1
|
Chen J, Zhong Y, Zou P, Ni J, Liu Y, Dai S, Zhou R. Identification of Genomic Regions Associated with Differences in Flowering Time and Inflorescence Architecture between Melastoma candidum and M. normale. Int J Mol Sci 2024; 25:10250. [PMID: 39408579 PMCID: PMC11477356 DOI: 10.3390/ijms251910250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Understanding the genetic basis of species differences in flowering time and inflorescence architecture can shed light on speciation and molecular breeding. Melastoma shows rapid speciation, with about 100 species formed in the past few million years, and, meanwhile, possesses high ornamental values. Two largely sympatric and closely related species of this genus, M. candidum and M. normale, differ markedly in flowering time and flower number per inflorescence. Here, we constructed an F2 population between M. candidum and M. normale, and used extreme bulks for flowering time and flower number per inflorescence in this population to identify genomic regions underlying the two traits. We found high differentiation on nearly the whole chromosome 7 plus a few regions on other chromosomes between the two extreme bulks for flowering time. Large chromosomal inversions on chromosome 7 between the two species, which contain flowering-related genes, can explain recombinational suppression on the chromosome. We identified 1872 genes with one or more highly differentiated SNPs between the two bulks for flowering time, including CSTF77, FY, SPA3, CDF3, AGL8, AGL15, FHY1, COL9, CIB1, FKF1 and FAR1, known to be related to flowering. We also identified 680 genes with one or more highly differentiated SNPs between the two bulks for flower number per inflorescence, including PNF, FIL and LAS, knows to play important roles in inflorescence development. These large inversions on chromosome 7 prevent us from narrowing down the genomic region(s) associated with flowering time differences between the two species. Flower number per inflorescence in Melastoma appears to be controlled by multiple genes, without any gene of major effect. Our study indicates that large chromosomal inversions can hamper the identification of the genetic basis of important traits, and the inflorescence architecture of Melastoma species may have a complex genetic basis.
Collapse
Affiliation(s)
- Jingfang Chen
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
| | - Yan Zhong
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Peishan Zou
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou 510405, China; (P.Z.); (J.N.)
| | - Jianzhong Ni
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou 510405, China; (P.Z.); (J.N.)
| | - Ying Liu
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Seping Dai
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou 510405, China; (P.Z.); (J.N.)
| | - Renchao Zhou
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
| |
Collapse
|
2
|
Magar ND, Barbadikar KM, Reddy V, Revadi P, Guha P, Gangatire D, Balakrishnan D, Sharma S, Madhav MS, Sundaram RM. Genetic mapping of regions associated with root system architecture in rice using MutMap QTL-seq. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108836. [PMID: 38941724 DOI: 10.1016/j.plaphy.2024.108836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/04/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024]
Abstract
The root system architecture is an important complex trait in rice. With changing climatic conditions and soil nutrient deficiencies, there is an immediate need to breed nutrient-use-efficient rice varieties with robust root system architectural (RSA) traits. To map the genomic regions associated with crucial component traits of RSA viz. root length and root volume, a biparental F2 mapping population was developed using TI-128, an Ethyl Methane Sulphonate (EMS) mutant of a mega variety BPT-5204 having high root length (RL) and root volume (RV) with wild type BPT-5204. Extreme bulks having high RL and RV and low RL and RV were the whole genome re-sequenced along with parents. Genetic mapping using the MutMap QTL-Seq approach elucidated two genomic intervals on Chr.12 (3.14-3.74 Mb, 18.11-20.85 Mb), and on Chr.2 (23.18-23.68 Mb) as potential regions associated with both RL and RV. The Kompetitive Allele Specific PCR (KASP) assays for SNPs with delta SNP index near 1 were associated with higher RL and RV in the panel of sixty-two genotypes varying in root length and volume. The KASP_SNPs viz. Chr12_S4 (C→T; Chr12:3243938), located in the 3' UTR region of LOC_Os12g06670 encoding a protein kinase domain-containing protein and Chr2_S6 (C→T; Chr2:23181622) present upstream in the regulator of chromosomal condensation protein LOC_Os2g38350. Validation of these genes using qRT-PCR and in-silico studies using various online tools and databases revealed higher expression in TI-128 as compared to BPT- 5204 at the seedling and panicle initiation stages implying the functional role in enhancing RL and RV.
Collapse
Affiliation(s)
- Nakul D Magar
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India; Chaudhary Charan Singh University, Meerut, 250005, India
| | | | - Vishal Reddy
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | - Pritam Guha
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Dhiraj Gangatire
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | | | - M Sheshu Madhav
- ICAR-Central Tobacco Research Institute, Rajahmundry, 533106, India
| | - Raman M Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| |
Collapse
|
3
|
Bithell SL, Asif MA, Backhouse D, Drenth A, Harden S, Hobson K. Selection for Phytophthora Root Rot Resistance in Chickpea Crosses Affects Yield Potential of Chickpea × Cicer echinospermum Backcross Derivatives. PLANTS (BASEL, SWITZERLAND) 2024; 13:1432. [PMID: 38891240 PMCID: PMC11174912 DOI: 10.3390/plants13111432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Phytophthora root rot (PRR) of chickpea (Cicer arietinum) caused by Phytophthora medicaginis is an important disease. Partial resistance to PRR is sourced from Cicer echinospermum. In this study, we evaluated if lines with low levels of PRR foliage symptoms in two contrasting recombinant inbred line (RIL) populations parented by chickpea cultivars (Yorker and Rupali) and 04067-81-2-1-1 (C. echinospermum, interspecific breeding line) had a significant drag on yield parameters. For the Yorker × 04067-81-2-1-1 population with the highest level of PRR resistance, in the absence of PRR, low foliage symptom RIL had significantly later flowering and podding, lower grain yields, and lighter seed and shorter plant phenotypes than high foliage symptom RIL. A quantitative trait locus analysis identified significant QTL for flowering, height, 100-seed weight, and yield, and there was a significantly higher frequency of alleles for the negative agronomic traits (i.e., drag) from the 04067-81-2-1-1 parent in low foliage symptom RIL than in high foliage symptom RIL. For the Rupali × 04067-81-2-1-1 population with lower levels of PRR resistance, in the absence of PRR, low foliage symptom RIL had significantly lighter seed and shorter plants than high foliage symptom RIL. Significant QTL were detected, the majority were for the timing of flowering and podding (n = 18), others were for plant height, yield, and 100-seed weight. For this second population, the frequency of alleles for the negative agronomic traits from the 04067-81-2-1-1 parent did not differ between low and high foliage symptom RIL. The 100 seed weight of RIL under moderate PRR disease pressure showed some promise as a yield component trait to identify phenotypes with both high levels of PRR resistance and grain yield potential for further seed number evaluations. We identified that large population sizes are required to enable selection among chickpea × C. echinospermum crosses for high levels of PRR resistance without a significant drag on yield.
Collapse
Affiliation(s)
- Sean L. Bithell
- New South Wales Department of Primary Industries, Tamworth, NSW 2340, Australia
| | - Muhammd A. Asif
- Chickpea Breeding Australia, New South Wales Department of Primary Industries, Tamworth Agricultural Institute, Tamworth, NSW 2340, Australia; (M.A.A.)
| | - David Backhouse
- School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2350, Australia;
| | - Andre Drenth
- Centre for Horticultural Science, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Steve Harden
- New South Wales Department of Primary Industries, Tamworth, NSW 2340, Australia
| | - Kristy Hobson
- Chickpea Breeding Australia, New South Wales Department of Primary Industries, Tamworth Agricultural Institute, Tamworth, NSW 2340, Australia; (M.A.A.)
| |
Collapse
|
4
|
Khassanova G, Oshergina I, Ten E, Jatayev S, Zhanbyrshina N, Gabdola A, Gupta NK, Schramm C, Pupulin A, Philp-Dutton L, Anderson P, Sweetman C, Jenkins CL, Soole KL, Shavrukov Y. Zinc finger knuckle genes are associated with tolerance to drought and dehydration in chickpea ( Cicer arietinum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1354413. [PMID: 38766473 PMCID: PMC11099236 DOI: 10.3389/fpls.2024.1354413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Chickpea (Cicer arietinum L.) is a very important food legume and needs improved drought tolerance for higher seed production in dry environments. The aim of this study was to determine diversity and genetic polymorphism in zinc finger knuckle genes with CCHC domains and their functional analysis for practical improvement of chickpea breeding. Two CaZF-CCHC genes, Ca04468 and Ca07571, were identified as potentially important candidates associated with plant responses to drought and dehydration. To study these genes, various methods were used including Sanger sequencing, DArT (Diversity array technology) and molecular markers for plant genotyping, gene expression analysis using RT-qPCR, and associations with seed-related traits in chickpea plants grown in field trials. These genes were studied for genetic polymorphism among a set of chickpea accessions, and one SNP was selected for further study from four identified SNPs between the promoter regions of each of the two genes. Molecular markers were developed for the SNP and verified using the ASQ and CAPS methods. Genotyping of parents and selected breeding lines from two hybrid populations, and SNP positions on chromosomes with haplotype identification, were confirmed using DArT microarray analysis. Differential expression profiles were identified in the parents and the hybrid populations under gradual drought and rapid dehydration. The SNP-based genotypes were differentially associated with seed weight per plant but not with 100 seed weight. The two developed and verified SNP molecular markers for both genes, Ca04468 and Ca07571, respectively, could be used for marker-assisted selection in novel chickpea cultivars with improved tolerance to drought and dehydration.
Collapse
Affiliation(s)
- Gulmira Khassanova
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
- Department of Crop Breeding, A.I.Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Irina Oshergina
- Department of Crop Breeding, A.I.Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Evgeniy Ten
- Department of Crop Breeding, A.I.Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
| | - Nursaule Zhanbyrshina
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
| | - Ademi Gabdola
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
| | - Narendra K. Gupta
- Department of Plant Physiology, Sri Karan Narendra (SNK) Agricultural University, Jobster, Rajastan, India
| | - Carly Schramm
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Antonio Pupulin
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Lauren Philp-Dutton
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Peter Anderson
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Crystal Sweetman
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Colin L.D. Jenkins
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Kathleen L. Soole
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Yuri Shavrukov
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| |
Collapse
|
5
|
Jiang W, Liu Y, Zhang C, Pan L, Wang W, Zhao C, Zhao T, Li Y. Identification of major QTLs for drought tolerance in soybean, together with a novel candidate gene, GmUAA6. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1852-1871. [PMID: 38226463 DOI: 10.1093/jxb/erad483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Drought tolerance is a complex trait in soybean that is controlled by polygenetic quantitative trait loci (QTLs). In this study, wilting score, days-to-wilting, leaf relative water content, and leaf relative conductivity were used to identify QTLs associated with drought tolerance in recombinant inbred lines derived from a cross between a drought-sensitive variety, Lin, and a drought-tolerant variety, Meng. A total of 33 drought-tolerance QTLs were detected. Of these 17 were major QTLs. In addition, 15 were novel drought-tolerance QTLs. The most predominant QTL was on chromosome 11. This was detected in at least three environments. The overlapped mapping interval of the four measured traits was 0.2 cM in genetic distance (about 220 kb in physical length). Glyma.11g143500 (designated as GmUAA6), which encodes a UDP-N-acetylglucosamine transporter, was identified as the most likely candidate gene. The allele of GmUAA6 from Lin (GmUAA6Lin) was associated with improved soybean drought tolerance. Overexpression of GmUAA6Lin in Arabidopsis and soybean hairy roots enhanced drought tolerance. Furthermore, a 3-bp insertion/deletion (InDel) in the coding sequence of GmUAA6 explained up to 49.9% of the phenotypic variation in drought tolerance-related traits, suggesting that this InDel might be used in future marker-assisted selection of drought-tolerant lines in soybean breeding programs.
Collapse
Affiliation(s)
- Wei Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Yandang Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Chi Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Lang Pan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tuanjie Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Yan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| |
Collapse
|
6
|
Casavecchia S, Giannelli F, Giovannotti M, Trucchi E, Carducci F, Quattrini G, Lucchetti L, Barucca M, Canapa A, Biscotti MA, Aquilanti L, Pesaresi S. Morphological and Genomic Differences in the Italian Populations of Onopordum tauricum Willd.-A New Source of Vegetable Rennet. PLANTS (BASEL, SWITZERLAND) 2024; 13:654. [PMID: 38475500 DOI: 10.3390/plants13050654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Onopordum tauricum Willd., a species distributed in Eastern Europe, has been the subject of various research endeavors aimed at assessing its suitability for extracting vegetable rennet for use in the production of local cheeses as a substitute for animal-derived rennet. In Italy, the species has an extremely fragmented and localized distribution in six locations scattered across the central-northern Apennines and some areas of southern Italy. In this study, both the morphology and genetic diversity of the six known Italian populations were investigated to detect putative ecotypes. To this end, 33 morphological traits were considered for morphometric measurements, while genetic analysis was conducted on the entire genome using the ddRAD-Seq method. Both analyses revealed significant differences among the Apennine populations (SOL, COL, and VIS) and those from southern Italy (ROT, PES, and LEC). Specifically, the southern Italian populations appear to deviate significantly in some characteristics from the typical form of the species. Therefore, its attribution to O. tauricum is currently uncertain, and further genetic and morphological analyses are underway to ascertain its systematic placement within the genus Onopordum.
