1
|
Miao H, Zhang J, Zheng Y, Jia C, Hu Y, Wang J, Zhang J, Sun P, Jin Z, Zhou Y, Zheng S, Wang W, Rouard M, Xie J, Liu J. Shaping the future of bananas: advancing genetic trait regulation and breeding in the postgenomics era. HORTICULTURE RESEARCH 2025; 12:uhaf044. [PMID: 40236735 PMCID: PMC11997438 DOI: 10.1093/hr/uhaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/03/2025] [Indexed: 04/17/2025]
Abstract
Bananas (Musa spp.) are among the top-produced food crops, serving as a primary source of food for millions of people. Cultivated bananas originated primarily from the wild diploid species Musa acuminata (A genome) and Musa balbisiana (B genome) through intra- and interspecific hybridization and selections via somatic variation. Following the publication of complete A- and B-genome sequences, prospects for complementary studies on S- and T-genome traits, key gene identification for yield, ripening, quality, and stress resistance, and advances in molecular breeding have significantly expanded. In this review, latest research progress on banana A, B, S, and T genomes is briefly summarized, highlighting key advances in banana cytoplasmic inheritance, flower and fruit development, sterility, and parthenocarpy, postharvest ripening and quality regulation, and biotic and abiotic stress resistance associated with desirable economic traits. We provide updates on transgenic, gene editing, and molecular breeding. We also explore future directions for banana breeding and genetic improvement.
Collapse
Affiliation(s)
- Hongxia Miao
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Jianbin Zhang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Yunke Zheng
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Caihong Jia
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Yulin Hu
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture and Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xiuhu Road 1, Mazhang District, Zhanjiang 524000, China
| | - Jingyi Wang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Jing Zhang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Peiguang Sun
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Zhiqiang Jin
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
| | - Yongfeng Zhou
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Pengfei Road 7, Dapengxin District, Shenzhen 518000, China
| | - Sijun Zheng
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Beijing Road 2238, Kunming 650205, China
- Bioversity International, Yunnan Academy of Agricultural Sciences, Beijing Road 2238, Kunming 650205, China
| | - Wei Wang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, Montpellier 34397, Cedex 5, France
| | - Jianghui Xie
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
| | - Juhua Liu
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| |
Collapse
|
2
|
Mohanta R, Maiti P, Sharangi AB, Roy S, Hazra S, Chakraborty S, Ghorai S. Directed mutagenesis in fruit crops. 3 Biotech 2025; 15:104. [PMID: 40177007 PMCID: PMC11958931 DOI: 10.1007/s13205-025-04268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Abstract
Fruit crops are rich source of important vitamins, minerals, and dietary fibres. They are essential for global agriculture with respect to nutritional security. Globally, there is a rapid decline in the genetic base of fruit crops warranting breeding strategies to overcome the challenge. Applied mutagenesis has emerged as a viable approach for the focused enhancement of fruit crops utilizing precise genetic alterations to increase a variety of desirable characteristics. However, traditional mutagenesis using physical and chemical mutagens are majorly random in nature. Directed mutagenesis with advancements in genetic engineering and molecular technology allows precise manipulation of genes, which facilitates the efficient and precise knockout of target genes and the targeted insertion or modification of specific DNA sequences within the genome via homologous recombination (HR)-mediated gene replacement. This review presents an in-depth exploration of several directed mutagenesis techniques including CRISPR-Cas9, TILLING, TALEN, MutMap, and MutMap + emphasizing their transformative applications in fruit crops. It also discusses about space mutagenesis. These advanced techniques empower researchers to precisely introduce specific mutations into the genome, skilfully altering gene expression and reshaping protein function with remarkable precision. This review highlights successful examples of directed mutagenesis in a variety of fruit crops such as apples, grapes, citrus, and strawberries and elucidates the impact of directed mutagenesis on traits such as fruit size, colour, flavour, shelf-life, and resistance to diseases and environmental stresses.
Collapse
Affiliation(s)
- Rajdeep Mohanta
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| | - Payal Maiti
- Department of Post-Harvest Management, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252 West Bengal India
| | - Amit Baran Sharangi
- Department of Plantation Spices Medicinal & Aromatic Crops, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252 West Bengal India
| | - Sourav Roy
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| | - Soham Hazra
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| | - Souvik Chakraborty
- Department of Post-Harvest Management, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252 West Bengal India
| | - Subhadwip Ghorai
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| |
Collapse
|
3
|
Sun J, Zhang X, Feng J, Ma X, Ji Y, Chen S, Li J, Li D, Wang X, Zhao L. The transcription factor GmFULc regulates soybean plant height by binding the promoter of a gibberellin-responsive gene. PLANT PHYSIOLOGY 2025; 197:kiaf021. [PMID: 39823424 DOI: 10.1093/plphys/kiaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/19/2025]
Abstract
Plant height is a crucial agronomic characteristic that substantially influences soybean [Glycine max (L.) Merr.] yield. FRUITFULLc (GmFULc) is a MADS-box transcription factor that acts as a growth promoter in soybean; however, the mechanism by which GmFULc regulates soybean height is unknown. This study revealed that GmFULc:GmFULc (the expression of the GmFULc gene driven by its native promoter) soybeans exhibit increased plant height and longer internodes. Conversely, soybean plants containing fulc mutations showed reduced plant height and shortened internodes. Chromatin immunoprecipitation-qPCR revealed GmFULc promotes the expression of gibberellic acid-stimulated Arabidopsis 14 (GmGASA14) and GmGASA32 by directly binding to G-boxes in their promoter regions, leading to notably increased expression of GmGASA14 and GmGASA32 in GmFULc:GmFULc soybean plants and reduced expression in soybean plants containing the fulc-2 mutation. The GmFULc-mediated enhanced expression of GmGASA14 and GmGASA32 increased the gibberellin signal, which may have inhibited gibberellin synthesis by increasing gibberellin 2-oxidase (GmGA2ox) expression and decreasing GA20ox expression. Our findings suggest that GmFULc promoted the expression of GmGASA genes by directly binding to G-boxes in their promoters to regulate soybean plant height.
Collapse
Affiliation(s)
- Jingzhe Sun
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xiaoming Zhang
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Junhang Feng
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Xiaofei Ma
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Yujia Ji
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Shujun Chen
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Jihui Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Dongmei Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| | - Xiujun Wang
- Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Garcia-Oliveira AL, Ortiz R, Sarsu F, Rasmussen SK, Agre P, Asfaw A, Kante M, Chander S. The importance of genotyping within the climate-smart plant breeding value chain - integrative tools for genetic enhancement programs. FRONTIERS IN PLANT SCIENCE 2025; 15:1518123. [PMID: 39980758 PMCID: PMC11839310 DOI: 10.3389/fpls.2024.1518123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 02/22/2025]
Abstract
The challenges faced by today's agronomists, plant breeders, and their managers encompass adapting sustainably to climate variability while working with limited budgets. Besides, managers are dealing with a multitude of issues with different organizations working on similar initiatives and projects, leading to a lack of a sustainable impact on smallholder farmers. To transform the current food systems as a more sustainable and resilient model efficient solutions are needed to deliver and convey results. Challenges such as logistics, labour, infrastructure, and equity, must be addressed alongside adapting to increasingly unstable climate conditions which affect the life cycle of transboundary pathogens and pests. In this context, transforming food systems go far beyond just farmers and plant breeders and it requires substantial contributions from industry, global finances, transportation, energy, education, and country developmental sectors including legislators. As a result, a holistic approach is essential for achieving sustainable and resilient food systems to sustain a global population anticipated to reach 9.7 billion by 2050 and 11.2 billion by 2100. As of 2021, nearly 193 million individuals were affected by food insecurity, 40 million more than in 2020. Meanwhile, the digital world is rapidly advancing with the digital economy estimated at about 20% of the global gross domestic product, suggesting that digital technologies are increasingly accessible even in areas affected by food insecurity. Leveraging these technologies can facilitate the development of climate-smart cultivars that adapt effectively to climate variation, meet consumer preferences, and address human and livestock nutritional needs. Most economically important traits in crops are controlled by multiple loci often with recessive alleles. Considering particularly Africa, this continent has several agro-climatic zones, hence crops need to be adapted to these. Therefore, targeting specific loci using modern tools offers a precise and efficient approach. This review article aims to address how these new technologies can provide a better support to smallholder farmers.
Collapse
Affiliation(s)
- Ana Luísa Garcia-Oliveira
- Genetic Resources Program, Alliance Bioversity International and International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Fatma Sarsu
- Plant Breeding and Genetics Section, Joint FAO/IAEA Center, International Atomic Energy Agency, Vienna, Austria
| | | | - Paterne Agre
- Yam Breeding Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Asrat Asfaw
- Yam Breeding Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Moctar Kante
- Genetics, Genomics, and Crop Improvement Division, International Potato Center, Lima, Peru
| | - Subhash Chander
- Oilseeds Section, Department of Genetics & Plant Breeding, CCS Haryana Agricultural University, Hisar, India
| |
Collapse
|
5
|
Zhao W, Sun X, Wu S, Wu S, Hu C, Huo H, Deng G, Sheng O, Bi F, He W, Dou T, Dong T, Li C, Liu S, Gao H, Li C, Yi G, Yang Q. MaGA20ox2f, an OsSD1 homolog, regulates flowering time and fruit yield in banana. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:12. [PMID: 39803631 PMCID: PMC11717755 DOI: 10.1007/s11032-024-01523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Previous studies illustrated that two banana GA20 oxidase2 (MaGA20ox2) genes, Ma04g15900 and Ma08g32850, are implicated in controlling banana growth and development; however, the biological function of each gene remains unknown. Ma04g15900 protein (termed MaGA20ox2f in this article) is the closest homolog to the Rice SD1 (encoded by 'green revolution gene', OsSD1) in the banana genome. The expression of MaGA20ox2f is confined to leaves, peduncles, fruit peels, and pulp. Knockout of MaGA20ox2f by CRISPR/Cas9 led to late flowering and low-yielding phenotypes. The flowering time of ΔMaGA20ox2f #1 and ∆MaGA20ox2f #2 lines was delayed approximately by 61 and 58 days, respectively, while fruit yield decreased by 81.13% and 76.23% compared to wild type under normal conditions. The endogenous levels of downstream products of GA20 oxidase, GA15 and GA20, were significantly reduced in ∆MaGA20ox2f mutant shoots and fruits, but bioactive GA1 was only significantly reduced in the mutant fruits. Quantitative proteomics analysis identified 118 up-regulated proteins and 309 down-regulated proteins in both ΔMaGA20ox2f #1 and ∆MaGA20ox2f #2 lines, compared to wild type, with the down-regulated proteins primarily associated with photosynthesis, porphyrin and chlorophyll metabolism. The decreased chlorophyll contents in ΔMaGA20ox2f #1 and ∆MaGA20ox2f #2 lines corroborated the findings of the proteomics data. We propose that photosynthesis inhibition caused by lower chlorophyll contents in ΔMaGA20ox2f mutant leaves and GA1 deficiency in ΔMaGA20ox2f mutant fruits may be the two critical reasons contributing to the late flowering and low-yielding phenotypes of ΔMaGA20ox2f mutants. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01523-3.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xiaoxuan Sun
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300 Jiangsu China
| | - Shaoping Wu
- Life Sciences College, Zhaoqing University, Zhaoqing, 526061 Guangdong China
| | - Shuofan Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Chunhua Hu
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Heqiang Huo
- Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703 USA
| | - Guiming Deng
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Ou Sheng
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Fangcheng Bi
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Weidi He
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Tongxin Dou
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Tao Dong
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Chunyu Li
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Siwen Liu
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Huijun Gao
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Ganjun Yi
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Qiaosong Yang
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| |
Collapse
|
6
|
Tripathi JN, Tripathi L. Agrobacterium tumefaciens-Mediated Genome Editing in Banana. Methods Mol Biol 2025; 2911:143-153. [PMID: 40146517 DOI: 10.1007/978-1-0716-4450-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
This protocol outlines the Agrobacterium tumefaciens-mediated transformation process for genome editing in banana (Musa spp.). As a crop of significant agricultural and economic importance globally, improving banana cultivars is crucial for addressing challenges such as disease resistance, climate resilience and yield enhancement. The procedure presented here involves the establishment of embryogenic cell suspensions (ECSs) from immature male flowers, followed by co-cultivation with Agrobacterium containing the desired gene construct. Key steps include callus induction, ECS generation and maintenance, transformation using plasmid construct containing genome editing reagents such as CRISPR/Cas9, and regeneration. The method ensures the editing of target genes in the banana genome, facilitating genetic improvements.
