Smagliy NN, Chelengerova EL, Kulanova AA, Deri K, Subbotkin MV, Useinov RZ, Shumskykh MN, Kubyshkin AV. A Half-Century History of Applications of Antisense Oligonucleotides in Medicine, Agriculture and Forestry: We Should Continue the Journey. Molecules 2018; 23:E1302. [PMID: 29844255 PMCID: PMC6099785 DOI: 10.3390/molecules23061302] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 02/07/2023] Open
Abstract
Antisense oligonucleotides (ASO), short single-stranded polymers based on DNA or RNA chemistries and synthesized in vitro, regulate gene expression by binding in a sequence-specific manner to an RNA target. The functional activity and selectivity in the action of ASOs largely depends on the combination of nitrogenous bases in a target sequence. This simple and natural property of nucleic acids provides an attractive route by which scientists can create different ASO-based techniques. Over the last 50 years, planned and realized applications in the field of antisense and nucleic acid nanotechnologies have produced astonishing results and posed new challenges for further developments, exemplifying the essence of the post-genomic era. Today the majority of ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake. This review critically analyzes some successful cases using the antisense approach in medicine to address severe diseases, such as Duchenne muscular dystrophy and spinal muscular atrophy, and suggests some prospective directions for future research. We also examine in detail the elaboration of unmodified insect-specific DNA insecticides and RNA preparations in the areas of agriculture and forestry, a relatively new branch of ASO that allows circumvention of the use of non-selective chemical insecticides. When considering the variety of successful ASO modifications with an efficient signal-to-noise ratio of action, coupled with the affordability of in vitro oligonucleotide synthesis and post-synthesis procedures, we predict that the next half-century will produce a fruitful yield of tools created from effective ASO-based end products.
Collapse
MESH Headings
- Agriculture/methods
- Animals
- Biological Control Agents/chemical synthesis
- Biological Control Agents/history
- Biological Control Agents/pharmacology
- DNA/antagonists & inhibitors
- DNA/genetics
- DNA/metabolism
- Forestry/methods
- Gene Expression Regulation/drug effects
- History, 20th Century
- History, 21st Century
- Humans
- Larva/drug effects
- Larva/genetics
- Larva/metabolism
- Moths/drug effects
- Moths/genetics
- Moths/growth & development
- Moths/metabolism
- Muscular Atrophy, Spinal/genetics
- Muscular Atrophy, Spinal/metabolism
- Muscular Atrophy, Spinal/pathology
- Muscular Atrophy, Spinal/therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neuromuscular Agents/chemical synthesis
- Neuromuscular Agents/history
- Neuromuscular Agents/therapeutic use
- Oligonucleotides, Antisense/chemical synthesis
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Volodymyr V Oberemok
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Kateryna V Laikova
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Anna I Repetskaya
- Botanical Garden named after N.V. Bagrov, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 29500 Simferopol, Crimea.
| | - Igor M Kenyo
- Academy of Bioresources and Environmental Management of V.I. Vernadsky Crimean Federal University, 95492 Agrarnoye, Crimea.
| | - Mikhail V Gorlov
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia.
| | - Igor N Kasich
- Rostov State Medical University, Nakhchivan Lane 29, 344022 Rostov-on-Don, Russia.
| | - Alisa M Krasnodubets
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Nikita V Gal'chinsky
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Iryna I Fomochkina
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Aleksei S Zaitsev
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Viktoriya V Bekirova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Eleonora E Seidosmanova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Ksenia I Dydik
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Anna O Meshcheryakova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Sergey A Nazarov
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Natalya N Smagliy
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Edie L Chelengerova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Alina A Kulanova
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Karim Deri
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Mikhail V Subbotkin
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Refat Z Useinov
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Maksym N Shumskykh
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Anatoly V Kubyshkin
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| |
Collapse
|
15
|
Kumar D, Gong C. Insect RNAi: Integrating a New Tool in the Crop Protection Toolkit. TRENDS IN INSECT MOLECULAR BIOLOGY AND BIOTECHNOLOGY 2017. [PMCID: PMC7121382 DOI: 10.1007/978-3-319-61343-7_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protecting crops against insect pests is a major focus area in crop protection. Over the past two decades, biotechnological interventions, especially Bt proteins, have been successfully implemented across the world and have had major impacts on reducing chemical pesticide applications. As insects continue to adapt to insecticides, both chemical and protein-based, new methods, molecules, and modes of action are necessary to provide sustainable solutions. RNA interference (RNAi) has emerged as a significant tool to knock down or alter gene expression profiles in a species-specific manner. In the past decade, there has been intense research on RNAi applications in crop protection. This chapter looks at the current state of knowledge in the field and outlines the methodology, delivery methods, and precautions required in designing targets. Assessing the targeting of specific gene expression is also an important part of a successful RNAi strategy. The current literature on the use of RNAi in major orders of insect pests is reviewed, along with a perspective on the regulatory aspects of the approach. Risk assessment of RNAi would focus on molecular characterization, food/feed risk assessment, and environmental risk assessment. As more RNAi-based products come through regulatory systems, either via direct application or plant expression based, the impact of this approach on crop protection will become clearer.
