1
|
Fu X, Li R, Liu X, Cheng L, Ge S, Wang S, Cai Y, Zhang T, Shi CL, Meng S, Tan C, Jiang CZ, Li T, Qi M, Xu T. CPK10 regulates low light-induced tomato flower drop downstream of IDL6 in a calcium-dependent manner. PLANT PHYSIOLOGY 2024; 196:2014-2029. [PMID: 39218791 DOI: 10.1093/plphys/kiae406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/13/2024] [Accepted: 06/01/2024] [Indexed: 09/04/2024]
Abstract
Flower drop is a major cause for yield loss in many crops. Previously, we found that the tomato (Solanum lycopersicum) INFLORESCENCE DEFICIENT IN ABSCISSION-Like (SlIDL6) gene contributes to flower drop induced by low light. However, the molecular mechanisms by which SlIDL6 acts as a signal to regulate low light-induced abscission remain unclear. In this study, SlIDL6 was found to elevate cytosolic Ca2+ concentrations ([Ca2+]cyt) in the abscission zone (AZ), which was required for SlIDL6-induced flower drop under low light. We further identified that 1 calcium-dependent protein kinase gene, SlCPK10, was highly expressed in the AZ and upregulated by SlIDL6-triggered [Ca2+]cyt. Overexpression and knockout of SlCPK10 in tomato resulted in accelerated and delayed abscission, respectively. Genetic evidence further indicated that knockout of SlCPK10 significantly impaired the function of SlIDL6 in accelerating abscission. Furthermore, Ser-371 phosphorylation in SlCPK10 dependent on SlIDL6 was necessary and sufficient for its function in regulating flower drop, probably by stabilizing the SlCPK10 proteins. Taken together, our findings reveal that SlCPK10, as a downstream component of the IDL6 signaling pathway, regulates flower drop in tomato under low-light stress.
Collapse
Affiliation(s)
- Xin Fu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Xianfeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Siqi Ge
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Sai Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Yue Cai
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Tong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | | | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Changhua Tan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA
- Department of Plant Sciences, University of California at Davis, CA 95616, USA
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| |
Collapse
|
2
|
Ginnan NA, Custódio V, Gopaulchan D, Ford N, Salas-González I, Jones DD, Wells DM, Moreno Â, Castrillo G, Wagner MR. Persistent legacy effects on soil metagenomes facilitate plant adaptive responses to drought. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609769. [PMID: 39253412 PMCID: PMC11383273 DOI: 10.1101/2024.08.26.609769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Both chronic and acute drought alter the composition and physiology of soil microbiomes, with implications for globally important processes including carbon cycling and plant productivity. When water is scarce, selection favors microbes with thicker peptidoglycan cell walls, sporulation ability, and constitutive osmolyte production (Schimel, Balser, and Wallenstein 2007)-but also the ability to degrade complex plant-derived polysaccharides, suggesting that the success of plants and microbes during drought are inextricably linked. However, communities vary enormously in their drought responses and subsequent interactions with plants. Hypothesized causes of this variation in drought resilience include soil texture, soil chemistry, and historical precipitation patterns that shaped the starting communities and their constituent species (Evans, Allison, and Hawkes 2022). Currently, the physiological and molecular mechanisms of microbial drought responses and microbe-dependent plant drought responses in diverse natural soils are largely unknown (de Vries et al. 2023). Here, we identify numerous microbial taxa, genes, and functions that characterize soil microbiomes with legacies of chronic water limitation. Soil microbiota from historically dry climates buffered plants from the negative effects of subsequent acute drought, but only for a wild grass species native to the same region, and not for domesticated maize. In particular, microbiota with a legacy of chronic water limitation altered the expression of a small subset of host genes in crown roots, which mediated the effect of acute drought on transpiration and intrinsic water use efficiency. Our results reveal how long-term exposure to water stress alters soil microbial communities at the metagenomic level, and demonstrate the resulting "legacy effects" on neighboring plants in unprecedented molecular and physiological detail.
Collapse
|
3
|
Liu W, Wei JW, Shan Q, Liu M, Xu J, Gong B. Genetic engineering of drought- and salt-tolerant tomato via Δ1-pyrroline-5-carboxylate reductase S-nitrosylation. PLANT PHYSIOLOGY 2024; 195:1038-1052. [PMID: 38478428 DOI: 10.1093/plphys/kiae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 06/02/2024]
Abstract
Drought and soil salinization substantially impact agriculture. While proline's role in enhancing stress tolerance is known, the exact molecular mechanism by which plants process stress signals and control proline synthesis under stress is still not fully understood. In tomato (Solanum lycopersicum L.), drought and salt stress stimulate nitric oxide (NO) production, which boosts proline synthesis by activating Δ1-pyrroline-5-carboxylate synthetase (SlP5CS) and Δ1-pyrroline-5-carboxylate reductase (SlP5CR) genes and the P5CR enzyme. The crucial factor is stress-triggered NO production, which regulates the S-nitrosylation of SlP5CR at Cys-5, thereby increasing its NAD(P)H affinity and enzymatic activity. S-nitrosylation of SlP5CR enables tomato plants to better adapt to changing NAD(P)H levels, boosting both SlP5CR activity and proline synthesis during stress. By comparing tomato lines genetically modified to express different forms of SlP5CR, including a variant mimicking S-nitrosylation (SlP5CRC5W), we found that SlP5CRC5W plants show superior growth and stress tolerance. This is attributed to better P5CR activity, proline production, water use efficiency, reactive oxygen species scavenging, and sodium excretion. Overall, this study demonstrates that tomato engineered to mimic S-nitrosylated SlP5CR exhibits enhanced growth and yield under drought and salt stress conditions, highlighting a promising approach for stress-tolerant tomato cultivation.