Collapse
Affiliation(s)
- Simona Casavecchia
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Francesco Giannelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Massimo Giovannotti
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Federica Carducci
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giacomo Quattrini
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Lara Lucchetti
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Marco Barucca
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Adriana Canapa
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Maria Assunta Biscotti
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Lucia Aquilanti
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Simone Pesaresi
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
7
|
Mohanty JK, Thakro V, Yadav A, Nayyar H, Dixit GP, Agarwal P, Parida SK, Jha UC. Delineation of genes for a major QTL governing heat stress tolerance in chickpea. PLANT MOLECULAR BIOLOGY 2024; 114:19. [PMID: 38363401 DOI: 10.1007/s11103-024-01421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/08/2023] [Indexed: 02/17/2024]
Abstract
Chickpea (Cicer arietinum) is a cool season grain legume experiencing severe yield loss during heat stress due to the intensifying climate changes and its associated gradual increase of mean temperature. Hence, understanding the genetic architecture regulating heat stress tolerance has emerged as an important trait to be addressed for enhancing yield and productivity of chickpea under heat stress. The present study is intended to identify the major genomic region(s) governing heat stress tolerance in chickpea. For this, an integrated genomics-assisted breeding strategy involving NGS-based high-resolution QTL-seq assay, QTL region-specific association analysis and molecular haplotyping was deployed in a population of 206 mapping individuals and a diversity panel of 217 germplasm accessions of chickpea. This combinatorial strategy delineated a major 156.8 kb QTL genomic region, which was subsequently narrowed-down to a functional candidate gene CaHSFA5 and its natural alleles associated strongly with heat stress tolerance in chickpea. Superior natural alleles and haplotypes delineated from the CaHSFA5 gene have functional significance in regulating heat stress tolerance in chickpea. Histochemical staining, interaction studies along with differential expression profiling of CaHSFA5 and ROS scavenging genes suggest a cross talk between CaHSFA5 with ROS homeostasis pertaining to heat stress tolerance in chickpea. Heterologous gene expression followed by heat stress screening further validated the functional significance of CaHSFA5 for heat stress tolerance. The salient outcomes obtained here can have potential to accelerate multiple translational genomic analysis including marker-assisted breeding and gene editing in order to develop high-yielding heat stress tolerant chickpea varieties.
Collapse
Affiliation(s)
- Jitendra K Mohanty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Virevol Thakro
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Antima Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Girish P Dixit
- Indian Institute of Pulses Research (IIPR), Uttar Pradesh, Kanpur, 208024, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Uttar Pradesh, Kanpur, 208024, India.
| |
Collapse
|
8
|
Singh P, Sundaram KT, Vinukonda VP, Venkateshwarlu C, Paul PJ, Pahi B, Gurjar A, Singh UM, Kalia S, Kumar A, Singh VK, Sinha P. Superior haplotypes of key drought-responsive genes reveal opportunities for the development of climate-resilient rice varieties. Commun Biol 2024; 7:89. [PMID: 38216712 PMCID: PMC10786901 DOI: 10.1038/s42003-024-05769-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Haplotype-based breeding is an emerging and innovative concept that enables the development of designer crop varieties by exploiting and exploring superior alleles/haplotypes among target genes to create new traits in breeding programs. In this regard, whole-genome re-sequencing of 399 genotypes (landraces and breeding lines) from the 3000 rice genomes panel (3K-RG) is mined to identify the superior haplotypes for 95 drought-responsive candidate genes. Candidate gene-based association analysis reveals 69 marker-trait associations (MTAs) in 16 genes for single plant yield (SPY) under drought stress. Haplo-pheno analysis of these 16 genes identifies superior haplotypes for seven genes associated with the higher SPY under drought stress. Our study reveals that the performance of lines possessing superior haplotypes is significantly higher (p ≤ 0.05) as measured by single plant yield (SPY), for the OsGSK1-H4, OsDSR2-H3, OsDIL1-H22, OsDREB1C-H3, ASR3-H88, DSM3-H4 and ZFP182-H4 genes as compared to lines without the superior haplotypes. The validation results indicate that a superior haplotype for the DREB transcription factor (OsDREB1C) is present in all the drought-tolerant rice varieties, while it was notably absent in all susceptible varieties. These lines carrying the superior haplotypes can be used as potential donors in haplotype-based breeding to develop high-yielding drought-tolerant rice varieties.
Collapse
Affiliation(s)
- Preeti Singh
- International Rice Research Institute (IRRI), South-Asia Hub, Hyderabad, India
| | - Krishna T Sundaram
- International Rice Research Institute (IRRI), South-Asia Hub, Hyderabad, India
| | | | | | - Pronob J Paul
- International Rice Research Institute (IRRI), South-Asia Hub, Hyderabad, India
| | - Bandana Pahi
- International Rice Research Institute (IRRI), South-Asia Hub, Hyderabad, India
| | - Anoop Gurjar
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, India
| | - Uma Maheshwar Singh
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, India
| | - Sanjay Kalia
- Department of Biotechnology, CGO Complex, Lodhi Road, New Delhi, India
| | - Arvind Kumar
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, India
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Vikas K Singh
- International Rice Research Institute (IRRI), South-Asia Hub, Hyderabad, India.
| | - Pallavi Sinha
- International Rice Research Institute (IRRI), South-Asia Hub, Hyderabad, India.
| |
Collapse
|
9
|
Dwivedi V, Pal L, Singh S, Singh NP, Parida SK, Chattopadhyay D. The chickpea WIP2 gene underlying a major QTL contributes to lateral root development. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:642-657. [PMID: 37158162 DOI: 10.1093/jxb/erad171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Lateral roots are a major component of root system architecture, and lateral root count (LRC) positively contributes to yield under drought in chickpea. To understand the genetic regulation of LRC, a biparental mapping population derived from two chickpea accessions having contrasting LRCs was genotyped by sequencing, and phenotyped to map four major quantitative trait loci (QTLs) contributing to 13-32% of the LRC trait variation. A single- nucleotide polymorphism tightly linked to the locus contributing to highest trait variation was located on the coding region of a gene (CaWIP2), orthologous to NO TRANSMITTING TRACT/WIP domain protein 2 (NTT/WIP2) gene of Arabidopsis thaliana. A polymorphic simple sequence repeat (SSR) in the CaWIP2 promoter showed differentiation between low versus high LRC parents and mapping individuals, suggesting its utility for marker-assisted selection. CaWIP2 promoter showed strong expression in chickpea apical root meristem and lateral root primordia. Expression of CaWIP2 under its native promoter in the Arabidopsis wip2wip4wip5 mutant rescued its rootless phenotype to produce more lateral roots than the wild-type plants, and led to formation of amyloplasts in the columella. CaWIP2 expression also induced the expression of genes that regulate lateral root emergence. Our study identified a gene-based marker for LRC which will be useful for developing drought-tolerant, high-yielding chickpea varieties.
Collapse
Affiliation(s)
- Vikas Dwivedi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Lalita Pal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shilpi Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nagendra Pratap Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup Kumar Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
10
|
Benitez-Alfonso Y, Soanes BK, Zimba S, Sinanaj B, German L, Sharma V, Bohra A, Kolesnikova A, Dunn JA, Martin AC, Khashi U Rahman M, Saati-Santamaría Z, García-Fraile P, Ferreira EA, Frazão LA, Cowling WA, Siddique KHM, Pandey MK, Farooq M, Varshney RK, Chapman MA, Boesch C, Daszkowska-Golec A, Foyer CH. Enhancing climate change resilience in agricultural crops. Curr Biol 2023; 33:R1246-R1261. [PMID: 38052178 DOI: 10.1016/j.cub.2023.10.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Climate change threatens global food and nutritional security through negative effects on crop growth and agricultural productivity. Many countries have adopted ambitious climate change mitigation and adaptation targets that will exacerbate the problem, as they require significant changes in current agri-food systems. In this review, we provide a roadmap for improved crop production that encompasses the effective transfer of current knowledge into plant breeding and crop management strategies that will underpin sustainable agriculture intensification and climate resilience. We identify the main problem areas and highlight outstanding questions and potential solutions that can be applied to mitigate the impacts of climate change on crop growth and productivity. Although translation of scientific advances into crop production lags far behind current scientific knowledge and technology, we consider that a holistic approach, combining disciplines in collaborative efforts, can drive better connections between research, policy, and the needs of society.
Collapse
Affiliation(s)
| | - Beth K Soanes
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sibongile Zimba
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK; Horticulture Department, Lilongwe University of Agriculture and Natural Resources, P.O. Box 219, Lilongwe, Malawi
| | - Besiana Sinanaj
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Liam German
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Anastasia Kolesnikova
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - Jessica A Dunn
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Institute for Sustainable Food, University of Sheffield, Sheffield S10 2TN, UK
| | - Azahara C Martin
- Institute for Sustainable Agriculture (IAS-CSIC), Córdoba 14004, Spain
| | - Muhammad Khashi U Rahman
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca 37007, Spain; Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor de la Armuña 37185, Spain
| | - Zaki Saati-Santamaría
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca 37007, Spain; Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor de la Armuña 37185, Spain; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
| | - Paula García-Fraile
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca 37007, Spain; Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor de la Armuña 37185, Spain
| | - Evander A Ferreira
- Institute of Agrarian Sciences, Federal University of Minas Gerais, Avenida Universitária 1000, 39404547, Montes Claros, Minas Gerais, Brazil
| | - Leidivan A Frazão
- Institute of Agrarian Sciences, Federal University of Minas Gerais, Avenida Universitária 1000, 39404547, Montes Claros, Minas Gerais, Brazil
| | - Wallace A Cowling
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Muhammad Farooq
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Ni J, You C, Chen Z, Tang D, Wu H, Deng W, Wang X, Yang J, Bao R, Liu Z, Meng P, Rong T, Liu J. Deploying QTL-seq rapid identification and separation of the major QTLs of tassel branch number for fine-mapping in advanced maize populations. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:88. [PMID: 38045561 PMCID: PMC10686902 DOI: 10.1007/s11032-023-01431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
The tassel competes with the ear for nutrients and shields the upper leaves, thereby reducing the yield of grain. The tassel branch number (TBN) is a pivotal determinant of tassel size, wherein the reduced TBN has the potential to enhance the transmission of light and reduce the consumption of nutrients, which should ultimately result in increased yield. Consequently, the TBN has emerged as a vital target trait in contemporary breeding programs that focus on compact maize varieties. In this study, QTL-seq technology and advanced population mapping were used to rapidly identify and dissect the major effects of the TBN on QTL. Advanced mapping populations (BC4F2 and BC4F3) were derived from the inbred lines 18-599 (8-11 TBN) and 3237 (0-1 TBN) through phenotypic recurrent selection. First, 13 genomic regions associated with the TBN were detected using quantitative trait locus (QTL)-seq and were located on chromosomes 2 and 5. Subsequently, validated loci within these regions were identified by QTL-seq. Three QTLs for TBN were identified in the BC4F2 populations by traditional QTL mapping, with each QTL explaining the phenotypic variation of 6.13-18.17%. In addition, for the major QTL (qTBN2-2 and qTBN5-1), residual heterozygous lines (RHLs) were developed from the BC4F2 population. These two major QTLs were verified in the RHLs by QTL mapping, with the phenotypic variation explained (PVE) of 21.57% and 30.75%, respectively. Near-isogenic lines (NILs) of qTBN2-2 and qTBN5-1 were constructed. There were significant differences between the NILs in TBN. These results will enhance our understanding of the genetic basis of TBN and provide a solid foundation for the fine-mapping of TBN. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01431-y.
Collapse
Affiliation(s)
- Jixing Ni
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Chong You
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Zhengjie Chen
- Sichuan Advanced Agricultural & Industrial Institute, China Agriculture University, No.8 Xingyuan Road, Xinjin District, Chengdu, 611430 Sichuan China
| | - Dengguo Tang
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Haimei Wu
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Wujiao Deng
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Xueying Wang
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Jinchang Yang
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Ruifan Bao
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Zhiqin Liu
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Pengxu Meng
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Jian Liu
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| |
Collapse
|
12
|
Malik N, Basu U, Srivastava R, Daware A, Ranjan R, Sharma A, Thakro V, Mohanty JK, Jha UC, Tripathi S, Tyagi AK, Parida SK. Natural alleles of Mediator subunit genes modulate plant height in chickpea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1271-1292. [PMID: 37671896 DOI: 10.1111/tpj.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023]
Abstract
SUMMARYPlant height (PH) is an important plant architectural trait targeted during Green Revolution to enhance crop yields. Identification of genes and natural alleles governing plant height without compromising agronomic performance can fill the lacuna of knowledge connecting ideal plant architecture with maximum achievable yield in chickpea. Through coherent strategy involving genome‐wide association study, QTL/fine mapping, map‐based cloning, molecular haplotyping, and downstream functional genomics, the current study identified two Mediator subunit genes namely, CaMED23 and CaMED5b and their derived natural alleles/haplotypes underlying the major QTLs and trans‐acting eQTLs regulating plant height in chickpea. Differential accumulation of haplotype‐specific transcripts of these two Mediator genes in corresponding haplotype‐introgressed near‐isogenic lines (NILs) correlates negatively with the plant height trait. Quantitative as well as qualitative estimation based on histology, scanning electron microscopy, and histochemical assay unraveled the reduced lengths and cell sizes of internodes along with compromised lignin levels in dwarf/semi‐dwarf chickpea NILs introgressed with superior CaMED23 and CaMED5b gene haplotypes. This observation, supported by global transcriptome profiling‐based diminished expression of various phenylpropanoid pathway genes upstream of lignin biosynthesis in dwarf/semi‐dwarf NILs, essentially links plant height with lignin accumulation. The identified molecular signatures in the Mediator subunit genes can be efficiently utilized to develop desirable dwarf/semi‐dwarf‐type chickpea cultivars without affecting their yield per plant via modulating lignin/phenylpropanoid biosynthesis.