Collapse
Affiliation(s)
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya.
| |
Collapse
|
7
|
Gélinas Bélanger J. Taming the wild: domesticating untapped northern fruit tree and shrub resources in the era of high-throughput technologies. AOB PLANTS 2025; 17:plae074. [PMID: 39886049 PMCID: PMC11780843 DOI: 10.1093/aobpla/plae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/30/2024] [Indexed: 02/01/2025]
Abstract
New crop`s need to emerge to provide sustainable solutions to climate change and increasing abiotic and biotic constraints on agriculture. A large breadth of northern fruit trees and shrubs exhibit a high potential for domestication; however, obstacles to implementing traditional breeding methods have hampered or dissuaded efforts for improvement. This review article proposes a unique roadmap for de novo domestication of northern fruit crops, with a focus on biotechnological (e.g. genome editing, rapid cycle breeding, and in planta transformation) approaches that can boast rapid evolutionary gains. In addition, numerous biotechnological (e.g. virus-induced flowering and grafting-mediated flowering) and breeding strategies (e.g. adaptation of speed breeding to fruit trees) that can hasten the transition from juvenility to sexual maturity are described. A description of an accelerated genetic breeding strategy with insights for 16 underutilized species (e.g. shagbark hickory, running serviceberry, horse chestnut, and black walnut) is provided to support their enhancement. Deemed unrealistic only a decade ago, progress in the realm of bioengineering heralds a future for northern orphan crops through the implementation of fast-tracked crop improvement programs. As such, the roadmap presented in this article paves the way to integrating these novel biotechnological discoveries and propel the development of these forgotten crops in a sustainable and timely manner.
Collapse
Affiliation(s)
- Jérôme Gélinas Bélanger
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Rue Lakeshore, Ste-Anne-de-Bellevue, H9X 3V9, Québec, Canada
- Centre de recherche sur les grains (CÉROM) Inc., 740 Chem. Trudeau, Saint-Mathieu-de-Beloeil, J3G 0E2, Québec, Canada
| |
Collapse
|
8
|
Zhou L, Zeng X, Yang Y, Li R, Zhao Z. Applications and Prospects of CRISPR/Cas9 Technology in the Breeding of Major Tropical Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:3388. [PMID: 39683180 DOI: 10.3390/plants13233388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
China is a major producer of tropical crops globally, boasting rich varieties and diverse functions. Tropical crops account for two-thirds of the plant species in this country. Many crops and their products, such as oil palm, rubber, banana, sugarcane, cassava, and papaya are well known to people. Most of these products are irreplaceable and possess special functions. They not only supply important raw materials for people's daily life and for industrial and agricultural production but also contribute to the economic growth in the tropical and subtropical regions of China. However, the modern molecular breeding of these crops is severely hampered by their biological characteristics and genetic complexity. Issues such as polyploidy, heterozygosity, vegetative propagation, long juvenile periods, and large plant sizes result in time consuming, low efficiency, and slow progress in conventional breeding of the major tropical crops. The development of genome-editing technologies has brought a new way in tropical crops breeding. As an emerging gene-editing technology, the CRISPR-Cas9 system has been widely used in plants, adopted for its higher targeting efficiency, versatility, and ease of usage. This approach has been applied in oil palm, rubber, banana, sugarcane, cassava, and papaya. This review summarized the delivery patterns, mutation detection, and application of the CRISPR-Cas9 system in tropical crop breeding, discussed the existing problems, and addressed prospects for future applications in this field, providing references to relevant studies.
Collapse
Affiliation(s)
- Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xianhai Zeng
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Rui Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Zhihao Zhao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
9
|
Tripathi JN, Muiruri S, Tripathi L. Advancements and challenges in gene editing for improvement of vegetatively propagated crops. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102653. [PMID: 39520794 DOI: 10.1016/j.pbi.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Gene editing technologies, particularly CRISPR-Cas9, have revolutionized agriculture by offering precise and efficient tools to enhance crop production. The vegetatively propagated crops, crucial for global food security, face challenges such as climate change, pests, and limited genetic diversity. CRISPR-Cas9 enables targeted modifications to improve traits like disease resistance, drought tolerance, and nutritional content, thereby boosting productivity and sustainability. Despite its transformative potential, the adoption of gene editing in vegetatively propagated crops is hampered by technical complexities and regulatory frameworks. This review explores recent advancements, challenges, and prospects of gene editing in vegetatively propagated crops, emphasizing strategies to overcome technical barriers and regulatory constraints. Addressing these issues is essential for realizing the full agricultural potential of gene editing and ensuring food security in a changing global climate.
Collapse
Affiliation(s)
| | - Samwel Muiruri
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | - Leena Tripathi
- International Institute of Tropical Agriculture, Nairobi, Kenya.
| |
Collapse
|
10
|
He J, Zhong J, Jin L, Long Y, Situ J, He C, Kong G, Jiang Z, Li M. A virulent milRNA inhibits host immunity by silencing a host receptor-like kinase MaLYK3 and facilitates infection by Fusarium oxysporum f. sp. cubense. MOLECULAR PLANT PATHOLOGY 2024; 25:e70016. [PMID: 39394779 PMCID: PMC11470196 DOI: 10.1111/mpp.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/19/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024]
Abstract
MicroRNA-like RNAs (milRNAs) play a significant role in the infection process by plant-pathogenic fungi. However, the specific functions and regulatory mechanisms of fungal milRNAs remain insufficiently elucidated. This study investigated the function of Foc-milR138, an infection-induced milRNA secreted by Fusarium oxysporum f. sp. cubense (Foc), which is the causal agent of Fusarium wilt of banana. Initially, through precursor gene knockout and phenotypic assessments, we confirmed that Foc-milR138 acts as a virulent milRNA prominently upregulated during the early stages of Foc infection. Subsequent bioinformatic analyses and transient expression assays in Nicotiana benthamiana leaves identified a host receptor-like kinase gene, MaLYK3, as the direct target of Foc-milR138. Functional investigations of MaLYK3 revealed its pivotal role in triggering immune responses of N. benthamiana by upregulating a suite of resistance genes, bolstering reactive oxygen species (ROS) accumulation and callose deposition, thereby fortifying disease resistance. This response was markedly subdued upon co-expression with Foc-milR138. Expression pattern analysis further verified the specific suppression of MaLYK3 by Foc-milR138 during the early root infection by Foc. In conclusion, Foc secretes a virulent milRNA (Foc-milR138) to enter the host banana cells and inhibit the expression of the plant surface receptor-like kinase MaLYK3, subverting the disease resistance activated by MaLYK3, and ultimately facilitating pathogen invasion. These findings shed light on the roles of fungal milRNAs and their targets in resistance and pathogenicity, offering promising avenues for the development of disease-resistant banana cultivars.
Collapse
Affiliation(s)
- Jiahui He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Jiaqi Zhong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Longqi Jin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Yike Long
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Junjian Situ
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Chengcheng He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Guanghui Kong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Minhui Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
11
|
Tripathi L, Ntui VO, Tripathi JN. Application of CRISPR/Cas-based gene-editing for developing better banana. Front Bioeng Biotechnol 2024; 12:1395772. [PMID: 39219618 PMCID: PMC11362101 DOI: 10.3389/fbioe.2024.1395772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Banana (Musa spp.), including plantain, is one of the major staple food and cash crops grown in over 140 countries in the subtropics and tropics, with around 153 million tons annual global production, feeding about 400 million people. Despite its widespread cultivation and adaptability to diverse environments, banana production faces significant challenges from pathogens and pests that often coexist within agricultural landscapes. Recent advancements in CRISPR/Cas-based gene editing offer transformative solutions to enhance banana resilience and productivity. Researchers at IITA, Kenya, have successfully employed gene editing to confer resistance to diseases such as banana Xanthomonas wilt (BXW) by targeting susceptibility genes and banana streak virus (BSV) by disrupting viral sequences. Other breakthroughs include the development of semi-dwarf plants, and increased β-carotene content. Additionally, non-browning banana have been developed to reduce food waste, with regulatory approval in the Philippines. The future prospects of gene editing in banana looks promising with CRISPR-based gene activation (CRISPRa) and inhibition (CRISPRi) techniques offering potential for improved disease resistance. The Cas-CLOVER system provides a precise alternative to CRISPR/Cas9, demonstrating success in generating gene-edited banana mutants. Integration of precision genetics with traditional breeding, and adopting transgene-free editing strategies, will be pivotal in harnessing the full potential of gene-edited banana. The future of crop gene editing holds exciting prospects for producing banana that thrives across diverse agroecological zones and offers superior nutritional value, ultimately benefiting farmers and consumers. This article highlights the pivotal role of CRISPR/Cas technology in advancing banana resilience, yield and nutritional quality, with significant implications for global food security.
Collapse
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | | | | |
Collapse
|
12
|
Bao R, Zeng C, Li K, Li M, Li Y, Zhou X, Wang H, Wang Y, Huang D, Wang W, Chen X. MeGT2.6 increases cellulose synthesis and active gibberellin content to promote cell enlargement in cassava. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1014-1029. [PMID: 38805573 DOI: 10.1111/tpj.16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
Cassava, a pivotal tropical crop, exhibits rapid growth and possesses a substantial biomass. Its stem is rich in cellulose and serves as a crucial carbohydrate storage organ. The height and strength of stems restrict the mechanised operation and propagation of cassava. In this study, the triple helix transcription factor MeGT2.6 was identified through yeast one-hybrid assay using MeCesA1pro as bait, which is critical for cellulose synthesis. Over-expression and loss-of-function lines were generated, and results revealed that MeGT2.6 could promote a significant increase in the plant height, stem diameter, cell size and thickness of SCW of cassava plant. Specifically, MeGT2.6 upregulated the transcription activity of MeGA20ox1 and downregulated the expression level of MeGA2ox1, thereby enhancing the content of active GA3, resulting in a large cell size, high plant height and long stem diameter in cassava. Moreover, MeGT2.6 upregulated the transcription activity of MeCesA1, which promoted the synthesis of cellulose and hemicellulose and produced a thick secondary cell wall. Finally, MeGT2.6 could help supply additional substrates for the synthesis of cellulose and hemicellulose by upregulating the invertase genes (MeNINV1/6). Thus, MeGT2.6 was found to be a multiple regulator; it was involved in GA metabolism and sucrose decomposition and the synthesis of cellulose and hemicellulose.
