1
|
Zlobin IE. Tree post-drought recovery: scenarios, regulatory mechanisms and ways to improve. Biol Rev Camb Philos Soc 2024; 99:1595-1612. [PMID: 38581143 DOI: 10.1111/brv.13083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Efficient post-drought recovery of growth and assimilation enables a plant to return to its undisturbed state and functioning. Unlike annual plants, trees suffer not only from the current drought, but also from cumulative impacts of consecutive water stresses which cause adverse legacy effects on survival and performance. This review provides an integrated assessment of ecological, physiological and molecular evidence on the recovery of growth and photosynthesis in trees, with a view to informing the breeding of trees with a better ability to recover from water stress. Suppression of recovery processes can result not only from stress damage but also from a controlled downshift of recovery as part of tree acclimation to water-limited conditions. In the latter case, recovery processes could potentially be activated by turning off the controlling mechanisms, but several obstacles make this unlikely. Tree phenology, and specifically photoperiodic constraints, can limit post-drought recovery of growth and photosynthesis, and targeting these constraints may represent a promising way to breed trees with an enhanced ability to recover post-drought. The mechanisms of photoperiod-dependent regulation of shoot, secondary and root growth and of assimilation processes are reviewed. Finally, the limitations and trade-offs of altering the photoperiodic regulation of growth and assimilation processes are discussed.
Collapse
Affiliation(s)
- Ilya E Zlobin
- K.A. Timiryazev Institute of Plant Physiology, RAS, 35 Botanicheskaya St, Moscow, 127276, Russia
| |
Collapse
|
2
|
Silvestro R, Mencuccini M, García-Valdés R, Antonucci S, Arzac A, Biondi F, Buttò V, Camarero JJ, Campelo F, Cochard H, Čufar K, Cuny HE, de Luis M, Deslauriers A, Drolet G, Fonti MV, Fonti P, Giovannelli A, Gričar J, Gruber A, Gryc V, Guerrieri R, Güney A, Guo X, Huang JG, Jyske T, Kašpar J, Kirdyanov AV, Klein T, Lemay A, Li X, Liang E, Lintunen A, Liu F, Lombardi F, Ma Q, Mäkinen H, Malik RA, Martinez Del Castillo E, Martinez-Vilalta J, Mayr S, Morin H, Nabais C, Nöjd P, Oberhuber W, Olano JM, Ouimette AP, Paljakka TVS, Peltoniemi M, Peters RL, Ren P, Prislan P, Rathgeber CBK, Sala A, Saracino A, Saulino L, Schiestl-Aalto P, Shishov VV, Stokes A, Sukumar R, Sylvain JD, Tognetti R, Treml V, Urban J, Vavrčík H, Vieira J, von Arx G, Wang Y, Yang B, Zeng Q, Zhang S, Ziaco E, Rossi S. Partial asynchrony of coniferous forest carbon sources and sinks at the intra-annual time scale. Nat Commun 2024; 15:6169. [PMID: 39103349 DOI: 10.1038/s41467-024-49494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/05/2024] [Indexed: 08/07/2024] Open
Abstract
As major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues. We show temporally coupled seasonal peaks of carbon assimilation (GPP) and wood cell differentiation, while the two processes are substantially decoupled during off-peak periods. Peaks of cambial activity occur substantially earlier compared to GPP, suggesting the buffer role of non-structural carbohydrates between the processes of carbon assimilation and allocation to wood. Our findings suggest that high-resolution seasonal data of ecosystem carbon fluxes, wood formation and the associated physiological processes may reduce uncertainties in carbon source-sink relationships at different spatial scales, from stand to ecosystem levels.
Collapse
Affiliation(s)
- Roberto Silvestro
- Laboratoire sur les écosystemes terrestres boreaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada.
| | - Maurizio Mencuccini
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluis Companys 23, 08010, Barcelona, Spain
| | - Raúl García-Valdés
- Department of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, c/ Tulipán s/n, 28933, Móstoles, Spain
- Global Change Research Institute (IICG-URJC), c/ Tulipán s/n, 28933, Móstoles, Spain
| | - Serena Antonucci
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, 86100, Campobasso, Italy
| | - Alberto Arzac
- Siberian Federal University, 79 Svobodny pr., 660041, Krasnoyarsk, Russia
| | - Franco Biondi
- DendroLab, Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, 89557, USA
| | - Valentina Buttò
- Laboratoire sur les écosystemes terrestres boreaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
- Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada
| | - J Julio Camarero
- Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, 50192, Zaragoza, Spain
| | - Filipe Campelo
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Katarina Čufar
- University of Ljubljana, Biotechnical Faculty, 1000, Ljubljana, Slovenia
| | - Henri E Cuny
- Institut National de l'Information Géographique et Forestière (IGN), 54250, Champigneulles, France
| | - Martin de Luis
- Department of Geography and Regional Planning, Environmental Science Institute, University of Zaragoza, 50009, Zaragoza, Spain
| | - Annie Deslauriers
- Laboratoire sur les écosystemes terrestres boreaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| | - Guillaume Drolet
- Direction de la Recherche Forestière, Ministère des Ressources Naturelles et des Forêts du Québec, 2700 rue Einstein, Québec, QC, G1P 3W8, Canada
| | - Marina V Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Patrick Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Alessio Giovannelli
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, 50019, Sesto Fiorentino, Italy
| | - Jožica Gričar
- Slovenian Forestry Institute, 1000, Ljubljana, Slovenia
| | - Andreas Gruber
- Department of Botany, Leopold-Franzens University of Innsbruck, 6020, Innsbruck, Austria
| | - Vladimír Gryc
- Department of Wood Science and Wood Technology, Mendel University in Brno, 61300, Brno, Czech Republic
| | - Rossella Guerrieri
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy
| | - Aylin Güney
- Izmir Katip Çelebi University, Faculty of Forestry, Izmir, Türkiye
| | - Xiali Guo
- College of Forestry, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Daxue East Road 100, Nanning, Guangxi, 530004, China
| | - Jian-Guo Huang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tuula Jyske
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, PO Box 27 (Latokartanonkaari 7) 00014, Helsinki, Finland
| | - Jakub Kašpar
- Department of Physical Geography and Geoecology, Charles University, CZ-12843, Prague, Czech Republic
- Department of Forest Ecology, The Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Brno, Czechia
| | - Alexander V Kirdyanov
- Siberian Federal University, 79 Svobodny pr., 660041, Krasnoyarsk, Russia
- V.N. Sukachev Institute of Forest SB RAS, Federal Research Center 'Krasnoyarsk Science Center SB RAS, 660036, Krasnoyarsk, Akademgorodok, Russia
- Department of Geography, University of Cambridge, Cambridge, CB2 3EN, UK
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Audrey Lemay
- Laboratoire sur les écosystemes terrestres boreaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| | - Xiaoxia Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Anna Lintunen
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, P.O. Box 68, University of Helsinki, FI-00014, Helsinki, Finland
- Institute for Atmospheric and Earth System Research / Forest Sciences, Faculty of Agriculture and Forestry, P.O. Box 27, University of Helsinki, FI-00014, Helsinki, Finland
| | - Feng Liu
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Fabio Lombardi
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, 89122, Reggio, Calabria, Italy
| | - Qianqian Ma
- South China National Botanical Garden, Guangzhou, 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Harri Mäkinen
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Rayees A Malik
- Centre for Ecological Sciences, Indian Institute of Science (IISc), Bangalore, 560012, India
- Department of Botany, University of Kashmir, India-190006, Kashmir, Srinagar, India
| | | | - Jordi Martinez-Vilalta
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), E08193, Barcelona, Catalonia, Spain
| | - Stefan Mayr
- Department of Botany, Leopold-Franzens University of Innsbruck, 6020, Innsbruck, Austria
| | - Hubert Morin
- Laboratoire sur les écosystemes terrestres boreaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| | - Cristina Nabais
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Pekka Nöjd
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Walter Oberhuber
- Department of Botany, Leopold-Franzens University of Innsbruck, 6020, Innsbruck, Austria
| | - José M Olano
- EIFAB, iuFOR. Universidad de Valladolid, Campus Duques de Soria, E-42004, Soria, Spain
| | - Andrew P Ouimette
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
| | - Teemu V S Paljakka
- Institute for Atmospheric and Earth System Research / Forest Sciences, Faculty of Agriculture and Forestry, P.O. Box 27, University of Helsinki, FI-00014, Helsinki, Finland
| | | | - Richard L Peters
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Ping Ren
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Peter Prislan
- Slovenian Forestry Institute, 1000, Ljubljana, Slovenia
| | | | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Antonio Saracino
- Department of Agricultural Sciences, University of Naples Federico II, I-80055 Portici, Napoli, Italy
| | - Luigi Saulino
- Department of Agricultural Sciences, University of Naples Federico II, I-80055 Portici, Napoli, Italy
| | - Piia Schiestl-Aalto
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, P.O. Box 68, University of Helsinki, FI-00014, Helsinki, Finland
| | - Vladimir V Shishov
- Siberian Federal University, 79 Svobodny pr., 660041, Krasnoyarsk, Russia
| | - Alexia Stokes
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Raman Sukumar
- Centre for Ecological Sciences, Indian Institute of Science (IISc), Bangalore, 560012, India
| | - Jean-Daniel Sylvain
- Direction de la Recherche Forestière, Ministère des Ressources Naturelles et des Forêts du Québec, 2700 rue Einstein, Québec, QC, G1P 3W8, Canada
| | - Roberto Tognetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bozen-Bolzano, Italy
| | - Václav Treml
- Department of Physical Geography and Geoecology, Charles University, CZ-12843, Prague, Czech Republic
| | - Josef Urban
- Siberian Federal University, 79 Svobodny pr., 660041, Krasnoyarsk, Russia
- Department of Forest Botany, Dendrology and Geobiocenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Hanuš Vavrčík
- Department of Wood Science and Wood Technology, Mendel University in Brno, 61300, Brno, Czech Republic
| | - Joana Vieira
- CoLAB ForestWISE - Collaborative Laboratory for Integrated Forest & Fire Management, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Hochschulstrasse 4, CH-3012, Bern, Switzerland
| | - Yan Wang
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, P.O. Box 68, University of Helsinki, FI-00014, Helsinki, Finland
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Bao Yang
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210093, China
| | - Qiao Zeng
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Shaokang Zhang
- South China National Botanical Garden, Guangzhou, 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Emanuele Ziaco
- Institute of Geography, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergio Rossi
- Laboratoire sur les écosystemes terrestres boreaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| |
Collapse
|
3
|
Xie S, Zhang Y, Kang Y, Yan T, Yue H. The Growth-Climate Relationships of Three Dominant Subalpine Conifers on the Baima Snow Mountain in the Southeastern Tibetan Plateau. PLANTS (BASEL, SWITZERLAND) 2024; 13:1645. [PMID: 38931076 PMCID: PMC11207451 DOI: 10.3390/plants13121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
The impact of climates on the radial growth of muti-species remains insufficiently understood in the climate-sensitive southeastern Tibetan Plateau, and this hampers an effective assessment of forest growth under the background of global warming. Here, we studied the growth-climate relationships of three major species (Abies georgei, Larix potaninii, and Picea likiangensis) on the Baima Snow Mountain (BSM) by using dendrochronology methods. We constructed basal area increment (BAI) residual chronologies based on the dated ring-width measurements and correlated the chronologies with four climate factors. We also calculated the contributions of each climate factor to species growth. We found that photothermal conditions played a more important role than moisture in modulating radial growth, and P. likiangensi presented the strongest sensitivity to climate change among the three species. The growing season (June and July) temperature positively affected the radial growth of three species. Winter (previous December and current January) SD negatively impacted the tree growth of A. georgei and P. likiangensis. Significant correlations between growth and precipitation were detected only in A. georgei (January and May). Warming since the beginning of the 1950s promoted the growth of A. georgei and P. likiangensis, while the same effect on L. potaninii growth was found in the recent 50 years.