Collapse
Affiliation(s)
- Wei Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jin-Wei Wei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Shan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Minghui Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jinghao Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Biao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
4
|
Kalra A, Goel S, Elias AA. Understanding role of roots in plant response to drought: Way forward to climate-resilient crops. THE PLANT GENOME 2024; 17:e20395. [PMID: 37853948 DOI: 10.1002/tpg2.20395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
Drought stress leads to a significant amount of agricultural crop loss. Thus, with changing climatic conditions, it is important to develop resilience measures in agricultural systems against drought stress. Roots play a crucial role in regulating plant development under drought stress. In this review, we have summarized the studies on the role of roots and root-mediated plant responses. We have also discussed the importance of root system architecture (RSA) and the various structural and anatomical changes that it undergoes to increase survival and productivity under drought. Various genes, transcription factors, and quantitative trait loci involved in regulating root growth and development are also discussed. A summarization of various instruments and software that can be used for high-throughput phenotyping in the field is also provided in this review. More comprehensive studies are required to help build a detailed understanding of RSA and associated traits for breeding drought-resilient cultivars.
Collapse
Affiliation(s)
- Anmol Kalra
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Ani A Elias
- ICFRE - Institute of Forest Genetics and Tree Breeding (ICFRE - IFGTB), Coimbatore, India
| |
Collapse
|
5
|
Wan S, Liang B, Yang L, Hu W, Kuang L, Song J, Xie J, Huang Y, Liu D, Liu Y. The MADS-box family gene PtrANR1 encodes a transcription activator promoting root growth and enhancing plant tolerance to drought stress. PLANT CELL REPORTS 2023; 43:16. [PMID: 38135839 DOI: 10.1007/s00299-023-03121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
KEY MESSAGE PtrANR1 positively regulates plant drought tolerance by increasing proline level and reducing ROS accumulation. PtrANR1 directly activates PtrAUX1 expression to promote root growth and improve plant drought tolerance. Citrus quality and yield are severely declined under drought stress. To date, the effects of MADS-box family transcription factors (TFs) on plant drought resistance have made some progress. However, whether MADS-box family TFs are associated with citrus drought response has remained unclear. The current paper identified a MADS-box family gene PtrANR1 encoding anthocyanidin reductase from trifoliate orange. PtrANR1 exhibits high identities with ANR1 proteins found in various plants. PtrANR1 possesses two conserved domains known as MADS and kertanin-like domains. PtrANR1 is a nuclear protein which has transactivation activity. A significant induction of PtrANR1 transcript was detected in leaves and roots of trifoliate orange treated with PEG6000 and ABA. Under drought stress, Arabidopsis ectopic overexpressing PtrANR1 exhibited obviously elevated contents of proline, ABA and IAA, better developed root, enhanced antioxidant enzyme activities, as well as notably reduced accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS) compared with WT plants. However, opposite change trends of these physiological indices were detected in PtrANR1 homolog silencing lemon. Furthermore, transgenic Arabidopsis displayed significantly increased expression levels in genes associated with ABA, IAA and proline production, IAA polar transport, ROS elimination and drought response. However, these genes exhibited noticeably decreased transcript levels in PtrANR1 homolog silencing lemon. Moreover, PtrANR1 could increase IAA content and promote root growth by binding to GArG-box in the promoter of PtrAUX1 to activate its transcript. These findings indicated that PtrANR1 had a beneficial impact on plant drought resistance through promoting root development, increasing proline accumulation and scavenging of ROS.