Collapse
Affiliation(s)
- Ruxue Bao
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
| | - Changying Zeng
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
| | - Ke Li
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
| | - Mengtao Li
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
| | - Yajun Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, Hainan, China
| | - Xincheng Zhou
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, Hainan, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, Hainan, China
| | - Haiyan Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, Hainan, China
| | - Yajie Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, Hainan, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, Hainan, China
| | - Dongyi Huang
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
| | - Wenquan Wang
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
| | - Xin Chen
- Sanya Institute of Breeding and Multiplication, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya, 572025, Hainan, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, Hainan, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, Hainan, China
| |
Collapse
|
13
|
Ebrahimi V, Hashemi A. CRISPR-based gene editing in plants: Focus on reagents and their delivery tools. BIOIMPACTS : BI 2024; 15:30019. [PMID: 39963563 PMCID: PMC11830140 DOI: 10.34172/bi.30019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2025]
Abstract
Introduction CRISPR-Cas9 technology has revolutionized plant genome editing, providing precise and efficient methods for genetic modification. This study focuses on the advancements and delivery of CRISPR-Cas9 in plant gene editing. Methods A comprehensive search in scientific databases, including PubMed, ScienceDirect, and Google Scholar, was conducted to gather information on CRISPR-Cas9 gene editing and its delivery in precise gene modification in plants. Results The evolving landscape of CRISPR nucleases has led to the development of innovative technologies, enhancing plant research. However, successful editing is contingent on efficient delivery of genome engineering reagents. CRISPR-based gene editing in plants utilizes diverse delivery methods: Agrobacterium-mediated transformation for bacterial transfer, biolistic transformation for physical gene insertion, electroporation for direct gene entry, expression of developmental regulators for gene expression modulation, and tobacco rattle virus as a viral vector, each offering distinct advantages for precise and efficient genetic modification in plants. Conclusion CRISPR-Cas9 gene editing stands as a pivotal advancement in plant genetics, offering precise gene manipulation with applications in agriculture and biotechnology. The continuous refinement of reagent delivery tools reinforces CRISPR-Cas9's transformative role in plant genome editing, with significant implications for broader scientific applications.
Collapse
Affiliation(s)
- Vida Ebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Tripathi JN, Ntui VO, Tripathi L. Precision genetics tools for genetic improvement of banana. THE PLANT GENOME 2024; 17:e20416. [PMID: 38012108 DOI: 10.1002/tpg2.20416] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
Banana is an important food security crop for millions of people in the tropics but it faces challenges from diseases and pests. Traditional breeding methods have limitations, prompting the exploration of precision genetic tools like genetic modification and genome editing. Extensive efforts using transgenic approaches have been made to develop improved banana varieties with resistance to banana Xanthomonas wilt, Fusarium wilt, and nematodes. However, these efforts should be extended for other pests, diseases, and abiotic stresses. The commercialization of transgenic crops still faces continuous challenges with regulatory and public acceptance. Genome editing, particularly CRISPR/Cas, offers precise modifications to the banana genome and has been successfully applied in the improvement of banana. Targeting specific genes can contribute to the development of improved banana varieties with enhanced resistance to various biotic and abiotic constraints. This review discusses recent advances in banana improvement achieved through genetic modification and genome editing.
Collapse
Affiliation(s)
| | | | - Leena Tripathi
- International Institute of Tropical Agriculture, Nairobi, Kenya
| |
Collapse
|
15
|
Campa M, Miranda S, Licciardello C, Lashbrooke JG, Dalla Costa L, Guan Q, Spök A, Malnoy M. Application of new breeding techniques in fruit trees. PLANT PHYSIOLOGY 2024; 194:1304-1322. [PMID: 37394947 DOI: 10.1093/plphys/kiad374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023]
Abstract
Climate change and rapid adaption of invasive pathogens pose a constant pressure on the fruit industry to develop improved varieties. Aiming to accelerate the development of better-adapted cultivars, new breeding techniques have emerged as a promising alternative to meet the demand of a growing global population. Accelerated breeding, cisgenesis, and CRISPR/Cas genome editing hold significant potential for crop trait improvement and have proven to be useful in several plant species. This review focuses on the successful application of these technologies in fruit trees to confer pathogen resistance and tolerance to abiotic stress and improve quality traits. In addition, we review the optimization and diversification of CRISPR/Cas genome editing tools applied to fruit trees, such as multiplexing, CRISPR/Cas-mediated base editing and site-specific recombination systems. Advances in protoplast regeneration and delivery techniques, including the use of nanoparticles and viral-derived replicons, are described for the obtention of exogenous DNA-free fruit tree species. The regulatory landscape and broader social acceptability for cisgenesis and CRISPR/Cas genome editing are also discussed. Altogether, this review provides an overview of the versatility of applications for fruit crop improvement, as well as current challenges that deserve attention for further optimization and potential implementation of new breeding techniques.
Collapse
Affiliation(s)
- Manuela Campa
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
- Department of Genetics, Stellenbosch University, Matieland, South Africa
| | - Simón Miranda
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Concetta Licciardello
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 95024 Acireale, Italy
| | | | - Lorenza Dalla Costa
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Armin Spök
- Science, Technology and Society Unit, Graz University of Technology, Graz, Austria
| | - Mickael Malnoy
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| |
Collapse
|
16
|
Singh VK, Ahmed S, Saini DK, Gahlaut V, Chauhan S, Khandare K, Kumar A, Sharma PK, Kumar J. Manipulating epigenetic diversity in crop plants: Techniques, challenges and opportunities. Biochim Biophys Acta Gen Subj 2024; 1868:130544. [PMID: 38104668 DOI: 10.1016/j.bbagen.2023.130544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Epigenetic modifications act as conductors of inheritable alterations in gene expression, all while keeping the DNA sequence intact, thereby playing a pivotal role in shaping plant growth and development. This review article presents an overview of techniques employed to investigate and manipulate epigenetic diversity in crop plants, focusing on both naturally occurring and artificially induced epialleles. The significance of epigenetic modifications in facilitating adaptive responses is explored through the examination of how various biotic and abiotic stresses impact them. Further, environmental chemicals are explored for their role in inducing epigenetic changes, particularly focusing on inhibitors of DNA methylation like 5-AzaC and zebularine, as well as inhibitors of histone deacetylation including trichostatin A and sodium butyrate. The review delves into various approaches for generating epialleles, including tissue culture techniques, mutagenesis, and grafting, elucidating their potential to induce heritable epigenetic modifications in plants. In addition, the ground breaking CRISPR/Cas is emphasized for its accuracy in targeting specific epigenetic changes. This presents a potent tools for deciphering the intricacies of epigenetic mechanisms. Furthermore, the intricate relationship between epigenetic modifications and non-coding RNA expression, including siRNAs and miRNAs, is investigated. The emerging role of exo-RNAi in epigenetic regulation is also introduced, unveiling its promising potential for future applications. The article concludes by addressing the opportunities and challenges presented by these techniques, emphasizing their implications for crop improvement. Conclusively, this extensive review provides valuable insights into the intricate realm of epigenetic changes, illuminating their significance in phenotypic plasticity and their potential in advancing crop improvement.
Collapse
Affiliation(s)
| | - Shoeb Ahmed
- Ch. Charan Singh University, Meerut 250004, India
| | - Dinesh Kumar Saini
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Vijay Gahlaut
- University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
| | | | - Kiran Khandare
- Center of Innovative and Applied Bioprocessing, Mohali 140308, Punjab, India
| | - Ashutosh Kumar
- Center of Innovative and Applied Bioprocessing, Mohali 140308, Punjab, India
| | - Pradeep Kumar Sharma
- Ch. Charan Singh University, Meerut 250004, India; Maharaja Suhel Dev State University, Azamgarh 276404, U.P., India
| | - Jitendra Kumar
- National Agri-Food Biotechnology Institute, Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
17
|
Kerr SC, Shehnaz S, Paudel L, Manivannan MS, Shaw LM, Johnson A, Velasquez JTJ, Tanurdžić M, Cazzonelli CI, Varkonyi-Gasic E, Prentis PJ. Advancing tree genomics to future proof next generation orchard production. FRONTIERS IN PLANT SCIENCE 2024; 14:1321555. [PMID: 38312357 PMCID: PMC10834703 DOI: 10.3389/fpls.2023.1321555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024]
Abstract
The challenges facing tree orchard production in the coming years will be largely driven by changes in the climate affecting the sustainability of farming practices in specific geographical regions. Identifying key traits that enable tree crops to modify their growth to varying environmental conditions and taking advantage of new crop improvement opportunities and technologies will ensure the tree crop industry remains viable and profitable into the future. In this review article we 1) outline climate and sustainability challenges relevant to horticultural tree crop industries, 2) describe key tree crop traits targeted for improvement in agroecosystem productivity and resilience to environmental change, and 3) discuss existing and emerging genomic technologies that provide opportunities for industries to future proof the next generation of orchards.
Collapse
Affiliation(s)
- Stephanie C Kerr
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Saiyara Shehnaz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lucky Paudel
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Mekaladevi S Manivannan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Lindsay M Shaw
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda Johnson
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Jose Teodoro J Velasquez
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Miloš Tanurdžić
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Peter J Prentis
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
18
|
Aggarwal B, Rajora N, Raturi G, Dhar H, Kadam SB, Mundada PS, Shivaraj SM, Varshney V, Deshmukh R, Barvkar VT, Salvi P, Sonah H. Biotechnology and urban agriculture: A partnership for the future sustainability. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111903. [PMID: 37865210 DOI: 10.1016/j.plantsci.2023.111903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
The global population is growing rapidly, and with it, the demand for food. In the coming decades, more and more people will be living in urban areas, where land for traditional agriculture is scarce. Urban agriculture can help to meet this growing demand for food in a sustainable way. Urban agriculture is the practice of growing food in urban areas. It can be done on rooftops, balconies, vacant lots, and even in alleyways. Urban agriculture can produce a variety of crops, including fruits, vegetables, and herbs. It can also help to improve air quality, reduce stormwater runoff, and create jobs. Biotechnology can be used to improve the efficiency and sustainability of urban agriculture. Biotechnological tools can be used to develop crops that are resistant to pests and diseases, that are more tolerant of drought and heat, and that have higher yields. Biotechnology can also be used to improve the nutritional value of crops. This review article discusses the need for and importance of urban agriculture, biotechnology, and genome editing in meeting the growing demand for food in urban areas. It also discusses the potential of biotechnology to improve the sustainability of urban agriculture.
