1
|
Sun S, Mi C, Ma W, Mao P. Dynamic responses of germination characteristics and antioxidant systems to alfalfa (Medicago sativa) seed aging based on transcriptome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109205. [PMID: 39442418 DOI: 10.1016/j.plaphy.2024.109205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Seed aging poses a significant challenge to agronomic production and germplasm conservation. Reactive oxygen species (ROS) are highly involved in the aging process. However, dynamic response of germination characteristics and antioxidant system to seed aging are not yet very clear. This study explored the potential physiological mechanisms responsible for the reduced and rapid loss of seed vigor in alfalfa, and identified key genes regulating seed vigor. The germination percentage exhibited a decreased trend with the prolongation of aging duration. From 16 to 32 days of aging, the antioxidant enzyme activities of SOD, POD, CAT, DHAR and MDHAR declined significantly, which lead to the disruption of ROS balance and a significant increase in ROS levels, exacerbating seed aging. Based on transcriptome, 29 differentially expressed genes (DEGs) including SOD1, APX-2 and GST-7 within the ROS scavenging system showed a significantly down-regulated expression trend at aging of 16 and 24 days, indicating the abnormal function of antioxidant metabolism. Furthermore, some related genes including ATPF1B, ATPeF0C-3, NDUFS1, NDUFS3 and ND2 in the mitochondrial ETC exhibited a downturn following seed aging, which would result in the losing of seed vigor. This study has uncovered a significant array of potential target genes within the seed antioxidant system and mitochondrial ETC. These discoveries offer a wider lens for delving into the molecular regulatory mechanisms of seed aging. Further research is crucial to comprehensively elucidate the precise pathways through which these pivotal genes regulate seed vigor.
Collapse
Affiliation(s)
- Shoujiang Sun
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chunjiao Mi
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wen Ma
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Peisheng Mao
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Wang S, Yue Z, Yu C, Wang R, Sui Y, Hou Y, Zhao Y, Zhao L, Chen C, Yang Z, Shao K. Genome-wide association study identifies the genetic basis of key agronomic traits in 207 sugar beet accessions. HORTICULTURE RESEARCH 2024; 11:uhae230. [PMID: 39415969 PMCID: PMC11481341 DOI: 10.1093/hr/uhae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/30/2024] [Indexed: 10/19/2024]
Abstract
Sugar beet (Beta vulgaris) has emerged as one of the two primary crops, alongside sugarcane, for global sugar production. Comprehensively understanding sucrose synthesis, transport, and accumulation in sugar beet holds great significance for enhancing sugar production. In this study, we collected a diverse set of 269 sugar beet accessions worldwide and measured 12 phenotypes, comprising biomass, soluble sugar content, and 10 taproot-related traits. We re-sequenced 207 accessions to explore genetic diversity and population structure. Then we employed a genome-wide association study (GWAS) and RNA-seq to identify single-nucleotide polymorphisms and genes associated with natural phenotypic variations. Our findings revealed a panel of genes potentially regulating biomass and sugar accumulation, notably the dual-role gene UDP-glucose 4-epimerase, which genetically balances sugar accumulation and cell wall synthesis. In summary, this study provides a foundation for molecular breeding in sugar beet.
Collapse
Affiliation(s)
- Sufang Wang
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhiyong Yue
- College of Medicine, Xi’an International University, Xi’an 710077, China
| | - Chao Yu
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Ruili Wang
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Yang Sui
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Yaguang Hou
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Ying Zhao
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Lingling Zhao
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Chunmei Chen
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Zhimin Yang
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Ke Shao
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| |
Collapse
|
3
|
Wu R, Chen B, Jia J, Liu J. Relationship between Protein, MicroRNA Expression in Extracellular Vesicles and Rice Seed Vigor. Int J Mol Sci 2024; 25:10504. [PMID: 39408833 PMCID: PMC11476841 DOI: 10.3390/ijms251910504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Plant extracellular vesicles are non-self-replicating particles released by living plant cells and delimited by a lipid bilayer. They contain a large amount of lipids, RNA, and proteins. Seed vigor plays an important role in agricultural production and preservation of germplasm resources. Extracellular vesicles with cross-species communication with bioactive molecules can resist pathogens, exhibit anti-aging properties, and perform other functions; however, its potential influence on seed vigor has not been reported. In this study, rice seeds with different germination percentages were used to extract extracellular vesicles, endogenous proteins, and RNA. Protein qualitative identification and miRNA differential analysis were performed to analyze the regulatory mechanism of extracellular vesicles on seed vigor. Results: The profiles of four miRNA families were found to be significantly different: osa-miR164, osa-miR168, osa-miR166, and osa-miR159. Protein correlation analysis predicted that extracellular vesicles might mediate the synthesis of the seed cell wall; glyoxic acid cycle and tricarboxylic acid cycle; non-specific lipid transfer; mitochondrial quality control; and other biological processes to regulate rice seed viability. In addition, cupin protein, phospholipase D, aldehyde dehydrogenase, seven heat shock proteins (especially BiP1 and BiP2), protein disulfide isomerase-like (PDI), thioredoxin, calnexin and calreticulin, glutathione transferase, and other proteins found in extracellular vesicles were closely related to seed vigor. This provides a novel direction for the study of the regulation mechanism of seed vigor.