Collapse
Affiliation(s)
- Shiguo Wan
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Beibei Liang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Li Yang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wei Hu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liuqing Kuang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jie Song
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jingheng Xie
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yingjie Huang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dechun Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Yong Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
6
|
da Cruz TI, Rocha DC, Lanna AC, Dedicova B, Vianello RP, Brondani C. Calcium-Dependent Protein Kinase 5 ( OsCPK5) Overexpression in Upland Rice ( Oryza sativa L.) under Water Deficit. PLANTS (BASEL, SWITZERLAND) 2023; 12:3826. [PMID: 38005723 PMCID: PMC10674721 DOI: 10.3390/plants12223826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Water deficit significantly affects global crop growth and productivity, particularly in water-limited environments, such as upland rice cultivation, reducing grain yield. Plants activate various defense mechanisms during water deficit, involving numerous genes and complex metabolic pathways. Exploring homologous genes that are linked to enhanced drought tolerance through the use of genomic data from model organisms can aid in the functional validation of target species. We evaluated the upland rice OsCPK5 gene, an A. thaliana AtCPK6 homolog, by overexpressing it in the BRSMG Curinga cultivar. Transformants were assessed using a semi-automated phenotyping platform under two irrigation conditions: regular watering, and water deficit applied 79 days after seeding, lasting 14 days, followed by irrigation at 80% field capacity. The physiological data and leaf samples were collected at reproductive stages R3, R6, and R8. The genetically modified (GM) plants consistently exhibited higher OsCPK5 gene expression levels across stages, peaking during grain filling, and displayed reduced stomatal conductance and photosynthetic rate and increased water-use efficiency compared to non-GM (NGM) plants under drought. The GM plants also exhibited a higher filled grain percentage under both irrigation conditions. Their drought susceptibility index was 0.9 times lower than that of NGM plants, and they maintained a higher chlorophyll a/b index, indicating sustained photosynthesis. The NGM plants under water deficit exhibited more leaf senescence, while the OsCPK5-overexpressing plants retained their green leaves. Overall, OsCPK5 overexpression induced diverse drought tolerance mechanisms, indicating the potential for future development of more drought-tolerant rice cultivars.
Collapse
Affiliation(s)
- Thaís Ignez da Cruz
- Escola de Agronomia, Universidade Federal de Goiás, Goiânia 74690-900, Brazil;
| | | | - Anna Cristina Lanna
- Embrapa Arroz e Feijão, Santo Antônio de Goiás 75375-000, Brazil; (A.C.L.); (R.P.V.)
| | - Beata Dedicova
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Sundsvägen 10, P.O. Box 101, SE-230 53 Alnarp, Sweden;
| | | | - Claudio Brondani
- Embrapa Arroz e Feijão, Santo Antônio de Goiás 75375-000, Brazil; (A.C.L.); (R.P.V.)
| |
Collapse
|
7
|
Liu S, Zenda T, Tian Z, Huang Z. Metabolic pathways engineering for drought or/and heat tolerance in cereals. FRONTIERS IN PLANT SCIENCE 2023; 14:1111875. [PMID: 37810398 PMCID: PMC10557149 DOI: 10.3389/fpls.2023.1111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Drought (D) and heat (H) are the two major abiotic stresses hindering cereal crop growth and productivity, either singly or in combination (D/+H), by imposing various negative impacts on plant physiological and biochemical processes. Consequently, this decreases overall cereal crop production and impacts global food availability and human nutrition. To achieve global food and nutrition security vis-a-vis global climate change, deployment of new strategies for enhancing crop D/+H stress tolerance and higher nutritive value in cereals is imperative. This depends on first gaining a mechanistic understanding of the mechanisms underlying D/+H stress response. Meanwhile, functional genomics has revealed several stress-related genes that have been successfully used in target-gene approach to generate stress-tolerant cultivars and sustain crop productivity over the past decades. However, the fast-changing climate, coupled with the complexity and multigenic nature of D/+H tolerance suggest that single-gene/trait targeting may not suffice in improving such traits. Hence, in this review-cum-perspective, we advance that targeted multiple-gene or metabolic pathway manipulation could represent the most effective approach for improving D/+H stress tolerance. First, we highlight the impact of D/+H stress on cereal crops, and the elaborate plant physiological and molecular responses. We then discuss how key primary metabolism- and secondary metabolism-related metabolic pathways, including carbon metabolism, starch metabolism, phenylpropanoid biosynthesis, γ-aminobutyric acid (GABA) biosynthesis, and phytohormone biosynthesis and signaling can be modified using modern molecular biotechnology approaches such as CRISPR-Cas9 system and synthetic biology (Synbio) to enhance D/+H tolerance in cereal crops. Understandably, several bottlenecks hinder metabolic pathway modification, including those related to feedback regulation, gene functional annotation, complex crosstalk between pathways, and metabolomics data and spatiotemporal gene expressions analyses. Nonetheless, recent advances in molecular biotechnology, genome-editing, single-cell metabolomics, and data annotation and analysis approaches, when integrated, offer unprecedented opportunities for pathway engineering for enhancing crop D/+H stress tolerance and improved yield. Especially, Synbio-based strategies will accelerate the development of climate resilient and nutrient-dense cereals, critical for achieving global food security and combating malnutrition.
Collapse
Affiliation(s)
- Songtao Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Zaimin Tian
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Zhihong Huang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| |
Collapse
|
8
|
Sinclair TR, Ghanem ME. Realistic Physiological Options to Increase Grain Legume Yield under Drought. PLANTS (BASEL, SWITZERLAND) 2023; 12:3137. [PMID: 37687383 PMCID: PMC10490141 DOI: 10.3390/plants12173137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Increasing yield resiliency under water deficits remains a high priority for crop improvement. In considering the yield benefit of a plant trait modification, two facts are often overlooked: (1) the total amount of water available to a crop through a growing season ultimately constrains growth and yield cannot exceed what is possible with the limited amount of available water, and (2) soil water content always changes over time, so plant response needs to be considered within a temporally dynamic context of day-to-day variation in soil water status. Many previous evaluations of drought traits have implicitly considered water deficit from a "static" perspective, but while the static approach of stable water deficit treatments is experimentally congruous, the results are not realistic representations of real-world drought conditions, where soil water levels are always changing. No trait always results in a positive response under all drought scenarios. In this paper, we suggest two key traits for improving grain legume yield under water deficit conditions: (1) partial stomata closure at elevated atmospheric vapor pressure deficit that results in soil water conservation, and (2) lessening of the high sensitivity of nitrogen fixation activity to soil drying.