Collapse
Affiliation(s)
- Bharti Aggarwal
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Nitika Rajora
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Hena Dhar
- Department of Microbiology, School of Biosciences, RIMT University, Mandi Gobindgarh, India
| | - Swapnil B Kadam
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Pankaj S Mundada
- Department of Biotechnology, Yashavantrao Chavan Institute of Science, Satara, India
| | - S M Shivaraj
- National Agri-Food Biotechnology Institute (NABI), Mohali, India; Department of Science, Alliance University, Bengaluru, Karnataka, India
| | - Vishal Varshney
- Govt. Shaheed Gend Singh College, Charama, Chhattisgarh, India
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana (CUH), Mahendergarh, India
| | | | - Prafull Salvi
- National Agri-Food Biotechnology Institute (NABI), Mohali, India.
| | - Humira Sonah
- Department of Biotechnology, Central University of Haryana (CUH), Mahendergarh, India.
| |
Collapse
|
19
|
Martín-Valmaseda M, Devin SR, Ortuño-Hernández G, Pérez-Caselles C, Mahdavi SME, Bujdoso G, Salazar JA, Martínez-Gómez P, Alburquerque N. CRISPR/Cas as a Genome-Editing Technique in Fruit Tree Breeding. Int J Mol Sci 2023; 24:16656. [PMID: 38068981 PMCID: PMC10705926 DOI: 10.3390/ijms242316656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
CRISPR (short for "Clustered Regularly Interspaced Short Palindromic Repeats") is a technology that research scientists use to selectively modify the DNA of living organisms. CRISPR was adapted for use in the laboratory from the naturally occurring genome-editing systems found in bacteria. In this work, we reviewed the methods used to introduce CRISPR/Cas-mediated genome editing into fruit species, as well as the impacts of the application of this technology to activate and knock out target genes in different fruit tree species, including on tree development, yield, fruit quality, and tolerance to biotic and abiotic stresses. The application of this gene-editing technology could allow the development of new generations of fruit crops with improved traits by targeting different genetic segments or even could facilitate the introduction of traits into elite cultivars without changing other traits. However, currently, the scarcity of efficient regeneration and transformation protocols in some species, the fact that many of those procedures are genotype-dependent, and the convenience of segregating the transgenic parts of the CRISPR system represent the main handicaps limiting the potential of genetic editing techniques for fruit trees. Finally, the latest news on the legislation and regulations about the use of plants modified using CRISPR/Cas systems has been also discussed.
Collapse
Affiliation(s)
- Marina Martín-Valmaseda
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain (C.P.-C.); (N.A.)
| | - Sama Rahimi Devin
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (S.R.D.); (S.M.E.M.)
| | - Germán Ortuño-Hernández
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain; (G.O.-H.); (J.A.S.)
| | - Cristian Pérez-Caselles
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain (C.P.-C.); (N.A.)
| | - Sayyed Mohammad Ehsan Mahdavi
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (S.R.D.); (S.M.E.M.)
| | - Geza Bujdoso
- Research Centre for Fruit Growing, Hungarian University of Agriculture and Life Sciences, 1223 Budapest, Hungary;
| | - Juan Alfonso Salazar
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain; (G.O.-H.); (J.A.S.)
| | - Pedro Martínez-Gómez
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain; (G.O.-H.); (J.A.S.)
| | - Nuria Alburquerque
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain (C.P.-C.); (N.A.)
| |
Collapse
|
20
|
Matinvafa MA, Makani S, Parsasharif N, Zahed MA, Movahed E, Ghiasvand S. CRISPR-Cas technology secures sustainability through its applications: a review in green biotechnology. 3 Biotech 2023; 13:383. [PMID: 37920190 PMCID: PMC10618153 DOI: 10.1007/s13205-023-03786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 09/09/2023] [Indexed: 11/04/2023] Open
Abstract
The CRISPR-Cas system's applications in biotechnology offer a promising avenue for addressing pressing global challenges, such as climate change, environmental pollution, the energy crisis, and the food crisis, thereby advancing sustainability. The ever-growing demand for food due to the projected population of around 9.6 billion by 2050 requires innovation in agriculture. CRISPR-Cas technology emerges as a powerful solution, enhancing crop varieties, optimizing yields, and improving resilience to stressors. It offers multiple gene editing, base editing, and prime editing, surpassing conventional methods. CRISPR-Cas introduces disease and herbicide resistance, high-yielding, drought-tolerant, and water-efficient crops to address rising water utilization and to improve the efficiency of agricultural practices which promise food sustainability and revolutionize agriculture for the benefit of future generations. The application of CRISPR-Cas technology extends beyond agriculture to address environmental challenges. With the adverse impacts of climate change and pollution endangering ecosystems, there is a growing need for sustainable solutions. The technology's potential in carbon capture and reduction through bio-sequestration is a pivotal strategy for combating climate change. Genomic advancements allow for the development of genetically modified organisms, optimizing biofuel and biomaterial production, and contributing to a renewable and sustainable energy future. This study reviews the multifaceted applications of CRISPR-Cas technology in the agricultural and environmental fields and emphasizes its potential to secure a sustainable future.
Collapse
Affiliation(s)
- Mohammad Ali Matinvafa
- Department of Biotechnology & Environment, Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Negin Parsasharif
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Ali Zahed
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, NY USA
| | - Saeedeh Ghiasvand
- Department of Biology, Faculty of Basic Science, Malayer University, Malayer, Hamedan, Iran
| |
Collapse
|
21
|
Jacobson S, Bondarchuk N, Nguyen TA, Canada A, McCord L, Artlip TS, Welser P, Klocko AL. Apple CRISPR-Cas9-A Recipe for Successful Targeting of AGAMOUS-like Genes in Domestic Apple. PLANTS (BASEL, SWITZERLAND) 2023; 12:3693. [PMID: 37960050 PMCID: PMC10649517 DOI: 10.3390/plants12213693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Fruit trees and other fruiting hardwood perennials are economically valuable, and there is interest in developing improved varieties. Both conventional breeding and biotechnology approaches are being utilized towards the goal of developing advanced cultivars. Increased knowledge of the effectiveness and efficiency of biotechnology approaches can help guide use of the CRISPR gene-editing technology. Here, we examined CRISPR-Cas9-directed genome editing in the valuable commodity fruit tree Malus x domestica (domestic apple). We transformed two cultivars with dual CRISPR-Cas9 constructs designed to target two AGAMOUS-like genes simultaneously. The main goal was to determine the effectiveness of this approach for achieving target gene changes. We obtained 6 Cas9 control and 38 independent CRISPR-Cas9 events. Of the 38 CRISPR-Cas9 events, 34 (89%) had gene edits and 14 (37%) showed changes to all alleles of both target genes. The most common change was large deletions, which were present in 59% of all changed alleles, followed by small deletions (21%), small insertions (12%), and a combination of small insertions and deletions (8%). Overall, a high rate of successful gene alterations was found. Many of these changes are predicted to cause frameshifts and alterations to the predicted peptides. Future work will include monitoring the floral development and floral form.
Collapse
Affiliation(s)
- Seth Jacobson
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Natalie Bondarchuk
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Thy Anh Nguyen
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Allison Canada
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Logan McCord
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Timothy S. Artlip
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), The Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA;
| | - Philipp Welser
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), The Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA;
| | - Amy L. Klocko
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| |
Collapse
|
22
|
Adero M, Tripathi JN, Tripathi L. Advances in Somatic Embryogenesis of Banana. Int J Mol Sci 2023; 24:10999. [PMID: 37446177 DOI: 10.3390/ijms241310999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The cultivation of bananas and plantains (Musa spp.) holds significant global economic importance, but faces numerous challenges, which may include diverse abiotic and biotic factors such as drought and various diseases caused by fungi, viruses, and bacteria. The genetic and asexual nature of cultivated banana cultivars makes them unattractive for improvement via traditional breeding. To overcome these constraints, modern biotechnological approaches like genetic modification and genome editing have become essential for banana improvement. However, these techniques rely on somatic embryogenesis, which has only been successfully achieved in a limited number of banana cultivars. Therefore, developing new strategies for improving somatic embryogenesis in banana is crucial. This review article focuses on advancements in banana somatic embryogenesis, highlighting the progress, the various stages of regeneration, cryopreservation techniques, and the molecular mechanisms underlying the process. Furthermore, this article discusses the factors that could influence somatic embryogenesis and explores the prospects for improving the process, especially in recalcitrant banana cultivars. By addressing these challenges and exploring potential solutions, researchers aim to unlock the full potential of somatic embryogenesis as a tool for banana improvement, ultimately benefiting the global banana industry.
Collapse
Affiliation(s)
- Mark Adero
- International Institute of Tropical Agriculture (IITA), Nairobi 30709-00100, Kenya
| | | | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi 30709-00100, Kenya
| |
Collapse
|
23
|
Wang Z, Shea Z, Rosso L, Shang C, Li J, Bewick P, Li Q, Zhao B, Zhang B. Development of new mutant alleles and markers for KTI1 and KTI3 via CRISPR/Cas9-mediated mutagenesis to reduce trypsin inhibitor content and activity in soybean seeds. FRONTIERS IN PLANT SCIENCE 2023; 14:1111680. [PMID: 37223818 PMCID: PMC10200896 DOI: 10.3389/fpls.2023.1111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/31/2023] [Indexed: 05/25/2023]
Abstract
The digestibility of soybean meal can be severely impacted by trypsin inhibitor (TI), one of the most abundant anti-nutritional factors present in soybean seeds. TI can restrain the function of trypsin, a critical enzyme that breaks down proteins in the digestive tract. Soybean accessions with low TI content have been identified. However, it is challenging to breed the low TI trait into elite cultivars due to a lack of molecular markers associated with low TI traits. We identified Kunitz trypsin inhibitor 1 (KTI1, Gm01g095000) and KTI3 (Gm08g341500) as two seed-specific TI genes. Mutant kti1 and kti3 alleles carrying small deletions or insertions within the gene open reading frames were created in the soybean cultivar Glycine max cv. Williams 82 (WM82) using the CRISPR/Cas9-mediated genome editing approach. The KTI content and TI activity both remarkably reduced in kti1/3 mutants compared to the WM82 seeds. There was no significant difference in terms of plant growth or maturity days of kti1/3 transgenic and WM82 plants in greenhouse condition. We further identified a T1 line, #5-26, that carried double homozygous kti1/3 mutant alleles, but not the Cas9 transgene. Based on the sequences of kti1/3 mutant alleles in #5-26, we developed markers to co-select for these mutant alleles by using a gel-electrophoresis-free method. The kti1/3 mutant soybean line and associated selection markers will assist in accelerating the introduction of low TI trait into elite soybean cultivars in the future.