Collapse
Affiliation(s)
- Rouxian Wu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (B.C.); (J.J.)
| | | | | | - Jun Liu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (B.C.); (J.J.)
| |
Collapse
|
4
|
Nyasulu M, Zhong Q, Li X, Liu X, Wang Z, Chen L, He H, Bian J. Uncovering novel genes for drought stress in rice at germination stage using genome wide association study. FRONTIERS IN PLANT SCIENCE 2024; 15:1421267. [PMID: 39148613 PMCID: PMC11325455 DOI: 10.3389/fpls.2024.1421267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024]
Abstract
Introduction Breeding rice with drought tolerance for harsh environments is crucial for agricultural sustainability. Understanding the genetic underpinnings of drought tolerance is vital for developing resilient rice varieties. Genome-wide association studies (GWAS) have emerged as pivotal tools in unravelling the complex genetic architecture of traits like drought tolerance, capitalizing on the natural genetic diversity within rice germplasm collections. Methods In this study, a comprehensive panel of 210 rice varieties was phenotyped over ten days in controlled conditions, subjected to simulated drought stress using 20% PEG 6000 in petri dishes. Throughout the stress period, crucial traits such as germination percentage (GP), germination rate index (GRI), mean germination time (MGT), and seedling percentage (SP) were meticulously monitored. Results The GWAS analysis uncovered a total of 38 QTLs associated with drought tolerance traits, including novel loci like qMGT-5.2, qSP-3, qSP7.2, and qGP-5.2. Additionally, RNA-seq analysis identified ten genes with significant expression differences under drought stress conditions. Notably, haplotype analysis pinpointed elite haplotypes in specific genes linked to heightened drought tolerance. Discussion Overall, this study underscores the importance of GWAS in validating known genes while unearthing novel loci to enrich the genetic resources for enhancing drought tolerance in rice breeding programs.
Collapse
Affiliation(s)
- Mvuyeni Nyasulu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Qi Zhong
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Xiansheng Li
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Xu Liu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Zhengjie Wang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Liang Chen
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
5
|
Paravar A, Maleki Farahani S, Rezazadeh A, Adetunji AE, Farooq M. Moisture content and mycorrhizal fungi in maternal environment influence performance and composition of Lallemantia species offspring. Heliyon 2024; 10:e31334. [PMID: 38818147 PMCID: PMC11137390 DOI: 10.1016/j.heliyon.2024.e31334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
The availability of soil water content and nutrition in the maternal plant environment plays pivotal roles in shaping the performance, physio-biochemical properties, and chemical composition of the produced seed. This study aimed to investigate the effects of water and arbuscular mycorrhizal fungi (AMF) of maternal plant environment on performance, physio-biochemical properties, and chemical compositions of Lallemantia species offspring. A split-factorial experiment was performed using a randomized complete block design (RCBD) with three replications. The main plot consisted of three drought stress (30 %, 60 % and 90 % of soil available water depletion). The subplots were the factorial combination of arbuscular mycorrhizal fungi (AMF- and AMF+) and Lallemantia species (L. iberica and L. royleana). The offspring of both Lallemantia species experienced a decrease in seed performance, superoxide dismutase, catalase, ascorbate peroxidase enzyme activities, proline, and chemical composition as well as a rise in hydrogen peroxide and lipid peroxidation due to the limited availability of water in the maternal plant environment. On the other hand, providing adequate nutrition in the maternal plant environment resulted in improved germination index, increased starch, and oil content, as well as higher levels of nitrogen and phosphorus in the offspring of both Lallemantia species. Compared to the offspring of L. royleana, the offspring of L. iberica had a higher number of achenes, seeds, seed weight, larger seed size, greater germination index, and higher levels of starch, oil, nitrogen, phosphorus, potassium, and calcium. In contrast, the offspring of L. royleana exhibited higher longevity, enhanced germination under osmotic and salinity stress, increased proline levels, and higher activities of antioxidant enzymes such as superoxide dismutase, catalase, and ascorbic peroxidase as well as sucrose and total soluble sugar. The study concludes that the best seed performance, antioxidant enzyme activities, and carbohydrate levels were observed in the offspring of both Lallemantia species produced under 60 % soil available water depletion with AMF inoculation in the maternal plant environment. These findings highlight the significant impact of the soil available water depletion and AMF inoculation on the seed performance, physio-biochemical properties, and chemical composition of the offspring, providing valuable insights for optimizing seed production and performance.
Collapse
Affiliation(s)
- Arezoo Paravar
- Department of Agronomy and Plant Breeding, College of Agriculture, Shahed University, 18155-159, Tehran, Iran
| | - Saeideh Maleki Farahani
- Department of Agronomy and Plant Breeding, College of Agriculture, Shahed University, 18155-159, Tehran, Iran
| | - Alireza Rezazadeh
- Department of Plant Protection, College of Agriculture, Shahed University, Tehran, Iran
| | - Ademola Emmanuel Adetunji
- SAEON Ndlovu Node, Scientific Services, Kruger National Park, Private Bag X1021, Phalaborwa, 390, South Africa
- Unit for Environmental Sciences and Management (UESM), Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman
| |
Collapse
|
6
|
Bi Y, Yu Y, Mao S, Wu T, Wang T, Zhou Y, Xie K, Zhang H, Liu L, Chu Z. Comparative transcriptomic profiling of the two-stage response of rice to Xanthomonas oryzae pv. oryzicola interaction with two different pathogenic strains. BMC PLANT BIOLOGY 2024; 24:347. [PMID: 38684939 PMCID: PMC11057074 DOI: 10.1186/s12870-024-05060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Two-tiered plant immune responses involve cross-talk among defense-responsive (DR) genes involved in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), effector-triggered immunity (ETI) and effector-triggered susceptibility (ETS). Bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an important bacterial disease that causes serious threats to rice yield and quality. Transcriptomic profiling provides an effective approach for the comprehensive and large-scale detection of DR genes that participate in the interactions between rice and Xoc. RESULTS In this study, we used RNA-seq to analyze the differentially expressed genes (DEGs) in susceptible rice after inoculation with two naturally pathogenic Xoc strains, a hypervirulent strain, HGA4, and a relatively hypovirulent strain, RS105. First, bacterial growth curve and biomass quantification revealed that differential growth occurred beginning at 1 day post inoculation (dpi) and became more significant at 3 dpi. Additionally, we analyzed the DEGs at 12 h and 3 days post inoculation with two strains, representing the DR genes involved in the PTI and ETI/ETS responses, respectively. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed on the common DEGs, which included 4380 upregulated and 4019 downregulated genes and 930 upregulated and 1383 downregulated genes identified for the two strains at 12 h post inoculation (hpi) and 3 dpi, respectively. Compared to those at 12 hpi, at 3 dpi the number of common DEGs decreased, while the degree of differential expression was intensified. In addition, more disease-related GO pathways were enriched, and more transcription activator-like effector (TALE) putative target genes were upregulated in plants inoculated with HGA4 than in those inoculated with RS105 at 3 dpi. Then, four DRs were randomly selected for the BLS resistance assay. We found that CDP3.10, LOC_Os11g03820, and OsDSR2 positively regulated rice resistance to Xoc, while OsSPX3 negatively regulated rice resistance. CONCLUSIONS By using an enrichment method for RNA-seq, we identified a group of DEGs related to the two stages of response to the Xoc strain, which included four functionally identified DR genes.