Collapse
Affiliation(s)
- Thomas R. Sinclair
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC 27695-7620, USA
| | - Michel E. Ghanem
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France;
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
| |
Collapse
|
9
|
Wirojsirasak W, Songsri P, Jongrungklang N, Tangphatsornruang S, Klomsa-ard P, Ukoskit K. A Large-Scale Candidate-Gene Association Mapping for Drought Tolerance and Agronomic Traits in Sugarcane. Int J Mol Sci 2023; 24:12801. [PMID: 37628982 PMCID: PMC10454574 DOI: 10.3390/ijms241612801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Dissection of the genetic loci controlling drought tolerance traits with a complex genetic inheritance is important for drought-tolerant sugarcane improvement. In this study, we conducted a large-scale candidate gene association study of 649 candidate genes in a sugarcane diversity panel to identify genetic variants underlying agronomic traits and drought tolerance indices evaluated in plant cane and ratoon cane under water-stressed (WS) and non-stressed (NS) environments. We identified 197 significant marker-trait associations (MTAs) in 141 candidate genes associated with 18 evaluated traits with the Bonferroni correction threshold (α = 0.05). Out of the total, 95 MTAs in 78 candidate genes and 62 MTAs in 58 candidate genes were detected under NS and WS conditions, respectively. Most MTAs were found only in specific water regimes and crop seasons. These MTAs explained 7.93-30.52% of phenotypic variation. Association mapping results revealed that 34, 59, and 104 MTAs involved physiological and molecular adaptation, phytohormone metabolism, and drought-inducible genes. They identified 19 pleiotropic genes associated with more than one trait and many genes related to drought tolerance indices. The genetic and genomic resources identified in this study will enable the combining of yield-related traits and sugar-related traits with agronomic value to optimize the yield of sugarcane cultivars grown under drought-stressed and non-stressed environments.
Collapse
Affiliation(s)
- Warodom Wirojsirasak
- Department of Biotechnology, Faculty of Science and Technology, Rangsit Campus, Thammasat University, Pathum Thani 12120, Thailand;
- Mitr Phol Innovation and Research Center, Chaiyaphum 36110, Thailand;
| | - Patcharin Songsri
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (N.J.)
- Northeast Thailand Cane and Sugar Research Center, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nakorn Jongrungklang
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (N.J.)
- Northeast Thailand Cane and Sugar Research Center, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | | | - Kittipat Ukoskit
- Department of Biotechnology, Faculty of Science and Technology, Rangsit Campus, Thammasat University, Pathum Thani 12120, Thailand;
| |
Collapse
|
10
|
Han F, Wang P, Chen X, Zhao H, Zhu Q, Song Y, Nie Y, Li Y, Guo M, Niu S. An ethylene-induced NAC transcription factor acts as a multiple abiotic stress responsor in conifer. HORTICULTURE RESEARCH 2023; 10:uhad130. [PMID: 37560016 PMCID: PMC10407601 DOI: 10.1093/hr/uhad130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/13/2023] [Indexed: 08/11/2023]
Abstract
The proper response to various abiotic stresses is essential for plants' survival to overcome their sessile nature, especially for perennial trees with very long-life cycles. However, in conifers, the molecular mechanisms that coordinate multiple abiotic stress responses remain elusive. Here, the transcriptome response to various abiotic stresses like salt, cold, drought, heat shock and osmotic were systematically detected in Pinus tabuliformis (P. tabuliformis) seedlings. We found that four transcription factors were commonly induced by all tested stress treatments, while PtNAC3 and PtZFP30 were highly up-regulated and co-expressed. Unexpectedly, the exogenous hormone treatment assays and the content of the endogenous hormone indicates that the upregulation of PtNAC3 and PtZFP30 are mediated by ethylene. Time-course assay showed that the treatment by ethylene immediate precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), activated the expression of PtNAC3 and PtZFP30 within 8 hours. We further confirm that the PtNAC3 can directly bind to the PtZFP30 promoter region and form a cascade. Overexpression of PtNAC3 enhanced unified abiotic stress tolerance without growth penalty in transgenic Arabidopsis and promoted reproductive success under abiotic stress by shortening the lifespan, suggesting it has great potential as a biological tool applied to plant breeding for abiotic stress tolerance. This study provides novel insights into the hub nodes of the abiotic stresses response network as well as the environmental adaptation mechanism in conifers, and provides a potential biofortification tool to enhance plant unified abiotic stress tolerance.