Collapse
Affiliation(s)
- Zhibo Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Zachary Shea
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Luciana Rosso
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Chao Shang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
| | - Patrick Bewick
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Qi Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Bingyu Zhao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
24
|
Sharma P, Pandey A, Malviya R, Dey S, Karmakar S, Gayen D. Genome editing for improving nutritional quality, post-harvest shelf life and stress tolerance of fruits, vegetables, and ornamentals. Front Genome Ed 2023; 5:1094965. [PMID: 36911238 PMCID: PMC9998953 DOI: 10.3389/fgeed.2023.1094965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Agricultural production relies on horticultural crops, including vegetables, fruits, and ornamental plants, which sustain human life. With an alarming increase in human population and the consequential need for more food, it has become necessary for increased production to maintain food security. Conventional breeding has subsidized the development of improved verities but to enhance crop production, new breeding techniques need to be acquired. CRISPR-Cas9 system is a unique and powerful genome manipulation tool that can change the DNA in a precise way. Based on the bacterial adaptive immune system, this technique uses an endonuclease that creates double-stranded breaks (DSBs) at the target loci under the guidance of a single guide RNA. These DSBs can be repaired by a cellular repair mechanism that installs small insertion and deletion (indels) at the cut sites. When equated to alternate editing tools like ZFN, TALENs, and meganucleases, CRISPR- The cas-based editing tool has quickly gained fast-forward for its simplicity, ease to use, and low off-target effect. In numerous horticultural and industrial crops, the CRISPR technology has been successfully used to enhance stress tolerance, self-life, nutritional improvements, flavor, and metabolites. The CRISPR-based tool is the most appropriate one with the prospective goal of generating non-transgenic yields and avoiding the regulatory hurdles to release the modified crops into the market. Although several challenges for editing horticultural, industrial, and ornamental crops remain, this new novel nuclease, with its crop-specific application, makes it a dynamic tool for crop improvement.
Collapse
Affiliation(s)
- Punam Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Anuradha Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Rinku Malviya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Sharmistha Dey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | | | - Dipak Gayen
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
25
|
Li WF, Ma ZH, Guo ZG, Zuo CW, Chu MY, Mao J, Chen BH. Insights on the stem elongation of spur-type bud sport mutant of 'Red Delicious' apple. PLANTA 2023; 257:48. [PMID: 36740622 DOI: 10.1007/s00425-023-04086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The decreased capacity of auxin-, CTK-, and BR-mediated cell division and cell enlargement pathways, combined with the enhanced capacity of GA and ETH-, JA-, ABA-, SA-mediated stress-resistant pathways were presumed to be the crucial reasons for the formation of spur-type 'Red Delicious' mutants. Vallee Spur', which exhibit short internodes and compact tree shape, is the fourth generation of the spur-type bud sport mutant of 'Red Delicious'. However, the underlying molecular mechanism of these properties remains unclear. Here, comparative phenotypic, full-length transcriptome and phytohormone analyses were performed between 'Red Delicious' (NSP) and 'Vallee Spur' (SP). The new shoot internode length of NSP was ˃ 1.53-fold higher than that of the SP mutant. Cytological analysis showed that the stem cells of the SP mutant were smaller and more tightly arranged relative to the NSP. By Iso-Seq, a total of 1426 differentially expressed genes (DEGs) were detected, including 808 upregulated and 618 downregulated genes in new shoot apex with 2 leaves of the SP mutant. Gene expressions involved in auxin, cytokinin (CTK), and brassinosteroid (BR) signal transduction were mostly downregulated in the SP mutant, whereas those involved in gibberellin (GA), ethylene (ETH), jasmonate (JA), ABA, and salicylic acid (SA) signal transduction were mostly upregulated. The overall thermogram analysis of hormone levels in the shoot apex carrying two leaves detected by LC-MS/MS absolute quantification showed that the levels of IAA-Asp, IAA, iP7G, OPDA, and 6-deoxyCS were significantly upregulated in the SP mutant, while the remaining 28 hormones were significantly downregulated. It is speculated that the decreased capacity of auxin, CTK, and BR-mediated cell division and cell enlargement pathways is crucial for the formation of the SP mutant. GA and stress-resistant pathways of ETH, JA, ABA, and SA also play vital roles in stem elongation. These results highlight the involvement of phytohormones in the formation of stem elongation occurring in 'Red Delicious' spur-type bud sport mutants and provide information for exploring its biological mechanism.
Collapse
Affiliation(s)
- Wen-Fang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zong-Huan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhi-Gang Guo
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741000, China
| | - Cun-Wu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ming-Yu Chu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Bai-Hong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
26
|
Ma Z, Ma L, Zhou J. Applications of CRISPR/Cas genome editing in economically important fruit crops: recent advances and future directions. MOLECULAR HORTICULTURE 2023; 3:1. [PMID: 37789479 PMCID: PMC10515014 DOI: 10.1186/s43897-023-00049-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/10/2023] [Indexed: 10/05/2023]
Abstract
Fruit crops, consist of climacteric and non-climacteric fruits, are the major sources of nutrients and fiber for human diet. Since 2013, CRISPR/Cas (Clustered Regularly Interspersed Short Palindromic Repeats and CRISPR-Associated Protein) genome editing system has been widely employed in different plants, leading to unprecedented progress in the genetic improvement of many agronomically important fruit crops. Here, we summarize latest advancements in CRISPR/Cas genome editing of fruit crops, including efforts to decipher the mechanisms behind plant development and plant immunity, We also highlight the potential challenges and improvements in the application of genome editing tools to fruit crops, including optimizing the expression of CRISPR/Cas cassette, improving the delivery efficiency of CRISPR/Cas reagents, increasing the specificity of genome editing, and optimizing the transformation and regeneration system. In addition, we propose the perspectives on the application of genome editing in crop breeding especially in fruit crops and highlight the potential challenges. It is worth noting that efforts to manipulate fruit crops with genome editing systems are urgently needed for fruit crops breeding and demonstration.
Collapse
Affiliation(s)
- Zhimin Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Lijing Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Junhui Zhou
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China.
| |
Collapse
|
27
|
Manipulating GA-Related Genes for Cereal Crop Improvement. Int J Mol Sci 2022; 23:ijms232214046. [PMID: 36430524 PMCID: PMC9696284 DOI: 10.3390/ijms232214046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The global population is projected to experience a rapid increase in the future, which poses a challenge to global food sustainability. The "Green Revolution" beginning in the 1960s allowed grain yield to reach two billion tons in 2000 due to the introduction of semi-dwarfing genes in cereal crops. Semi-dwarfing genes reduce the gibberellin (GA) signal, leading to short plant stature, which improves the lodging resistance and harvest index under modern fertilization practices. Here, we reviewed the literature on the function of GA in plant growth and development, and the role of GA-related genes in controlling key agronomic traits that contribute to grain yield in cereal crops. We showed that: (1) GA is a significant phytohormone in regulating plant development and reproduction; (2) GA metabolism and GA signalling pathways are two key components in GA-regulated plant growth; (3) GA interacts with other phytohormones manipulating plant development and reproduction; and (4) targeting GA signalling pathways is an effective genetic solution to improve agronomic traits in cereal crops. We suggest that the modification of GA-related genes and the identification of novel alleles without a negative impact on yield and adaptation are significant in cereal crop breeding for plant architecture improvement. We observed that an increasing number of GA-related genes and their mutants have been functionally validated, but only a limited number of GA-related genes have been genetically modified through conventional breeding tools and are widely used in crop breeding successfully. New genome editing technologies, such as the CRISPR/Cas9 system, hold the promise of validating the effectiveness of GA-related genes in crop development and opening a new venue for efficient and accelerated crop breeding.
Collapse
|
28
|
Kalaitzandonakes N, Willig C, Zahringer K. The economics and policy of genome editing in crop improvement. THE PLANT GENOME 2022:e20248. [PMID: 36321718 DOI: 10.1002/tpg2.20248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 06/16/2023]
Abstract
In this review article we analyze the economics of genome editing and its potential long-term effect on crop improvement and agriculture. We describe the emergence of genome editing as a novel platform for crop improvement, distinct from the existing platforms of plant breeding and genetic engineering. We review key technical characteristics of genome editing and describe how it enables faster trait development, lower research and development costs, and the development of novel traits not possible through previous crop improvement methods. Given these fundamental technical and economic advantages, we describe how genome editing can greatly increase the productivity and broaden the scope of crop improvement with potential outsized economic effects. We further discuss how the global regulatory policy environment, which is still emerging, can shape the ultimate path of genome editing innovation, its effect on crop improvement, and its overall socioeconomic benefits to society.
Collapse
Affiliation(s)
| | | | - Kenneth Zahringer
- Division of Applied Social Sciences, Univ. of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
29
|
Justine AK, Kaur N, Savita, Pati PK. Biotechnological interventions in banana: current knowledge and future prospects. Heliyon 2022; 8:e11636. [DOI: 10.1016/j.heliyon.2022.e11636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/01/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
|
30
|
Hamdan MF, Karlson CKS, Teoh EY, Lau SE, Tan BC. Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192625. [PMID: 36235491 PMCID: PMC9573444 DOI: 10.3390/plants11192625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 05/05/2023]
Abstract
Climate change poses a serious threat to global agricultural activity and food production. Plant genome editing technologies have been widely used to develop crop varieties with superior qualities or can tolerate adverse environmental conditions. Unlike conventional breeding techniques (e.g., selective breeding and mutation breeding), modern genome editing tools offer more targeted and specific alterations of the plant genome and could significantly speed up the progress of developing crops with desired traits, such as higher yield and/or stronger resilience to the changing environment. In this review, we discuss the current development and future applications of genome editing technologies in mitigating the impacts of biotic and abiotic stresses on agriculture. We focus specifically on the CRISPR/Cas system, which has been the center of attention in the last few years as a revolutionary genome-editing tool in various species. We also conducted a bibliographic analysis on CRISPR-related papers published from 2012 to 2021 (10 years) to identify trends and potential in the CRISPR/Cas-related plant research. In addition, this review article outlines the current shortcomings and challenges of employing genome editing technologies in agriculture with notes on future prospective. We believe combining conventional and more innovative technologies in agriculture would be the key to optimizing crop improvement beyond the limitations of traditional agricultural practices.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chou Khai Soong Karlson
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ee Yang Teoh
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: ; Tel.: +60-3-7967-7982
| |
Collapse
|
31
|
Hamdan MF, Karlson CKS, Teoh EY, Lau SE, Tan BC. Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022. [PMID: 36235491 DOI: 10.1007/s44187-022-00009-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Climate change poses a serious threat to global agricultural activity and food production. Plant genome editing technologies have been widely used to develop crop varieties with superior qualities or can tolerate adverse environmental conditions. Unlike conventional breeding techniques (e.g., selective breeding and mutation breeding), modern genome editing tools offer more targeted and specific alterations of the plant genome and could significantly speed up the progress of developing crops with desired traits, such as higher yield and/or stronger resilience to the changing environment. In this review, we discuss the current development and future applications of genome editing technologies in mitigating the impacts of biotic and abiotic stresses on agriculture. We focus specifically on the CRISPR/Cas system, which has been the center of attention in the last few years as a revolutionary genome-editing tool in various species. We also conducted a bibliographic analysis on CRISPR-related papers published from 2012 to 2021 (10 years) to identify trends and potential in the CRISPR/Cas-related plant research. In addition, this review article outlines the current shortcomings and challenges of employing genome editing technologies in agriculture with notes on future prospective. We believe combining conventional and more innovative technologies in agriculture would be the key to optimizing crop improvement beyond the limitations of traditional agricultural practices.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chou Khai Soong Karlson
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ee Yang Teoh
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
32
|
Zhang X, Zhao B, Sun Y, Feng Y. Effects of gibberellins on important agronomic traits of horticultural plants. FRONTIERS IN PLANT SCIENCE 2022; 13:978223. [PMID: 36267949 PMCID: PMC9578688 DOI: 10.3389/fpls.2022.978223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Horticultural plants such as vegetables, fruits, and ornamental plants are crucial to human life and socioeconomic development. Gibberellins (GAs), a class of diterpenoid compounds, control numerous developmental processes of plants. The roles of GAs in regulating growth and development of horticultural plants, and in regulating significant progress have been clarified. These findings have significant implications for promoting the quality and quantity of the products of horticultural plants. Here we review recent progress in determining the roles of GAs (including biosynthesis and signaling) in regulating plant stature, axillary meristem outgrowth, compound leaf development, flowering time, and parthenocarpy. These findings will provide a solid foundation for further improving the quality and quantity of horticultural plants products.