Collapse
Affiliation(s)
- Dhiraj Kumar
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Yang J, Primo C, Elbaz-Younes I, Hirschi KD. Bioavailability of transgenic microRNAs in genetically modified plants. GENES & NUTRITION 2017; 12:17. [PMID: 29507644 PMCID: PMC5831112 DOI: 10.1186/s12263-017-0563-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transgenic expression of small RNAs is a prevalent approach in agrobiotechnology for the global enhancement of plant foods. Meanwhile, emerging studies have, on the one hand, emphasized the potential of transgenic microRNAs (miRNAs) as novel dietary therapeutics and, on the other, suggested potential food safety issues if harmful miRNAs are absorbed and bioactive. For these reasons, it is necessary to evaluate the bioavailability of transgenic miRNAs in genetically modified crops. RESULTS As a pilot study, two transgenic Arabidopsis lines ectopically expressing unique miRNAs were compared and contrasted with the plant bioavailable small RNA MIR2911 for digestive stability and serum bioavailability. The expression levels of these transgenic miRNAs in Arabidopsis were found to be comparable to that of MIR2911 in fresh tissues. Assays of digestive stability in vitro and in vivo suggested the transgenic miRNAs and MIR2911 had comparable resistance to degradation. Healthy mice consuming diets rich in Arabidopsis lines expressing these miRNAs displayed MIR2911 in the bloodstream but no detectable levels of the transgenic miRNAs. CONCLUSIONS These preliminary results imply digestive stability and high expression levels of miRNAs in plants do not readily equate to bioavailability. This initial work suggests novel engineering strategies be employed to enhance miRNA bioavailability when attempting to use transgenic foods as a delivery platform.
Collapse
Affiliation(s)
- Jian Yang
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030 USA
| | - Cecilia Primo
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030 USA
| | - Ismail Elbaz-Younes
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030 USA
| | - Kendal D. Hirschi
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030 USA
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, TX 77845 USA
| |
Collapse
|
17
|
Kamle M, Kumar P, Patra JK, Bajpai VK. Current perspectives on genetically modified crops and detection methods. 3 Biotech 2017; 7:219. [PMID: 28674844 PMCID: PMC5495694 DOI: 10.1007/s13205-017-0809-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/02/2017] [Indexed: 01/31/2023] Open
Abstract
Genetically modified (GM) crops are the fastest adopted commodities in the agribiotech industry. This market penetration should provide a sustainable basis for ensuring food supply for growing global populations. The successful completion of two decades of commercial GM crop production (1996-2015) is underscored by the increasing rate of adoption of genetic engineering technology by farmers worldwide. With the advent of introduction of multiple traits stacked together in GM crops for combined herbicide tolerance, insect resistance, drought tolerance or disease resistance, the requirement of reliable and sensitive detection methods for tracing and labeling genetically modified organisms in the food/feed chain has become increasingly important. In addition, several countries have established threshold levels for GM content which trigger legally binding labeling schemes. The labeling of GM crops is mandatory in many countries (such as China, EU, Russia, Australia, New Zealand, Brazil, Israel, Saudi Arabia, Korea, Chile, Philippines, Indonesia, Thailand), whereas in Canada, Hong Kong, USA, South Africa, and Argentina voluntary labeling schemes operate. The rapid adoption of GM crops has increased controversies, and mitigating these issues pertaining to the implementation of effective regulatory measures for the detection of GM crops is essential. DNA-based detection methods have been successfully employed, while the whole genome sequencing using next-generation sequencing (NGS) technologies provides an advanced means for detecting genetically modified organisms and foods/feeds in GM crops. This review article describes the current status of GM crop commercialization and discusses the benefits and shortcomings of common and advanced detection systems for GMs in foods and animal feeds.
Collapse
Affiliation(s)
- Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology (Deemed University), Nirjuli, Arunachal Pradesh, 791109, India
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology (Deemed University), Nirjuli, Arunachal Pradesh, 791109, India.
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggido, 10326, Korea
| | - Vivek K Bajpai
- Department of Applied Microbiology and Biotechnology, Microbiome Laboratory, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea.
| |
Collapse
|
18
|
Chaloner T, van Kan JAL, Grant-Downton RT. RNA 'Information Warfare' in Pathogenic and Mutualistic Interactions. TRENDS IN PLANT SCIENCE 2016; 21:738-748. [PMID: 27318950 DOI: 10.1016/j.tplants.2016.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 05/08/2023]
Abstract
Regulatory non-coding RNAs are emerging as key players in host-pathogen interactions. Small RNAs such as microRNAs are implicated in regulating plant transcripts involved in immunity and defence. Surprisingly, RNAs with silencing properties can be translocated from plant hosts to various invading pathogens and pests. Small RNAs are now confirmed virulence factors, with the first report of fungal RNAs that travel to host cells and hijack post-transcriptional regulatory machinery to suppress host defence. Here, we argue that trans-organism movement of RNAs represents a common mechanism of control in diverse interactions between plants and other eukaryotes. We suggest that extracellular vesicles are the key to such RNA movement events. Plant pathosystems serve as excellent experimental models to dissect RNA 'information warfare' and other RNA-mediated interactions.