Collapse
Affiliation(s)
- Yunya Bi
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yue Yu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Shuaige Mao
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Tao Wu
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Tao Wang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying Zhou
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430072, China
| | - Kabin Xie
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Zhang
- Tancheng Jinghua Seed Co., LTD, Linyi, Shandong, 276100, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
7
|
Dharni JS, Shi Y, Zhang C, Petersen C, Walia H, Staswick P. Growth and transcriptional response of wheat and rice to the tertiary amine BMVE. FRONTIERS IN PLANT SCIENCE 2024; 14:1273620. [PMID: 38269141 PMCID: PMC10806070 DOI: 10.3389/fpls.2023.1273620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Introduction Seed vigor is largely a product of sound seed development, maturation processes, genetics, and storage conditions. It is a crucial factor impacting plant growth and crop yield and is negatively affected by unfavorable environmental conditions, which can include drought and heat as well as cold wet conditions. The latter leads to slow germination and increased seedling susceptibility to pathogens. Prior research has shown that a class of plant growth regulators called substituted tertiary amines (STAs) can enhance seed germination, seedling growth, and crop productivity. However, inconsistent benefits have limited STA adoption on a commercial scale. Methods We developed a novel seed treatment protocol to evaluate the efficacy of 2-(N-methyl benzyl aminoethyl)-3-methyl butanoate (BMVE), which has shown promise as a crop seed treatment in field trials. Transcriptomic analysis of rice seedlings 24 h after BMVE treatment was done to identify the molecular basis for the improved seedling growth. The impact of BMVE on seed development was also evaluated by spraying rice panicles shortly after flower fertilization and subsequently monitoring the impact on seed traits. Results BMVE treatment of seeds 24 h after imbibition consistently improved wheat and rice seedling shoot and root growth in lab conditions. Treated wheat seedlings grown to maturity in a greenhouse also resulted in higher biomass than controls, though only under drought conditions. Treated seedlings had increased levels of transcripts involved in reactive oxygen species scavenging and auxin and gibberellic acid signaling. Conversely, several genes associated with increased reactive oxygen species/ROS load, abiotic stress responses, and germination hindering processes were reduced. BMVE spray increased both fresh and mature seed weights relative to the control for plants exposed to 96 h of heat stress. BMVE treatment during seed development also benefited germination and seedling growth in the next generation, under both ambient and heat stress conditions. Discussion The optimized experimental conditions we developed provide convincing evidence that BMVE does indeed have efficacy in plant growth enhancement. The results advance our understanding of how STAs work at the molecular level and provide insights for their practical application to improve crop growth.
Collapse
Affiliation(s)
- Jaspinder Singh Dharni
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| | - Yu Shi
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| | | | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
8
|
Ding X, Shi J, Gui J, Zhou H, Yan Y, Zhu X, Xie B, Liu X, He J. Rice Seed Protrusion Quantitative Trait Loci Mapping through Genome-Wide Association Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:134. [PMID: 38202442 PMCID: PMC10780921 DOI: 10.3390/plants13010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
The germination of seeds is a prerequisite for crop production. Protrusion is important for seed germination, and visible radicle protrusion through seed covering layers is the second phase of the process of seed germination. Analyzing the mechanism of protrusion is important for the cultivation of rice varieties. In this study, 302 microcore germplasm populations were used for the GWAS of the protrusion percentage (PP). The frequency distribution of the PP at 48 h and 72 h is continuous, and six PP-associated QTLs were identified, but only qPP2 was detected repeatedly two times. The candidate gene analysis showed that LOC_Os02g57530 (ETR3), LOC_Os01g57610 (GH3.1) and LOC_Os04g0425 (CTB2) were the candidate genes for qPP2, qPP1 and qPP4, respectively. The haplotype (Hap) analysis revealed that Hap1 of ETR3, Hap1 and 3 of GH3.1 and Hap2 and 5 of CTB2 are elite alleles for the PP. Further validation of the germination phenotype of these candidate genes showed that Hap1 of ETR3 is a favorable allele for the germination percentage; Hap3 of GH3.1 is an elite allele for seed germination; and Hap5 of CTB2 is an elite allele for the PP, the germination percentage and the vigor index. The results of this study identified three putative candidate genes that provide valuable information for understanding the genetic control of seed protrusion in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xionglun Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (X.D.); (J.S.); (J.G.); (Y.Y.); (X.Z.); (B.X.)
| | - Jiwai He
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (X.D.); (J.S.); (J.G.); (Y.Y.); (X.Z.); (B.X.)