Collapse
Affiliation(s)
- Xiaojia Zhang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Baolin Zhao
- Chinese Academy of Science (CAS) Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, China
| | - Yibo Sun
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yulong Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
33
|
Xiao Y, Sha G, Wang D, Gao R, Qie B, Cong L, Zhai R, Yang C, Wang Z, Xu L. PbXND1 Results in a Xylem-Deficient Dwarf Phenotype through Interaction with PbTCP4 in Pear (Pyrus bretschneideri Rehd.). Int J Mol Sci 2022; 23:ijms23158699. [PMID: 35955831 PMCID: PMC9369282 DOI: 10.3390/ijms23158699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Dwarfing is an important agronomic characteristic in fruit breeding. However, due to the lack of dwarf cultivars and dwarf stocks, the dwarfing mechanism is poorly understood in pears. In this research, we discovered that the dwarf hybrid seedlings of pear (Pyrus bretschneideri Rehd.), ‘Red Zaosu,’ exhibited a xylem-deficient dwarf phenotype. The expression level of PbXND1, a suppressor of xylem development, was markedly enhanced in dwarf hybrid seedlings and its overexpression in pear results in a xylem-deficient dwarf phenotype. To further dissect the mechanism of PbXND1, PbTCP4 was isolated as a PbXND1 interaction protein through the pear yeast library. Root transformation experiments showed that PbTCP4 promotes root xylem development. Dual-luciferase assays showed that PbXND1 interactions with PbTCP4 suppressed the function of PbTCP4. PbXND1 expression resulted in a small amount of PbTCP4 sequestration in the cytoplasm and thereby prevented it from activating the gene expression, as assessed by bimolecular fluorescence complementation and co-location analyses. Additionally, PbXND1 affected the DNA-binding ability of PbTCP4, as determined by utilizing an electrophoretic mobility shift assay. These results suggest that PbXND1 regulates the function of PbTCP4 principally by affecting the DNA-binding ability of PbTCP4, whereas the cytoplasmic sequestration of PbTCP4 is only a minor factor. Taken together, this study provides new theoretical support for the extreme dwarfism associated with the absence of xylem caused by PbXND1, and it has significant reference value for the breeding of dwarf varieties and dwarf rootstocks of the pear.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lingfei Xu
- Correspondence: ; Tel.: +86-029-87081023
| |
Collapse
|
34
|
Wen Y, Liu H, Meng H, Qiao L, Zhang G, Cheng Z. In vitro Induction and Phenotypic Variations of Autotetraploid Garlic ( Allium sativum L.) With Dwarfism. FRONTIERS IN PLANT SCIENCE 2022; 13:917910. [PMID: 35812906 PMCID: PMC9258943 DOI: 10.3389/fpls.2022.917910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 05/16/2023]
Abstract
Garlic (Allium sativum L.) is a compelling horticultural crop with high culinary and therapeutic values. Commercial garlic varieties are male-sterile and propagated asexually from individual cloves or bulbils. Consequently, its main breeding strategy has been confined to the time-consuming and inefficient selection approach from the existing germplasm. Polyploidy, meanwhile, plays a prominent role in conferring plants various changes in morphological, physiological, and ecological properties. Artificial polyploidy induction has gained pivotal attention to generate new genotype for further crop improvement as a mutational breeding method. In our study, efficient and reliable in vitro induction protocols of autotetraploid garlic were established by applying different antimitotic agents based on high-frequency direct shoot organogenesis initiated from inflorescence explant. The explants were cultured on solid medium containing various concentrations of colchicine or oryzalin for different duration days. Afterward, the ploidy levels of regenerated plantlets with stable and distinguished characters were confirmed by flow cytometry and chromosome counting. The colchicine concentration at 0.2% (w/v) combined with culture duration for 20 days was most efficient (the autotetraploid induction rate was 21.8%) compared to the induction rate of 4.3% using oryzalin at 60 μmol L-1 for 20 days. No polymorphic bands were detected by simple sequence repeat analysis between tetraploid and diploid plantlets. The tetraploids exhibited a stable and remarkable dwarfness effect rarely reported in artificial polyploidization among wide range of phenotypic variations. There are both morphological and cytological changes including extremely reduced plant height, thickening and broadening of leaves, disappearance of pseudostem, density reduction, and augmented width of stomatal. Furthermore, the level of phytohormones, including, indole propionic acid, gibberellin, brassinolide, zeatin, dihydrozeatin, and methyl jasmonate, was significantly lower in tetraploids than those in diploid controls, except indole acetic acid and abscisic acid, which could partly explain the dwarfness in hormonal regulation aspect. Moreover, as the typical secondary metabolites of garlic, organosulfur compounds including allicin, diallyl disulfide, and diallyl trisulfide accumulated a higher content significantly in tetraploids. The obtained dwarf genotype of autotetraploid garlic could bring new perspectives for the artificial polyploids breeding and be implemented as a new germplasm to facilitate investigation into whole-genome doubling consequences.
Collapse
Affiliation(s)
- Yanbin Wen
- College of Horticulture, Northwest A&F University, Xianyang, China
- Development Center of Fruit Vegetable and Herbal Tea, Datong, China
| | - Hongjiu Liu
- College of Horticulture, Northwest A&F University, Xianyang, China
| | - Huanwen Meng
- College of Horticulture, Northwest A&F University, Xianyang, China
| | - Lijun Qiao
- College of Horticulture, Northwest A&F University, Xianyang, China
| | - Guoqing Zhang
- Business School, Shanxi Datong University, Datong, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Xianyang, China
| |
Collapse
|
35
|
Paciorek T, Chiapelli BJ, Wang JY, Paciorek M, Yang H, Sant A, Val DL, Boddu J, Liu K, Gu C, Brzostowski LF, Wang H, Allen EM, Dietrich CR, Gillespie KM, Edwards J, Goldshmidt A, Neelam A, Slewinski TL. Targeted suppression of gibberellin biosynthetic genes ZmGA20ox3 and ZmGA20ox5 produces a short stature maize ideotype. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1140-1153. [PMID: 35244326 PMCID: PMC9129074 DOI: 10.1111/pbi.13797] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 06/12/2023]
Abstract
Maize is one of the world's most widely cultivated crops. As future demands for maize will continue to rise, fields will face ever more frequent and extreme weather patterns that directly affect crop productivity. Development of environmentally resilient crops with improved standability in the field, like wheat and rice, was enabled by shifting the architecture of plants to a short stature ideotype. However, such architectural change has not been implemented in maize due to the unique interactions between gibberellin (GA) and floral morphology which limited the use of the same type of mutations as in rice and wheat. Here, we report the development of a short stature maize ideotype in commercial hybrid germplasm, which was generated by targeted suppression of the biosynthetic pathway for GA. To accomplish this, we utilized a dominant, miRNA-based construct expressed in a hemizygous state to selectively reduce expression of the ZmGA20ox3 and ZmGA20ox5 genes that control GA biosynthesis primarily in vegetative tissues. Suppression of both genes resulted in the reduction of GA levels leading to inhibition of cell elongation in internodal tissues, which reduced plant height. Expression of the miRNA did not alter GA levels in reproductive tissues, and thus, the reproductive potential of the plants remained unchanged. As a result, we developed a dominant, short-stature maize ideotype that is conducive for the commercial production of hybrid maize. We expect that the new maize ideotype would enable more efficient and more sustainable maize farming for a growing world population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kang Liu
- Bayer Crop ScienceChesterfieldMOUSA
| | - Chiyu Gu
- Bayer Crop ScienceChesterfieldMOUSA
| | | | | | | | | | | | | | - Alexander Goldshmidt
- Bayer Crop ScienceChesterfieldMOUSA
- Present address:
Department of Field Crops ScienceInstitute of Plant ScienceAgricultural Research OrganizationThe Volcani CenterP.O. Box 15159Rishon Lezion7528809Israel
| | | | | |
Collapse
|
36
|
Tripathi L, Dhugga KS, Ntui VO, Runo S, Syombua ED, Muiruri S, Wen Z, Tripathi JN. Genome Editing for Sustainable Agriculture in Africa. Front Genome Ed 2022; 4:876697. [PMID: 35647578 PMCID: PMC9133388 DOI: 10.3389/fgeed.2022.876697] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/21/2022] [Indexed: 12/25/2022] Open
Abstract
Sustainable intensification of agriculture in Africa is essential for accomplishing food and nutritional security and addressing the rising concerns of climate change. There is an urgent need to close the yield gap in staple crops and enhance food production to feed the growing population. In order to meet the increasing demand for food, more efficient approaches to produce food are needed. All the tools available in the toolbox, including modern biotechnology and traditional, need to be applied for crop improvement. The full potential of new breeding tools such as genome editing needs to be exploited in addition to conventional technologies. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-based genome editing has rapidly become the most prevalent genetic engineering approach for developing improved crop varieties because of its simplicity, efficiency, specificity, and easy to use. Genome editing improves crop variety by modifying its endogenous genome free of any foreign gene. Hence, genome-edited crops with no foreign gene integration are not regulated as genetically modified organisms (GMOs) in several countries. Researchers are using CRISPR/Cas-based genome editing for improving African staple crops for biotic and abiotic stress resistance and improved nutritional quality. Many products, such as disease-resistant banana, maize resistant to lethal necrosis, and sorghum resistant to the parasitic plant Striga and enhanced quality, are under development for African farmers. There is a need for creating an enabling environment in Africa with science-based regulatory guidelines for the release and adoption of the products developed using CRISPR/Cas9-mediated genome editing. Some progress has been made in this regard. Nigeria and Kenya have recently published the national biosafety guidelines for the regulation of gene editing. This article summarizes recent advances in developments of tools, potential applications of genome editing for improving staple crops, and regulatory policies in Africa.
Collapse
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | | | - Valentine O. Ntui
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | | | - Easter D. Syombua
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | - Samwel Muiruri
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- Kenyatta University, Nairobi, Kenya
| | - Zhengyu Wen
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | |
Collapse
|
37
|
Naik BJ, Shimoga G, Kim SC, Manjulatha M, Subramanyam Reddy C, Palem RR, Kumar M, Kim SY, Lee SH. CRISPR/Cas9 and Nanotechnology Pertinence in Agricultural Crop Refinement. FRONTIERS IN PLANT SCIENCE 2022; 13:843575. [PMID: 35463432 PMCID: PMC9024397 DOI: 10.3389/fpls.2022.843575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/07/2022] [Indexed: 05/08/2023]
Abstract
The CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9) method is a versatile technique that can be applied in crop refinement. Currently, the main reasons for declining agricultural yield are global warming, low rainfall, biotic and abiotic stresses, in addition to soil fertility issues caused by the use of harmful chemicals as fertilizers/additives. The declining yields can lead to inadequate supply of nutritional food as per global demand. Grains and horticultural crops including fruits, vegetables, and ornamental plants are crucial in sustaining human life. Genomic editing using CRISPR/Cas9 and nanotechnology has numerous advantages in crop development. Improving crop production using transgenic-free CRISPR/Cas9 technology and produced fertilizers, pesticides, and boosters for plants by adopting nanotechnology-based protocols can essentially overcome the universal food scarcity. This review briefly gives an overview on the potential applications of CRISPR/Cas9 and nanotechnology-based methods in developing the cultivation of major agricultural crops. In addition, the limitations and major challenges of genome editing in grains, vegetables, and fruits have been discussed in detail by emphasizing its applications in crop refinement strategy.