Collapse
Affiliation(s)
- Fangxu Han
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Peiyi Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xi Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Huanhuan Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qianya Zhu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yitong Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yumeng Nie
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yue Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meina Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
11
|
Saadaoui W, Tarchoun N, Msetra I, Pavli O, Falleh H, Ayed C, Amami R, Ksouri R, Petropoulos SA. Effects of drought stress induced by D-Mannitol on the germination and early seedling growth traits, physiological parameters and phytochemicals content of Tunisian squash ( Cucurbita maximaDuch.) landraces. FRONTIERS IN PLANT SCIENCE 2023; 14:1215394. [PMID: 37600166 PMCID: PMC10432687 DOI: 10.3389/fpls.2023.1215394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023]
Abstract
Introduction Drought stress is one of the most devastating environmental stressors, especially in the arid and semi-arid regions of the world. Considering the major constraints that drought stress poses to crop production and the consequent yield losses in food crops, breeding for climate-resilient crops is an efficient means to mitigate stress conditions. Materials and methods This study aimed at evaluating the response of four squash (Cucurbita maxima Duchesne) landraces to drought stress at germination and at plant stage. Drought stress was induced by different concentrations of D-mannitol (-0.24, -0.47 and -0.73 MPa). The tested parameters at germination stage included germination percentage, seedling vigor index, seed water absorbance and seedling growth potential. At the plant stage, leaf chlorophyll and carotenoids content, chlorophyll fluorescence, evapotranspiration, photosynthesis activity and several biomarkers, namely malondialdehyde, proline, total phenols content, total flavonoids content and DPPH radical scavenging activity were evaluated in both roots and leaves. Results and discussion Our results indicate a magnitude of drought stress effects reflected via repression of germination and seedling growth as well as adjustments in physiological functions at later growth stages, in a genotype depended manner. Among landraces, "751" and "746" showed better performance, as evidenced by higher seed germination and seedling growth potential even at high stress levels (-0.47 and - 0.73 MPa), whereas "747" was the most sensitive landrace to drought stress at both tested stages. In conclusion, our findings highlight the importance of squash landraces selection for the identification of elite genotypes with increased tolerance to drought stress.
Collapse
Affiliation(s)
- Wassim Saadaoui
- Research Laboratory LR21AGR05, High Agronomic Institute of ChottMariem, University of Sousse, Sousse, Tunisia
| | - Neji Tarchoun
- Research Laboratory LR21AGR05, High Agronomic Institute of ChottMariem, University of Sousse, Sousse, Tunisia
| | - Insaf Msetra
- Research Laboratory LR21AGR05, High Agronomic Institute of ChottMariem, University of Sousse, Sousse, Tunisia
| | - Ourania Pavli
- Laboratory of Genetics and Plant Breeding, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Hanen Falleh
- Laboratory of Aromatic and Medicinal Plant, Centre of Biotechnology of Borj Cedria, Tunis, Tunisia
| | - Chadha Ayed
- Research Laboratory LR21AGR05, High Agronomic Institute of ChottMariem, University of Sousse, Sousse, Tunisia
| | - Roua Amami
- Research Laboratory LR21AGR05, High Agronomic Institute of ChottMariem, University of Sousse, Sousse, Tunisia
| | - Riadh Ksouri
- Laboratory of Aromatic and Medicinal Plant, Centre of Biotechnology of Borj Cedria, Tunis, Tunisia
| | - Spyridon A. Petropoulos
- Laboratory of Vegetable Production, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| |
Collapse
|
12
|
Hamouzová K, Sen MK, Bharati R, Košnarová P, Chawdhery MRA, Roy A, Soukup J. Calcium signalling in weeds under herbicide stress: An outlook. FRONTIERS IN PLANT SCIENCE 2023; 14:1135845. [PMID: 37035053 PMCID: PMC10080077 DOI: 10.3389/fpls.2023.1135845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
The continuous use of herbicides for controlling weeds has led to the evolution of resistance to all major herbicidal modes of action globally. Every year, new cases of herbicide resistance are reported. Resistance is still in progress in many species, which must be stopped before it becomes a worldwide concern. Several herbicides are known to cause stressful conditions that resemble plant abiotic stresses. Variation in intracellular calcium (Ca2+) concentration is a primary event in a wide range of biological processes in plants, including adaptation to various biotic and abiotic stresses. Ca2+ acts as a secondary messenger, connecting various environmental stimuli to different biological processes, especially during stress rejoindering in plants. Even though many studies involving Ca2+ signalling in plants have been published, there have been no studies on the roles of Ca2+ signalling in herbicide stress response. Hence, this mini-review will highlight the possible sensing and molecular communication via Ca2+ signals in weeds under herbicide stress. It will also discuss some critical points regarding integrating the sensing mechanisms of multiple stress conditions and subsequent molecular communication. These signalling responses must be addressed in the future, enabling researchers to discover new herbicidal targets.