| |
Collapse
|
9
|
Mao X, Zheng X, Sun B, Jiang L, Zhang J, Lyu S, Yu H, Chen P, Chen W, Fan Z, Li C, Liu Q. MKK3 Cascade Regulates Seed Dormancy Through a Negative Feedback Loop Modulating ABA Signal in Rice. RICE (NEW YORK, N.Y.) 2024; 17:2. [PMID: 38170405 PMCID: PMC10764673 DOI: 10.1186/s12284-023-00679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND With the increasing frequency of climatic anomalies, high temperatures and long-term rain often occur during the rice-harvesting period, especially for early rice crops in tropical and subtropical regions. Seed dormancy directly affects the resistance to pre-harvest sprouting (PHS). Therefore, in order to increase rice production, it is critical to enhance seed dormancy and avoid yield losses to PHS. The elucidation and utilization of the seed dormancy regulation mechanism is of great significance to rice production. Preliminary results indicated that the OsMKKK62-OsMKK3-OsMPK7/14 module might regulate ABA sensitivity and then control seed dormancy. The detailed mechanism is still unclear. RESULTS The overexpression of OsMKK3 resulted in serious PHS. The expression levels of OsMKK3 and OsMPK7 were upregulated by ABA and GA at germination stage. OsMKK3 and OsMPK7 are both located in the nucleus and cytoplasm. The dormancy level of double knockout mutant mkk3/mft2 was lower than that of mkk3, indicating that OsMFT2 functions in the downstream of MKK3 cascade in regulating rice seeds germination. Biochemical results showed that OsMPK7 interacted with multiple core ABA signaling components according to yeast two-hybrid screening and luciferase complementation experiments, suggesting that MKK3 cascade regulates ABA signaling by modulating the core ABA signaling components. Moreover, the ABA response and ABA responsive genes of mpk7/14 were significantly higher than those of wild-type ZH11 when subjected to ABA treatment. CONCLUSION MKK3 cascade mediates the negative feedback loop of ABA signal through the interaction between OsMPK7 and core ABA signaling components in rice.
Collapse
Affiliation(s)
- Xingxue Mao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Xiaoyu Zheng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Bingrui Sun
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Liqun Jiang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Jing Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Shuwei Lyu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Hang Yu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Pingli Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Wenfeng Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Zhilan Fan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China.
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China.
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| |
Collapse
|
10
|
Huang C, Zhao J, Huang Q, Peng L, Huang Z, Li W, Sun S, He Y, Wang Z. OsNAC3 regulates seed germination involving abscisic acid pathway and cell elongation in rice. THE NEW PHYTOLOGIST 2024; 241:650-664. [PMID: 37908121 DOI: 10.1111/nph.19362] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023]
Abstract
Seed germination is a critical trait for the success of direct seeding in rice cultivation. However, the underlying mechanism determining seed germination is largely unknown in rice. Here, we report that NAC transcription factor OsNAC3 positively regulates seed germination of rice. OsNAC3 regulates seed germination involving abscisic acid (ABA) pathway and cell elongation. OsNAC3 can directly bind to the promoter of ABA catabolic gene OsABA8ox1 and cell expansion gene OsEXP4, which consequently activates their expressions during seed germination. We also find that the expression of OsEXP4 is reduced by ABA during seed germination in rice. OsNAC3 regulates seed germination by influencing cell elongation of the embryo through directly affecting OsEXP4 expression and indirectly ABA-medicated OsEXP4 expression. The OsNAC3 elite haplotype is useful for genetic improvement of seed germination, and overexpression of OsNAC3 can significantly increase seed germination. We therefore propose that OsNAC3 is a potential target in breeding of rice varieties with high seed germination for direct seeding cultivation.
Collapse
Affiliation(s)
- Chengwei Huang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Plant Space Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Jia Zhao
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Plant Space Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Qianqian Huang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Plant Space Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Liling Peng
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Plant Space Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhibo Huang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Plant Space Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Wenwen Li
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Plant Space Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Shan Sun
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Plant Space Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Yongqi He
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Plant Space Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhoufei Wang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Plant Space Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
11
|
Sun Y, Wang Y, Zhang Y, Hasan N, Yang N, Xie Y, Tang C. Identification and characterization of the Bicupin domain family and functional analysis of GhBCD11 in response to verticillium wilt in cotton. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111875. [PMID: 37769874 DOI: 10.1016/j.plantsci.2023.111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Bicupin domain protein (BCD) family, an important component of Cupin domain superfamily, plays important roles in oxalic acid (OA) degradation and stress responses in high plants. However, no studies have been reported on the Cupin domain family in cotton up till now. In our study, a total 110 proteins including Cupin domain were identified from the upland cotton (Gossypium hirsutum). Among them, 17 proteins contained Bicupin domain. Subsequently, we found that V. dahliae produces OA leading to cotton leaf wilting. RT-qPCR analysis of GhBCDs revealed that OA and V. dahliae Vd080 significantly enhanced the expression of GhBCD11. The Virus-induced gene silencing and overexpression analysis showed that GhBCD11 positively regulates plant resistance to V. dahliae. Subcellular localization showed GhBCD11 located on the plasma membrane. The analysis of expression pattern showed that GhBCD11 can be induced via hormone-mediated signal pathway including salicylic acid (SA), ethephon (ET), methyl jasmonate (JA) and abscisic acid (ABA). In addition, we identified an interaction between 60 S ribosomal protein GhRPL12-3 and GhBCD11 by yeast double hybridization. Overall, this is the first study, where we identified Cupin domain family in cotton, clarified the role of GhBCD11 in cotton for resistance to V. dahliae and found an interaction between GhRPL12-3 and GhBCD11.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, Henan, China
| | - Nadeem Hasan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Na Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yijing Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Canming Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
12
|
Zhu PK, Yang J, Yang DM, Xu YP, He TY, Rong JD, Zheng YS, Chen LY. Identification and characterization of the cupin_1 domain-containing proteins in ma bamboo ( Dendrocalamus latiflorus) and their potential role in rhizome sprouting. FRONTIERS IN PLANT SCIENCE 2023; 14:1260856. [PMID: 37908839 PMCID: PMC10614299 DOI: 10.3389/fpls.2023.1260856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023]
Abstract
Cupin_1 domain-containing protein (CDP) family, which is a member of the cupin superfamily with the most diverse functions in plants, has been found to be involved in hormone pathways that are closely related to rhizome sprouting (RS), a vital form of asexual reproduction in plants. Ma bamboo is a typical clumping bamboo, which mainly reproduces by RS. In this study, we identified and characterized 53 Dendrocalamus latiflorus CDP genes and divided them into seven subfamilies. Comparing the genetic structures among subfamilies showed a relatively conserved gene structure within each subfamily, and the number of cupin_1 domains affected the conservation among D. latiflorus CDP genes. Gene collinearity results showed that segmental duplication and tandem duplication both contributed to the expansion of D. latiflorus CDP genes, and lineage-specific gene duplication was an important factor influencing the evolution of CDP genes. Expression patterns showed that CDP genes generally had higher expression levels in germinating underground buds, indicating that they might play important roles in promoting shoot sprouting. Transcription factor binding site prediction and co-expression network analysis indicated that D. latiflorus CDPs were regulated by a large number of transcription factors, and collectively participated in rhizome buds and shoot development. This study significantly provided new insights into the evolutionary patterns and molecular functions of CDP genes, and laid a foundation for further studying the regulatory mechanisms of plant rhizome sprouting.