Collapse
Affiliation(s)
- Naveen Malik
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Udita Basu
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rishi Srivastava
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Daware
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rajeev Ranjan
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Akash Sharma
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Virevol Thakro
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Mohanty
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | | | - Akhilesh K Tyagi
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Swarup K Parida
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
13
|
Shen S, Xu S, Wang M, Ma T, Chen N, Wang J, Zheng H, Yang L, Zou D, Xin W, Liu H. BSA-Seq for the Identification of Major Genes for EPN in Rice. Int J Mol Sci 2023; 24:14838. [PMID: 37834285 PMCID: PMC10573429 DOI: 10.3390/ijms241914838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Improving rice yield is one of the most important food issues internationally. It is an undeniable goal of rice breeding, and the effective panicle number (EPN) is a key factor determining rice yield. Increasing the EPN in rice is a major way to increase rice yield. Currently, the main quantitative trait locus (QTL) for EPN in rice is limited, and there is also limited research on the gene for EPN in rice. Therefore, the excavation and analysis of major genes related to EPN in rice is of great significance for molecular breeding and yield improvement. This study used japonica rice varieties Dongfu 114 and Longyang 11 to construct an F5 population consisting of 309 individual plants. Two extreme phenotypic pools were constructed by identifying the EPN of the population, and QTL-seq analysis was performed to obtain three main effective QTL intervals for EPN. This analysis also helped to screen out 34 candidate genes. Then, EPN time expression pattern analysis was performed on these 34 genes to screen out six candidate genes with higher expression levels. Using a 3K database to perform haplotype analysis on these six genes, we selected haplotypes with significant differences in EPN. Finally, five candidate genes related to EPN were obtained.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wei Xin
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.S.); (S.X.); (M.W.); (T.M.); (N.C.); (J.W.); (H.Z.); (L.Y.); (D.Z.)
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.S.); (S.X.); (M.W.); (T.M.); (N.C.); (J.W.); (H.Z.); (L.Y.); (D.Z.)
| |
Collapse
|
14
|
Fan F, Zhu YX, Wu MY, Yin WX, Li GQ, Hahn M, Hamada MS, Luo CX. Mitochondrial Inner Membrane ABC Transporter Bcmdl1 Is Involved in Conidial Germination, Virulence, and Resistance to Anilinopyrimidine Fungicides in Botrytis cinerea. Microbiol Spectr 2023; 11:e0010823. [PMID: 37318357 PMCID: PMC10434148 DOI: 10.1128/spectrum.00108-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 06/16/2023] Open
Abstract
Botrytis cinerea causes gray mold on thousands of plants, leading to huge losses in production. Anilinopyrimidine (AP) fungicides have been applied to control B. cinerea since the 1990s. Although resistance to AP fungicides was detected soon after their application, the mechanism of AP resistance remains to be elucidated. In this study, a sexual cross between resistant and sensitive isolates was performed, and the genomes of parental isolates and progenies were sequenced to identify resistance-related single nucleotide polymorphisms (SNPs). After screening and verification, mutation E407K in the Bcmdl1 gene was identified and confirmed to confer resistance to AP fungicides in B. cinerea. Bcmdl1 was predicted to encode a mitochondrial protein that belonged to a half-type ATP-binding cassette (ABC) transporter. Although Bcmdl1 was a transporter, it did not mediate resistance to multiple fungicides but mediated resistance specifically to AP fungicides. On the other hand, reductions in conidial germination and virulence were observed in Bcmdl1 knockout transformants compared to the parental isolate and complemented transformants, illustrating the biological functions of Bcmdl1. Subcellular localization analysis indicated that Bcmdl1 was localized in mitochondria. Interestingly, the production of ATP was reduced after cyprodinil treatment in Bcmdl1 knockout transformants, suggesting that Bcmdl1 was involved in ATP synthesis. Since Mdl1 could interact with ATP synthase in yeast, we hypothesize that Bcmdl1 forms a complex with ATP synthase, which AP fungicides might target, thereby interfering with the metabolism of energy. IMPORTANCE Gray mold, caused by B. cinerea, causes huge losses in the production of many fruits and vegetables. AP fungicides have been largely adopted to control this disease since the 1990s, and the development of resistance to AP fungicides initiates new problems for disease control. Due to the unknown mode of action, information on the mechanism of AP resistance is also limited. Recently, mutations in mitochondrial genes were reported to be related to AP resistance. However, the mitochondrial process of these genes remains to be elucidated. In this study, we identified several AP resistance-related mutations by quantitative trait locus sequencing (QTL-seq) and confirmed that mutation E407K in Bcmdl1 conferred AP resistance. We further characterized the expression patterns, biological functions, subcellular localization, and mitochondrial processes of the Bcmdl1 gene. This study deepens our understanding of the mechanism of resistance to and mode of action of AP fungicides.
Collapse
Affiliation(s)
- Fei Fan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong-Xu Zhu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min-Yi Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei-Xiao Yin
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guo-Qing Li
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Matthias Hahn
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Mohamed S. Hamada
- Pesticides Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Chao-Xi Luo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Verma N, Garcha KS, Sharma A, Sharma M, Bhatia D, Khosa JS, Kaur B, Chuuneja P, Dhatt AS. Identification of a Major-Effect Quantitative Trait Loci Associated with Begomovirus Resistance in Cucurbita moschata. PHYTOPATHOLOGY 2023:PHYTO07220240FI. [PMID: 37352896 DOI: 10.1094/phyto-07-22-0240-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
Begomoviruses, viz. squash leaf curl China virus and tomato leaf curl New Delhi virus causative diseases are major concerns of quantitative and qualitative losses in pumpkin (Cucurbita moschata) worldwide. Punjab Agricultural University (PAU) in India has identified a resistant source (PVR-1343) against mixed infection (MI-Sq/To) of these begomoviruses. Introgression of resistance in diverse genetic backgrounds requires the identification of quantitative trait loci (QTLs) associated with MI-Sq/To resistance. Phenotyping of 229 F2:3 progenies derived from the PVR-1343 × P-135 cross revealed digenic recessive inheritance against MI-Sq/To resistance in PVR-1343. To identify the genomic region, resistant and susceptible bulks were subjected to whole-genome resequencing along with their parents. The whole-genome resequence analysis of parents and bulks using QTLseq/QTLseqr approaches identified an overlapping 1.52 Mb region on chromosome 7 (qMI-Sq/To7.1), while chromosomal region spanning 0.87 Mb on chromosome17 (qMI-Sq/To17.1) was additionally identified by QTLseqr. However, the highest peak value on chromosome 7 with three algorithms {G', ∆(SNP-index) and -log10 (P value)} highlighted the major contribution of qMI-Sq/To7.1 in MI-Sq/To resistance. Nine polymorphic SNPs identified within the highly significant qMI-Sq/To7.1 region were converted into KASP markers. KASP genotyping of F2 individuals narrowed down the qMI-Sq/To7.1 interval to 103 kb region flanked by two markers, Cmo3914729 and Cmo4018182, which contained 16 annotated genes and accounted for 59.84% of phenotypic variation. The Cmo4018182 KASP marker accurately predicted disease reaction in 91% of diverse Cucurbita genotypes and showed nonsynonym substitutions in the coding region of putative candidate SYNTAXIN-121 gene. These findings pave the way for marker-assisted breeding and elucidating the underlying mechanism of begomovirus resistance in C. moschata.
Collapse
Affiliation(s)
- Neha Verma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Karmvir Singh Garcha
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Abhishek Sharma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Madhu Sharma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jiffinvir Singh Khosa
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Barinder Kaur
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Parveen Chuuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Ajmer Singh Dhatt
- Directorate of Research, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
16
|
Basu U, Parida SK. The developmental dynamics in cool season legumes with focus on chickpea. PLANT MOLECULAR BIOLOGY 2023; 111:473-491. [PMID: 37016106 DOI: 10.1007/s11103-023-01340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/09/2023] [Indexed: 06/19/2023]
Abstract
Chickpea is one of the most widely consumed grain legume world-wide. Advances in next-generation sequencing and genomics tools have led to genetic dissection and identification of potential candidate genes regulating agronomic traits in chickpea. However, the developmental particularities and its potential in reforming the yield and nutritional value remain largely unexplored. Studies in crops such as rice, maize, tomato and pea have highlighted the contribution of key regulator of developmental events in yield related traits. A comprehensive knowledge on the development aspects of a crop can pave way for new vistas to explore. Pea and Medicago are the close relatives of genus Cicer and the basic developmental events in these legumes are similar. However, there are some distinct developmental features in chickpea which hold potential for future crop improvement endeavours. The global chickpea germplasm encompasses wide range of diversities in terms of morphology at both vegetative and reproductive stages. There is an immediate need for understanding the genetic and molecular basis of this diversity and utilizing them for the yield contributing trait improvement. The review discusses some of the key developmental events which have potential in yield enhancement and the lessons which can be learnt from model legumes in this regard.
Collapse
Affiliation(s)
- Udita Basu
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, P.O. Box: 10531, New Delhi, 110067, India
| | - Swarup K Parida
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, P.O. Box: 10531, New Delhi, 110067, India.
| |
Collapse
|
17
|
Thakro V, Malik N, Basu U, Srivastava R, Narnoliya L, Daware A, Varshney N, Mohanty JK, Bajaj D, Dwivedi V, Tripathi S, Jha UC, Dixit GP, Singh AK, Tyagi AK, Upadhyaya HD, Parida SK. A superior gene allele involved in abscisic acid signaling enhances drought tolerance and yield in chickpea. PLANT PHYSIOLOGY 2023; 191:1884-1912. [PMID: 36477336 PMCID: PMC10022645 DOI: 10.1093/plphys/kiac550] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/15/2022] [Indexed: 06/17/2023]
Abstract
Identifying potential molecular tags for drought tolerance is essential for achieving higher crop productivity under drought stress. We employed an integrated genomics-assisted breeding and functional genomics strategy involving association mapping, fine mapping, map-based cloning, molecular haplotyping and transcript profiling in the introgression lines (ILs)- and near isogenic lines (NILs)-based association panel and mapping population of chickpea (Cicer arietinum). This combinatorial approach delineated a bHLH (basic helix-loop-helix) transcription factor, CabHLH10 (Cicer arietinum bHLH10) underlying a major QTL, along with its derived natural alleles/haplotypes governing yield traits under drought stress in chickpea. CabHLH10 binds to a cis-regulatory G-box promoter element to modulate the expression of RD22 (responsive to desiccation 22), a drought/abscisic acid (ABA)-responsive gene (via a trans-expression QTL), and two strong yield-enhancement photosynthetic efficiency (PE) genes. This, in turn, upregulates other downstream drought-responsive and ABA signaling genes, as well as yield-enhancing PE genes, thus increasing plant adaptation to drought with reduced yield penalty. We showed that a superior allele of CabHLH10 introgressed into the NILs improved root and shoot biomass and PE, thereby enhancing yield and productivity during drought without compromising agronomic performance. Furthermore, overexpression of CabHLH10 in chickpea and Arabidopsis (Arabidopsis thaliana) conferred enhanced drought tolerance by improving root and shoot agro-morphological traits. These findings facilitate translational genomics for crop improvement and the development of genetically tailored, climate-resilient, high-yielding chickpea cultivars.
Collapse
Affiliation(s)
- Virevol Thakro
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Naveen Malik
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Udita Basu
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rishi Srivastava
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Laxmi Narnoliya
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anurag Daware
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nidhi Varshney
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitendra K Mohanty
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepak Bajaj
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vikas Dwivedi
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Uday Chand Jha
- Crop Improvement Division, Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
| | - Girish Prasad Dixit
- Crop Improvement Division, Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
| | - Ashok K Singh
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Akhilesh K Tyagi
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
| | | | | |
Collapse
|
18
|
Pannak S, Wanchana S, Aesomnuk W, Pitaloka MK, Jamboonsri W, Siangliw M, Meyers BC, Toojinda T, Arikit S. Functional Bph14 from Rathu Heenati promotes resistance to BPH at the early seedling stage of rice (Oryza sativa L.) as revealed by QTL-seq. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:25. [PMID: 36781491 DOI: 10.1007/s00122-023-04318-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
A QTL associated with BPH resistance at the early seedling stage was identified on chromosome 3. Functional Bph14 in Rathu Heenati was associated with BPH resistance at the early seedling stage. Brown planthopper (BPH; Nilaparvata lugens Stål) is considered the most important rice pest in many Asian countries. Several BPH resistance genes have previously been identified. However, there are few reports of genes specific for BPH resistance at the early seedling stage, a crucial stage for direct-seeding cultivation. In this study, we performed a QTL-seq analysis using two bulks (20 F2 lines in each bulk) of the F2 population (n = 300) derived from a cross of Rathu Heenati (RH) × HCS-1 to identify QTL/genes associated with BPH resistance at the early seedling stage. An important QTL was identified on chromosome 3 and Bph14 was identified as a potential candidate gene based on the differences in gene expression and sequence variation when compared with the two parents. All plants in the resistant bulks possessed the functional Bph14 from RH and all plants in the susceptible bulk and HCS-1 contained a large deletion (2703 bp) in Bph14. The functional Bph14 gene of RH appears to be important for BPH resistance at the early seedling stage of rice and could be used in conjunction with other BPH resistance genes in rice breeding programs that confer resistance to BPH at the early and later growth stages.