Collapse
Affiliation(s)
- Siyu Xie
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China (Y.Z.)
| | - Yun Zhang
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China (Y.Z.)
| | - Yaoyao Kang
- Beijing Forestry and Parks Planning and Resource Monitoring Center, Beijing 101118, China
| | - Tao Yan
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China (Y.Z.)
| | - Haitao Yue
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China (Y.Z.)
| |
Collapse
|
4
|
Man Z, Zhang J, Liu J, Liu L, Yang J, Cao Z. Process-Based Modeling of Phenology and Radial Growth in Pinus tabuliformis in Response to Climate Factors over a Cold and Semi-Arid Region. PLANTS (BASEL, SWITZERLAND) 2024; 13:980. [PMID: 38611511 PMCID: PMC11013837 DOI: 10.3390/plants13070980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
(1) Background: Climate change significantly impacts the phenology and dynamics of radial tree growth in alpine dryland forests. However, there remains a scarcity of reliable information on the physiological processes of tree growth and cambial phenology in response to long-term climate change in cold and semi-arid regions. (2) Methods: We employed the process-based Vaganov-Shashkin (VS) model to simulate the phenology and growth patterns of Chinese pine (Pinus tabuliformis) in the eastern Qilian Mountains, northeastern Tibetan Plateau. The model was informed by observed temperature and precipitation data to elucidate the relationships between climate factors and tree growth. (3) Results: The simulated tree-ring index closely aligned with the observed tree-ring chronology, validating the VS model's effectiveness in capturing the climatic influences on radial growth and cambial phenology of P. tabuliformis. The model outputs revealed that the average growing season spanned from mid-April to mid-October and experienced an extension post-1978 due to ongoing warming trends. However, it is important to note that an increase in the duration of the growing season did not necessarily result in a higher level of radial growth. (4) Conclusions: While the duration of the growing season was primarily determined by temperature, the growth rate was predominantly influenced by water conditions during the growing season, making it the most significant factor contributing to ring formation. Our study provides valuable insights into the potential mechanisms underlying tree growth responses to climate change in cold and semi-arid regions.
Collapse
Affiliation(s)
- Zihong Man
- Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
- Liancheng National Nature Reserve in Gansu, Lanzhou 730300, China
| | - Junzhou Zhang
- Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Junjun Liu
- Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Li Liu
- Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiqin Yang
- Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
- Liancheng National Nature Reserve in Gansu, Lanzhou 730300, China
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zongying Cao
- Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Zhang X, Rademacher T, Liu H, Wang L, Manzanedo RD. Fading regulation of diurnal temperature ranges on drought-induced growth loss for drought-tolerant tree species. Nat Commun 2023; 14:6916. [PMID: 37903773 PMCID: PMC10616191 DOI: 10.1038/s41467-023-42654-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
Warming-induced droughts caused tree growth loss across the globe, leading to substantial carbon loss to the atmosphere. Drought-induced growth loss, however, can be regulated by changes in diurnal temperature ranges. Here, we investigated long term radial growth responses of 23 widespread distributed tree species from 2327 sites over the world and found that species' drought tolerances were significantly and positively correlated with diurnal temperature range-growth loss relationships for the period 1901-1940. Since 1940, this relationship has continued to fade, likely due to asymmetric day and night warming trends and the species' ability to deal with them. The alleviation of reduced diurnal temperature ranges on drought-induced growth loss was mainly found for drought resistant tree species. Overall, our results highlight the need to carefully consider diurnal temperature ranges and species-specific responses to daytime and nighttime warming to explore tree growth responses to current and future warmer and drier climates.
Collapse
Affiliation(s)
- Xianliang Zhang
- College of Forestry, Hebei Agricultural University, Baoding, 071001, China
- College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Tim Rademacher
- Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, QC, J0V 1V0, Canada
- Centre ACER, Saint-Hyacinthe, QC, J2S 0B8, Canada
- Harvard Forest, Harvard University, Petersham, MA, 01366, USA
| | - Hongyan Liu
- College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China.
| | - Lu Wang
- College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Rubén D Manzanedo
- Plant Ecology, Institute of Integrative Biology, D-USYS, ETH-Zürich, 8006, Zürich, Switzerland
| |
Collapse
|
6
|
Wood structure explained by complex spatial source-sink interactions. Nat Commun 2022; 13:7824. [PMID: 36535928 PMCID: PMC9763502 DOI: 10.1038/s41467-022-35451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
Wood is a remarkable material with great cultural, economic, and biogeochemical importance. However, our understanding of its formation is poor. Key properties that have not been explained include the anatomy of growth rings (with consistent transitions from low-density earlywood to high density latewood), strong temperature-dependence of latewood density (used for historical temperature reconstructions), the regulation of cell size, and overall growth-temperature relationships in conifer and ring-porous tree species. We have developed a theoretical framework based on observations on Pinus sylvestris L. in northern Sweden. The observed anatomical properties emerge from our framework as a consequence of interactions in time and space between the production of new cells, the dynamics of developmental zone widths, and the distribution of carbohydrates across the developing wood. Here we find that the diffusion of carbohydrates is critical to determining final ring anatomy, potentially overturning current understanding of how wood formation responds to environmental variability and transforming our interpretation of tree rings as proxies of past climates.
Collapse
|
7
|
Larysch E, Stangler DF, Puhlmann H, Rathgeber CBK, Seifert T, Kahle HP. The 2018 hot drought pushed conifer wood formation to the limit of its plasticity: Consequences for woody biomass production and tree ring structure. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1171-1185. [PMID: 35277910 DOI: 10.1111/plb.13399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Hot droughts are expected to increase in Europe and disturb forest ecosystem functioning. Wood formation of trees has the potential to adapt to those events by compensatory mechanisms between the rates and durations of tracheid differentiation to form the typical pattern of vital wood anatomical structures. We monitored xylogenesis and measured wood anatomy of mature silver fir (Abies alba Mill.) and Scots pine (Pinus sylvestris L.) trees along an elevational gradient in the Black Forest during the hot drought year of 2018. We assessed the kinetics of tracheid differentiation and the final tracheid dimensions and quantified the relationship between rates and durations of cell differentiation over the growing season. Cell differentiation kinetics were decoupled, and temperature and water availability signals were imprinted in the tree ring structure. The sudden decline in woody biomass production provided evidence for a disruption in carbon sequestration processes due to heat and drought stress. Growth processes of Scots pine (pioneer species) were mainly affected by the spring drought, whereas silver fir (climax species) growth processes were more disturbed by the summer drought. Our study provides novel insights on the plasticity of wood formation and carbon allocation in temperate conifer tree species in response to extreme climatic events.
Collapse
Affiliation(s)
- E Larysch
- Chair of Forest Growth and Dendroecology, Albert-Ludwigs-University, Freiburg, Germany
| | - D F Stangler
- Chair of Forest Growth and Dendroecology, Albert-Ludwigs-University, Freiburg, Germany
| | - H Puhlmann
- Department of Soil and Environment, Forest Research Institute Baden-Württemberg, Freiburg, Germany
| | - C B K Rathgeber
- INRAE, SILVA, Université de Lorraine, AgroParisTech, Nancy, France
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - T Seifert
- Chair of Forest Growth and Dendroecology, Albert-Ludwigs-University, Freiburg, Germany
- Department of Forest and Wood Science, Stellenbosch University, Matieland, South Africa
| | - H-P Kahle
- Chair of Forest Growth and Dendroecology, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
8
|
Rademacher T, Fonti P, LeMoine JM, Fonti MV, Bowles F, Chen Y, Eckes-Shephard AH, Friend AD, Richardson AD. Insights into source/sink controls on wood formation and photosynthesis from a stem chilling experiment in mature red maple. THE NEW PHYTOLOGIST 2022; 236:1296-1309. [PMID: 35927942 DOI: 10.1111/nph.18421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Whether sources or sinks control wood growth remains debated with a paucity of evidence from mature trees in natural settings. Here, we altered carbon supply rate in stems of mature red maples (Acer rubrum) within the growing season by restricting phloem transport using stem chilling; thereby increasing carbon supply above and decreasing carbon supply below the restrictions, respectively. Chilling successfully altered nonstructural carbon (NSC) concentrations in the phloem without detectable repercussions on bulk NSC in stems and roots. Ring width responded strongly to local variations in carbon supply with up to seven-fold differences along the stem of chilled trees; however, concurrent changes in the structural carbon were inconclusive at high carbon supply due to large local variability of wood growth. Above chilling-induced bottlenecks, we also observed higher leaf NSC concentrations, reduced photosynthetic capacity, and earlier leaf coloration and fall. Our results indicate that the cambial sink is affected by carbon supply, but within-tree feedbacks can downregulate source activity, when carbon supply exceeds demand. Such feedbacks have only been hypothesized in mature trees. Consequently, these findings constitute an important advance in understanding source-sink dynamics, suggesting that mature red maples operate close to both source- and sink-limitation in the early growing season.