Collapse
Affiliation(s)
- Peng-kai Zhu
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - De-ming Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan-ping Xu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tian-you He
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun-dong Rong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu-shan Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ling-yan Chen
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Li L, Hu Y, Wang Y, Zhao S, You Y, Liu R, Wang J, Yan M, Zhao F, Huang J, Yu S, Feng Z. Identification of novel candidate loci and genes for seed vigor-related traits in upland cotton ( Gossypium hirsutum L.) via GWAS. FRONTIERS IN PLANT SCIENCE 2023; 14:1254365. [PMID: 37719213 PMCID: PMC10503134 DOI: 10.3389/fpls.2023.1254365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
Seed vigor (SV) is a crucial trait determining the quality of crop seeds. Currently, over 80% of China's cotton-planting area is in Xinjiang Province, where a fully mechanized planting model is adopted, accounting for more than 90% of the total fiber production. Therefore, identifying SV-related loci and genes is crucial for improving cotton yield in Xinjiang. In this study, three seed vigor-related traits, including germination potential, germination rate, and germination index, were investigated across three environments in a panel of 355 diverse accessions based on 2,261,854 high-quality single-nucleotide polymorphisms (SNPs). A total of 26 significant SNPs were detected and divided into six quantitative trait locus regions, including 121 predicted candidate genes. By combining gene expression, gene annotation, and haplotype analysis, two novel candidate genes (Ghir_A09G002730 and Ghir_D03G009280) within qGR-A09-1 and qGI/GP/GR-D03-3 were associated with vigor-related traits, and Ghir_A09G002730 was found to be involved in artificial selection during cotton breeding by population genetic analysis. Thus, understanding the genetic mechanisms underlying seed vigor-related traits in cotton could help increase the efficiency of direct seeding by molecular marker-assisted selection breeding.
Collapse
Affiliation(s)
- Libei Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Yu Hu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Yongbo Wang
- Cotton Sciences Research Institute of Hunan, Changde, Hunan, China
| | - Shuqi Zhao
- Cotton and Wheat Research Institute, Huanggang Academy of Agricultural Sciences, Huanggang, Hubei, China
| | - Yijin You
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Ruijie Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Jiayi Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Mengyuan Yan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Fengli Zhao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Juan Huang
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Shuxun Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Zhen Feng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou, China
| |
Collapse
|
14
|
Li X, Dong J, Zhu W, Zhao J, Zhou L. Progress in the study of functional genes related to direct seeding of rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:46. [PMID: 37309311 PMCID: PMC10248684 DOI: 10.1007/s11032-023-01388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/20/2023] [Indexed: 06/14/2023]
Abstract
Rice is a major food crop in the world. Owing to the shortage of rural labor and the development of agricultural mechanization, direct seeding has become the main method of rice cultivation. At present, the main problems faced by direct seeding of rice are low whole seedling rate, serious weeds, and easy lodging of rice in the middle and late stages of growth. Along with the rapid development of functional genomics, the functions of a large number of genes have been confirmed, including seed vigor, low-temperature tolerance germination, low oxygen tolerance growth, early seedling vigor, early root vigor, resistance to lodging, and other functional genes related to the direct seeding of rice. A review of the related functional genes has not yet been reported. In this study, the genes related to direct seeding of rice are summarized to comprehensively understand the genetic basis and mechanism of action in direct seeding of rice and to lay the foundation for further basic theoretical research and breeding application research in direct seeding of rice.
Collapse
Affiliation(s)
- Xuezhong Li
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 Guangdong China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
| | - Wen Zhu
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 Guangdong China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
| | - Lingyan Zhou
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 Guangdong China
| |
Collapse
|
15
|
Hu F, Ye Z, Dong K, Zhang W, Fang D, Cao J. Divergent structures and functions of the Cupin proteins in plants. Int J Biol Macromol 2023; 242:124791. [PMID: 37164139 DOI: 10.1016/j.ijbiomac.2023.124791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Cupin superfamily proteins have extensive functions. Their members are not only involved in the development of plants but also responded to various stresses. Whereas, the research on the Cupin members has not attracted enough attention. In this article, we summarized the research progress on these family genes in recent years and explored their evolution, structural characteristics, and biological functions. The significance of members of the Cupin family in the development of plant cell walls, roots, leaves, flowers, fruits, and seeds and their role in stress response are highlighted. Simultaneously, the prospective application of Cupin protein in crop enhancement was introduced. Some members can enhance plant growth, development, and resistance to adversity, thereby increasing crop yield. It will be as a foundation for future effective crop research and breeding.