Collapse
Affiliation(s)
- Sarinthip Pannak
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, 10900, Thailand
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Wanchana Aesomnuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Mutiara K Pitaloka
- Rice Science Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Watchareewan Jamboonsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Meechai Siangliw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Siwaret Arikit
- Rice Science Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|
19
|
Wang Y, Zhao J, Chen Q, Zheng K, Deng X, Gao W, Pei W, Geng S, Deng Y, Li C, Chen Q, Qu Y. Quantitative trait locus mapping and identification of candidate genes for resistance to Verticillium wilt in four recombinant inbred line populations of Gossypium hirsutum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111562. [PMID: 36509244 DOI: 10.1016/j.plantsci.2022.111562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 05/16/2023]
Abstract
Improving resistance to Verticillium wilt is of great significance for achieving high and stable yields of Upland cotton (Gossypium hirsutum). To deeply understand the genetic basis of cotton resistance to Verticillium wilt, Verticillium wilt-resistant Upland Lumianyan 28 and four Verticillium wilt-susceptible Acala cotton cultivars were used to create four recombinant inbred line (RIL) populations of 469 families through nested hybridization. Phenotypic data collected in five stressful environments were used to select resistant and sensitive lines and create a mixed pool of extreme phenotypes for BSA-seq. A total of 8 QTLs associated with Verticillium wilt resistance were identified on 4 chromosomes, of which qVW-A12-5 was detected simultaneously in the RIL populations and in one of the RIL populations and was identified for the first time. According to the sequence comparison and transcriptome analysis of candidate genes in the QTL interval between parents and pools, 4 genes were identified in the qVW-A12-5 interval. qRT-PCR of parental and phenotypically extreme lines revealed that Gh_CPR30 was induced by and may be a candidate gene for resistance to Verticillium wilt in G. hirsutum. Furthermore, VIGS technology revealed that the disease severity index (DSI) of the Gh_CPR30-silenced plants was significantly higher than that of the control. These results indicate that the Gh_CPR30 gene plays an important role in the resistance of G. hirsutum to Verticillium wilt, and the study provides a molecular basis for analyzing the molecular mechanism underlying G. hirsutum resistance to Verticillium wilt.
Collapse
Affiliation(s)
- Yuxiang Wang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Jieyin Zhao
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Qin Chen
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Kai Zheng
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Xiaojuan Deng
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Wenju Gao
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shiwei Geng
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Yahui Deng
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Chunping Li
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830052, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Yanying Qu
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China.
| |
Collapse
|
20
|
Zhang C, Xie W, Fu H, Chen Y, Chen H, Cai T, Yang Q, Zhuang Y, Zhong X, Chen K, Gao M, Liu F, Wan Y, Pandey MK, Varshney RK, Zhuang W. Whole genome resequencing identifies candidate genes and allelic diagnostic markers for resistance to Ralstonia solanacearum infection in cultivated peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2023; 13:1048168. [PMID: 36684803 PMCID: PMC9845939 DOI: 10.3389/fpls.2022.1048168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Bacterial wilt disease (BWD), caused by Ralstonia solanacearum is a major challenge for peanut production in China and significantly affects global peanut field productivity. It is imperative to identify genetic loci and putative genes controlling resistance to R. solanacearum (RRS). Therefore, a sequencing-based trait mapping approach termed "QTL-seq" was applied to a recombination inbred line population of 581 individuals from the cross of Yueyou 92 (resistant) and Xinhuixiaoli (susceptible). A total of 381,642 homozygous single nucleotide polymorphisms (SNPs) and 98,918 InDels were identified through whole genome resequencing of resistant and susceptible parents for RRS. Using QTL-seq analysis, a candidate genomic region comprising of 7.2 Mb (1.8-9.0 Mb) was identified on chromosome 12 which was found to be significantly associated with RRS based on combined Euclidean Distance (ED) and SNP-index methods. This candidate genomic region had 180 nonsynonymous SNPs and 14 InDels that affected 75 and 11 putative candidate genes, respectively. Finally, eight nucleotide binding site leucine rich repeat (NBS-LRR) putative resistant genes were identified as the important candidate genes with high confidence. Two diagnostic SNP markers were validated and revealed high phenotypic variation in the different resistant and susceptible RIL lines. These findings advocate the expediency of the QTL-seq approach for precise and rapid identification of candidate genomic regions, and the development of diagnostic markers that are applicable in breeding disease-resistant peanut varieties.
Collapse
Affiliation(s)
- Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Wenping Xie
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiwen Fu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuting Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tiecheng Cai
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiang Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhui Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Zhong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kun Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meijia Gao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fengzhen Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yongshan Wan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Manish K. Pandey
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- Murdoch’s Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Institute of Oil Crops Research, Research Center for Genetics and Systems Biology of Leguminous Oil Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
21
|
BSR and Full-Length Transcriptome Approaches Identified Candidate Genes for High Seed Ratio in Camellia vietnamensis. Curr Issues Mol Biol 2022; 45:311-326. [PMID: 36661508 PMCID: PMC9857833 DOI: 10.3390/cimb45010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
(1) Background: C. vietnamensis is very suitable for growth in the low hilly areas of southern subtropical regions. Under appropriate conditions, the oil yield of C. vietnamensis can reach 1125 kg/ha (the existing varieties can reach 750 kg/ha). Moreover, the fruit of C. vietnamensis is large and the pericarp is thick (>5 cm). Therefore, a high seed ratio has become the main target economic trait for the breeding of C. vietnamensis. (2) Methods: A half-sibling population of C. vietnamensis plants with a combination of high and low seed ratios was constructed by crossing a C. vietnamensis female parent. Bulked segregant RNA analysis and full-length transcriptome sequencing were performed to determine the molecular mechanisms underlying a high seed ratio. (3) Results: Seed ratio is a complex quantitative trait with a normal distribution, which is significantly associated with four other traits of fruit (seed weight, seed number, fruit diameter, and pericarp thickness). Two candidate regions related to high seed ratio (HSR) were predicted. One spanned 140.8−148.4 Mb of chromosome 2 and was associated with 97 seed-yield-related candidate genes ranging in length from 278 to 16,628 bp. The other spanned 35.3−37.3 Mb on chromosome 15 and was associated with 38 genes ranging in length from 221 to 16,928 bp. Using the full-length transcript as a template, a total of 115 candidate transcripts were obtained, and 78 transcripts were predicted to be functionally annotated. The DEGs from two set pairs of cDNA sequencing bulks were enriched to cytochrome p450 CYP76F14 (KOG0156; GO:0055114, HSR4, HSR7), the gibberellin phytohormone pathway (GO:0016787, HSR5), the calcium signaling pathway (GO:0005509, HSR6), the polyubiquitin-PPAR signaling pathway (GO:0005515, HSR2, HSR3), and several main transcription factors (bZIP transcription factor, HSR1) in C. vietnamensis.
Collapse
|
22
|
Devi S, Sharma PK, Behera TK, Jaiswal S, Boopalakrishnan G, Kumari K, Mandal NK, Iquebal MA, Gopala Krishnan S, Bharti, Ghosal C, Munshi AD, Dey SS. Identification of a major QTL, Parth6.1 associated with parthenocarpic fruit development in slicing cucumber genotype, Pusa Parthenocarpic Cucumber-6. FRONTIERS IN PLANT SCIENCE 2022; 13:1064556. [PMID: 36589066 PMCID: PMC9795203 DOI: 10.3389/fpls.2022.1064556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/17/2022] [Indexed: 10/15/2023]
Abstract
Parthenocarpy is an extremely important trait that revolutionized the worldwide cultivation of cucumber under protected conditions. Pusa Parthenocarpic Cucumber-6 (PPC-6) is one of the important commercially cultivated varieties under protected conditions in India. Understanding the genetics of parthenocarpy, molecular mapping and the development of molecular markers closely associated with the trait will facilitate the introgression of parthenocarpic traits into non-conventional germplasm and elite varieties. The F1, F2 and back-crosses progenies with a non-parthenocarpic genotype, Pusa Uday indicated a single incomplete dominant gene controlling parthenocarpy in PPC-6. QTL-seq comprising of the early parthenocarpy and non-parthenocarpic bulks along with the parental lines identified two major genomic regions, one each in chromosome 3 and chromosome 6 spanning over a region of 2.7 Mb and 7.8 Mb, respectively. Conventional mapping using F2:3 population also identified two QTLs, Parth6.1 and Parth6.2 in chromosome 6 which indicated the presence of a major effect QTL in chromosome 6 determining parthenocarpy in PPC-6. The flanking markers, SSR01148 and SSR 01012 for Parth6.1 locus and SSR10476 and SSR 19174 for Parth6.2 locus were identified and can be used for introgression of parthenocarpy through the marker-assisted back-crossing programme. Functional annotation of the QTL-region identified two major genes, Csa_6G396640 and Csa_6G405890 designated as probable indole-3-pyruvate monooxygenase YUCCA11 and Auxin response factor 16, respectively associated with auxin biosynthesis as potential candidate genes. Csa_6G396640 showed only one insertion at position 2179 in the non-parthenocarpic parent. In the case of Csa_6G405890, more variations were observed between the two parents in the form of SNPs and InDels. The study provides insight about genomic regions, closely associated markers and possible candidate genes associated with parthenocarpy in PPC-6 which will be instrumental for functional genomics study and better understanding of parthenocarpy in cucumber.
Collapse
Affiliation(s)
- Shilpa Devi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Parva Kumar Sharma
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Tusar Kanti Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - G. Boopalakrishnan
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Khushboo Kumari
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neha Kumari Mandal
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - S. Gopala Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bharti
- Division of Sample Survey, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Chandrika Ghosal
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anilabha Das Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shyam Sundar Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
23
|
Chen C, Hao W, Wu J, Si H, Xia X, Ma C. Fine Mapping of Stripe-Rust-Resistance Gene YrJ22 in Common Wheat by BSR-Seq and MutMap-Based Sequencing. PLANTS (BASEL, SWITZERLAND) 2022; 11:3244. [PMID: 36501284 PMCID: PMC9740260 DOI: 10.3390/plants11233244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Identification and accurate mapping of new resistance genes are essential for gene pyramiding in wheat breeding. The YrJ22 gene is a dominant stripe-rust-resistance gene located at the distal end of chromosome 2AL, which was identified in a leading Chinese-wheat variety, Jimai 22, showing high resistance to CYR32, a prevalent race of Puccinia striiformis tritici (Pst) in China. In the current study, 15 F1 and 2273 F2 plants derived from the cross of Jimai 22/Avocet S were used for the fine-mapping of YrJ22. The RNA-Seq of resistant and susceptible bulks of F2 plants (designated BSR-Seq) identified 10 single-nucleotide polymorphisms (SNP) in a 12.09 Mb physical interval on chromosome 2AL. A total of 1022 EMS-induced M3 lines of Jimai 22 were screened, to identify susceptible mutants for MutMap analysis. Four CAPS markers were developed from SNPs identified using BSR-Seq and MutMap. A linkage map for YrJ22 was constructed with 11 CAPS/STS and three SSR markers. YrJ22 was located at a 0.9 cM genetic interval flanked by markers H736 and H400, corresponding to a 340.46 kb physical region (768.7-769.0 Mb), including 13 high-confidence genes based on the Chinese Spring reference genome. TraesCS2A01G573200 is a potential candidate-gene, according to linkage and quantitative real-time PCR (qPCR) analyses. The CAPS marker H732 designed from an SNP in TraesCS2A01G573200 co-segregated with YrJ22. These results provide a useful stripe-rust-resistance gene and molecular markers for marker-assisted selection in wheat breeding and for further cloning of the gene.
Collapse
Affiliation(s)
- Can Chen
- Laboratory of Wheat Breeding, College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei 230036, China
| | - Weihao Hao
- Laboratory of Wheat Breeding, College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei 230036, China
| | - Jingchun Wu
- Laboratory of Wheat Breeding, College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- National United Engineering Laboratory for Crop Stress Resistance Breeding, Hefei 230036, China
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| | - Hongqi Si
- Laboratory of Wheat Breeding, College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei 230036, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| | - Chuanxi Ma
- Laboratory of Wheat Breeding, College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei 230036, China
- National United Engineering Laboratory for Crop Stress Resistance Breeding, Hefei 230036, China
- Anhui Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
24
|
Asati R, Tripathi MK, Tiwari S, Yadav RK, Tripathi N. Molecular Breeding and Drought Tolerance in Chickpea. Life (Basel) 2022; 12:1846. [PMID: 36430981 PMCID: PMC9698494 DOI: 10.3390/life12111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cicer arietinum L. is the third greatest widely planted imperative pulse crop worldwide, and it belongs to the Leguminosae family. Drought is the utmost common abiotic factor on plants, distressing their water status and limiting their growth and development. Chickpea genotypes have the natural ability to fight drought stress using certain strategies viz., escape, avoidance and tolerance. Assorted breeding methods, including hybridization, mutation, and marker-aided breeding, genome sequencing along with omics approaches, could be used to improve the chickpea germplasm lines(s) against drought stress. Root features, for instance depth and root biomass, have been recognized as the greatest beneficial morphological factors for managing terminal drought tolerance in the chickpea. Marker-aided selection, for example, is a genomics-assisted breeding (GAB) strategy that can considerably increase crop breeding accuracy and competence. These breeding technologies, notably marker-assisted breeding, omics, and plant physiology knowledge, underlined the importance of chickpea breeding and can be used in future crop improvement programmes to generate drought-tolerant cultivars(s).