Collapse
Affiliation(s)
- Tim Rademacher
- Harvard Forest, Harvard University, Petersham, MA, 01366, USA
- School of Informatics, Computing and Cyber Systems and Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, J0V 1V0, QC, Canada
| | - Patrick Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - James M LeMoine
- School of Informatics, Computing and Cyber Systems and Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Marina V Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
- Institute of Ecology and Geography, Siberian Federal University, Krasnoyarsk, 660041, Russia
| | | | - Yizhao Chen
- Department of Geography, University of Cambridge, Cambridge, CB2 1BY, UK
| | - Annemarie H Eckes-Shephard
- Department of Geography, University of Cambridge, Cambridge, CB2 1BY, UK
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, 223 62, Sweden
| | - Andrew D Friend
- Department of Geography, University of Cambridge, Cambridge, CB2 1BY, UK
| | - Andrew D Richardson
- School of Informatics, Computing and Cyber Systems and Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
9
|
Martínez‐Sancho E, Treydte K, Lehmann MM, Rigling A, Fonti P. Drought impacts on tree carbon sequestration and water use - evidence from intra-annual tree-ring characteristics. THE NEW PHYTOLOGIST 2022; 236:58-70. [PMID: 35576102 PMCID: PMC9542003 DOI: 10.1111/nph.18224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/04/2022] [Indexed: 05/22/2023]
Abstract
The impact of climate extremes on forest ecosystems is poorly understood but important for predicting carbon and water cycle feedbacks to climate. Some knowledge gaps still remain regarding how drought-related adjustments in intra-annual tree-ring characteristics directly impact tree carbon and water use. In this study we quantified the impact of an extreme summer drought on the water-use efficiency and carbon sequestration of four mature Norway spruce trees. We used detailed observations of wood formation (xylogenesis) and intra-annual tree-ring properties (quantitative wood anatomy and stable carbon isotopes) combined with physiological water-stress monitoring. During 41 d of tree water deficit, we observed an enrichment in 13 C but a reduction in cell enlargement and wall-thickening processes, which impacted the anatomical characteristics. These adjustments diminished carbon sequestration by 67% despite an 11% increase in water-use efficiency during drought. However, with the resumption of a positive hydric state in the stem, we observed a fast recovery of cell formation rates based on the accumulated assimilates produced during drought. Our findings enhance our understanding of carbon and water fluxes between the atmosphere and forest ecosystems, providing observational evidence on the tree intra-annual carbon sequestration and water-use efficiency dynamics to improve future generations of vegetation models.
Collapse
Affiliation(s)
- Elisabet Martínez‐Sancho
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Kerstin Treydte
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Marco M. Lehmann
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Andreas Rigling
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsSwiss Federal Institute of Technology ETHUniversitaetsstrasse 168092ZurichSwitzerland
| | - Patrick Fonti
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| |
Collapse
|
10
|
Stangler DF, Miller TW, Honer H, Larysch E, Puhlmann H, Seifert T, Kahle HP. Multivariate drought stress response of Norway spruce, silver fir and Douglas fir along elevational gradients in Southwestern Germany. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.907492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The conifer tree species Norway spruce (Picea abies), silver fir (Abies alba) and Douglas fir (Pseudotsuga menziesii) are important elements in tree species composition and forest management of Central European forests, but their potential to thrive under anticipated climatic changes is still debated controversially. This study contributes a multivariate analysis of resilience components based on increment cores sampled at breast height of Norway spruce, silver fir and Douglas fir trees growing along elevational gradients in Southwestern Germany. We aimed to gain novel insights into the species-specific and elevational response of tree growth and wood density variables during the extreme drought events of the years 2003 and 2018. Our results for Norway spruce corroborate projections of its ongoing decline during climate change as the reductions of wood density and biomass production indicated high drought sensitivity at all elevations. Moreover, resilience indices of mean tree-ring density, maximum latewood density, tree-ring width and biomass production were even lower after the drought of 2018 compared to the previous drought of 2003. Silver fir, a potential substitute tree species for Norway spruce, showed unexpected results with resistance and resilience indices being significantly lower in 2018 compared to 2003 indicating that silver fir might be more vulnerable to drought than previously expected, especially at low elevations. In contrast, the superior growth rates and higher levels of drought tolerance of Douglas fir were especially pronounced during the drought of 2018 and visible across the entire elevational gradient, even though high coning intensity was present for all investigated tree species as a possible confounding factor to exacerbate the drought stress effects in the study region.
Collapse
|
11
|
Rehschuh R, Ruehr NK. Diverging responses of water and carbon relations during and after heat and hot drought stress in Pinus sylvestris. TREE PHYSIOLOGY 2022; 42:1532-1548. [PMID: 34740258 PMCID: PMC9366868 DOI: 10.1093/treephys/tpab141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Forests are increasingly affected by heatwaves, often co-occurring with drought, with consequences for water and carbon (C) cycling. However, our ability to project tree resilience to more intense hot droughts remains limited. Here, we used single tree chambers (n = 18) to investigate transpiration (E), net assimilation (Anet), root respiration (Rroot) and stem diameter change in Scots pine seedlings in a control treatment and during gradually intensifying heat or drought-heat stress (max. 42 °C), including recovery. Alongside this, we assessed indicators of stress impacts and recovery capacities. In the heat treatment, excessive leaf heating was mitigated via increased E, while under drought-heat, E ceased and leaf temperatures reached 46 °C. However, leaf electrolyte leakage was negligible, while light-adapted quantum yield of photosystem II (F'v/F'm) declined alongside Anet moderately in heat, but strongly in drought-heat seedlings, in which respiration exceeded C uptake. Drought-heat largely affected the hydraulic system as apparent in stem diameter shrinkage, declining relative needle water content (RWCNeedle) and water potential (ΨNeedle) reaching -2.7 MPa, alongside a 90% decline of leaf hydraulic conductance (KLeaf). Heat alone resulted in low functional impairment and all measured parameters recovered quickly. Contrary, following drought-heat, the recovery of KLeaf was incomplete and stem hydraulic conductivity (KS) was 25% lower than the control. However, F'v/F'm recovered and the tree net C balance reached control values 2 days post-stress, with stem increment rates accelerating during the second recovery week. This indicates a new equilibrium of C uptake and release in drought-heat seedlings independent of hydraulic impairment, which may slowly contribute to the repair of damaged tissues. In summary, Scots pine recovered rapidly following moderate heat stress, while combined with drought, hydraulic and thermal stress intensified, resulting in functional damage and slow recovery of hydraulic conductance. This incomplete hydraulic recovery could critically limit evaporative cooling capacities and C uptake under repeated heatwaves.
Collapse
Affiliation(s)
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research-Atmospheric Environmental Research (KIT/IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| |
Collapse
|
12
|
Zlobin IE. Linking the growth patterns of coniferous species with their performance under climate aridization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154971. [PMID: 35367548 DOI: 10.1016/j.scitotenv.2022.154971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Tree growth is highly sensitive to water deficit. At the same time, growth processes substantially influence tree performance under water stress by changing the root-absorbing surface, leaf-transpiring surface, amount of conducting xylem, etc. Drought-induced growth suppression is often higher in conifers than in broadleaf species. This review is devoted to the relations between the growth of coniferous plants and their performance under increasing climate aridization in the temperate and boreal zones of the Northern Hemisphere. For adult trees, available evidence suggests that increasing the frequency and severity of water deficit would be more detrimental to those plants that have higher growth in favorable conditions but decrease growth more prominently under water shortage, compared to trees whose growth is less sensitive to moisture availability. Not only the overall sensitivity of growth processes to water supply but also the asymmetry in response to lower-than-average and higher-than-average moisture conditions can be important for the performance of coniferous trees under upcoming adverse climate change. To fully understand the tree response under future climate change, the responses to both drier and wetter years need to be analyzed separately. In coniferous seedlings, more active growth is usually linked with better drought survival, although physiological reasons for such a link can be different. Growth stability under exacerbating summer water deficit in coniferous plants can be maintained by more active spring growth and/or by a bimodal growth pattern; each strategy has specific advantages and drawbacks. The optimal choice of growth strategy would be critical for future reforestation programs.
Collapse
Affiliation(s)
- Ilya E Zlobin
- K.A. Timiryazev Institute of Plant Physiology, RAS, 35 Botanicheskaya St., Moscow 127276, Russia.
| |
Collapse
|
13
|
Giovannelli A, Mattana S, Emiliani G, Anichini M, Traversi ML, Pavone FS, Cicchi R. Localized stem heating from the rest to growth phase induces latewood-like cell formation and slower stem radial growth in Norway spruce saplings. TREE PHYSIOLOGY 2022; 42:1149-1163. [PMID: 34918169 DOI: 10.1093/treephys/tpab166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Recent climate projections predict a more rapid increase of winter temperature than summer and global temperature averages in temperate and cold environments. As there is relatively little experimental knowledge on the effect of winter warming on cambium phenology and stem growth in species growing in cold environments, the setting of manipulative experiments is considered of primary importance, and they can help to decipher the effect of reduced winter chilling and increased forcing temperatures on cambium reactivation, growth and xylem traits. In this study, localized stem heating was applied to investigate the effect of warming from the rest to the growth phase on cambium phenology, intra-annual stem growth dynamics and ring wood features in Picea abies (L.) H.Karst. We hypothesized that reduced winter chilling induces a postponed cambium dormancy release and decrease of stem growth, while high temperature during cell wall lignification determines an enrichment of latewood-like cells. The heating device was designed to maintain a +5 °C temperature delta with respect to air temperature, thus allowing an authentic scenario of warming. Continuous stem heating from the rest (November) to the growing phase determined, at the beginning of radial growth, a reduction of the number of cell layers in the cambium, higher number of cell layers in the wall thickening phase and an asynchronous stem radial growth when comparing heated and ambient saplings. Nevertheless, heating did not induce changes in the number of produced cell layers at the end of the growing season. The analyses of two-photon fluorescence images showed that woody rings formed during heating were enriched with latewood-like cells. Our results showed that an increase of 5 °C of temperature applied to the stem from the rest to growth might not influence, as generally reported, onset of cambial activity, but it could affect xylem morphology of Norway spruce in mountain environments.
Collapse
Affiliation(s)
- Alessio Giovannelli
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Sara Mattana
- Istituto Nazionale di Ottica (INO), Consiglio Nazionale delle Ricerche, Largo Fermi 6, Firenze 50125, Italy
| | - Giovanni Emiliani
- Istituto Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Monica Anichini
- Istituto per la Bioeconomia (IBE), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Maria Laura Traversi
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Francesco Saverio Pavone
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via G. Sansone 1, Sesto Fiorentino 50019, Italy
| | - Riccardo Cicchi
- Istituto Nazionale di Ottica (INO), Consiglio Nazionale delle Ricerche, Largo Fermi 6, Firenze 50125, Italy
- Laboratorio Europeo di Spettroscopie Non-lineari (LENS), Via N. Carrara 1, Sesto Fiorentino 50019, Italy
| |
Collapse
|
14
|
The Contrasting Effects of Local Environmental Conditions on Tree Growth between Populations at Different Latitudes. FORESTS 2022. [DOI: 10.3390/f13030429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Current widely used climate envelope approaches, i.e., correlations between climatic variables and the presence of a species, simulate responses for the whole species and predict future ranges based mainly on climatic suitability. However, short-term tree responses to climate change will take place within current populations, and these populations, acclimated to their local environments, are not likely to respond similarly to climate change. Thus, to develop reliable forecasts of forest responses to climate change, this variability among populations needs to be considered. In this study, we tested the effect of environmental conditions on the growth of two common maple species (Acer rubrum L. and A. saccharum Marshall) at two different latitudes within their northern distributional ranges. We collected increment cores, and analyzed year to year variabilities in tree growth as a function of temperature and precipitation. The results suggest divergent responses between species and between populations of the same species. Predicted growth under different climate scenarios for the region suggested that the growth of southern populations might decrease, while northern populations might still be able to retain their current growth. These results document the population-level responses to environmental conditions of these two species, providing latitude-specific guidance for future forest distribution prediction.