Collapse
Affiliation(s)
- Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
16
|
He Y, Sun S, Zhao J, Huang Z, Peng L, Huang C, Tang Z, Huang Q, Wang Z. UDP-glucosyltransferase OsUGT75A promotes submergence tolerance during rice seed germination. Nat Commun 2023; 14:2296. [PMID: 37085517 PMCID: PMC10121563 DOI: 10.1038/s41467-023-38085-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
Submergence stress represents a major obstacle limiting the application of direct seeding in rice cultivation. Under flooding conditions, coleoptile elongation can function as an escape strategy that contributes to submergence tolerance during seed germination in rice; however, the underlying molecular bases have yet to be fully determined. Herein, we report that natural variation of rice coleoptile length subjected to submergence is determined by the glucosyltransferase encoding gene OsUGT75A. OsUGT75A regulates coleoptile length via decreasing free abscisic acid (ABA) and jasmonic acid (JA) levels by promoting glycosylation of these two phytohormones under submergence. Moreover, we find that OsUGT75A accelerates coleoptile length through mediating the interactions between JASMONATE ZIMDOMAIN (OsJAZ) and ABSCISIC ACID-INSENSITIVE (OsABI) proteins. Last, we reveal the origin of the haplotype that contributes to coleoptile length in response to submergence and transferring this haplotype to indica rice can enhance coleoptile length in submergence conditions. Thus, we propose that OsUGT75A is a useful target in breeding of rice varieties suitable for direct seeding cultivation.
Collapse
Affiliation(s)
- Yongqi He
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642, Guangzhou, China
| | - Shan Sun
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642, Guangzhou, China
| | - Jia Zhao
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642, Guangzhou, China
| | - Zhibo Huang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642, Guangzhou, China
| | - Liling Peng
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642, Guangzhou, China
| | - Chengwei Huang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642, Guangzhou, China
| | - Zhengbin Tang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642, Guangzhou, China
| | - Qianqian Huang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642, Guangzhou, China
| | - Zhoufei Wang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
17
|
Hu F, Ye Z, Zhang W, Fang D, Cao J. Decipher the molecular evolution and expression patterns of Cupin family genes in oilseed rape. Int J Biol Macromol 2023; 227:437-452. [PMID: 36549611 DOI: 10.1016/j.ijbiomac.2022.12.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Cupin proteins are involved in plant growth and development as well as in response to various stresses. Here, a total of 173 Cupin genes were identified in Brassica napus, and their molecular evolution and expression patterns were analyzed. These genes were classified into ten groups. Motif and exon-intron structure indicated a high degree of conservation within each group during evolution. BnaCupins were distributed on 19 chromosomes and their expansion is mainly contributed by whole-genome duplication (WGD) and segmental duplication events. BnaCupins have undergone severe purifying selection during a long evolutionary process. Meanwhile, some positive selection sites were identified. Expression patterns and cis-element analysis indicated that BnaCupins play significant roles in plant growth and stress responses. In addition, the expression levels of some BnCupins were significantly altered when treated with different conditions (cold, salt, drought, IAA, ABA, and 6-BA). Some BnaCupin interacting proteins, such as glycosyl hydrolase5 (GHs5), carbohydrate kinase (CHKs), ATP-dependent 6-phosphofructokinase (ATP-PFK), S-adenosylmethionine synthase (S-MAT), and aldolase class II (ALD II), were identified by the protein-protein interaction network. It will contribute to enriching our knowledge of the Cupin gene family in B. napus and provide a basis for further studies of their functions.
Collapse
Affiliation(s)
- Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
18
|
Bibliometric Analysis of Functional Crops and Nutritional Quality: Identification of Gene Resources to Improve Crop Nutritional Quality through Gene Editing Technology. Nutrients 2023; 15:nu15020373. [PMID: 36678244 PMCID: PMC9865409 DOI: 10.3390/nu15020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/25/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
Food security and hidden hunger are two worldwide serious and complex challenges nowadays. As one of the newly emerged technologies, gene editing technology and its application to crop improvement offers the possibility to relieve the pressure of food security and nutrient needs. In this paper, we analyzed the research status of quality improvement based on gene editing using four major crops, including rice, soybean, maize, and wheat, through a bibliometric analysis. The research hotspots now focus on the regulatory network of related traits, quite different from the technical improvements to gene editing in the early stage, while the trends in deregulation in gene-edited crops have accelerated related research. Then, we mined quality-related genes that can be edited to develop functional crops, including 16 genes related to starch, 15 to lipids, 14 to proteins, and 15 to other functional components. These findings will provide useful reference information and gene resources for the improvement of functional crops and nutritional quality based on gene editing technology.
Collapse
|
19
|
RNA-Seq and Genome-Wide Association Studies Reveal Potential Genes for Rice Seed Shattering. Int J Mol Sci 2022; 23:ijms232314633. [PMID: 36498964 PMCID: PMC9736558 DOI: 10.3390/ijms232314633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The loss of the shattering ability is one of the key events in rice domestication. The strength of the seed shattering ability is closely related to the harvest yield and the adaptability of modern mechanical harvesting methods. In this study, using a population of 587 natural rice cultivars, quantitative trait loci associated with seed shattering were detected by genome-wide association studies (GWASs). We consider the quantitative trait loci (QTLs) qBTS1 and qBTS3 to be the key loci for seed shattering in rice. Additionally, the abscission zone (AZ) and nonabscission zone (NAZ) of materials with a loss of shattering (DZ129) and easy shattering (W517) were subjected to RNA-Seq, and high-quality differential expression profiles were obtained. The AZ-specific differentially expressed genes (DEGs) of W517 were significantly enriched in plant hormone signal transduction, while the AZ-specific DEGs of DZ129 were enriched in phenylpropanoid biosynthesis. We identified candidate genes for the lignin-associated laccase precursor protein (LOC_Os01g63180) and the glycoside hydrolase family (LOC_Os03g14210) in the QTLs qBTS1 (chromosome 1) and qBTS3 (chromosome 3), respectively. In summary, our findings lay the foundation for the further cloning of qBTS1 and qBTS3, which would provide new insights into seed shattering in rice.