Collapse
Affiliation(s)
- Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India
| |
Collapse
|
25
|
An integrated transcriptome mapping the regulatory network of coding and long non-coding RNAs provides a genomics resource in chickpea. Commun Biol 2022; 5:1106. [PMID: 36261617 PMCID: PMC9581958 DOI: 10.1038/s42003-022-04083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
Large-scale transcriptome analysis can provide a systems-level understanding of biological processes. To accelerate functional genomic studies in chickpea, we perform a comprehensive transcriptome analysis to generate full-length transcriptome and expression atlas of protein-coding genes (PCGs) and long non-coding RNAs (lncRNAs) from 32 different tissues/organs via deep sequencing. The high-depth RNA-seq dataset reveal expression dynamics and tissue-specificity along with associated biological functions of PCGs and lncRNAs during development. The coexpression network analysis reveal modules associated with a particular tissue or a set of related tissues. The components of transcriptional regulatory networks (TRNs), including transcription factors, their cognate cis-regulatory motifs, and target PCGs/lncRNAs that determine developmental programs of different tissues/organs, are identified. Several candidate tissue-specific and abiotic stress-responsive transcripts associated with quantitative trait loci that determine important agronomic traits are also identified. These results provide an important resource to advance functional/translational genomic and genetic studies during chickpea development and environmental conditions. A full-length transcriptome and expression atlas of protein-coding genes and long non-coding RNAs is generated in chickpea. Components of transcriptional regulatory networks and candidate tissue-specific transcripts associated with quantitative trait loci are identified.
Collapse
|
26
|
Lee S, Jang G, Choi Y, Park G, Park S, Kwon G, Je B, Park Y. Identification of Candidate Genes for Rind Color and Bloom Formation in Watermelon Fruits Based on a Quantitative Trait Locus-Seq. PLANTS (BASEL, SWITZERLAND) 2022; 11:2739. [PMID: 36297763 PMCID: PMC9611755 DOI: 10.3390/plants11202739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Watermelon fruit rind color (RC) and bloom formation (BF) affect product value and consumer preference. However, information on the candidate gene(s) for additional loci involved in dark green (DG) RC and the genetic control of BF and its major chemical components is lacking. Therefore, this study aimed to identify loci controlling RC and BF using QTL-seq of the F2 population derived by crossing 'FD061129' with light-green rind and bloom and 'SIT55616RN' with DG rind and bloomless. Phenotypic evaluation of the F1 and 219 F2 plants indicated the genetic control of two complementary dominant loci, G1 and G2, for DG and a dominant locus, Bf, for BF. QTL-seq identified a genomic region on Chr.6 for G1, Chr.8 for G2, and Chr.1 for Bf. G1 and G2 helped determine RC with possible environmental effects. Chlorophyll a-b binding protein gene-based CAPS (RC-m5) at G1 matched the highest with the RC phenotype. In the 1.4 cM Bf map interval, two additional gene-based CAPS markers were designed, and the CAPS for a nonsynonymous SNP in Cla97C01G020050, encoding a CSC1-like protein, cosegregated with the BF trait in 219 F2 plants. Bloom powder showed a high Ca2+ concentration (16,358 mg·kg-1), indicating that the CSC1-like protein gene is possibly responsible for BF. Our findings provide valuable information for marker-assisted selection for RC and BF and insights into the functional characterization of genes governing these watermelon-fruit-related traits.
Collapse
Affiliation(s)
- Siyoung Lee
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Korea
| | - Gaeun Jang
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Korea
| | - Yunseo Choi
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Korea
| | - Girim Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Korea
| | - Seoyeon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Korea
| | | | - Byoungil Je
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Korea
| | - Younghoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Korea
| |
Collapse
|
27
|
Khemka N, Rajkumar MS, Garg R, Jain M. Genome-wide analysis suggests the potential role of lncRNAs during seed development and seed size/weight determination in chickpea. PLANTA 2022; 256:79. [PMID: 36094579 DOI: 10.1007/s00425-022-03986-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The integrated transcriptome data analyses suggested the plausible roles of lncRNAs during seed development in chickpea. The candidate lncRNAs associated with QTLs and those involved in miRNA-mediated seed size/weight determination in chickpea have been identified. Long non-coding RNAs (lncRNAs) are important regulators of various biological processes. Here, we identified lncRNAs at seven successive stages of seed development in small-seeded and large-seeded chickpea cultivars. In total, 4751 lncRNAs implicated in diverse biological processes were identified. Most of lncRNAs were conserved between the two cultivars, whereas only a few of them were conserved in other plants, suggesting their species-specificity. A large number of lncRNAs differentially expressed between the two chickpea cultivars associated with seed development-related processes were identified. The lncRNAs acting as precursors of miRNAs and those mimicking target protein-coding genes of miRNAs involved in seed size/weight determination, including HAIKU1, BIG SEEDS1, and SHB1, were also revealed. Further, lncRNAs located within seed size/weight associated quantitative trait loci were also detected. Overall, we present a comprehensive resource and identified candidate lncRNAs that may play important roles during seed development and seed size/weight determination in chickpea.
Collapse
Affiliation(s)
- Niraj Khemka
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohan Singh Rajkumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
28
|
Chen Q, Qiu Y, Yuan Y, Wang K, Wang H. Biocontrol activity and action mechanism of Bacillus velezensis strain SDTB038 against Fusarium crown and root rot of tomato. Front Microbiol 2022; 13:994716. [PMID: 36118232 PMCID: PMC9479544 DOI: 10.3389/fmicb.2022.994716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium crown and root rot of tomato is a soilborne diseases that has brought serious harm and economic losses to tomato production in facilities in recent years. The disease has been reported in more than 30 countries worldwide, but there are few reports on its biological control. A Bacillus velezensis strain SDTB038 with biocontrol effects was isolated and identified in a previous study and is considered one of the most important PGPRs. Seven secondary metabolite biosynthesis gene clusters were found in strain SDTB038 by whole genome sequencing, explaining its biocontrol effects. Results indicated that different concentrations of SDTB038 fermentation broth inhibited the mycelial growth of Fusarium crown and root rot of tomato. Strain SDTB038 could generate indole acetic acid and promote healthy growth of tomatoes, while the effect of 108 CFU/ml SDTB038 concentration on promoting tomato growth was the most obvious. B. velezensis SDTB038 significantly reduced the accumulation of ROS in tomato plants, induced the up-regulation of antifreeze genes, and promoted the rapid recovery of tomato plants at low temperatures in a pot experiment. At the same time, SDTB038 had good control effect on Fusarium crown and root rot of tomato, and 108 CFU/ml SDTB038 fermentation broth had the best control effect, which was 42.98%. In summary, the strain B. velezensis SDTB038 may be a promising bacterial agent for biological control of Fusarium crown and root rot of tomato, and an important source of potential antimicrobial compounds.
Collapse
|
29
|
Klymiuk V, Chawla HS, Wiebe K, Ens J, Fatiukha A, Govta L, Fahima T, Pozniak CJ. Discovery of stripe rust resistance with incomplete dominance in wild emmer wheat using bulked segregant analysis sequencing. Commun Biol 2022; 5:826. [PMID: 35978056 PMCID: PMC9386016 DOI: 10.1038/s42003-022-03773-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/26/2022] [Indexed: 01/06/2023] Open
Abstract
Durable crop disease resistance is an essential component of global food security. Continuous pathogen evolution leads to a breakdown of resistance and there is a pressing need to characterize new resistance genes for use in plant breeding. Here we identified an accession of wild emmer wheat (Triticum turgidum ssp. dicoccoides), PI 487260, that is highly resistant to multiple stripe rust isolates. Genetic analysis revealed resistance was conferred by a single, incompletely dominant gene designated as Yr84. Through bulked segregant analysis sequencing (BSA-Seq) we identified a 52.7 Mb resistance-associated interval on chromosome 1BS. Detected variants were used to design genetic markers for recombinant screening, further refining the interval of Yr84 to a 2.3-3.3 Mb in tetraploid wheat genomes. This interval contains 34 candidate genes encoding for protein domains involved in disease resistance responses. Furthermore, KASP markers closely-linked to Yr84 were developed to facilitate marker-assisted selection for rust resistance breeding.
Collapse
Affiliation(s)
- Valentyna Klymiuk
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Harmeet Singh Chawla
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Krystalee Wiebe
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Jennifer Ens
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Andrii Fatiukha
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Liubov Govta
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
| | - Curtis J Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| |
Collapse
|
30
|
Wang Y, Li Y, Wu X, Wu X, Feng Z, Wang J, Wang B, Lu Z, Li G. Elucidation of the Flavor Aspects and Flavor-Associated Genomic Regions in Bottle Gourd ( Lagenaria siceraria) by Metabolomic Analysis and QTL-seq. Foods 2022; 11:foods11162450. [PMID: 36010450 PMCID: PMC9407550 DOI: 10.3390/foods11162450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
Bottle gourd (Lagenaria siceraria) is a commercially important cucurbitaceous vegetable with health-promoting properties whose collections and cultivars differ considerably in their flavor aspects. However, the metabolomic profile related to flavor has not yet been elucidated. In the present study, a comprehensive metabolite analysis revealed the metabolite profile of the strong-flavor collection “J120” and weak-flavor collection “G32”. The major differentially expressed metabolites included carboxylic acids, their derivatives, and organooxygen compounds, which are involved in amino acid biosynthesis and metabolism. QTL-seq was used to identify candidate genomic regions controlling flavor in a MAGIC population comprising 377 elite lines. Three significant genomic regions were identified, and candidate genes likely associated with flavor were screened. Our study provides useful information for understanding the metabolic causes of flavor variation among bottle gourd collections and cultivars. Furthermore, the identified candidate genomic regions may facilitate rational breeding programs to improve bottle gourd quality.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanwei Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaohua Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinyi Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zishan Feng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Baogen Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhongfu Lu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guojing Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: ; Tel.: +86-0571-86403050
| |
Collapse
|
31
|
Kaur B, Garcha KS, Bhatia D, Khosa JS, Sharma M, Mittal A, Verma N, Dhatt AS. Identification of single major QTL and candidate gene(s) governing hull-less seed trait in pumpkin. FRONTIERS IN PLANT SCIENCE 2022; 13:948106. [PMID: 36035714 PMCID: PMC9406289 DOI: 10.3389/fpls.2022.948106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/12/2022] [Indexed: 06/01/2023]
Abstract
The hull-less pumpkin (Cucurbita pepo) seed does not require de-hulling before use for human consumption, as a result highly preferred by the oil, nut, and baking industries. In hull-less seeds, a single recessive gene is responsible for the absence of outer thick seed coat layers; however, the genomic region and gene(s) controlling the trait are unclear to date. In this study, four crosses attempted to derive F2 and backcross populations confirmed the single recessive gene inheritance of hull-less seed trait in populations adapted to the sub-tropical climate. The candidate genomic region for hull-less seed trait was identified through the BSA-QTLseq approach using bulks of F2:3 progenies from a cross of HP111 (hulled) and HLP36 (hull-less). A novel genomic region on chromosome 12 ranging from 1.80 to 3.86 Mb was associated with the hull-less seed trait. The re-sequencing data identified a total of 396 SNPs within this region and eight were successfully converted into polymorphic KASP assays. The genotyping of segregating F2 (n = 160) with polymorphic KASP assays resulted in a 40.3 cM partial linkage map and identified Cp_3430407 (10 cM) and Cp_3498687 (16.1 cM) as flanking markers for hull-less locus (Cphl-1). These flanking markers correspond to the 68.28 kb region in the reference genome, and the marker, Cp_3430407 successfully predicted the genotype in 93.33% of the C. pepo hull-less germplasm lines, thus can be used for marker-assisted selection in parents polymorphic for the hull-less seed trait. The Cphl-1-linked genomic region (2.06 Mb) encompasses a total of 182 genes, including secondary cell wall and lignin biosynthesis-related transcriptional factors viz., "NAC" (Cp4.1LG12g04350) and "MYB" (Cp4.1LG12g03120). These genes were differentially expressed in the seeds of hulled and hull-less genotypes, and therefore could be the potential candidate genes governing the hull-less seed trait in pumpkin.
Collapse
Affiliation(s)
- Barinder Kaur
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Karmvir Singh Garcha
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jiffinvir Singh Khosa
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Madhu Sharma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Amandeep Mittal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Neha Verma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Ajmer Singh Dhatt
- Directorate of Research, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
32
|
de la Fuente Cantó C, Vigouroux Y. Evaluation of nine statistics to identify QTLs in bulk segregant analysis using next generation sequencing approaches. BMC Genomics 2022; 23:490. [PMID: 35794552 PMCID: PMC9258084 DOI: 10.1186/s12864-022-08718-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Background Bulk segregant analysis (BSA) combined with next generation sequencing is a powerful tool to identify quantitative trait loci (QTL). The impact of the size of the study population and the percentage of extreme genotypes analysed have already been assessed. But a good comparison of statistical approaches designed to identify QTL regions using next generation sequencing (NGS) technologies for BSA is still lacking. Results We developed an R code to simulate QTLs in bulks of F2 contrasted lines. We simulated a range of recombination rates based on estimations using different crop species. The simulations were used to benchmark the ability of statistical methods identify the exact location of true QTLs. A single QTL led to a shift in allele frequency across a large fraction of the chromosome for plant species with low recombination rate. The smoothed version of all statistics performed best notably the smoothed Euclidean distance-based statistics was always found to be more accurate in identifying the location of QTLs. We propose a simulation approach to build confidence interval statistics for the detection of QTLs. Conclusion We highlight the statistical methods best suited for BSA studies using NGS technologies in crops even when recombination rate is low. We also provide simulation codes to build confidence intervals and to assess the impact of recombination for application to other studies. This computational study will help select NGS-based BSA statistics that are useful to the broad scientific community. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08718-y.