Collapse
Affiliation(s)
- Katerina Hamouzová
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Madhab Kumar Sen
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Excellent Team for Mitigation (E.T.M.), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Rohit Bharati
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavlína Košnarová
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Md Rafique Ahasan Chawdhery
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Amit Roy
- Excellent Team for Mitigation (E.T.M.), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Josef Soukup
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
13
|
Wang X, Wang M, Yan G, Yang H, Wei G, Shen T, Wan Z, Zheng W, Fang S, Wu Z. Comparative analysis of drought stress-induced physiological and transcriptional changes of two black sesame cultivars during anthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1117507. [PMID: 36895884 PMCID: PMC9989188 DOI: 10.3389/fpls.2023.1117507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Sesame production is severely affected by unexpected drought stress during flowering stage. However, little is known about dynamic drought-responsive mechanisms during anthesis in sesame, and no particular attention was given to black sesame, the most common ingredient in East Asia traditional medicine. Herein, we investigated drought-responsive mechanisms of two contrasting black sesame cultivars (Jinhuangma, JHM, and Poyanghei, PYH) during anthesis. Compared to PYH, JHM plants showed higher tolerance to drought stress through the maintenance of biological membrane properties, high induction of osmoprotectants' biosynthesis and accumulation, and significant enhancement of the activities of antioxidant enzymes. For instance, the drought stress induced a significant increase in the content of soluble protein (SP), soluble sugar (SS), proline (PRO), glutathione (GSH), as well as the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) in leaves and roots of JHM plants compared to PYH plants. RNA sequencing followed by differentially expressed genes (DEGs) analysis revealed that more genes were significantly induced under drought in JHM than in PYH plants. Functional enrichment analyses disclosed that several pathways related to drought stress tolerance, such as photosynthesis, amino acids and fatty acid metabolisms, peroxisome, ascorbate and aldarate metabolism, plant hormone signal transduction, biosynthesis of secondary metabolites, and glutathione metabolism, were highly stimulated in JHM than in PYH plants. Thirty-one (31) key highly induced DEGs, including transcription factors and glutathione reductase and ethylene biosynthetic genes, were identified as potential candidate genes for improving black sesame drought stress tolerance. Our findings show that a strong antioxidant system, biosynthesis and accumulation of osmoprotectants, TFs (mainly ERFs and NACs), and phytohormones are essential for black sesame drought tolerance. Moreover, they provide resources for functional genomic studies toward molecular breeding of drought-tolerant black sesame varieties.
Collapse
Affiliation(s)
- Xiaohui Wang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Institute of Garden Science and Technology, Nanchang City Gardening Service Center, Nanchang, China
| | - Min Wang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Gui Yan
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Huiyi Yang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Guangwei Wei
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Tinghai Shen
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Zehua Wan
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Wei Zheng
- Crop Cultivation Laboratory, Jiangxi Institute of Red Soil and Germplasm Resource, Nanchang, China
| | - Sheng Fang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Ziming Wu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
14
|
Yang Y, Chaffin TA, Ahkami AH, Blumwald E, Stewart CN. Plant synthetic biology innovations for biofuels and bioproducts. Trends Biotechnol 2022; 40:1454-1468. [PMID: 36241578 DOI: 10.1016/j.tibtech.2022.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 01/21/2023]
Abstract
Plant-based biosynthesis of fuels, chemicals, and materials promotes environmental sustainability, which includes decreases in greenhouse gas emissions, water pollution, and loss of biodiversity. Advances in plant synthetic biology (synbio) should improve precision and efficacy of genetic engineering for sustainability. Applicable synbio innovations include genome editing, gene circuit design, synthetic promoter development, gene stacking technologies, and the design of environmental sensors. Moreover, recent advancements in developing spatially resolved and single-cell omics contribute to the discovery and characterization of cell-type-specific mechanisms and spatiotemporal gene regulations in distinct plant tissues for the expression of cell- and tissue-specific genes, resulting in improved bioproduction. This review highlights recent plant synbio progress and new single-cell molecular profiling towards sustainable biofuel and biomaterial production.
Collapse
Affiliation(s)
- Yongil Yang
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Timothy Alexander Chaffin
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Charles Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
15
|
Ke Y, Xu M, Hwarari D, Chen J, Yang L. Genomic Survey of Heat Shock Proteins in Liriodendron chinense Provides Insight into Evolution, Characterization, and Functional Diversities. Int J Mol Sci 2022; 23:ijms232315051. [PMID: 36499378 PMCID: PMC9739435 DOI: 10.3390/ijms232315051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Heat shock proteins (HSPs) are conserved molecular chaperones whose main role is to facilitate the regulation of plant growth and stress responses. The HSP gene family has been characterized in most plants and elucidated as generally stress-induced, essential for their cytoprotective roles in cells. However, the HSP gene family has not yet been analyzed in the Liriodendron chinense genome. In current study, 60 HSP genes were identified in the L. chinense genome, including 7 LchiHSP90s, 23 LchiHSP70s, and 30 LchiHSP20s. We investigated the phylogenetic relationships, gene structure and arrangement, gene duplication events, cis-acting elements, 3D-protein structures, protein-protein interaction networks, and temperature stress responses in the identified L. chinense HSP genes. The results of the comparative phylogenetic analysis of HSP families in 32 plant species showed that LchiHSPs are closely related to the Cinnamomum kanehirae HSP gene family. Duplication events analysis showed seven segmental and six tandem duplication events that occurred in the LchiHSP gene family, which we speculated to have played an important role in the LchiHSP gene expansion and evolution. Furthermore, the Ka/Ks analysis indicated that these genes underwent a purifying selection. Analysis in the promoter region evidenced that the promoter region LchiHSPs carry many stress-responsive and hormone-related cis-elements. Investigations in the gene expression patterns of the LchiHSPs using transcriptome data and the qRT-PCR technique indicated that most LchiHSPs were responsive to cold and heat stress. In total, our results provide new insights into understanding the LchiHSP gene family function and their regulatory mechanisms in response to abiotic stresses.