Collapse
|
15
|
Pérez-de-Lis G, Rathgeber CBK, Fernández-de-Uña L, Ponton S. Cutting tree rings into time slices: how intra-annual dynamics of wood formation help decipher the space-for-time conversion. THE NEW PHYTOLOGIST 2022; 233:1520-1534. [PMID: 34797916 DOI: 10.1111/nph.17869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Tree-ring anatomy, microdensity and isotope records provide valuable intra-annual information. However, extracting signals at that scale is challenged by the complexity of xylogenesis, where two major processes - cell enlargement and wall thickening - occur at different times and rates. We characterized the space-for-time association in the tree rings of three conifer species by examining the duration, overlapping, inter-tree synchronicity and interannual stability during cell enlargement and wall thickening across regular tree-ring sectors (portions of equal tangential width). The number of cells and cell differentiation rates determined the duration of sector formation, which augmented more rapidly throughout the ring for wall thickening than for enlargement. Increasing the number of sectors above c. 15 had a limited effect on improving time resolution because consecutive sector formation overlapped greatly in time, especially in narrow rings and during wall thickening. Increasing the number of sectors also resulted in lower synchronicity and stability of intermediate-sector enlargement, whereas all sectors showed high synchronicity and stability during wall thickening. Increasing the number of sectors had a stronger effect on enhancing time-series resolution for enlargement- than for wall-thickening-related traits, which would nevertheless produce more reliable intra-annual chronologies as a result of the more similar calendars across trees and years in wall thickening.
Collapse
Affiliation(s)
- Gonzalo Pérez-de-Lis
- SILVA, Université de Lorraine, AgroParisTech, INRAE, Nancy, 54000, France
- BIOAPLIC, Departamento de Botánica, EPSE, Universidade de Santiago de Compostela, Campus Terra, Lugo, 27002, Spain
| | - Cyrille B K Rathgeber
- SILVA, Université de Lorraine, AgroParisTech, INRAE, Nancy, 54000, France
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Laura Fernández-de-Uña
- SILVA, Université de Lorraine, AgroParisTech, INRAE, Nancy, 54000, France
- CREAF, Bellaterra (Cerdanyola del Vallés), Catalonia, E08193, Spain
| | - Stéphane Ponton
- SILVA, Université de Lorraine, AgroParisTech, INRAE, Nancy, 54000, France
| |
Collapse
|
16
|
Rehschuh R, Rehschuh S, Gast A, Jakab AL, Lehmann MM, Saurer M, Gessler A, Ruehr NK. Tree allocation dynamics beyond heat and hot drought stress reveal changes in carbon storage, belowground translocation and growth. THE NEW PHYTOLOGIST 2022; 233:687-704. [PMID: 34668198 DOI: 10.1111/nph.17815] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Heatwaves combined with drought affect tree functioning with as yet undetermined legacy effects on carbon (C) and nitrogen (N) allocation. We continuously monitored shoot and root gas exchange, δ13 CO2 of respiration and stem growth in well-watered and drought-treated Pinus sylvestris (Scots pine) seedlings exposed to increasing daytime temperatures (max. 42°C) and evaporative demand. Following stress release, we used 13 CO2 canopy pulse-labeling, supplemented by soil-applied 15 N, to determine allocation to plant compartments, respiration and soil microbial biomass (SMB) over 2.5 wk. Previously heat-treated seedlings rapidly translocated 13 C along the long-distance transport path, to root respiration (Rroot ; 7.1 h) and SMB (3 d). Furthermore, 13 C accumulated in branch cellulose, suggesting secondary growth enhancement. However, in recovering drought-heat seedlings, the mean residence time of 13 C in needles increased, whereas C translocation to Rroot was delayed (13.8 h) and 13 C incorporated into starch rather than cellulose. Concurrently, we observed stress-induced low N uptake and aboveground allocation. C and N allocation during early recovery were affected by stress type and impact. Although C uptake increased quickly in both treatments, drought-heat in combination reduced the above-belowground coupling and starch accumulated in leaves at the expense of growth. Accordingly, C allocation during recovery depends on phloem translocation capacity.
Collapse
Affiliation(s)
- Romy Rehschuh
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Stephanie Rehschuh
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Andreas Gast
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Andrea-Livia Jakab
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Marco M Lehmann
- Swiss Federal Research Institute WSL, Research Unit Forest Dynamics, Birmensdorf, 8903, Switzerland
| | - Matthias Saurer
- Swiss Federal Research Institute WSL, Research Unit Forest Dynamics, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Research Unit Forest Dynamics, Birmensdorf, 8903, Switzerland
- Department of Environmental System Sciences, ETH Zurich, Zurich, 8092, Switzerland
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| |
Collapse
|
17
|
Morino K, Minor RL, Barron-Gafford GA, Brown PM, Hughes MK. Bimodal cambial activity and false-ring formation in conifers under a monsoon climate. TREE PHYSIOLOGY 2021; 41:1893-1905. [PMID: 33823053 DOI: 10.1093/treephys/tpab045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Tracking wood formation in semiarid regions during the seasonal march of precipitation extremes has two important applications. It can provide (i) insight into the adaptive capacities of trees to drought and (ii) a basis for a richer interpretation of tree-ring data, assisting in a deeper understanding of past and current climate. In the southwestern USA, the anatomical signature of seasonally bimodal precipitation is the 'false ring'-a band of latewood-like cells in the earlywood. These occur when a particularly deep drought during the early growing season ends abruptly with timely, mid-growing season monsoonal rains. Such conditions presented in southern Arizona in 2014, enabling us to explore false-ring formation in ponderosa pine (Pinus ponderosa Lawson and C. Lawson) and Douglas-fir (Pseudotsuga menziesii Mirb. Franco) in mixed-conifer forest at 2573 m above sea level. We ask: what were the cell-by-cell timings and durations in the phases of wood cell development in 2014? How do these seasonal patterns relate to strongly fluctuating environmental conditions during the growing season? We took weekly microcores from March through November from six ponderosa pine and seven Douglas-fir trees at a well-instrumented flux tower site. Thin sections were prepared, and we counted cells in cambial, expansion, cell wall thickening and mature phases. For ponderosa pine trees forming a false ring, the first impact of intensifying seasonal drought was seen in the enlarging phase and then, almost a month later, in cambial activity. In this species, recovery from drought was associated with recovery first in cambial activity, followed by cell enlargement. This timing raised the possibility that cell division may be affected by atmospheric moisture increases before soil recharge. In both species, the last false-ring cells matured during the summer rainy season. Bimodal cambial activity coincident with moisture availability was observed in both species, whether or not they formed a false ring. This deeper knowledge of the precise timing of both developmental and environmental events should help define mechanistic connections among these factors in creating bimodal growth patterns.
Collapse
Affiliation(s)
- Kiyomi Morino
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ 85721, USA
| | - Rebecca L Minor
- Department of Earth and Climate Sciences, Bates College, Lewiston, ME 04240, USA
| | - Greg A Barron-Gafford
- School of Geography, Development and Environment, University of Arizona, Tucson, AZ 85721, USA
- B2 Earthscience, Biosphere 2, Office of Research Development and Innovation, University of Arizona, Tucson, AZ 85721, USA
| | - Peter M Brown
- Rocky Mountain Tree-Ring Research, Ft. Collins, CO 80526, USA
| | - Malcolm K Hughes
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
18
|
Rademacher T, Fonti P, LeMoine JM, Fonti MV, Basler D, Chen Y, Friend AD, Seyednasrollah B, Eckes-Shephard AH, Richardson AD. Manipulating phloem transport affects wood formation but not local nonstructural carbon reserves in an evergreen conifer. PLANT, CELL & ENVIRONMENT 2021; 44:2506-2521. [PMID: 34043242 DOI: 10.1111/pce.14117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
How variations in carbon supply affect wood formation remains poorly understood in particular in mature forest trees. To elucidate how carbon supply affects carbon allocation and wood formation, we attempted to manipulate carbon supply to the cambial region by phloem girdling and compression during the mid- and late-growing season and measured effects on structural development, CO2 efflux and nonstructural carbon reserves in stems of mature white pines. Wood formation and stem CO2 efflux varied with a location relative to treatment (i.e., above or below the restriction). We observed up to twice as many tracheids formed above versus below the treatment after the phloem transport manipulation, whereas the cell-wall area decreased only slightly below the treatments, and cell size did not change relative to the control. Nonstructural carbon reserves in the xylem, needles and roots were largely unaffected by the treatments. Our results suggest that low and high carbon supply affects wood formation, primarily through a strong effect on cell proliferation, and respiration, but local nonstructural carbon concentrations appear to be maintained homeostatically. This contrasts with reports of decoupling of source activity and wood formation at the whole-tree or ecosystem level, highlighting the need to better understand organ-specific responses, within-tree feedbacks, as well as phenological and ontogenetic effects on sink-source dynamics.
Collapse
Affiliation(s)
- Tim Rademacher
- School of Informatics, Computing, and Cyber Security, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Patrick Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - James M LeMoine
- School of Informatics, Computing, and Cyber Security, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Marina V Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Ecology and Geography, Siberian Federal University, Krasnoyarsk, Russian Federation
| | - David Basler
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Yizhao Chen
- Department of Geography, University of Cambridge, Cambridge, UK
| | - Andrew D Friend
- Department of Geography, University of Cambridge, Cambridge, UK
| | - Bijan Seyednasrollah
- School of Informatics, Computing, and Cyber Security, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | | | - Andrew D Richardson
- School of Informatics, Computing, and Cyber Security, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
19
|
Dox I, Prislan P, Gričar J, Mariën B, Delpierre N, Flores O, Leys S, Rathgeber CBK, Fonti P, Campioli M. Drought elicits contrasting responses on the autumn dynamics of wood formation in late successional deciduous tree species. TREE PHYSIOLOGY 2021; 41:1171-1185. [PMID: 33616191 DOI: 10.1093/treephys/tpaa175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 05/12/2023]
Abstract
Research on wood phenology has mainly focused on reactivation of the cambium in spring. In this study we investigated if summer drought advances cessation of wood formation and if it has any influence on wood structure in late successional forest trees of the temperate zone. The end of xylogenesis was monitored between August and November in stands of European beech and pedunculate oak in Belgium for two consecutive years, 2017 and 2018, with the latter year having experienced an exceptional summer drought. Wood formation in oak was affected by the drought, with oak trees ceasing cambial activity and wood maturation about 3 weeks earlier in 2018 compared with 2017. Beech ceased wood formation before oak, but its wood phenology did not differ between years. Furthermore, between the 2 years, no significant difference was found in ring width, percentage of mature fibers in the late season, vessel size and density. In 2018, beech did show thinner fiber walls, whereas oak showed thicker walls. In this paper, we showed that summer drought can have an important impact on late season wood phenology xylem development. This will help to better understand forest ecosystems and improve forest models.