Collapse
|
33
|
Vazquez DV, Pereira da Costa JH, Godoy FNI, Cambiaso V, Rodríguez GR. Genetic basis of the lobedness degree in tomato fruit morphology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111258. [PMID: 35487666 DOI: 10.1016/j.plantsci.2022.111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Fruit shape is a key trait in tomato (Solanum lycopersicum L.). Since most studies focused on proximo-distal fruit morphology, we hypothesized that unknown QTLs for medio-lateral direction ones could be found analysing segregating populations where major shape genes are fixed. We examined the diversity of fruit morphology in medio-lateral direction; defined divergent traits in cultivars carrying identical genetic constitution at LC and FAS genes; and identified QTLs for lobedness degree (LD) by a QTL-seq approach. We found that LC and FAS genes were not enough to explain LD variability in a large tomato collection. Then, we derived F2 populations crossing cultivars divergent for LD where LC and FAS were fixed (Yellow Stuffer x Heinz 1439 [F2YSxH] and Voyage x Old Brooks [F2VxOB]). By QTL-seq we identified a QTL for LD on chromosome 8 in both F2, which was validated in F2YSxH by interval mapping accounting for ~ 17% of the variability. Other two QTLs located on chromosomes 6 and 11 with epistasis explained ~ 61% of the variability in the F2VxOB. In conclusion, three novel QTLs with major effect for LD (ld6, ld8, and ld11) were identified through the study of diversity and genetic segregation in intraspecific tomato crosses.
Collapse
Affiliation(s)
- Dana V Vazquez
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, S2125ZAA Zavalla, Santa Fe, Argentina; Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, S2125ZAA Zavalla, Santa Fe, Argentina
| | - Javier H Pereira da Costa
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, S2125ZAA Zavalla, Santa Fe, Argentina; Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, S2125ZAA Zavalla, Santa Fe, Argentina
| | - Federico N I Godoy
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, S2125ZAA Zavalla, Santa Fe, Argentina
| | - Vladimir Cambiaso
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, S2125ZAA Zavalla, Santa Fe, Argentina; Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, S2125ZAA Zavalla, Santa Fe, Argentina
| | - Gustavo R Rodríguez
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, S2125ZAA Zavalla, Santa Fe, Argentina; Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, S2125ZAA Zavalla, Santa Fe, Argentina.
| |
Collapse
|
34
|
Yue L, Sun R, Li G, Cheng F, Gao L, Wang Q, Zhang S, Zhang H, Zhang S, Li F. Genetic dissection of heterotic loci associated with plant weight by Graded pool-seq in heading Chinese cabbage (Brassica rapa). PLANTA 2022; 255:126. [PMID: 35575830 DOI: 10.1007/s00425-022-03880-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/19/2022] [Indexed: 06/15/2023]
Abstract
Four heterotic QTL and a heterozygous segment for plant weight were identified by Graded Pool-Seq, QTL-seq and traditional genetic linkage analysis in heading Chinese cabbage. Heading Chinese cabbage (Brassica rapa L. spp. pekinensis) is a cross-pollinated leafy vegetable with significant heterosis. The use of heterosis is important for breeding high-yield Chinese cabbage hybrids. However, the formation and mechanism of heterosis have not been studied. We dissected the molecular mechanism of heterosis of yield-related traits in Chinese cabbage. An F1 hybrid with high-parent heterosis of yield-related traits was selected and self-pollinated to generate segregating F2 populations. QTL-seq, Graded Pool-seq (GPS), and traditional genetic linkage analysis were used to identify four heterotic quantitative trait loci (QTL) for plant weight: qPW1.1, qPW5.1, qPW7.1, and qPW8.1. Traditional genetic linkage analysis over two years showed that qPW8.1, located in marker A08_S45 (18,172,719) and A08_S85 (18,196,752), was mapped to a 23.5 kb genomic region. QTL qPW8.1 explained 8.6% and 23.6% of the phenotypic variation in plant weight and the total numbers of head leaves, respectively, and contained a heterozygous segment that might control the heterosis of plant weight. The qPW1.1 made an 11.7% phenotypic contribution to plant weight. The qPW7.1 was sensitive to environmental influence and explained 10.7% of the phenotypic variance. QTL qPW5.1 had a significant signal and was located in a genetic region near the centromere showing high heterozygosity. The "pseudo-overdominance" and "synergistic allelic" effects from parent line "XJD4" appear to play an important role in heterosis for plant weight in Chinese cabbage. These results provide a basis for an improved understanding of the molecular mechanism of yield-related traits and their heterosis.
Collapse
Affiliation(s)
- Lixin Yue
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, People's Republic of China
| | - Rifei Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, People's Republic of China
| | - Guoliang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China
| | - Limin Gao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, People's Republic of China
| | - Qinghua Wang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, People's Republic of China
| | - Shifan Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China
| | - Hui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China
| | - Shujiang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China.
| | - Fei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
35
|
Wang Z, Yan L, Chen Y, Wang X, Huai D, Kang Y, Jiang H, Liu K, Lei Y, Liao B. Detection of a major QTL and development of KASP markers for seed weight by combining QTL-seq, QTL-mapping and RNA-seq in peanut. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1779-1795. [PMID: 35262768 DOI: 10.1007/s00122-022-04069-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023]
Abstract
Combining QTL-seq, QTL-mapping and RNA-seq identified a major QTL and candidate genes, which contributed to the development of KASP markers and understanding of molecular mechanisms associated with seed weight in peanut. Seed weight, as an important component of seed yield, is a significant target of peanut breeding. However, relatively little is known about the quantitative trait loci (QTLs) and candidate genes associated with seed weight in peanut. In this study, three major QTLs on chromosomes A05, B02, and B06 were determined by applying the QTL-seq approach in a recombinant inbred line (RIL) population. Based on conventional QTL-mapping, these three QTL regions were successfully narrowed down through newly developed single nucleotide polymorphism (SNP) and simple sequence repeat markers. Among these three QTL regions, qSWB06.3 exhibited stable expression, contributing mainly to phenotypic variance across environments. Furthermore, differentially expressed genes (DEGs) were identified at the three seed developmental stages between the two parents of the RIL population. It was found that the DEGs were widely distributed in the ubiquitin-proteasome pathway, the serine/threonine-protein pathway, signal transduction of hormones and transcription factors. Notably, DEGs at the early stage were mostly involved in regulating cell division, whereas DEGs at the middle and late stages were primarily involved in cell expansion during seed development. The expression patterns of candidate genes related to seed weight in qSWB06.3 were investigated using quantitative real-time PCR. In addition, the allelic diversity of qSWB06.3 was investigated in peanut germplasm accessions. The marker Ah011475 has higher efficiency for discriminating accessions with different seed weights, and it would be useful as a diagnostic marker in marker-assisted breeding. This study provided insights into the genetic and molecular mechanisms of seed weight in peanut.
Collapse
Affiliation(s)
- Zhihui Wang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Liying Yan
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yuning Chen
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xin Wang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Dongxin Huai
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yanping Kang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Huifang Jiang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yong Lei
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Boshou Liao
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
36
|
Fine mapping of qDB.A03, a QTL for rapeseed branching, and identification of the candidate gene. Mol Genet Genomics 2022; 297:699-710. [DOI: 10.1007/s00438-022-01881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
|
37
|
Eker T, Sari D, Sari H, Tosun HS, Toker C. A kabuli chickpea ideotype. Sci Rep 2022; 12:1611. [PMID: 35102187 PMCID: PMC8803941 DOI: 10.1038/s41598-022-05559-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
The concept of 'crop ideotype' is coined as a desirable plant model expected to better perform for seed yield, oils and other useful characteristics when developed as a cultivar, and it consists of two major approaches, namely, (i) 'defect elimination', that is, integration of disease resistance to a susceptible genotype from a resistant genotype and (ii) 'selection for yield' by improving yield after crosses between desirable parents. For consideration of these approaches, here we introduced an ideotype in kabuli chickpea (Cicer arietinum L.) which is high-yielding, extra-large-seeded, and double- or multi-podded, has high plant height and imparipinnate-leafed traits, and is heat tolerant and resistant to ascochyta blight [Ascochyta rabiei (Pass.) Labr.], which causes considerable yield losses, via marker-assisted selection. F3 and F4 lines were evaluated for agro-morphological traits divided into six classes, namely, (i) imparipinnate-leafed and single-podded progeny, (ii) imparipinnate-leafed and double-podded progeny, (iii) imparipinnate-leafed and multi-podded progeny, (iv) unifoliolate-leafed and single-podded progeny, (v) unifoliolate-leafed and double-podded progeny, (vi) unifoliolate-leafed and multi-podded progeny. F3:4 lines having 100-seed weight ≥ 45 g and double- or multi-podded traits were additionally assessed for resistance to ascochyta blight using molecular markers including SCY17590 and CaETR-1. Superior lines having higher values than their best parents were determined for all studied traits indicating that economic and important traits including yield and seed size in chickpea could be improved by crossing suitable parents. Imparipinnate-leafed and multi-podded plants had not only the highest number of pods and seeds per plant but also the highest yield. On the other hand, imparipinnate-leafed and single podded progeny had the largest seed size, followed by imparipinnate-leafed and double-podded progeny. Multi-podded plants produced 23% more seed yield than that of single-podded plants, while multi-podded plants attained 7.6% more seed yield than that of double-podded plants. SCY17590 and CaETR-1 markers located on LG4 related to QTLAR2 and QTLAR1 were found in 14 lines among 152 F3:4 lines. Six superior lines were selected for being double- or multi-podded, imparipinnate-leafed, suitable for combine harvest, heat-tolerant, and resistant to ascochyta blight, and having both of two resistance markers and extra-large seeds as high as 50-60 g per 100-seed weight. Resistance alleles from two different backgrounds for resistance to ascochyta blight were integrated with double- or multi-podded kabuli chickpea lines having high yield, extra-large seeds, high plant height, imparipinnate-leaves and high heat tolerance, playing a crucial role for future demands of population and food security. These approaches seem to be applicable in ideotype breeding for other important crop plants.
Collapse
Affiliation(s)
- Tuba Eker
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey.
| | - Duygu Sari
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| | - Hatice Sari
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| | - Hilal Sule Tosun
- Department of Plant Protection, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| | - Cengiz Toker
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| |
Collapse
|
38
|
Singh R, Kumar K, Bharadwaj C, Verma PK. Broadening the horizon of crop research: a decade of advancements in plant molecular genetics to divulge phenotype governing genes. PLANTA 2022; 255:46. [PMID: 35076815 DOI: 10.1007/s00425-022-03827-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Advancements in sequencing, genotyping, and computational technologies during the last decade (2011-2020) enabled new forward-genetic approaches, which subdue the impediments of precise gene mapping in varied crops. The modern crop improvement programs rely heavily on two major steps-trait-associated QTL/gene/marker's identification and molecular breeding. Thus, it is vital for basic and translational crop research to identify genomic regions that govern the phenotype of interest. Until the advent of next-generation sequencing, the forward-genetic techniques were laborious and time-consuming. Over the last 10 years, advancements in the area of genome assembly, genotyping, large-scale data analysis, and statistical algorithms have led faster identification of genomic variations regulating the complex agronomic traits and pathogen resistance. In this review, we describe the latest developments in genome sequencing and genotyping along with a comprehensive evaluation of the last 10-year headways in forward-genetic techniques that have shifted the focus of plant research from model plants to diverse crops. We have classified the available molecular genetic methods under bulk-segregant analysis-based (QTL-seq, GradedPool-Seq, QTG-Seq, Exome QTL-seq, and RapMap), target sequence enrichment-based (RenSeq, AgRenSeq, and TACCA), and mutation-based groups (MutMap, NIKS algorithm, MutRenSeq, MutChromSeq), alongside improvements in classical mapping and genome-wide association analyses. Newer methods for outcrossing, heterozygous, and polyploid plant genetics have also been discussed. The use of k-mers has enriched the nature of genetic variants which can be utilized to identify the phenotype-causing genes, independent of reference genomes. We envisage that the recent methods discussed herein will expand the repertoire of useful alleles and help in developing high-yielding and climate-resilient crops.
Collapse
Affiliation(s)
- Ritu Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kamal Kumar
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Chellapilla Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110020, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
39
|
Wang J, Hu B, Jing Y, Hu X, Guo Y, Chen J, Liu Y, Hao J, Li WX, Ning H. Detecting QTL and Candidate Genes for Plant Height in Soybean via Linkage Analysis and GWAS. FRONTIERS IN PLANT SCIENCE 2022; 12:803820. [PMID: 35126428 PMCID: PMC8813865 DOI: 10.3389/fpls.2021.803820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 05/17/2023]
Abstract
Soybean is an important global crop for edible protein and oil, and plant height is a main breeding goal which is closely related to its plant shape and yield. In this research, a high-density genetic linkage map was constructed by 1996 SNP-bin markers on the basis of a recombinant inbred line population derived from Dongnong L13 × Henong 60. A total of 33 QTL related to plant height were identified, of which five were repeatedly detected in multiple environments. In addition, a 455-germplasm population with 63,306 SNP markers was used for multi-locus association analysis. A total of 62 plant height QTN were detected, of which 26 were detected repeatedly under multiple methods. Two candidate genes, Glyma.02G133000 and Glyma.05G240600, involving in plant height were predicted by pathway analysis in the regions identified by multiple environments and backgrounds, and validated by qRT-PCR. These results enriched the soybean plant height regulatory network and contributed to molecular selection-assisted breeding.