Collapse
|
20
|
Dai L, Lu X, Shen L, Guo L, Zhang G, Gao Z, Zhu L, Hu J, Dong G, Ren D, Zhang Q, Zeng D, Qian Q, Li Q. Genome-wide association study reveals novel QTLs and candidate genes for seed vigor in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1005203. [PMID: 36388599 PMCID: PMC9645239 DOI: 10.3389/fpls.2022.1005203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Highly seed vigor (SV) is essential for rice direct seeding (DS). Understanding the genetic mechanism of SV-related traits could contribute to increasing the efficiency of DS. However, only a few genes responsible for SV have been determined in rice, and the regulatory network of SV remains obscure. In this study, the seed germination rate (GR), seedling shoot length (SL), and shoot fresh weight (FW) related to SV traits were measured, and a genome-wide association study (GWAS) was conducted to detect high-quality loci responsible for SV using a panel of 346 diverse accessions. A total of 51 significant SNPs were identified and arranged into six quantitative trait locus (QTL) regions, including one (qGR1-1), two (qSL1-1, qSL1-2), and three (qFW1-1, qFW4-1, and qFW7-1) QTLs associated with GR, SL, and FW respectively, which were further validated using chromosome segment substitution lines (CSSLs). Integrating gene expression, gene annotation, and haplotype analysis, we found 21 strong candidate genes significantly associated with SV. In addition, the SV-related functions of LOC_Os01g11270 and LOC_Os01g55240 were further verified by corresponding CRISPR/Cas9 gene-edited mutants. Thus, these results provide clues for elucidating the genetic basis of SV control. The candidate genes or QTLs would be helpful for improving DS by molecular marker-assisted selection (MAS) breeding in rice.
Collapse
Affiliation(s)
- Liping Dai
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xueli Lu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Lan Shen
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Longbiao Guo
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Guangheng Zhang
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Zhenyu Gao
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Li Zhu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jiang Hu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Deyong Ren
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Zhang
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qing Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
21
|
Yan T, Zhou X, Li J, Li G, Zhao Y, Wang H, Li H, Nie Y, Li Y. FoCupin1, a Cupin_1 domain-containing protein, is necessary for the virulence of Fusarium oxysporum f. sp. cubense tropical race 4. Front Microbiol 2022; 13:1001540. [PMID: 36110302 PMCID: PMC9468701 DOI: 10.3389/fmicb.2022.1001540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is an important soilborne fungal pathogen that causes the most devastating banana disease. Effectors secreted by microbes contribute to pathogen virulence on host plants in plant-microbe interactions. However, functions of Foc TR4 effectors remain largely unexplored. In this study, we characterized a novel cupin_1 domain-containing protein (FoCupin1) from Foc TR4. Sequence analysis indicated that the homologous proteins of FoCupin1 in phytopathogenic fungi were evolutionarily conserved. Furthermore, FoCupin1 could suppress BAX-mediated cell death and significantly downregulate the expression of defense-related genes in tobacco by using the Agrobacterium-mediated transient expression system. FoCupin1 was highly induced in the early stage of Foc TR4 infection. The deletion of FoCupin1 gene did not affect Foc TR4 growth and conidiation. However, FoCupin1 deletion significantly reduced Foc TR4 virulence on banana plants, which was further confirmed by biomass assay. The expression of the defense-related genes in banana was significantly induced after inoculation with FoCupin1 mutants. These results collectively indicate FoCupin1 is a putative effector protein that plays an essential role in Foc TR4 pathogenicity. These findings suggest a novel role for cupin_1 domain-containing proteins and deepen our understanding of effector-mediated Foc TR4 pathogenesis.
Collapse
Affiliation(s)
- Tiantian Yan
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jieling Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Guanjun Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yali Zhao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Haojie Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Huaping Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
- *Correspondence: Huaping Li,
| | - Yanfang Nie
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Yanfang Nie,
| | - Yunfeng Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Yunfeng Li,
| |
Collapse
|
22
|
Peng L, Lu H, Chen J, Wu Z, Xiao Z, Qing X, Song J, Wang Z, Zhao J. Characteristics of Seed Vigor in Rice Varieties with Different Globulin Accumulations. Int J Mol Sci 2022; 23:ijms23179717. [PMID: 36077115 PMCID: PMC9456403 DOI: 10.3390/ijms23179717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Seed vigor of rice is an important trait for direct seeding. The objective of this study was to reveal the relationship between globulin and seed vigor, and then to explore a method for evaluating seed vigor. Several rice varieties with different levels of 52 kDa globulin accumulation were used to compare seed vigor under normal and aged conditions. Results showed that varieties with high globulin accumulation obtained significantly higher seed vigor, measured by germination percentage and germination index, compared with those varieties with low globulin accumulation under normal and aged conditions. Meanwhile, a significantly higher accumulation of reactive oxygen species (ROS) was observed in the early germinating seeds of varieties with high globulin accumulation compared to those varieties with low globulin accumulation under normal and aged conditions. Collectively, the globulin content could be applied in the evaluation of seed vigor, which contributes to the selection of rice varieties for direct seeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jia Zhao
- Correspondence: (Z.W.); or (J.Z.)