Collapse
Affiliation(s)
- Thomas Chaloner
- The Queen's College, University of Oxford, High Street, Oxford, UK
| | - Jan A L van Kan
- Wageningen University, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | |
Collapse
|
19
|
Abdurakhmonov IY, Ayubov MS, Ubaydullaeva KA, Buriev ZT, Shermatov SE, Ruziboev HS, Shapulatov UM, Saha S, Ulloa M, Yu JZ, Percy RG, Devor EJ, Sharma GC, Sripathi VR, Kumpatla SP, van der Krol A, Kater HD, Khamidov K, Salikhov SI, Jenkins JN, Abdukarimov A, Pepper AE. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.). FRONTIERS IN PLANT SCIENCE 2016; 7:202. [PMID: 26941765 PMCID: PMC4762190 DOI: 10.3389/fpls.2016.00202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/05/2016] [Indexed: 02/05/2023]
Abstract
RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization.
Collapse
Affiliation(s)
- Ibrokhim Y. Abdurakhmonov
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
- *Correspondence: Ibrokhim Y. Abdurakhmonov,
| | - Mirzakamol S. Ayubov
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
| | - Khurshida A. Ubaydullaeva
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
| | - Zabardast T. Buriev
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
| | - Shukhrat E. Shermatov
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
| | - Haydarali S. Ruziboev
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
| | - Umid M. Shapulatov
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
- Laboratory of Plant Physiology, Wageningen UniversityWageningen, Netherlands
| | - Sukumar Saha
- Crop Science Research Laboratory, United States Department of Agriculture – Agricultural Research Service, StarkvilleMS, USA
| | - Mauricio Ulloa
- Plant Stress and Germplasm Development Research, United States Department of Agriculture – Agricultural Research Service, LubbockTX, USA
| | - John Z. Yu
- Crop Germplasm Research Unit, United States Department of Agriculture – Agricultural Research Service, College StationTX, USA
| | - Richard G. Percy
- Crop Germplasm Research Unit, United States Department of Agriculture – Agricultural Research Service, College StationTX, USA
| | - Eric J. Devor
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa CityIA, USA
| | - Govind C. Sharma
- Department of Biological and Environmental Sciences, Alabama A&M University, NormalAL, USA
| | | | | | | | - Hake D. Kater
- Agricultural and Environmental Research, CaryNC, USA
| | - Khakimdjan Khamidov
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
| | - Shavkat I. Salikhov
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
| | - Johnie N. Jenkins
- Crop Science Research Laboratory, United States Department of Agriculture – Agricultural Research Service, StarkvilleMS, USA
| | - Abdusattor Abdukarimov
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
| | - Alan E. Pepper
- Department of Biology, Texas A&M University, Colleges StationTX, USA
| |
Collapse
|
20
|
Roberts AF, Devos Y, Lemgo GNY, Zhou X. Biosafety research for non-target organism risk assessment of RNAi-based GE plants. FRONTIERS IN PLANT SCIENCE 2015; 6:958. [PMID: 26594220 PMCID: PMC4635219 DOI: 10.3389/fpls.2015.00958] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/20/2015] [Indexed: 05/02/2023]
Abstract
RNA interference, or RNAi, refers to a set of biological processes that make use of conserved cellular machinery to silence genes. Although there are several variations in the source and mechanism, they are all triggered by double stranded RNA (dsRNA) which is processed by a protein complex into small, single stranded RNA, referred to as small interfering RNAs (siRNA) with complementarity to sequences in genes targeted for silencing. The use of the RNAi mechanism to develop new traits in plants has fueled a discussion about the environmental safety of the technology for these applications, and this was the subject of a symposium session at the 13th ISBGMO in Cape Town, South Africa. This paper continues that discussion by proposing research areas that may be beneficial for future environmental risk assessments of RNAi-based genetically modified plants, with a particular focus on non-target organism assessment.
Collapse
Affiliation(s)
- Andrew F. Roberts
- ILSI Research Foundation, Center for Environmental Risk AssessmentWashington, DC, USA
| | - Yann Devos
- GMO Unit, European Food Safety AuthorityParma, Italy
| | - Godwin N. Y. Lemgo
- NEPAD Agency – African Biosafety Network of ExpertiseOuagadougou, Burkina Faso
| | - Xuguo Zhou
- Department of Entomology, College of Agriculture, Food and Environment, University of KentuckyLexington, KY, USA
| |
Collapse
|
21
|
Pauwels K, De Keersmaecker SC, De Schrijver A, du Jardin P, Roosens NH, Herman P. Next-generation sequencing as a tool for the molecular characterisation and risk assessment of genetically modified plants: Added value or not? Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|