Collapse
Affiliation(s)
- Jiajing Wang
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Bo Hu
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yuliang Jing
- Suihua Branch of Heilongjiang Academy of Agricultural Science, Suihua, China
| | - Xiping Hu
- Key Laboratory of Crop Biotechnology Breeding of the Ministry of Agriculture, Beidahuang Kenfeng Seed Co., Ltd., Harbin, China
| | - Yue Guo
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jiankun Chen
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yuxi Liu
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jianhui Hao
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Wen-Xia Li
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hailong Ning
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
40
|
QTL-seq for the identification of candidate genes for days to flowering and leaf shape in pigeonpea. Heredity (Edinb) 2022; 128:411-419. [PMID: 35022582 PMCID: PMC9177671 DOI: 10.1038/s41437-021-00486-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022] Open
Abstract
To identify genomic segments associated with days to flowering (DF) and leaf shape in pigeonpea, QTL-seq approach has been used in the present study. Genome-wide SNP profiling of extreme phenotypic bulks was conducted for both the traits from the segregating population (F2) derived from the cross combination- ICP 5529 × ICP 11605. A total of 126.63 million paired-end (PE) whole-genome resequencing data were generated for five samples, including one parent ICP 5529 (obcordate leaf and late-flowering plant), early and late flowering pools (EF and LF) and obcordate and lanceolate leaf shape pools (OLF and LLS). The QTL-seq identified two significant genomic regions, one on CcLG03 (1.58 Mb region spanned from 19.22 to 20.80 Mb interval) for days to flowering (LF and EF pools) and another on CcLG08 (2.19 Mb region spanned from 6.69 to 8.88 Mb interval) for OLF and LLF pools, respectively. Analysis of genomic regions associated SNPs with days to flowering and leaf shape revealed 5 genic SNPs present in the unique regions. The identified genomic regions for days to flowering were also validated with the genotyping-by-sequencing based classical QTL mapping method. A comparative analysis of the identified seven genes associated with days to flowering on 12 Fabaceae genomes, showed synteny with 9 genomes. A total of 153 genes were identified through the synteny analysis ranging from 13 to 36. This study demonstrates the usefulness of QTL-seq approach in precise identification of candidate gene(s) for days to flowering and leaf shape which can be deployed for pigeonpea improvement. QTL-seq approach was utilized for mapping of genomic regions/genes associated with days to flowering and leaf shape in pigeonpea. Analysis of genomic regions and associated SNPs with days to flowering and leaf shape revealed 1 and 4 non-synonymous SNPs, respectively. The study demonstrated sequencing-based trait mapping approach can accelerate trait mapping of the targeted traits.
Collapse
|
41
|
Men Y, Li JR, Shen HL, Yang YM, Fan ST, Li K, Guo YS, Lin H, Liu ZD, Guo XW. VaAPRT3 Gene is Associated With Sex Determination in Vitis amurensis. Front Genet 2022; 12:727260. [PMID: 35003203 PMCID: PMC8733387 DOI: 10.3389/fgene.2021.727260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
In the past decade, progress has been made in sex determination mechanism in Vitis. However, genes responsible for sexual differentiation and its mechanism in V. amurensis remain unknown. Here, we identify a sex determination candidate gene coding adenine phosphoribosyl transferase 3 (VaAPRT3) in V. amurensis. Cloning and sequencing of the VaAPRT3 gene allowed us to develop a molecular marker able to discriminate female individuals from males or hermaphrodites based on a 22-bp InDel. Gene expression and endogenous cytokinin content analysis revealed that the VaAPRT3 gene is involved in sex determination or, to be precise, in female organ differentiation, through regulating cytokinin metabolism in V. amurensis. This study enlarged the understanding of sex determination mechanism in the genus Vitis, and the sex marker could be used as a helpful tool for sexual identification in breeding programs as well as in investigation and collection of V. amurensis germplasms.
Collapse
Affiliation(s)
- Yan Men
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Ji-Rui Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hai-Lin Shen
- Institute of Pomology, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Yi-Ming Yang
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shu-Tian Fan
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yin-Shan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhen-Dong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiu-Wu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
42
|
Nguyen DT, Hayes JE, Harris J, Sutton T. Fine Mapping of a Vigor QTL in Chickpea ( Cicer arietinum L.) Reveals a Potential Role for Ca4_TIFY4B in Regulating Leaf and Seed Size. FRONTIERS IN PLANT SCIENCE 2022; 13:829566. [PMID: 35283931 PMCID: PMC8908238 DOI: 10.3389/fpls.2022.829566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/13/2022] [Indexed: 05/16/2023]
Abstract
Plant vigor is a complex trait for which the underlying molecular control mechanisms remain unclear. Vigorous plants tend to derive from larger seeds and have greater early canopy cover, often with bigger leaves. In this study, we delimited the size of a major vigor quantitative trait locus (QTL) on chickpea chromosome 4-104.4 kb, using recombinant association analysis in 15 different heterogeneous inbred families, derived from a Rupali/Genesis836 recombinant inbred line population. The phenotypic and molecular genetic analysis provided evidence for a role of the gene Ca4_TIFY4B, in determining leaf and seed size in chickpea. A non-synonymous single-nucleotide polymorphism (SNP) in the high-vigor parent was located inside the core motif TIFYCG, resulting in a residue change T[I/S]FYCG. Complexes formed by orthologs of Ca4_TIFY4B (PEAPOD in Arabidopsis), Novel Interactor of JAZ (CaNINJA), and other protein partners are reported to act as repressors regulating the transcription of downstream genes that control plant organ size. When tested in a yeast 2-hybrid (Y2H) assay, this residue change suppressed the interaction between Ca4_TIFY4B and CaNINJA. This is the first report of a naturally occurring variant of the TIFY family in plants. A robust gene-derived molecular marker is available for selection in chickpea for seed and plant organ size, i.e., key component traits of vigor.
Collapse
Affiliation(s)
- Duong T. Nguyen
- School of Agriculture and Environment and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Julie E. Hayes
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
- *Correspondence: Julie E. Hayes,
| | - John Harris
- South Australian Research and Development Institute, Adelaide, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Tim Sutton
- South Australian Research and Development Institute, Adelaide, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| |
Collapse
|
43
|
Nguyen DT, Hayes JE, Atieno J, Li Y, Baumann U, Pattison A, Bramley H, Hobson K, Roorkiwal M, Varshney RK, Colmer TD, Sutton T. The genetics of vigour-related traits in chickpea (Cicer arietinum L.): insights from genomic data. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:107-124. [PMID: 34643761 DOI: 10.1007/s00122-021-03954-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/17/2021] [Indexed: 05/27/2023]
Abstract
QTL controlling vigour and related traits were identified in a chickpea RIL population and validated in diverse sets of germplasm. Robust KASP markers were developed for marker-assisted selection. To understand the genetic constitution of vigour in chickpea (Cicer arietinum L.), genomic data from a bi-parental population and multiple diversity panels were used to identify QTL, sequence-level haplotypes and genetic markers associated with vigour-related traits in Australian environments. Using 182 Recombinant Inbred Lines (RILs) derived from a cross between two desi varieties, Rupali and Genesis836, vigour QTL independent of flowering time were identified on chromosomes (Ca) 1, 3 and 4 with genotypic variance explained (GVE) ranging from 7.1 to 28.8%. Haplotype analysis, association analysis and graphical genotyping of whole-genome re-sequencing data of two diversity panels consisting of Australian and Indian genotypes and an ICRISAT Chickpea Reference Set revealed a deletion in the FTa1-FTa2-FTc gene cluster of Ca3 significantly associated with vigour and flowering time. Across the RIL population and diversity panels, the impact of the deletion was consistent for vigour but not flowering time. Vigour-related QTL on Ca4 co-located with a QTL for seed size in Rupali/Genesis836 (GVE = 61.3%). Using SNPs from this region, we developed and validated gene-based KASP markers across different panels. Two markers were developed for a gene on Ca1, myo -inositol monophosphatase (CaIMP), previously proposed to control seed size, seed germination and seedling growth in chickpea. While associated with vigour in the diversity panels, neither the markers nor broader haplotype linked to CaIMP was polymorphic in Rupali/Genesis836. Importantly, vigour appears to be controlled by different sets of QTL across time and with components which are independent from phenology.
Collapse
Affiliation(s)
- Duong T Nguyen
- School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, Australia
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia
| | - Julie E Hayes
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Judith Atieno
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Yongle Li
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Ute Baumann
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Angela Pattison
- School of Life and Environmental Science, The University of Sydney, Camperdown, NSW, Australia
| | - Helen Bramley
- School of Life and Environmental Science, The University of Sydney, Camperdown, NSW, Australia
| | - Kristy Hobson
- Department of Primary Industries, Tamworth Agricultural Institute, 4 Marsden, Park Rd, Calala, NSW, Australia
| | - Manish Roorkiwal
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Rajeev K Varshney
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Timothy D Colmer
- School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, Australia
| | - Tim Sutton
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia.
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia.
| |
Collapse
|
44
|
Chen Z, Tang D, Hu K, Zhang L, Yin Y, Ni J, Li P, Wang L, Rong T, Liu J. Combining QTL-seq and linkage mapping to uncover the genetic basis of single vs. paired spikelets in the advanced populations of two-ranked maize×teosinte. BMC PLANT BIOLOGY 2021; 21:572. [PMID: 34863103 PMCID: PMC8642974 DOI: 10.1186/s12870-021-03353-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Teosinte ear bears single spikelet, whereas maize ear bears paired spikelets, doubling the number of grains in each cupulate during maize domestication. In the past 20 years, genetic analysis of single vs. paired spikelets (PEDS) has been stagnant. A better understanding of genetic basis of PEDS could help fine mapping of quantitative trait loci (QTL) and cloning of genes. RESULTS In this study, the advanced mapping populations (BC3F2 and BC4F2) of maize × teosinte were developed by phenotypic recurrent selection. Four genomic regions associated with PEDS were detected using QTL-seq, located on 194.64-299.52 Mb, 0-162.80 Mb, 12.82-97.17 Mb, and 125.06-157.01 Mb of chromosomes 1, 3, 6, and 8, respectively. Five QTL for PEDS were identified in the regions of QTL-seq using traditional QTL mapping. Each QTL explained 1.12-38.05% of the phenotypic variance (PVE); notably, QTL qPEDS3.1 with the average PVE of 35.29% was identified in all tests. Moreover, 14 epistatic QTL were detected, with the total PVE of 47.57-66.81% in each test. The QTL qPEDS3.1 overlapped with, or was close to, one locus of 7 epistatic QTL. Near-isogenic lines (NILs) of QTL qPEDS1.1, qPEDS3.1, qPEDS6.1, and qPEDS8.1 were constructed. All individuals of NIL-qPEDS6.1(MT1) and NIL-qPEDS8.1(MT1) showed paired spikelets (PEDS = 0), but the flowering time was 7 days shorter in the NIL-qPEDS8.1(MT1). The ratio of plants with PEDS > 0 was low (1/18 to 3/18) in the NIL-qPEDS1.1(MT1) and NIL-qPEDS3.1(MT1), maybe due to the epistatic effect. CONCLUSION Our results suggested that major QTL, minor QTL, epistasis and photoperiod were associated with the variation of PEDS, which help us better understand the genetic basis of PEDS and provide a genetic resource for fine mapping of QTL.
Collapse
Affiliation(s)
- Zhengjie Chen
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Science, No.159 Huajin Avanue, Qingbaijiang District, Chengdu, 610300 Sichuan China
| | - Dengguo Tang
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Kun Hu
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Lei Zhang
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Yong Yin
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Jixing Ni
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Peng Li
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Le Wang
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Jian Liu
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| |
Collapse
|
45
|
Zhang F, Zhang J, Ma Z, Xia L, Wang X, Zhang L, Ding Y, Qi J, Mu X, Zhao F, Ji T, Tang B. Bulk analysis by resequencing and RNA-seq identifies candidate genes for maintaining leaf water content under water deficit in maize. PHYSIOLOGIA PLANTARUM 2021; 173:1935-1945. [PMID: 34494286 DOI: 10.1111/ppl.13537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Drought is one of the main abiotic stresses adversely affecting maize growth and grain yield. Identifying drought tolerance-related genes and breeding varieties with enhanced tolerance are effective strategies for minimizing the effects of drought stress. In this study, the leaf relative water content (LRWC) was used for evaluating drought tolerance. QTL-seq analysis of 419 F2 individuals from a cross between ZhengT22 (the drought-tolerant line with high LRWC) and ZhengA88 (the drought-sensitive line with low LRWC) revealed four LRWC-related QTLs (qLRWC2, qLRWC10a, qLRWC10b, and qLRWC10c) in maize seedlings under water deficit. Of these QTLs, qLRWC2 was located in a 2.03-Mb interval on chromosome 2, whereas qLRWC10a, qLRWC10b, and qLRWC10c were located in 2.85-, 3.99-, and 2.05-Mb intervals, respectively, on chromosome 10, and the 93 genes contained the variation loci locating in the four QTLs regions. To identify the candidate genes within the QTLs, an RNA-seq analysis was performed for the parents exposed to water deficit. Seven genes with effective variation loci showed significant difference in expression either in ZhengA88 or ZhengT22 in response to water deficit. Moreover, among the genes, ZmPrx64, ZmCIPK, HSP90, and ABCG34 have all been shown to be related to water stress in the previous studies. Thus, they are primary considered as the potential candidate genes controlling LRWC under water deficit at the seeding stage of maize in this study. These findings will help clarify the molecular basis of drought tolerance in maize seedlings and may be relevant for future functional analysis and for breeding drought-tolerant maize varieties.