Collapse
Affiliation(s)
- Inge Dox
- Research Group of Plants and Ecosystems, PLECO, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Prislan
- Department of Forest Yield and Silviculture & Department for Forest Technique and Economics, Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| | - Jožica Gričar
- Department of Forest Yield and Silviculture & Department for Forest Technique and Economics, Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| | - Bertold Mariën
- Research Group of Plants and Ecosystems, PLECO, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Nicolas Delpierre
- Ecologie Systématique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, rue du Doyen André Guinier 362, 91405, Orsay Cedex, France
- Institut Universitaire de France (IUF), rue Descartes 1, 75231 Paris, France
| | - Omar Flores
- Research Group of Plants and Ecosystems, PLECO, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Sebastien Leys
- Research Group of Plants and Ecosystems, PLECO, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Cyrille B K Rathgeber
- SILVA, Université de Lorraine, AgroParisTech, INRAE, Cours Léopold 34, 54000 Nancy, France
| | - Patrick Fonti
- Dendrosciences group, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Matteo Campioli
- Research Group of Plants and Ecosystems, PLECO, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
20
|
Buttò V, Rozenberg P, Deslauriers A, Rossi S, Morin H. Environmental and developmental factors driving xylem anatomy and micro-density in black spruce. THE NEW PHYTOLOGIST 2021; 230:957-971. [PMID: 33480027 DOI: 10.1111/nph.17223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Wood density is the product of carbon allocation for structural growth and reflects the trade-off between mechanical support and water conductivity. We tested a conceptual framework based on the assumption that micro-density depends on direct and indirect relationships with endogenous and exogenous factors. The dynamics of wood formation, including timings and rates of cell division, cell enlargement, and secondary wall deposition, were assessed from microcores collected weekly between 2002 and 2016 from five black spruce stands located along a latitudinal gradient in Quebec, Canada. Cell anatomy and micro-density were recorded by anatomical analyses and X-ray measurements. Our structural equation model explained 80% of micro-density variation within the tree-ring with direct effects of wall thickness (σ = 0.61), cell diameter (σ = -0.51), and photoperiod (σ = -0.26). Wood formation dynamics had an indirect effect on micro-density. Micro-density increased under longer periods of cell-wall deposition and shorter durations of enlargement. Our results fill a critical gap in understanding the relationships underlying micro-density variation in conifers. We demonstrated that short-term responses to environmental variations could be overridden by plastic responses that modulate cell differentiation. Our results point to wood formation dynamics as a reliable predictor of carbon allocation in trees.
Collapse
Affiliation(s)
- Valentina Buttò
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, Boulevard de l'Université, Chicoutimi (Québec), Chicoutimi, QC G7H 2B1, Canada
| | - Philippe Rozenberg
- Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UMR 0588 BIOFORA, Ardon CS 40001, 45075, Orléans Cedex 2, France
| | - Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, Boulevard de l'Université, Chicoutimi (Québec), Chicoutimi, QC G7H 2B1, Canada
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, Boulevard de l'Université, Chicoutimi (Québec), Chicoutimi, QC G7H 2B1, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hubert Morin
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, Boulevard de l'Université, Chicoutimi (Québec), Chicoutimi, QC G7H 2B1, Canada
| |
Collapse
|
21
|
Transition Dates from Earlywood to Latewood and Early Phloem to Late Phloem in Norway Spruce. FORESTS 2021. [DOI: 10.3390/f12030331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change will affect radial growth patterns of trees, which will result in different forest productivity, wood properties, and timber quality. While many studies have been published on xylem phenology and anatomy lately, little is known about the phenology of earlywood and latewood formation, also in relation to cambial phenology. Even less information is available for phloem. Here, we examined year-to-year variability of the transition dates from earlywood to latewood and from early phloem to late phloem in Norway spruce (Picea abies) from three temperate sites, two in Slovenia and one in the Czech Republic. Data on xylem and phloem formation were collected during 2009–2011. Sensitivity analysis was performed to determine the specific contribution of growth rate and duration on wood and phloem production, separately for early and late formed parts. We found significant differences in the transition date from earlywood to latewood between the selected sites, but not between growth seasons in trees from the same site. It occurred in the first week of July at PAN and MEN and more than two weeks later at RAJ. The duration of earlywood formation was longer than that of latewood formation; from 31.4 days at PAN to 61.3 days at RAJ. In phloem, we found differences in transition date from early phloem to late phloem also between the analysed growth seasons; from 2.5 weeks at PAN to 4 weeks at RAJ Compared to the transition from earlywood to latewood the transition from early phloem to late phloem occurred 25–64 days earlier. There was no significant relationship between the onset of cambial cell production and the transition dates. The findings are important to better understand the inter-annual variability of these phenological events in spruce from three contrasting temperate sites, and how it is reflected in xylem and phloem anatomy.
Collapse
|
22
|
Hartmann FP, Rathgeber CBK, Badel É, Fournier M, Moulia B. Modelling the spatial crosstalk between two biochemical signals explains wood formation dynamics and tree-ring structure. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1727-1737. [PMID: 33247732 DOI: 10.1093/jxb/eraa558] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
In conifers, xylogenesis during a growing season produces a very characteristic tree-ring structure: large, thin-walled earlywood cells followed by narrow, thick-walled latewood cells. Although many factors influence the dynamics of differentiation and the final dimensions of xylem cells, the associated patterns of variation remain very stable from one year to the next. While radial growth is characterized by an S-shaped curve, the widths of xylem differentiation zones exhibit characteristic skewed bell-shaped curves. These elements suggest a strong internal control of xylogenesis. It has long been hypothesized that much of this regulation relies on a morphogenetic gradient of auxin. However, recent modelling studies have shown that while this hypothesis could account for the dynamics of stem radial growth and the zonation of the developing xylem, it failed to reproduce the characteristic tree-ring structure. Here, we investigated the hypothesis of regulation by a crosstalk between auxin and a second biochemical signal, by using computational morphodynamics. We found that, in conifers, such a crosstalk is sufficient to simulate the characteristic features of wood formation dynamics, as well as the resulting tree-ring structure. In this model, auxin controls cell enlargement rates while another signal (e.g. cytokinin, tracheary element differentiation inhibitory factor) drives cell division and auxin polar transport.
Collapse
Affiliation(s)
- Félix P Hartmann
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | | | - Éric Badel
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | - Meriem Fournier
- Université de Lorraine, AgroParisTech, INRAE, Silva, Nancy, France
| | - Bruno Moulia
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| |
Collapse
|
23
|
Effects of Intra-Seasonal Drought on Kinetics of Tracheid Differentiation and Seasonal Growth Dynamics of Norway Spruce along an Elevational Gradient. FORESTS 2021. [DOI: 10.3390/f12030274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Research Highlights: Our results provide novel perspectives on the effectiveness and collapse of compensatory mechanisms of tracheid development of Norway spruce during intra-seasonal drought and the environmental control of intra-annual density fluctuations. Background and Objectives: This study aimed to compare and integrate complementary methods for investigating intra-annual wood formation dynamics to gain a better understanding of the endogenous and environmental control of tree-ring development and the impact of anticipated climatic changes on forest growth and productivity. Materials and Methods: We performed an integrated analysis of xylogenesis observations, quantitative wood anatomy, and point-dendrometer measurements of Norway spruce (Picea abies (L.) Karst.) trees growing along an elevational gradient in South-western Germany during a growing season with an anomalous dry June followed by an extraordinary humid July. Results: Strong endogenous control of tree-ring formation was suggested at the highest elevation where the decreasing rates of tracheid enlargement and wall thickening during drought were effectively compensated by increased cell differentiation duration. A shift to environmental control of tree-ring formation during drought was indicated at the lowest elevation, where we detected absence of compensatory mechanisms, eventually stimulating the formation of an intra-annual density fluctuation. Transient drought stress in June also led to bimodal patterns and decreasing daily rates of stem radial displacement, radial xylem growth, and woody biomass production. Comparing xylogenesis data with dendrometer measurements showed ambivalent results and it appears that, with decreasing daily rates of radial xylem growth, the signal-to-noise ratio in dendrometer time series between growth and fluctuations of tree water status becomes increasingly detrimental. Conclusions: Our study provides new perspectives into the complex interplay between rates and durations of tracheid development during dry-wet cycles, and, thereby, contributes to an improved and mechanistic understanding of the environmental control of wood formation processes, leading to the formation of intra-annual density fluctuations in tree-rings of Norway spruce.
Collapse
|
24
|
Xylem Phenology and Growth Response of European Beech, Silver Fir and Scots Pine along an Elevational Gradient during the Extreme Drought Year 2018. FORESTS 2021. [DOI: 10.3390/f12010075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Highlights: European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) displayed parabolic elevational trends of the cessation of xylem cell differentiation phases. Xylem phenology and growth rates of Scots pine (Pinus sylvestris L.) appeared to be less influenced by the 2018 drought, whereas beech reduced growth on the lowest elevation and fir seemed negatively affected in general. Background: The year 2018 was characterized by multiple drought periods and heat waves during the growing season. Our aim was to understand species-specific responses of xylem phenology and growth to drought and how this effect was modified along an elevational gradient. Materials and Methods: We sampled microcores and increment cores along an elevational gradient in the southwestern Black Forest (SW Germany) region and analyzed xylem phenology and growth response to drought. Results: Termination of cell enlargement and lignification occurred earliest in beech and latest in pine. Beech had the highest growth rates but shortest growth durations, fir achieved moderate rates and medium durations and pine had lowest growth rates despite long growth durations. In contrast to pine, onsets of cell differentiation phases of fir and beech did not show clear linear relationships with elevation. Cessation of cell production and lignification of beech and fir followed a parabolic elevational trend and occurred earliest on low elevations, whereas pine showed no changes with elevation. Tree-ring width, generally, depended 3–4 times more on the growth rate than on growth duration. Conclusions: The possibly drought-induced early cessation of cell differentiation and considerable growth reduction of beech appeared to be most severe on the lowest elevation. In comparison, growth reductions of fir were larger and seemed independent from elevation. We found evidence, that productivity might be severely affected at lower elevations, whereas at high elevations wood production might not equally benefit during global warming.