Collapse
Affiliation(s)
- Yongchao Ke
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Mingyue Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Delight Hwarari
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (J.C.); (L.Y.)
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (J.C.); (L.Y.)
| |
Collapse
|
16
|
Liang B, Wan S, Ma Q, Yang L, Hu W, Kuang L, Xie J, Huang Y, Liu D, Liu Y. A Novel bHLH Transcription Factor PtrbHLH66 from Trifoliate Orange Positively Regulates Plant Drought Tolerance by Mediating Root Growth and ROS Scavenging. Int J Mol Sci 2022; 23:ijms232315053. [PMID: 36499381 PMCID: PMC9740576 DOI: 10.3390/ijms232315053] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Drought limits citrus yield and fruit quality worldwide. The basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in plant response to drought stress. However, few bHLH TFs related to drought response have been functionally characterized in citrus. In this study, a bHLH family gene, named PtrbHLH66, was cloned from trifoliate orange. PtrbHLH66 contained a highly conserved bHLH domain and was clustered closely with bHLH66 homologs from other plant species. PtrbHLH66 was localized to the nucleus and had transcriptional activation activity. The expression of PtrbHLH66 was significantly induced by polyethylene glycol 6000 (PEG6000) and abscisic acid (ABA) treatments. Ectopic expression of PtrbHLH66 promoted the seed germination and root growth, increased the proline and ABA contents and the activities of antioxidant enzymes, but reduced the accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS) under drought stress, resulting in enhanced drought tolerance of transgenic Arabidopsis. In contrast, silencing the PtrbHLH66 homolog in lemon plants showed the opposite effects. Furthermore, under drought stress, the transcript levels of 15 genes involved in ABA biosynthesis, proline biosynthesis, ROS scavenging and drought response were obviously upregulated in PtrbHLH66 ectopic-expressing Arabidopsis but downregulated in PtrbHLH66 homolog silencing lemon. Thus, our results suggested that PtrbHLH66 acted as a positive regulator of plant drought resistance by regulating root growth and ROS scavenging.
Collapse
|
17
|
Crop Root Responses to Drought Stress: Molecular Mechanisms, Nutrient Regulations, and Interactions with Microorganisms in the Rhizosphere. Int J Mol Sci 2022; 23:ijms23169310. [PMID: 36012575 PMCID: PMC9409098 DOI: 10.3390/ijms23169310] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Roots play important roles in determining crop development under drought. Under such conditions, the molecular mechanisms underlying key responses and interactions with the rhizosphere in crop roots remain limited compared with model species such as Arabidopsis. This article reviews the molecular mechanisms of the morphological, physiological, and metabolic responses to drought stress in typical crop roots, along with the regulation of soil nutrients and microorganisms to these responses. Firstly, we summarize how root growth and architecture are regulated by essential genes and metabolic processes under water-deficit conditions. Secondly, the functions of the fundamental plant hormone, abscisic acid, on regulating crop root growth under drought are highlighted. Moreover, we discuss how the responses of crop roots to altered water status are impacted by nutrients, and vice versa. Finally, this article explores current knowledge of the feedback between plant and soil microbial responses to drought and the manipulation of rhizosphere microbes for improving the resilience of crop production to water stress. Through these insights, we conclude that to gain a more comprehensive understanding of drought adaption mechanisms in crop roots, future studies should have a network view, linking key responses of roots with environmental factors.
Collapse
|
18
|
Isoprene Emission Influences the Proteomic Profile of Arabidopsis Plants under Well-Watered and Drought-Stress Conditions. Int J Mol Sci 2022; 23:ijms23073836. [PMID: 35409196 PMCID: PMC8998555 DOI: 10.3390/ijms23073836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Isoprene is a small lipophilic molecule synthesized in plastids and abundantly released into the atmosphere. Isoprene-emitting plants are better protected against abiotic stresses, but the mechanism of action of isoprene is still under debate. In this study, we compared the physiological responses and proteomic profiles of Arabidopsis which express the isoprene synthase (ISPS) gene and emit isoprene with those of non-emitting plants under both drought-stress (DS) and well-watered (WW) conditions. We aimed to investigate whether isoprene-emitting plants displayed a different proteomic profile that is consistent with the metabolic changes already reported. Only ISPS DS plants were able to maintain the same photosynthesis and fresh weight of WW plants. LC-MS/MS-based proteomic analysis revealed changes in protein abundance that were dependent on the capacity for emitting isoprene in addition to those caused by the DS. The majority of the proteins changed in response to the interaction between DS and isoprene emission. These include proteins that are associated with the activation of secondary metabolisms leading to ABA, trehalose, and proline accumulations. Overall, our proteomic data suggest that isoprene exerts its protective mechanism at different levels: under drought stress, isoprene affects the abundance of chloroplast proteins, confirming a strong direct or indirect antioxidant action and also modulates signaling and hormone pathways, especially those controlling ABA synthesis. Unexpectedly, isoprene also alters membrane trafficking.