Collapse
Affiliation(s)
- Banavath Jayanna Naik
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Jeju, South Korea
| | - Ganesh Shimoga
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, South Korea
| | - Seong-Cheol Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Jeju, South Korea
| | | | | | | | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul, South Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, South Korea
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, Seoul, South Korea
| |
Collapse
|
38
|
Sharma P, Singh SP, Iqbal HM, Parra-Saldivar R, Varjani S, Tong YW. Genetic modifications associated with sustainability aspects for sustainable developments. Bioengineered 2022; 13:9508-9520. [PMID: 35389819 PMCID: PMC9161841 DOI: 10.1080/21655979.2022.2061146] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sustainable development serves as the foundation for a range of international and national policymaking. Traditional breeding methods have been used to modify plant genomes and production. Genetic engineering is the practice of assisting agricultural systems in adapting to rapidly changing global growth by hastening the breeding of new varieties. On the other hand, the development of genetic engineering has enabled more precise control over the genomic alterations made in recent decades. Genetic changes from one species can now be introduced into a completely unrelated species, increasing agricultural output or making certain elements easier to manufacture. Harvest plants and soil microorganisms are just a few of the more well-known genetically modified creatures. Researchers assess current studies and illustrate the possibility of genetically modified organisms (GMOs) from the perspectives of various stakeholders. GMOs increase yields, reduce costs, and reduce agriculture's terrestrial and ecological footprint. Modern technology benefits innovators, farmers, and consumers alike. Agricultural biotechnology has numerous applications, each with its own set of potential consequences. This will be able to reach its full potential if more people have access to technology and excessive regulation is avoided. This paper covers the regulations for genetically modified crops (GMCs) as well as the economic implications. It also includes sections on biodiversity and environmental impact, as well as GMCs applications. This recounts biotechnological interventions for long-term sustainability in the field of GMCs, as well as the challenges and opportunities in this field of research.Abbreviations: GMCs-Genetically modified crops; GMOs- Genetically modified organisms; GE- Genetic engineering; Bt- Bacillus thuringiensisNIH- National Institutes of Health; FDA- Food and Drug Administration; HGT- Horizontal gene transfer; GM- Genetically modified; rDNA- Ribosomal deoxyribonucleic acid; USDA- United States Department of Agriculture; NIH- National Institutes of Health.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, D.A.V. College, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Roberto Parra-Saldivar
- FEMSA, Tecnológico de MonterreyEscuela de Ingeniería y Ciencias- Centro de Biotecnología-, Monterrey, Mexico
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, India
- CONTACT Sunita Varjani ; Yen Wah Tong Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| |
Collapse
|
39
|
Tripathi L, Ntui VO, Tripathi JN. Control of Bacterial Diseases of Banana Using CRISPR/Cas-Based Gene Editing. Int J Mol Sci 2022; 23:3619. [PMID: 35408979 PMCID: PMC8998688 DOI: 10.3390/ijms23073619] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/30/2022] Open
Abstract
Banana is an important staple food crop and a source of income for smallholder farmers in about 150 tropical and sub-tropical countries. Several bacterial diseases, such as banana Xanthomonas wilt (BXW), blood, and moko disease, cause substantial impacts on banana production. There is a vast yield gap in the production of bananas in regions where bacterial pathogens and several other pathogens and pests are present together in the same field. BXW disease caused by Xanthomonas campestris pv. musacearum is reported to be the most destructive banana disease in East Africa. The disease affects all the banana varieties grown in the region. Only the wild-type diploid banana, Musa balbisiana, is resistant to BXW disease. Developing disease-resistant varieties of bananas is one of the most effective strategies to manage diseases. Recent advances in CRISPR/Cas-based gene editing techniques can accelerate banana improvement. Some progress has been made to create resistance against bacterial pathogens using CRISPR/Cas9-mediated gene editing by knocking out the disease-causing susceptibility (S) genes or activating the expression of the plant defense genes. A synopsis of recent advancements and perspectives on the application of gene editing for the control of bacterial wilt diseases are presented in this article.
Collapse
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi P.O. Box 30709-00100, Kenya; (V.O.N.); (J.N.T.)
| | | | | |
Collapse
|
40
|
Bhakta S, Tak H, Ganapathi TR. Exploring diverse roles of micro RNAs in banana: Current status and future prospective. PHYSIOLOGIA PLANTARUM 2021; 173:1323-1334. [PMID: 33305854 DOI: 10.1111/ppl.13311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Micro RNAs (miRNAs) are 20-24 nucleotides long non-coding RNA sequences identified and characterized in multiple plant and animal systems. miRNAs play multifarious roles ranging from plant development to stress tolerance by synchronizing physiological processes at the level of transcription and translation. Banana is a major horticultural crop with colossal production worldwide. Despite the recent encouraging developments, the information on functions of miRNAs in banana plants is still in its infancy. The available literature pertaining to miRNAs in banana plants hints towards their contribution as master regulators in crucial physiological processes for instance abiotic stress responses, pathogenic defence response, fruit ripening and so on. This review is focused on biogenesis of miRNAs, their identification and deciphering their respective roles in banana plants with special emphasis on abiotic stress responses, plant immune responses, fruit ripening and storage. Based on the prior reports, we identified a few miRNAs with prospective roles in stress tolerance and illustrated the potential applications of miRNAs in banana crop improvement utilizing recent biotechnological tools such as CRISPR cas9, RNAi and the nano particle based foliar spray of miRNAs. The review briefly explained the future directions in banana research with a special emphasis on miRNA regulatory networks and agronomic traits improvement. Finally, future domains in miRNA research in plants and their possible applications towards crop improvement in agriculture are described briefly.
Collapse
Affiliation(s)
- Subham Bhakta
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Thumballi R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
41
|
Wang B, Li N, Huang S, Hu J, Wang Q, Tang Y, Yang T, Asmutola P, Wang J, Yu Q. Enhanced soluble sugar content in tomato fruit using CRISPR/Cas9-mediated SlINVINH1 and SlVPE5 gene editing. PeerJ 2021; 9:e12478. [PMID: 34820200 PMCID: PMC8588851 DOI: 10.7717/peerj.12478] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/20/2021] [Indexed: 01/12/2023] Open
Abstract
Soluble sugar is known to improve the sweetness and increase tomato sauce yield. Studies have focused on improving the content of soluble sugar in tomato fruits, usually by promoting functional genes. We studied two genes (SlINVINH1 and SlVPE5) that inhibited the accumulation of soluble sugar in tomato fruits and obtained two genes’ knocked-out lines (CRISPR-invinh1 or CRISPR-vpe5) using CRISPR/Cas9. Aggregated lines with CRISPR-invinh1 and CRISPR-vpe5 were gained by hybridization and self-pollination. Compared to wild-type lines, the glucose, fructose, and total soluble solid (TSS) contents of CRISPR-invinh1 and CRISPR-vpe5 increased significantly. Glucose, fructose, and TSS levels further improved simultaneously with CRISPR-invinh1 and CRISPR-vpe5 than with single gene knock-out lines. This indicates that these genes have a synergistic effect and will increase the soluble sugar content. Thus, the knock-out SlINVINH1 and SlVPE5 may provide a practical basis for improving the sweetness of tomato fruits and their processing quality.
Collapse
Affiliation(s)
- Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Shaoyong Huang
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Jiahui Hu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Qiang Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Yaping Tang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Patiguli Asmutola
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
42
|
Zhao G, Luo C, Luo J, Li J, Gong H, Zheng X, Liu X, Guo J, Zhou L, Wu H. A mutation in LacDWARF1 results in a GA-deficient dwarf phenotype in sponge gourd (Luffa acutangula). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3443-3457. [PMID: 34390352 PMCID: PMC8440308 DOI: 10.1007/s00122-021-03938-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/07/2020] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE A dwarfism gene LacDWARF1 was mapped by combined BSA-Seq and comparative genomics analyses to a 65.4 kb physical genomic region on chromosome 05. Dwarf architecture is one of the most important traits utilized in Cucurbitaceae breeding because it saves labor and increases the harvest index. To our knowledge, there has been no prior research about dwarfism in the sponge gourd. This study reports the first dwarf mutant WJ209 with a decrease in cell size and internodes. A genetic analysis revealed that the mutant phenotype was controlled by a single recessive gene, which is designated Lacdwarf1 (Lacd1). Combined with bulked segregate analysis and next-generation sequencing, we quickly mapped a 65.4 kb region on chromosome 5 using F2 segregation population with InDel and SNP polymorphism markers. Gene annotation revealed that Lac05g019500 encodes a gibberellin 3β-hydroxylase (GA3ox) that functions as the most likely candidate gene for Lacd1. DNA sequence analysis showed that there is an approximately 4 kb insertion in the first intron of Lac05g019500 in WJ209. Lac05g019500 is transcribed incorrectly in the dwarf mutant owing to the presence of the insertion. Moreover, the bioactive GAs decreased significantly in WJ209, and the dwarf phenotype could be restored by exogenous GA3 treatment, indicating that WJ209 is a GA-deficient mutant. All these results support the conclusion that Lac05g019500 is the Lacd1 gene. In addition, RNA-Seq revealed that many genes, including those related to plant hormones, cellular process, cell wall, membrane and response to stress, were significantly altered in WJ209 compared with the wild type. This study will aid in the use of molecular marker-assisted breeding in the dwarf sponge gourd.
Collapse
Affiliation(s)
- Gangjun Zhao
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Caixia Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- College of Agriculture & Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Jianning Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Junxing Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Hao Gong
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Xiaoming Zheng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Xiaoxi Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Jinju Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Lingyan Zhou
- College of Agriculture & Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Haibin Wu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
43
|
Venezia M, Creasey Krainer KM. Current Advancements and Limitations of Gene Editing in Orphan Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:742932. [PMID: 34630494 PMCID: PMC8493294 DOI: 10.3389/fpls.2021.742932] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/20/2021] [Indexed: 05/23/2023]
Abstract
Gene editing provides precise, heritable genome mutagenesis without permanent transgenesis, and has been widely demonstrated and applied in planta. In the past decade, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) has revolutionized the application of gene editing in crops, with mechanistic advances expanding its potential, including prime editing and base editing. To date, CRISPR/Cas has been utilized in over a dozen orphan crops with diverse genetic backgrounds, leading to novel alleles and beneficial phenotypes for breeders, growers, and consumers. In conjunction with the adoption of science-based regulatory practices, there is potential for CRISPR/Cas-mediated gene editing in orphan crop improvement programs to solve a plethora of agricultural problems, especially impacting developing countries. Genome sequencing has progressed, becoming more affordable and applicable to orphan crops. Open-access resources allow for target gene identification and guide RNA (gRNA) design and evaluation, with modular cloning systems and enzyme screening methods providing experimental feasibility. While the genomic and mechanistic limitations are being overcome, crop transformation and regeneration continue to be the bottleneck for gene editing applications. International collaboration between all stakeholders involved in crop improvement is vital to provide equitable access and bridge the scientific gap between the world's most economically important crops and the most under-researched crops. This review describes the mechanisms and workflow of CRISPR/Cas in planta and addresses the challenges, current applications, and future prospects in orphan crops.