Collapse
|
25
|
Du J, Shen T, Xiong Q, Zhu C, Peng X, He X, Fu J, Ouyang L, Bian J, Hu L, Sun X, Zhou D, He H, Zhong L, Chen X. Combined proteomics, metabolomics and physiological analyses of rice growth and grain yield with heavy nitrogen application before and after drought. BMC PLANT BIOLOGY 2020; 20:556. [PMID: 33302870 PMCID: PMC7731554 DOI: 10.1186/s12870-020-02772-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/02/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Nitrogen application can effectively mitigate the damage to crop growth and yield caused by drought. However, the efficiency of heavy nitrogen application before drought (NBD) and heavy nitrogen application after drought (NAD) to regulate rice response to drought stress remains controversial. In this study, we profiled physiology, proteomics and metabolomics in rice variety Wufengyou 286 of two nitrogen management modes (NBD and NAD) to investigate their yield formation and the mechanism of nitrogen regulation for drought resistance. RESULTS Results revealed that the yield of NBD and NAD decreased significantly when it was subjected to drought stress at the stage of young panicle differentiation, while the yield of NBD was 33.85 and 36.33% higher than that of NAD in 2017 and 2018, reaching significant levels. Under drought conditions, NBD increased chlorophyll content and net photosynthetic rate in leaves, significantly improved the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase and catalase, and decreased malondialdehyde (MDA) content compared with NAD. NBD promoted nitrogen assimilation in leaves, which was characterized by increased activities of nitrate reductase (NR) and glutamine synthetase (GS). In addition, NBD significantly increased the contents of osmotic regulatory substances such as soluble sugar, soluble protein and free proline. Gene ontology and KEGG enrichment analysis of 234 differentially expressed proteins and 518 differential metabolites showed that different nitrogen management induced strong changes in photosynthesis pathway, energy metabolism pathway, nitrogen metabolism and oxidation-reduction pathways. CONCLUSION Different nitrogen management methods have significant differences in drought resistance of rice. These results suggest that heavy nitrogen application before drought may be an important pathway to improve the yield and stress resistance of rice, and provide a new ecological perspective on nitrogen regulation in rice.
Collapse
Affiliation(s)
- Jie Du
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Tianhua Shen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Qiangqiang Xiong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Xiaosong Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Linjuan Ouyang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Xiaotang Sun
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Dahu Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Lei Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China.
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China.
| |
Collapse
|
26
|
Kannenberg SA, Schwalm CR, Anderegg WRL. Ghosts of the past: how drought legacy effects shape forest functioning and carbon cycling. Ecol Lett 2020; 23:891-901. [DOI: 10.1111/ele.13485] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/29/2019] [Accepted: 02/12/2020] [Indexed: 01/06/2023]
|
27
|
Zhirnova DF, Belokopytova LV, Barabantsova AE, Babushkina EA, Vaganov EA. What prevails in climatic response of Pinus sylvestris in-between its range limits in mountains: slope aspect or elevation? INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:333-344. [PMID: 31691013 DOI: 10.1007/s00484-019-01811-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
The roles of slope orientation and elevational temperature gradient were investigated for Scots pine (Pinus sylvestris L.) growth in the middle of its growth range, where these factors can significantly modulate microclimate and thus plant growth. We assumed that slope orientation causes more complex and severe effects than elevation because it influences all three main factors of plant growth: light, heat, and moisture. In addition to the total ring width, the earlywood and latewood width and latewood ratio were considered variables that contain information about tree ring growth during the season and wood structure over all tree life span on three sampling sites at different elevations and opposite slopes. Despite the observed dependence of pine growth rate on temperature and solar radiation, the mean latewood ratio is stable and similar between all sampling sites, being presumably defined by the genotype of individual trees. The seasonality of the climatic response of tree growth is bound to spatiotemporal variation of the vegetative season timing due to the elevational temperature lapse and local warming. However, its direction is primarily defined by slope orientation, where southern slope is moisture-limited, even at adjacent sites, and divergent climatic reactions of earlywood (weak moisture-limited in the last decades) and latewood growth (temperature-limited) were revealed on the northern slope.
Collapse
Affiliation(s)
- Dina F Zhirnova
- Khakass Technical Institute, Siberian Federal University, 27 Shchetinkina, Abakan, Russia, 655017
| | - Liliana V Belokopytova
- Khakass Technical Institute, Siberian Federal University, 27 Shchetinkina, Abakan, Russia, 655017
| | | | - Elena A Babushkina
- Khakass Technical Institute, Siberian Federal University, 27 Shchetinkina, Abakan, Russia, 655017.
| | - Eugene A Vaganov
- Siberian Federal University, 79 Svobodny, Krasnoyarsk, Russia, 660041
- Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, 50/28 Akademgorodok, Krasnoyarsk, Russia, 660036
| |
Collapse
|
28
|
Vieira J, Carvalho A, Campelo F. Tree Growth Under Climate Change: Evidence From Xylogenesis Timings and Kinetics. FRONTIERS IN PLANT SCIENCE 2020; 11:90. [PMID: 32133022 PMCID: PMC7040628 DOI: 10.3389/fpls.2020.00090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/21/2020] [Indexed: 05/31/2023]
Abstract
Tree growth is one of the most studied aspects of tree biology, particularly secondary growth. In the Mediterranean region, cambial activity is mostly determined by water availability. Climatic projections for the Mediterranean region predict more frequent and intense droughts, and longer periods without precipitation. To investigate tree growth under the predicted scenarios of climate change, a water manipulation experiment was conducted in a maritime pine stand (Pinus pinaster Aiton). In 2017, fifteen trees were divided into three groups: control, rain exclusion, and irrigation. Drought conditions were simulated by installing a continuous plastic sheet on the forest floor from March to September. Trees under irrigation treatment were watered twice a week in September. Cambial activity and xylem formation was monitored every 10 days from February 2017 until March 2018. Cell production was maximal around the spring equinox in all treatments. Trees under rain exclusion decreased cell production rates, xylogenesis duration, and latewood cell wall thickness. The extra irrigation in September did not produce noticeable differences in xylogenesis compared to trees in the control treatment. The synchronization of maximum cambial division rates around the vernal equinox (spring) could allow Mediterranean trees to mitigate the impact of summer drought. With the predicted increase in drought intensity and frequency, lower tree productivity, carbon sequestration, and wood biomass are expected.
Collapse
|
29
|
Buttò V, Shishov V, Tychkov I, Popkova M, He M, Rossi S, Deslauriers A, Morin H. Comparing the Cell Dynamics of Tree-Ring Formation Observed in Microcores and as Predicted by the Vaganov-Shashkin Model. FRONTIERS IN PLANT SCIENCE 2020; 11:1268. [PMID: 32922430 PMCID: PMC7457011 DOI: 10.3389/fpls.2020.01268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/03/2020] [Indexed: 05/17/2023]
Abstract
New insights into the intra-annual dynamics of tree-ring formation can improve our understanding of tree-growth response to environmental conditions at high-resolution time scales. Obtaining this information requires, however, a weekly monitoring of wood formation, sampling that is extremely time-intensive and scarcely feasible over vast areas. Estimating the timing of cambial and xylem differentiation by modeling thus represents an interesting alternative for obtaining this important information by other means. Temporal dynamics of cambial divisions can be extracted from the daily tree-ring growth rate computed by the Vaganov-Shashkin (VS) simulation model, assuming that cell production is tightly linked to tree-ring growth. Nonetheless, these predictions have yet to be compared with direct observations of wood development, i.e., via microcoring, over a long time span. We tested the performance of the VS model by comparing the observed and predicted timing of wood formation in black spruce [Picea mariana (Mill.)]. We obtained microcores over 15 years at 5 sites along a latitudinal gradient in Quebec (Canada). The measured variables included cell size and the timing of cell production and differentiation. We calibrated the VS model using daily temperature and precipitation recorded by weather stations located on each site. The predicted and observed timing of cambial and enlarging cells were highly correlated (R 2 = 0.8); nonetheless, we detected a systematic overestimation in the predicted timing of cambial cells, with predictions delayed by 1-20 days compared with observations. The growth rate of cell diameter was correlated with the predicted growth rate assigned to each cambial cell, confirming that cell diameter developmental dynamics have the potential to be inferred by the tree-ring growth curve of the VS model. Model performances decrease substantially in estimating the end of wood formation. The systematic errors suggest that the actual relationships implemented in the model are unable to explain the phenological events in autumn. The mismatch between the observed and predicted timing of wood formation in black spruce within our study area can be reduced by better adapting the VS model to wet sites, a context for which this model has been rarely used.
Collapse
Affiliation(s)
- Valentina Buttò
- Département des Sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- *Correspondence: Valentina Buttò,
| | - Vladimir Shishov
- Laboratory for Integral Studies of Forest Dynamics of Eurasia, Siberian Federal University, Krasnoyarsk, Russia
- Environmental and Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ivan Tychkov
- Laboratory for Integral Studies of Forest Dynamics of Eurasia, Siberian Federal University, Krasnoyarsk, Russia
| | - Margarita Popkova
- Laboratory for Integral Studies of Forest Dynamics of Eurasia, Siberian Federal University, Krasnoyarsk, Russia
| | - Minhui He
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, China
| | - Sergio Rossi
- Département des Sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Annie Deslauriers
- Département des Sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Hubert Morin
- Département des Sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| |
Collapse
|
30
|
Cabon A, Fernández-de-Uña L, Gea-Izquierdo G, Meinzer FC, Woodruff DR, Martínez-Vilalta J, De Cáceres M. Water potential control of turgor-driven tracheid enlargement in Scots pine at its xeric distribution edge. THE NEW PHYTOLOGIST 2020; 225:209-221. [PMID: 31461530 DOI: 10.1111/nph.16146] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/19/2019] [Indexed: 05/16/2023]
Abstract
The extent to which water availability can be used to predict the enlargement and final dimensions of xylem conduits remains an open issue. We reconstructed the time course of tracheid enlargement in Pinus sylvestris trees in central Spain by repeated measurements of tracheid diameter on microcores sampled weekly during a 2 yr period. We analyzed the role of water availability in these dynamics empirically through time-series correlation analysis and mechanistically by building a model that simulates daily tracheid enlargement rate and duration based on Lockhart's equation and water potential as the sole input. Tracheid enlargement followed a sigmoid-like time course, which varied intra- and interannually. Our empirical analysis showed that final tracheid diameter was strongly related to water availability during tracheid enlargement. The mechanistic model was calibrated and successfully validated (R2 = 0.92) against the observed tracheid enlargement time course. The model was also able to reproduce the seasonal variations of tracheid enlargement rate, duration and final diameter (R2 = 0.84-0.99). Our results support the hypothesis that tracheid enlargement and final dimensions can be modeled based on the direct effect of water potential on turgor-driven cell expansion. We argue that such a mechanism is consistent with other reported patterns of tracheid dimension variation.