Collapse
|
19
|
Abstract
On the world stage, the increase in temperatures due to global warming is already a reality that has become one of the main challenges faced by the scientific community. Since agriculture is highly dependent on climatic conditions, it may suffer a great impact in the short term if no measures are taken to adapt and mitigate the agricultural system. Plant responses to abiotic stresses have been the subject of research by numerous groups worldwide. Initially, these studies were concentrated on model plants, and, later, they expanded their studies in several economically important crops such as rice, corn, soybeans, coffee, and others. However, agronomic evaluations for the launching of cultivars and the classical genetic improvement process focus, above all, on productivity, historically leaving factors such as tolerance to abiotic stresses in the background. Considering the importance of the impact that abiotic stresses can have on agriculture in the short term, new strategies are currently being sought and adopted in breeding programs to understand the physiological, biochemical, and molecular responses to environmental disturbances in plants of agronomic interest, thus ensuring the world food security. Moreover, integration of these approaches is bringing new insights on breeding. We will discuss how water deficit, high temperatures, and salinity exert effects on plants.
Collapse
|
20
|
Lee H, Ganguly A, Baik S, Cho HT. Calcium-dependent protein kinase 29 modulates PIN-FORMED polarity and Arabidopsis development via its own phosphorylation code. THE PLANT CELL 2021; 33:3513-3531. [PMID: 34402905 PMCID: PMC8566293 DOI: 10.1093/plcell/koab207] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/12/2021] [Indexed: 05/15/2023]
Abstract
PIN-FORMED (PIN)-mediated polar auxin transport (PAT) is involved in key developmental processes in plants. Various internal and external cues influence plant development via the modulation of intracellular PIN polarity and, thus, the direction of PAT, but the mechanisms underlying these processes remain largely unknown. PIN proteins harbor a hydrophilic loop (HL) that has important regulatory functions; here, we used the HL as bait in protein pulldown screening for modulators of intracellular PIN trafficking in Arabidopsis thaliana. Calcium-dependent protein kinase 29 (CPK29), a Ca2+-dependent protein kinase, was identified and shown to phosphorylate specific target residues on the PIN-HL that were not phosphorylated by other kinases. Furthermore, loss of CPK29 or mutations of the phospho-target residues in PIN-HLs significantly compromised intracellular PIN trafficking and polarity, causing defects in PIN-mediated auxin redistribution and biological processes such as lateral root formation, root twisting, hypocotyl gravitropism, phyllotaxis, and reproductive development. These findings indicate that CPK29 directly interprets Ca2+ signals from internal and external triggers, resulting in the modulation of PIN trafficking and auxin responses.
Collapse
Affiliation(s)
- Hyodong Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Anindya Ganguly
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Song Baik
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Author for correspondence:
| |
Collapse
|
21
|
Kaul S, Choudhary M, Gupta S, Dhar MK. Engineering Host Microbiome for Crop Improvement and Sustainable Agriculture. Front Microbiol 2021; 12:635917. [PMID: 34122359 PMCID: PMC8193672 DOI: 10.3389/fmicb.2021.635917] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/16/2021] [Indexed: 12/27/2022] Open
Abstract
Dynamic consortium of microbial communities (bacteria, fungi, protists, viruses, and nematodes) colonizing multiple tissue types and coevolving conclusively with the host plant is designated as a plant microbiome. The interplay between plant and its microbial mutualists supports several agronomic functions, establishing its crucial role in plant beneficial activities. Deeper functional and mechanistic understanding of plant-microbial ecosystems will render many "ecosystem services" by emulating symbiotic interactions between plants, soil, and microbes for enhanced productivity and sustainability. Therefore, microbiome engineering represents an emerging biotechnological tool to directly add, remove, or modify properties of microbial communities for higher specificity and efficacy. The main goal of microbiome engineering is enhancement of plant functions such as biotic/abiotic stresses, plant fitness and productivities, etc. Various ecological-, biochemical-, and molecular-based approaches have come up as a new paradigm for disentangling many microbiome-based agromanagement hurdles. Furthermore, multidisciplinary approaches provide a predictive framework in achieving a reliable and sustainably engineered plant-microbiome for stress physiology, nutrient recycling, and high-yielding disease-resistant genotypes.
Collapse
Affiliation(s)
- Sanjana Kaul
- School of Biotechnology, University of Jammu, Jammu, India
| | | | - Suruchi Gupta
- School of Biotechnology, University of Jammu, Jammu, India
| | - Manoj K Dhar
- School of Biotechnology, University of Jammu, Jammu, India
| |
Collapse
|