Collapse
|
44
|
Savadi S, Mangalassery S, Sandesh MS. Advances in genomics and genome editing for breeding next generation of fruit and nut crops. Genomics 2021; 113:3718-3734. [PMID: 34517092 DOI: 10.1016/j.ygeno.2021.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Fruit tree crops are an essential part of the food production systems and are key to achieve food and nutrition security. Genetic improvement of fruit trees by conventional breeding has been slow due to the long juvenile phase. Advancements in genomics and molecular biology have paved the way for devising novel genetic improvement tools like genome editing, which can accelerate the breeding of these perennial crops to a great extent. In this article, advancements in genomics of fruit trees covering genome sequencing, transcriptome sequencing, genome editing technologies (GET), CRISPR-Cas system based genome editing, potential applications of CRISPR-Cas9 in fruit tree crops improvement, the factors influencing the CRISPR-Cas editing efficiency and the challenges for CRISPR-Cas9 applications in fruit tree crops improvement are reviewed. Besides, base editing, a recently emerging more precise editing system, and the future perspectives of genome editing in the improvement of fruit and nut crops are covered.
Collapse
Affiliation(s)
- Siddanna Savadi
- ICAR- Directorate of Cashew Research (DCR), Puttur 574 202, Dakshina Kannada, Karnataka, India.
| | | | - M S Sandesh
- ICAR- Directorate of Cashew Research (DCR), Puttur 574 202, Dakshina Kannada, Karnataka, India
| |
Collapse
|
45
|
Karavolias NG, Horner W, Abugu MN, Evanega SN. Application of Gene Editing for Climate Change in Agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.685801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Climate change imposes a severe threat to agricultural systems, food security, and human nutrition. Meanwhile, efforts in crop and livestock gene editing have been undertaken to improve performance across a range of traits. Many of the targeted phenotypes include attributes that could be beneficial for climate change adaptation. Here, we present examples of emerging gene editing applications and research initiatives that are aimed at the improvement of crops and livestock in response to climate change, and discuss technical limitations and opportunities therein. While only few applications of gene editing have been translated to agricultural production thus far, numerous studies in research settings have demonstrated the potential for potent applications to address climate change in the near future.
Collapse
|
46
|
Kashtwari M, Mansoor S, Wani AA, Najar MA, Deshmukh RK, Baloch FS, Abidi I, Zargar SM. Random mutagenesis in vegetatively propagated crops: opportunities, challenges and genome editing prospects. Mol Biol Rep 2021; 49:5729-5749. [PMID: 34427889 DOI: 10.1007/s11033-021-06650-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022]
Abstract
In order to meet the growing human food and nutrition demand a perpetual process of crop improvement is idealized. It has seen changing trends and varying concepts throughout human history; from simple selection to complex gene-editing. Among these techniques, random mutagenesis has been shown to be a promising technology to achieve desirable genetic gain with less time and minimal efforts. Over the decade, several hundred varieties have been released through random mutagenesis, but the production is falling behind the demand. Several food crops like banana, potato, cassava, sweet potato, apple, citrus, and others are vegetatively propagated. Since such crops are not propagated through seed, genetic improvement through classical breeding is impractical for them. Besides, in the case of polyploids, accomplishment of allelic homozygosity requires a considerable land area, extensive fieldwork with huge manpower, and hefty funding for an extended period of time. Apart from induction, mapping of induced genes to facilitate the knowledge of biological processes has been performed only in a few selected facultative vegetative crops like banana and cassava which can form a segregating population. During the last few decades, there has been a shift in the techniques used for crop improvement. With the introduction of the robust technologies like meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) more and more crops are being subjected to gene editing. However, more work needs to be done in case of vegetatively propagated crops.
Collapse
Affiliation(s)
- Mahpara Kashtwari
- Cytogenetics and Molecular Biology Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Sheikh Mansoor
- Division of Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology, FBSc, Jammu, Jammu and Kashmir, 180009, India
| | - Aijaz A Wani
- Cytogenetics and Molecular Biology Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India.
| | - Mushtaq Ahmad Najar
- Cytogenetics and Molecular Biology Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Rupesh K Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140308, India
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Ishfaq Abidi
- Directorate of Research, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Jammu and Kashmir, 190025, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Jammu and Kashmir, 190025, India.
| |
Collapse
|
47
|
Lobato-Gómez M, Hewitt S, Capell T, Christou P, Dhingra A, Girón-Calva PS. Transgenic and genome-edited fruits: background, constraints, benefits, and commercial opportunities. HORTICULTURE RESEARCH 2021; 8:166. [PMID: 34274949 PMCID: PMC8286259 DOI: 10.1038/s41438-021-00601-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/14/2021] [Accepted: 05/20/2021] [Indexed: 05/14/2023]
Abstract
Breeding has been used successfully for many years in the fruit industry, giving rise to most of today's commercial fruit cultivars. More recently, new molecular breeding techniques have addressed some of the constraints of conventional breeding. However, the development and commercial introduction of such novel fruits has been slow and limited with only five genetically engineered fruits currently produced as commercial varieties-virus-resistant papaya and squash were commercialized 25 years ago, whereas insect-resistant eggplant, non-browning apple, and pink-fleshed pineapple have been approved for commercialization within the last 6 years and production continues to increase every year. Advances in molecular genetics, particularly the new wave of genome editing technologies, provide opportunities to develop new fruit cultivars more rapidly. Our review, emphasizes the socioeconomic impact of current commercial fruit cultivars developed by genetic engineering and the potential impact of genome editing on the development of improved cultivars at an accelerated rate.
Collapse
Affiliation(s)
- Maria Lobato-Gómez
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio CERCA Center, Lleida, 25198, Spain
| | - Seanna Hewitt
- Department of Horticulture, Washington State University, PO Box, 646414, Pullman, WA, USA
| | - Teresa Capell
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio CERCA Center, Lleida, 25198, Spain
| | - Paul Christou
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio CERCA Center, Lleida, 25198, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, 08010, Barcelona, Spain
| | - Amit Dhingra
- Department of Horticulture, Washington State University, PO Box, 646414, Pullman, WA, USA
| | - Patricia Sarai Girón-Calva
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio CERCA Center, Lleida, 25198, Spain.
| |
Collapse
|
48
|
Sattar MN, Iqbal Z, Al-Khayri JM, Jain SM. Induced Genetic Variations in Fruit Trees Using New Breeding Tools: Food Security and Climate Resilience. PLANTS (BASEL, SWITZERLAND) 2021; 10:1347. [PMID: 34371550 PMCID: PMC8309169 DOI: 10.3390/plants10071347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022]
Abstract
Fruit trees provide essential nutrients to humans by contributing to major agricultural outputs and economic growth globally. However, major constraints to sustainable agricultural productivity are the uncontrolled proliferation of the population, and biotic and abiotic stresses. Tree mutation breeding has been substantially improved using different physical and chemical mutagens. Nonetheless, tree plant breeding has certain crucial bottlenecks including a long life cycle, ploidy level, occurrence of sequence polymorphisms, nature of parthenocarpic fruit development and linkage. Genetic engineering of trees has focused on boosting quality traits such as productivity, wood quality, and resistance to biotic and abiotic stresses. Recent technological advances in genome editing provide a unique opportunity for the genetic improvement of woody plants. This review examines application of the CRISPR-Cas system to reduce disease susceptibility, alter plant architecture, enhance fruit quality, and improve yields. Examples are discussed of the contemporary CRISPR-Cas system to engineer easily scorable PDS genes, modify lignin, and to alter the flowering onset, fertility, tree architecture and certain biotic stresses.
Collapse
Affiliation(s)
- Muhammad Naeem Sattar
- Central Laboratories, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.N.S.); (Z.I.)
| | - Zafar Iqbal
- Central Laboratories, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.N.S.); (Z.I.)
| | - Jameel M. Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - S. Mohan Jain
- Department of Agricultural Sciences, PL-27, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
49
|
Perspectives for epigenetic editing in crops. Transgenic Res 2021; 30:381-400. [PMID: 33891288 DOI: 10.1007/s11248-021-00252-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/29/2021] [Indexed: 01/10/2023]
Abstract
Site-specific nucleases (SSNs) have drawn much attention in plant biotechnology due to their ability to drive precision mutagenesis, gene targeting or allele replacement. However, when devoid of its nuclease activity, the underlying DNA-binding activity of SSNs can be used to bring other protein functional domains close to specific genomic sites, thus expanding further the range of applications of the technology. In particular, the addition of functional domains encoding epigenetic effectors and chromatin modifiers to the CRISPR/Cas ribonucleoprotein complex opens the possibility to introduce targeted epigenomic modifications in plants in an easily programmable manner. Here we examine some of the most important agronomic traits known to be controlled epigenetically and review the best studied epigenetic catalytic effectors in plants, such as DNA methylases/demethylases or histone acetylases/deacetylases and their associated marks. We also review the most efficient strategies developed to date to functionalize Cas proteins with both catalytic and non-catalytic epigenetic effectors, and the ability of these domains to influence the expression of endogenous genes in a regulatable manner. Based on these new technical developments, we discuss the possibilities offered by epigenetic editing tools in plant biotechnology and their implications in crop breeding.
Collapse
|
50
|
Genome editing in fruit, ornamental, and industrial crops. Transgenic Res 2021; 30:499-528. [PMID: 33825100 DOI: 10.1007/s11248-021-00240-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/25/2021] [Indexed: 01/24/2023]
Abstract
The advent of genome editing has opened new avenues for targeted trait enhancement in fruit, ornamental, industrial, and all specialty crops. In particular, CRISPR-based editing systems, derived from bacterial immune systems, have quickly become routinely used tools for research groups across the world seeking to edit plant genomes with a greater level of precision, higher efficiency, reduced off-target effects, and overall ease-of-use compared to ZFNs and TALENs. CRISPR systems have been applied successfully to a number of horticultural and industrial crops to enhance fruit ripening, increase stress tolerance, modify plant architecture, control the timing of flower development, and enhance the accumulation of desired metabolites, among other commercially-important traits. As editing technologies continue to advance, so too does the ability to generate improved crop varieties with non-transgenic modifications; in some crops, direct transgene-free edits have already been achieved, while in others, T-DNAs have successfully been segregated out through crossing. In addition to the potential to produce non-transgenic edited crops, and thereby circumvent regulatory impediments to the release of new, improved crop varieties, targeted gene editing can speed up trait improvement in crops with long juvenile phases, reducing inputs resulting in faster market introduction to the market. While many challenges remain regarding optimization of genome editing in ornamental, fruit, and industrial crops, the ongoing discovery of novel nucleases with niche specialties for engineering applications may form the basis for additional and potentially crop-specific editing strategies.
Collapse
|