Collapse
Affiliation(s)
- Antoine Cabon
- Joint Research Unit CTFC - AGROTECNIO, Solsona, 25280, Spain
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
| | - Laura Fernández-de-Uña
- INIA-CIFOR, Ctra. La Coruña km. 7.5, Madrid, 28040, Spain
- UMR Silva, AgroParisTech, Université de Lorraine, INRA, Nancy, 54000, France
| | | | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, 97331, USA
| | - David R Woodruff
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, 97331, USA
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
| | - Miquel De Cáceres
- Joint Research Unit CTFC - AGROTECNIO, Solsona, 25280, Spain
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
| |
Collapse
|
31
|
Garcia-Forner N, Vieira J, Nabais C, Carvalho A, Martínez-Vilalta J, Campelo F. Climatic and physiological regulation of the bimodal xylem formation pattern in Pinus pinaster saplings. TREE PHYSIOLOGY 2019; 39:2008-2018. [PMID: 31631224 DOI: 10.1093/treephys/tpz099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/27/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Seasonality in tree cambial activity and xylem formation encompass large variation in environmental conditions. Abiotic stressors such as warming or drought also modulate plant behavior at species and individual level. Despite xylem formation susceptibility to carbon (C) and water availability, it is still unknown which are the key physiological variables that regulate xylogenesis, and to what extent plant performance contributes to further explain the number of cells in the different phases of xylem development. Xylogenesis and physiological behavior was monitored in saplings of Pinus pinaster Aiton, a bimodal growth pattern species, distributed in different irrigation regimes. Xylogenesis and plant physiological behavior were compared between treatments and the relationship between climate, physiology and the number of cells in the cambium, enlargement and cell-wall thickening phases was evaluated. Xylogenesis regulation shifted from physiological to climatic control as cell differentiation advanced to mature tracheids. The number of cells in the cambium increased with assimilation rates and decreased with the water potential gradient through the plant. Enlargement was the most susceptible phase to plant relative water content, whereas no physiological variable contributed to explain the number of cells in the wall thickening phase, which declined as temperatures increased. All treatments showed a bimodal growth pattern with a second growth period starting when primary growth was completed and after plants had experienced the highest summer hydraulic losses. Our study demonstrates the importance of including physiological responses and not only climate to fully understand xylogenesis, with special attention to the enlargement phase. This is critical when studying species with a bimodal growth pattern because the second growth peak responds to internal shifts of C allocation and may strongly depend on plant hydraulic responses and not on a fine tuning of cambial activity with soil water availability.
Collapse
Affiliation(s)
- Núria Garcia-Forner
- Centre for Functional Ecology-Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| | - Joana Vieira
- Centre for Functional Ecology-Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| | - Cristina Nabais
- Centre for Functional Ecology-Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| | - Ana Carvalho
- Centre for Functional Ecology-Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| | - Jordi Martínez-Vilalta
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Filipe Campelo
- Centre for Functional Ecology-Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| |
Collapse
|
32
|
Paoletti E, Alivernini A, Anav A, Badea O, Carrari E, Chivulescu S, Conte A, Ciriani ML, Dalstein-Richier L, De Marco A, Fares S, Fasano G, Giovannelli A, Lazzara M, Leca S, Materassi A, Moretti V, Pitar D, Popa I, Sabatini F, Salvati L, Sicard P, Sorgi T, Hoshika Y. Toward stomatal-flux based forest protection against ozone: The MOTTLES approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:516-527. [PMID: 31325852 DOI: 10.1016/j.scitotenv.2019.06.525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
European standards for the protection of forests from ozone (O3) are based on atmospheric exposure (AOT40) that is not always representative of O3 effects since it is not a proxy of gas uptake through stomata (stomatal flux). MOTTLES "MOnitoring ozone injury for seTTing new critical LEvelS" is a LIFE project aimed at establishing a permanent network of forest sites based on active O3 monitoring at remote areas at high and medium risk of O3 injury, in order to define new standards based on stomatal flux, i.e. PODY (Phytotoxic Ozone Dose above a threshold Y of uptake). Based on the first year of data collected at MOTTLES sites, we describe the MOTTLES monitoring station, together with protocols and metric calculation methods. AOT40 and PODY, computed with different methods, are then compared and correlated with forest-health indicators (radial growth, crown defoliation, visible foliar O3 injury). For the year 2017, the average AOT40 calculated according to the European Directive was even 5 times (on average 1.7 times) the European legislative standard for the protection of forests. When the metrics were calculated according to the European protocols (EU Directive 2008/50/EC or Modelling and Mapping Manual LTRAP Convention), the values were well correlated to those obtained on the basis of the real duration of the growing season (i.e. MOTTLES method) and were thus representative of the actual exposure/flux. AOT40 showed opposite direction relative to PODY. Visible foliar O3 injury appeared as the best forest-health indicator for O3 under field conditions and was more frequently detected at forest edge than inside the forest. The present work may help the set-up of further long-term forest monitoring sites dedicated to O3 assessment in forests, especially because flux-based assessments are recommended as part of monitoring air pollution impacts on ecosystems in the revised EU National Emissions Ceilings Directive.
Collapse
Affiliation(s)
- E Paoletti
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - A Alivernini
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy
| | - A Anav
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; ENEA, SSPT-PVS, Via Anguillarese 301, 00123 Santa Maria di Galeria (Rome), Italy
| | - O Badea
- INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania
| | - E Carrari
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
| | - S Chivulescu
- INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania
| | - A Conte
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy
| | - M L Ciriani
- GIEFS, 69 avenue des Hespérides, 06300 Nice, France
| | | | - A De Marco
- ENEA, SSPT-PVS, Via Anguillarese 301, 00123 Santa Maria di Galeria (Rome), Italy
| | - S Fares
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy
| | - G Fasano
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - A Giovannelli
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - M Lazzara
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - S Leca
- INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania
| | - A Materassi
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - V Moretti
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy
| | - D Pitar
- INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania
| | - I Popa
- INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania
| | - F Sabatini
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - L Salvati
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy
| | - P Sicard
- ARGANS, 260 route du Pin Montard, 06410 Biot, France
| | - T Sorgi
- CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, 52100 Arezzo, Italy
| | - Y Hoshika
- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
33
|
Buttò V, Rossi S, Deslauriers A, Morin H. Is size an issue of time? Relationship between the duration of xylem development and cell traits. ANNALS OF BOTANY 2019; 123:1257-1265. [PMID: 30873532 PMCID: PMC6612947 DOI: 10.1093/aob/mcz032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/06/2018] [Accepted: 02/14/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Secondary growth is a process related to the formation of new cells that increase in size and wall thickness during xylogenesis. Temporal dynamics of wood formation influence cell traits, in turn affecting cell patterns across the tree ring. We verified the hypothesis that cell diameter and cell wall thickness are positively correlated with the duration of their differentiation phases. METHODS Histological sections were produced by microcores to assess the periods of cell differentiation in black spruce [Picea mariana (Mill.) B.S.P.]. Samples were collected weekly between 2002 and 2016 from a total of 50 trees in five sites along a latitudinal gradient in Quebec (Canada). The intra-annual temporal dynamics of cell differentiation were estimated at a daily scale, and the relationships between cell traits and duration of differentiation were fitted using a modified von Bertalanffy growth equation. KEY RESULTS At all sites, larger cell diameters and cell wall thicknesses were observed in cells that experienced a longer period of differentiation. The relationship was a non-linear, decreasing trend that occasionally resulted in a clear asymptote. Overall, secondary wall deposition lasted longer than cell enlargement. Earlywood cells underwent an enlargement phase that lasted for 12 d on average, while secondary wall thickness lasted 15 d. Enlargement in latewood cells averaged 7 d and secondary wall deposition occurred over an average of 27 d. CONCLUSIONS Cell size across the tree ring is closely connected to the temporal dynamics of cell formation. Similar relationships were observed among the five study sites, indicating shared xylem formation dynamics across the entire latitudinal distribution of the species.The duration of cell differentiation is a key factor involved in cell growth and wall thickening of xylem, thereby determining the spatial variation of cell traits across the tree ring.
Collapse
Affiliation(s)
- Valentina Buttò
- Département des Sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- For correspondence. E-mail
| | - Sergio Rossi
- Département des Sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Annie Deslauriers
- Département des Sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Hubert Morin
- Département des Sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| |
Collapse
|
34
|
Effect of Long-Term vs. Short-Term Ambient Ozone Exposure on Radial Stem Growth, Sap Flux and Xylem Morphology of O3-Sensitive Poplar Trees. FORESTS 2019. [DOI: 10.3390/f10050396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High ozone (O3) pollution impairs the carbon and water balance of trees, which is of special interest in planted forests. However, the effect of long-term O3 exposure on tree growth and water use, little remains known. In this study, we analysed the relationships of intra-annual stem growth pattern, seasonal sap flow dynamics and xylem morphology to assess the effect of long term O3 exposure of mature O3-sensitive hybrid poplars (‘Oxford’ clone). Rooted cuttings were planted in autumn 2007 and drip irrigated with 2 liters of water as ambient O3 treatment, or 450 ppm ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N0-phenylurea, abbreviated as EDU) solution as O3 protection treatment over all growing seasons. During 2013, point dendrometers and heat pulses were installed to monitor radial growth, stem water relations and sap flow. Ambient O3 did not affect growth rates, even if the seasonal culmination point was 20 days earlier on average than that recorded in the O3 protected trees. Under ambient O3, trees showed reduced seasonal sap flow, however, the lower water use was due to a decrease of Huber value (decrease of leaf area for sapwood unit) rather than to a change in xylem morphology or due to a direct effect of sluggish stomatal responses on transpiration. Under high evaporative demand and ambient O3 concentrations, trees showed a high use of internal stem water resources modulated by stomatal sluggishness, thus predisposing them to be more sensitive water deficit during summer. The results of this study help untangle the compensatory mechanisms involved in the acclimation processes of forest species to long-term O3 exposure in a context of global change.
Collapse
|
35
|
Chen L, Rossi S, Deslauriers A, Liu J. Contrasting strategies of xylem formation between black spruce and balsam fir in Quebec, Canada. TREE PHYSIOLOGY 2019; 39:747-754. [PMID: 30715531 DOI: 10.1093/treephys/tpy151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 05/29/2023]
Abstract
Present-day global warming is occurring faster at higher elevations. Although there is much information regarding the divergent responses of tree growth to climate change, the altitudinal patterns of species-specific xylogenesis remains poorly understood. We investigated the xylogenesis of balsam fir (Abies balsamea Mill.) and black spruce (Picea mariana Mill. B.S.P.) at two elevations in Quebec (Canada). The number of enlarging and mature cells of the developing tree ring were counted on microcores collected weekly between 2011 and 2014. At the lower site, the growth pattern and duration of xylogenesis were similar between species. No difference in responses to temperature and solar radiation between species was observed. At the higher site, however, cell production was higher and lasted longer in balsam fir than black spruce. Furthermore, the xylem growth of balsam fir had a stronger response to temperature and solar radiation than black spruce. These findings demonstrate the contrasting strategies of wood formation of the two species, with black spruce being more conservative than balsam fir. Our study provides evidence that sympatric species can have species-specific growth dynamics and site-specific responses to the local environment. Predictions of tree growth under a changing environment require the incorporation of species-specific growth strategies.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi (QC), Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi (QC), Canada
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Seidel H, Matiu M, Menzel A. Compensatory Growth of Scots Pine Seedlings Mitigates Impacts of Multiple Droughts Within and Across Years. FRONTIERS IN PLANT SCIENCE 2019; 10:519. [PMID: 31105722 PMCID: PMC6491932 DOI: 10.3389/fpls.2019.00519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/04/2019] [Indexed: 05/25/2023]
Abstract
Tree seedling resistance to and recovery from abiotic stressors such as drought and warming are crucial for forest regeneration and persistence. Selection of more resilient provenances and their use in forest management programs might alleviate pressures of climate change on forest ecosystems. Scots pine forests in particular have suffered frequent drought-induced mortality, suggesting high vulnerability to extreme events. Here, we conducted an experiment using potted Scots pine seedlings from ten provenances of its south-western distribution range to investigate provenance-specific impacts of multiple drought events. Seedlings were grown under ambient and elevated temperatures for 1.5 years and were subjected to consecutive droughts during spring and summer. Growth (height, diameter, and needle) and spring phenology were monitored during the whole study period and complemented by biomass assessments (bud, needle, wood, and needle/wood ratio) as well as measurements of chlorophyll fluorescence and of needle stable carbon isotope ratio. Phenology, growth and biomass parameters as well as carbon isotope ratio and their (direct) responses to reoccurring droughts differed between provenances, indicating genotypic adaptation. Seedling growth was plastic during drought with intra- and inter-annual compensatory growth after drought stress release (carryover effects), however, not fully compensating the initial impact. For (smaller) seedlings from southern/drier origins, sometimes greater drought resistance was observed which diminished under warmer conditions in the greenhouse. Warming increased diameter growth and advanced phenological development, which was (partly) delayed by drought in 2013, but advanced in 2014. Earlier phenology was linked to higher growth in 2013, but interestingly later phenology had positive effects on wood and needle biomass when subjected to drought. Lastly, stable carbon isotope ratios indicated a clear drought response of carbon assimilation. Drought-induced reduction of the photosystem II efficiency was only observed under warmer conditions but showed compensation under ambient temperatures. Besides these direct drought impacts, also interactive effects of previous drought events were shown, either reinforcing or sometimes attenuating the actual impact. Thus, depending on amount and timing of events, Scots pine seedlings, particularly from southern origins, might be well adapted and resilient to drought stress and should be considered when discussing assisted migration under changing climatic conditions.