Collapse
Affiliation(s)
- Fengqi Zhang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences/Henan Provincial Key Laboratory of Maize Biology, Zhengzhou, China
| | - Jun Zhang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences/Henan Provincial Key Laboratory of Maize Biology, Zhengzhou, China
| | - Zhiyan Ma
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences/Henan Provincial Key Laboratory of Maize Biology, Zhengzhou, China
| | - Laikun Xia
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences/Henan Provincial Key Laboratory of Maize Biology, Zhengzhou, China
| | - Xiangyang Wang
- Luoyang Academy of Agriculture and Forestry Sciences, Luoyang, China
| | - Lanxun Zhang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences/Henan Provincial Key Laboratory of Maize Biology, Zhengzhou, China
| | - Yong Ding
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences/Henan Provincial Key Laboratory of Maize Biology, Zhengzhou, China
| | - Jianshuang Qi
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences/Henan Provincial Key Laboratory of Maize Biology, Zhengzhou, China
| | - Xinyuan Mu
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences/Henan Provincial Key Laboratory of Maize Biology, Zhengzhou, China
| | - Faxin Zhao
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences/Henan Provincial Key Laboratory of Maize Biology, Zhengzhou, China
| | - Tianhui Ji
- Luoyang Academy of Agriculture and Forestry Sciences, Luoyang, China
| | - Baojun Tang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences/Henan Provincial Key Laboratory of Maize Biology, Zhengzhou, China
| |
Collapse
|
46
|
Thianthavon T, Aesomnuk W, Pitaloka MK, Sattayachiti W, Sonsom Y, Nubankoh P, Malichan S, Riangwong K, Ruanjaichon V, Toojinda T, Wanchana S, Arikit S. Identification and Validation of a QTL for Bacterial Leaf Streak Resistance in Rice ( Oryza sativa L.) against Thai Xoc Strains. Genes (Basel) 2021; 12:1587. [PMID: 34680982 PMCID: PMC8535723 DOI: 10.3390/genes12101587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Rice is one of the most important food crops in the world and is of vital importance to many countries. Various diseases caused by fungi, bacteria and viruses constantly threaten rice plants and cause yield losses. Bacterial leaf streak disease (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most devastating rice diseases. However, most modern rice varieties are susceptible to BLS. In this study, we applied the QTL-seq approach using an F2 population derived from the cross between IR62266 and Homcholasit (HSC) to rapidly identify the quantitative trait loci (QTL) that confers resistance to BLS caused by a Thai Xoc isolate, SP7-5. The results showed that a single genomic region at the beginning of chromosome 5 was highly associated with resistance to BLS. The gene xa5 was considered a potential candidate gene in this region since most associated single nucleotide polymorphisms (SNPs) were within this gene. A Kompetitive Allele-Specific PCR (KASP) marker was developed based on two consecutive functional SNPs in xa5 and validated in six F2 populations inoculated with another Thai Xoc isolate, 2NY2-2. The phenotypic variance explained by this marker (PVE) ranged from 59.04% to 70.84% in the six populations. These findings indicate that xa5 is a viable candidate gene for BLS resistance and may help in breeding programs for BLS resistance.
Collapse
Affiliation(s)
- Tripop Thianthavon
- Plant Breeding Program, Faculty of Agriculture at Kamphaeng Saen, Kesetsart University, Nakhon Pathom 73140, Thailand;
| | - Wanchana Aesomnuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Mutiara K. Pitaloka
- Rice Science Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Wannapa Sattayachiti
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Yupin Sonsom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Phakchana Nubankoh
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Srihunsa Malichan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand;
| | - Kanamon Riangwong
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Sanamchandra Palace Campus, Nakhon Pathom 73000, Thailand;
| | - Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Siwaret Arikit
- Rice Science Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| |
Collapse
|
47
|
Genetic Loci Associated with Resistance to Zucchini Yellow Mosaic Virus in Squash. PLANTS 2021; 10:plants10091935. [PMID: 34579467 PMCID: PMC8465829 DOI: 10.3390/plants10091935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022]
Abstract
Zucchini Yellow Mosaic Virus (ZYMV) is an aphid-transmitted potyvirus that causes severe yield losses in squash (Cucurbita moschata) production worldwide. Development of resistant cultivars using traditional breeding approaches relies on rigorous and resource-intensive phenotypic assays. QTL-seq, a whole genome re-sequencing based bulked segregant analysis, is a powerful tool for mapping quantitative trait loci (QTL) in crop plants. In the current study, the QTL-seq approach was used to identify genetic loci associated with ZYMV resistance in an F2 population (n = 174) derived from a cross between Nigerian Local (resistant) and Butterbush (susceptible). Whole genome re-sequencing of the parents and bulks of resistant and susceptible F2 progeny revealed a mapping rate between 94.04% and 98.76%, and a final effective mapping depth ranging from 81.77 to 101.73 across samples. QTL-seq analysis identified four QTLs significantly (p < 0.05) associated with ZYMV resistance on chromosome 2 (QtlZYMV-C02), 4 (QtlZYMV-C04), 8 (QtlZYMV-C08) and 20 (QtlZYMV-C20). Seven markers within the QTL intervals were tested for association with ZYMV resistance in the entire F2 population. For QtlZYMV-C08, one single nucleotide polymorphism (SNP) marker (KASP-6) was found to be significantly (p < 0.05) associated with ZYMV resistance, while two SNPs (KASP-1 and KASP-3) and an indel (Indel-2) marker were linked to resistance within QtlZYMV-C20. KASP-3 and KASP-6 are non-synonymous SNPs leading to amino acid substitutions in candidate disease resistant gene homologs on chromosomes 20 (CmoCh20G003040.1) and 8 (CmoCh08G007140.1), respectively. Identification of QTL and SNP markers associated with ZYMV resistance will facilitate marker-assisted selection for ZYMV resistance in squash.
Collapse
|
48
|
Sun J, Wang J, Guo W, Yin T, Zhang S, Wang L, Xie D, Zou D. Identification of alkali-tolerant candidate genes using the NGS-assisted BSA strategy in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:44. [PMID: 37309384 PMCID: PMC10236117 DOI: 10.1007/s11032-021-01228-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 05/03/2021] [Indexed: 06/14/2023]
Abstract
Rice (Oryza sativa L.) is a saline-alkali-sensitive crop. Saline-alkali environments can seriously affect the growth, development, and yield of rice. The mechanisms of salt tolerance and alkali tolerance in rice are different; thus, it is very important to study and explore the alkali-tolerant gene loci to improve the saline-alkali tolerance of rice varieties. In this study, the japonica rice varieties Dongnong 425 (DN425) and Changbai 10 (CB10) and a hybridized recombinant inbred line (RIL) population were used as materials to be irrigated with Na2CO3 solution under field test conditions. A resistant pool (R-pool) and a sensitive pool (S-pool) were constructed by selecting the lines with extremely high and extremely low 1000-grain weight (TGW), respectively, from the RIL population under alkali treatment. Four candidate TGW regions on chromosomes (Chr.) 2 and 3 were associated using the bulked segregant analysis (BSA) strategy assisted by next-generation sequencing (NGS) technology (NGS-assisted BSA). Using the linkage analysis, QTL-qATGW2-2 in the candidate region was mapped within a range of 116 Kb between the SSR marker RM13592 and the Indel marker Indel3 of Chr. 2, which contained 18 predictive genes. The BSA sequencing results showed that Os02g39884 contained a nonsynonymous substitution mutation SNP (nsSNP), leading to the transformation of a residue from arginine (cGg) to glutamine (cAg); thus, Os02g39884 was inferred to be the candidate gene of qATGW2-2. The results of the qRT-PCR analysis also confirmed this. This paper provides important information for the rapid and accurate identification of the alkali-tolerant gene loci in rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01228-x.
Collapse
Affiliation(s)
- Jian Sun
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Chinese Ministry of Education (Northeast Agricultural University), Harbin, 150030 China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Chinese Ministry of Education (Northeast Agricultural University), Harbin, 150030 China
| | - Wei Guo
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Chinese Ministry of Education (Northeast Agricultural University), Harbin, 150030 China
| | - Tianjiao Yin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Chinese Ministry of Education (Northeast Agricultural University), Harbin, 150030 China
| | - Shuli Zhang
- Biotechnology Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 China
| | - Liang Wang
- Kunming Tobacco Company of Yunnan Province, Kunming, 650051 China
| | - Dongwei Xie
- School of Life Sciences, Nantong University, Nantong, 226019 China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Chinese Ministry of Education (Northeast Agricultural University), Harbin, 150030 China
| |
Collapse
|
49
|
Sinha P, Singh VK, Bohra A, Kumar A, Reif JC, Varshney RK. Genomics and breeding innovations for enhancing genetic gain for climate resilience and nutrition traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1829-1843. [PMID: 34014373 PMCID: PMC8205890 DOI: 10.1007/s00122-021-03847-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/29/2021] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Integrating genomics technologies and breeding methods to tweak core parameters of the breeder's equation could accelerate delivery of climate-resilient and nutrient rich crops for future food security. Accelerating genetic gain in crop improvement programs with respect to climate resilience and nutrition traits, and the realization of the improved gain in farmers' fields require integration of several approaches. This article focuses on innovative approaches to address core components of the breeder's equation. A prerequisite to enhancing genetic variance (σ2g) is the identification or creation of favorable alleles/haplotypes and their deployment for improving key traits. Novel alleles for new and existing target traits need to be accessed and added to the breeding population while maintaining genetic diversity. Selection intensity (i) in the breeding program can be improved by testing a larger population size, enabled by the statistical designs with minimal replications and high-throughput phenotyping. Selection priorities and criteria to select appropriate portion of the population too assume an important role. The most important component of breeder's equation is heritability (h2). Heritability estimates depend on several factors including the size and the type of population and the statistical methods. The present article starts with a brief discussion on the potential ways to enhance σ2g in the population. We highlight statistical methods and experimental designs that could improve trait heritability estimation. We also offer a perspective on reducing the breeding cycle time (t), which could be achieved through the selection of appropriate parents, optimizing the breeding scheme, rapid fixation of target alleles, and combining speed breeding with breeding programs to optimize trials for release. Finally, we summarize knowledge from multiple disciplines for enhancing genetic gains for climate resilience and nutritional traits.
Collapse
Affiliation(s)
- Pallavi Sinha
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- International Rice Research Institute (IRRI), IRRI South Asia Hub, ICRISAT, Hyderabad, India
| | - Vikas K Singh
- International Rice Research Institute (IRRI), IRRI South Asia Hub, ICRISAT, Hyderabad, India
| | - Abhishek Bohra
- ICAR- Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Arvind Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Jochen C Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia.
| |
Collapse
|
50
|
Barmukh R, Soren KR, Madugula P, Gangwar P, Shanmugavadivel PS, Bharadwaj C, Konda AK, Chaturvedi SK, Bhandari A, Rajain K, Singh NP, Roorkiwal M, Varshney RK. Construction of a high-density genetic map and QTL analysis for yield, yield components and agronomic traits in chickpea (Cicer arietinum L.). PLoS One 2021; 16:e0251669. [PMID: 33989359 PMCID: PMC8121343 DOI: 10.1371/journal.pone.0251669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/30/2021] [Indexed: 12/04/2022] Open
Abstract
Unravelling the genetic architecture underlying yield components and agronomic traits is important for enhancing crop productivity. Here, a recombinant inbred line (RIL) population, developed from ICC 4958 and DCP 92–3 cross, was used for constructing linkage map and QTL mapping analysis. The RIL population was genotyped using a high-throughput Axiom®CicerSNP array, which enabled the development of a high-density genetic map consisting of 3,818 SNP markers and spanning a distance of 1064.14 cM. Analysis of phenotyping data for yield, yield components and agronomic traits measured across three years together with genetic mapping data led to the identification of 10 major-effect QTLs and six minor-effect QTLs explaining up to 59.70% phenotypic variance. The major-effect QTLs identified for 100-seed weight, and plant height possessed key genes, such as C3HC4 RING finger protein, pentatricopeptide repeat (PPR) protein, sugar transporter, leucine zipper protein and NADH dehydrogenase, amongst others. The gene ontology studies highlighted the role of these genes in regulating seed weight and plant height in crop plants. The identified genomic regions for yield, yield components, and agronomic traits, and the closely linked markers will help advance genetics research and breeding programs in chickpea.
Collapse
Affiliation(s)
- Rutwik Barmukh
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | | | - Praveen Madugula
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | | | | | | | - Sushil K. Chaturvedi
- ICAR-Indian Institute of Pulses Research, Kanpur, UP, India
- Rani Lakshmi Bai Central Agricultural University, Jhansi, India
| | - Aditi Bhandari
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Kritika Rajain
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Narendra Pratap Singh
- ICAR-Indian Institute of Pulses Research, Kanpur, UP, India
- * E-mail: (RKV); (MR); (NPS)
| | - Manish Roorkiwal
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- * E-mail: (RKV); (MR); (NPS)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- * E-mail: (RKV); (MR); (NPS)
| |
Collapse
|