| |
Collapse
|
23
|
Tian R, Kong Y, Shao Z, Zhang H, Li X, Zhang C. Discovery of genetic loci and causal genes for seed germination via deep re-sequencing in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:45. [PMID: 37313514 PMCID: PMC10248669 DOI: 10.1007/s11032-022-01316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
High seed germination is crucial for mechanical sowing, seedling establishment, growth potential, multiple resistances, and the formation of yield and quality. However, few genetic loci and candidate genes conferring seed germination were explored in soybean at present. In view of this, a natural population containing 199 accessions was assessed for the germination potential (GP) and germination rate (GR) and also was re-sequenced at the average sequencing depth of 18.4 × for each accession. In total, 5,665,469 SNPs were obtained for association analysis, and 470 SNPs in 55 loci on 18 chromosomes were identified to associate with seed germination. Of them, 85 SNPs on chromosomes 1, 10, and 14 were associated with mean value and BLUP value for GP and GR, simultaneously. Moreover, 324 SNPs (68.9% of the total) in four loci were located on chromosome 14 for seed germination, of which 11 SNPs were located in the exons, 30 in introns, 17 in 5'UTR or 3'UTR, and 46 in upstream or downstream. Based on these, 131 candidate genes flanking the associated SNPs were analyzed for gene annotation, SNP mutation, and RNA expression, and three causal genes, Glyma.14G069800 (RNA-binding protein), Glyma.14G071400 (bZIP transcription factor), and Glyma.17G033200 (nucleic acid-binding protein), were screened out and might be responsible for the seed germination. The closely associated SNPs and causal genes provided an important resource and dissecting of genetic basis for seed germination improvement in soybean. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01316-6.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071000 Hebei Province China
| | - Youbin Kong
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071000 Hebei Province China
| | - Zhenqi Shao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071000 Hebei Province China
| | - Hua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071000 Hebei Province China
| | - Xihuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071000 Hebei Province China
| | - Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071000 Hebei Province China
| |
Collapse
|
24
|
Gong D, He F, Liu J, Zhang C, Wang Y, Tian S, Sun C, Zhang X. Understanding of Hormonal Regulation in Rice Seed Germination. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071021. [PMID: 35888110 PMCID: PMC9324290 DOI: 10.3390/life12071021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 01/06/2023]
Abstract
Seed germination is a critical stage during the life cycle of plants. It is well known that germination is regulated by a series of internal and external factors, especially plant hormones. In Arabidopsis, many germination-related factors have been identified, while in rice, the important crop and monocot model species and the further molecular mechanisms and regulatory networks controlling germination still need to be elucidated. Hormonal signals, especially those of abscisic acid (ABA) and gibberellin (GA), play a dominant role in determining whether a seed germinates or not. The balance between the content and sensitivity of these two hormones is the key to the regulation of germination. In this review, we present the foundational knowledge of ABA and GA pathways obtained from germination research in Arabidopsis. Then, we highlight the current advances in the identification of the regulatory genes involved in ABA- or GA-mediated germination in rice. Furthermore, other plant hormones regulate seed germination, most likely by participating in the ABA or GA pathways. Finally, the results from some regulatory layers, including transcription factors, post-transcriptional regulations, and reactive oxygen species, are also discussed. This review aims to summarize our current understanding of the complex molecular networks involving the key roles of plant hormones in regulating the seed germination of rice.
Collapse
Affiliation(s)
- Diankai Gong
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Fei He
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (F.H.); (J.L.)
| | - Jingyan Liu
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (F.H.); (J.L.)
| | - Cheng Zhang
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Yanrong Wang
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Shujun Tian
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Chi Sun
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Xue Zhang
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
- Correspondence: ; Tel.: +86-150-4020-6835
| |
Collapse
|
25
|
Gao W, Li M, Yang S, Gao C, Su Y, Zeng X, Jiao Z, Xu W, Zhang M, Xia K. miR2105 and the kinase OsSAPK10 co-regulate OsbZIP86 to mediate drought-induced ABA biosynthesis in rice. PLANT PHYSIOLOGY 2022; 189:889-905. [PMID: 35188194 PMCID: PMC9157147 DOI: 10.1093/plphys/kiac071] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/15/2022] [Indexed: 05/27/2023]
Abstract
Mediating induced abscisic acid (ABA) biosynthesis is important for enhancing plant stress tolerance. Here, we found that rice (Oryza sativa L.) osa-miR2105 (miR2105) and the Stress/ABA-activated protein kinase (OsSAPK10) coordinately regulate the rice basic region-leucine zipper transcription factor (bZIP TF; OsbZIP86) at the posttranscriptional and posttranslational levels to control drought-induced ABA biosynthesis via modulation of rice 9-cis-epoxycarotenoid dioxygenase (OsNCED3) expression. OsbZIP86 expression is regulated by miR2105-directed cleavage of the OsbZIP86 mRNA. OsbZIP86 encodes a nuclear TF that binds to the promoter of the ABA biosynthetic gene OsNCED3. OsSAPK10 can phosphorylate and activate OsbZIP86 to enhance the expression of OsNCED3. Under normal growth conditions, altered expression of miR2105 and OsbZIP86 displayed no substantial effect on rice growth. However, under drought conditions, miR2105 knockdown or OsbZIP86 overexpression transgenic rice plants showed higher ABA content, enhanced tolerance to drought, lower rates of water loss, and more stomatal closure of seedlings, compared with wild-type rice Zhonghua 11; in contrast, miR2105 overexpression, OsbZIP86 downregulation, and OsbZIP86 knockout plants displayed opposite phenotypes. Collectively, our results show that the "miR2105-(OsSAPK10)-OsbZIP86-OsNCED3" module regulates the drought-induced ABA biosynthesis without penalty on rice growth under normal conditions, suggesting candidates for improving drought tolerance in rice.
Collapse
Affiliation(s)
- Weiwei Gao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of life Science, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Mingkang Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of life Science, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Songguang Yang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chunzhi Gao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yan Su
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuan Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhengli Jiao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Weijuan Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of life Science, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Mingyong Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of life Science, University of Chinese Academy of Sciences, Beijing 10049, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Kuaifei Xia
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of life Science, University of Chinese Academy of Sciences, Beijing 10049, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|