Collapse
Affiliation(s)
- Hannes Seidel
- Professorship of Ecoclimatology, Department of Ecology and Ecosystem Management, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Michael Matiu
- Professorship of Ecoclimatology, Department of Ecology and Ecosystem Management, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Institute for Earth Observation, EURAC Research, Bolzano, Italy
| | - Annette Menzel
- Professorship of Ecoclimatology, Department of Ecology and Ecosystem Management, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Institute for Advanced Study, Technical University of Munich, Garching bei München, Germany
| |
Collapse
|
37
|
Cuny HE, Fonti P, Rathgeber CBK, von Arx G, Peters RL, Frank DC. Couplings in cell differentiation kinetics mitigate air temperature influence on conifer wood anatomy. PLANT, CELL & ENVIRONMENT 2019; 42:1222-1232. [PMID: 30326549 DOI: 10.1111/pce.13464] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 05/29/2023]
Abstract
Conifer trees possess a typical anatomical tree-ring structure characterized by a transition from large and thin-walled earlywood tracheids to narrow and thick-walled latewood tracheids. However, little is known on how this characteristic structure is maintained across contrasting environmental conditions, due to its crucial role to ensure sap ascent and mechanical support. In this study, we monitored weekly wood cell formation for up to 7 years in two temperate conifer species (i.e., Picea abies (L.) Karst and Larix decidua Mill.) across an 8°C thermal gradient from 800 to 2,200 m a.s.l. in central Europe to investigate the impact of air temperature on rate and duration of wood cell formation. Results indicated that towards colder sites, forming tracheids compensate a decreased rate of differentiation (cell enlarging and wall thickening) by an extended duration, except for the last cells of the latewood in the wall-thickening phase. This compensation allows conifer trees to mitigate the influence of air temperature on the final tree-ring structure, with important implications for the functioning and resilience of the xylem to varying environmental conditions. The disappearing compensation in the thickening latewood cells might also explain the higher climatic sensitivity usually found in maximum latewood density.
Collapse
Affiliation(s)
- Henri E Cuny
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- IGN, Direction Interrégionale Nord-Est, Champigneulles, France
| | - Patrick Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Richard L Peters
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Botanik, Basel University, Basel, Switzerland
| | - David C Frank
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona
| |
Collapse
|
38
|
Anadon-Rosell A, Dawes MA, Fonti P, Hagedorn F, Rixen C, von Arx G. Xylem anatomical and growth responses of the dwarf shrub Vaccinium myrtillus to experimental CO 2 enrichment and soil warming at treeline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1172-1183. [PMID: 30045499 DOI: 10.1016/j.scitotenv.2018.06.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Plant growth responses to environmental changes may be linked to xylem anatomical adjustments. The study of such links is essential for improving our understanding of plant functioning under global change. We investigated the xylem anatomy and above-ground growth of the dwarf shrub Vaccinium myrtillus in the understorey of Larix decidua and Pinus uncinata at the Swiss treeline after 9 years of free-air CO2 enrichment (+200 ppm) and 6 years of soil warming (+4 °C). We aimed to determine the responses of xylem anatomical traits and growth to these treatments, and to analyse xylem anatomy-growth relationships. We quantified anatomical characteristics of vessels and ray parenchyma and measured xylem ring width (RW), above-ground biomass and shoot elongation as growth parameters. Our results showed strong positive correlations between theoretical hydraulic conductivity (Kh) and shoot increment length or total biomass across all treatments. However, while soil warming stimulated shoot elongation and RW, it reduced vessel size (Dh) by 14%. Elevated CO2 had smaller effects than soil warming: it increased Dh (5%) in the last experimental years and only influenced growth by increasing basal stem size. The abundance of ray parenchyma, representing storage capacity, did not change under any treatment. Our results demonstrate a link between growth and stem Kh in V. myrtillus, but its growth responses to warming were not explained by the observed xylem anatomical changes. Smaller Dh under warming may increase resistance to freezing events frequently occurring at treeline and suggests that hydraulic efficiency is not limiting for V. myrtillus growing on moist soils at treeline. Our findings suggest that future higher atmospheric CO2 concentrations will have smaller effects on V. myrtillus growth and functioning than rising temperatures at high elevations; further, growth stimulation of this species under future warmer conditions may not be synchronized with xylem adjustments favouring hydraulic efficiency.
Collapse
Affiliation(s)
- Alba Anadon-Rosell
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstrasse 15, D-17487 Greifswald, Germany; Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, E-08028 Barcelona, Catalonia, Spain; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland.
| | - Melissa A Dawes
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland; WSL Institute for Snow and Avalanche Research - SLF, Flüelastrasse 11, CH-7260 Davos, Switzerland
| | - Patrick Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland
| | - Frank Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland
| | - Christian Rixen
- WSL Institute for Snow and Avalanche Research - SLF, Flüelastrasse 11, CH-7260 Davos, Switzerland
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland; Climatic Change and Climate Impacts, Institute for Environmental Sciences, 66 Blvd Carl Vogt, CH-1205 Geneva, Switzerland
| |
Collapse
|
39
|
Fernández-de-Uña L, Aranda I, Rossi S, Fonti P, Cañellas I, Gea-Izquierdo G. Divergent phenological and leaf gas exchange strategies of two competing tree species drive contrasting responses to drought at their altitudinal boundary. TREE PHYSIOLOGY 2018; 38:1152-1165. [PMID: 29718459 DOI: 10.1093/treephys/tpy041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
In Mediterranean mountains, Pinus sylvestris L. is expected to be displaced under a warming climate by more drought-tolerant species such as the sub-Mediterranean Quercus pyrenaica Willd. Understanding how environmental factors drive tree physiology and phenology is, therefore, essential to assess the effect of changing climatic conditions on the performance of these species and, ultimately, their distribution. We compared the cambial and leaf phenology and leaf gas exchange of Q. pyrenaica and P. sylvestris at their altitudinal boundary in Central Spain and assessed the environmental variables involved. Results indicate that P. sylvestris cambial phenology was more sensitive to weather conditions (temperature at the onset and water deficit at the end of the growing season) than Q. pyrenaica. On the other hand, Q. pyrenaica cambial and leaf phenology were synchronized and driven by photoperiod and temperatures. Pinus sylvestris showed lower photosynthetic nitrogen-use efficiency and higher intrinsic water-use efficiency than Q. pyrenaica as a result of a tighter stomatal control in response to summer dry conditions, despite its less negative midday leaf water potentials. These phenological and leaf gas exchange responses evidence a stronger sensitivity to drought of P. sylvestris than that of Q. pyrenaica, which may therefore hold a competitive advantage over P. sylvestris under the predicted increase in recurrence and intensity of drought events. On the other hand, both species could benefit from warmer springs through an advanced phenology, although this effect could be limited in Q. pyrenaica if it maintains a photoperiod control over the onset of xylogenesis.
Collapse
Affiliation(s)
- Laura Fernández-de-Uña
- INIA-CIFOR, Ctra. La Coruña, km 7.5, Madrid, Spain
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, INRA Grand Est-Nancy, Rue d'Amance, Champenoux, France
| | | | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi (QC), Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Patrick Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, 111 Zürcherstrasse, Birmensdorf, Switzerland
| | | | | |
Collapse
|
40
|
Cartenì F, Deslauriers A, Rossi S, Morin H, De Micco V, Mazzoleni S, Giannino F. The Physiological Mechanisms Behind the Earlywood-To-Latewood Transition: A Process-Based Modeling Approach. FRONTIERS IN PLANT SCIENCE 2018; 9:1053. [PMID: 30079078 PMCID: PMC6063077 DOI: 10.3389/fpls.2018.01053] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/28/2018] [Indexed: 05/24/2023]
Abstract
In extratropical ecosystems, the growth of trees is cyclic, producing tree rings composed of large-lumen and thin-walled cells (earlywood) alternating with narrow-lumen and thick-walled cells (latewood). So far, the physiology behind wood formation processes and the associated kinetics has rarely been considered to explain this pattern. We developed a process-based mechanistic model that simulates the development of conifer tracheids, explicitly considering the processes of cell enlargement and the deposition and lignification of cell walls. The model assumes that (1) wall deposition gradually slows down cell enlargement and (2) the deposition of cellulose and lignin is regulated by the availability of soluble sugars. The model reliably reproduces the anatomical traits and kinetics of the tracheids of four conifer species. At the beginning of the growing season, low sugar availability in the cambium results in slow wall deposition that allows for a longer enlargement time; thus, large cells with thin walls (i.e., earlywood) are produced. In late summer and early autumn, high sugar availability produces narrower cells having thick cell walls (i.e., latewood). This modeling framework provides a mechanistic link between plant ecophysiology and wood phenology and significantly contributes to understanding the role of sugar availability during xylogenesis.
Collapse
Affiliation(s)
- Fabrizio Cartenì
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou, China
| | - Hubert Morin
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Francesco Giannino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
41
|
Rathgeber CBK. Conifer tree-ring density inter-annual variability - anatomical, physiological and environmental determinants. THE NEW PHYTOLOGIST 2017; 216:621-625. [PMID: 29034974 DOI: 10.1111/nph.14763] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
42
|
Winkler A, Oberhuber W. Cambial response of Norway spruce to modified carbon availability by phloem girdling. TREE PHYSIOLOGY 2017; 37:1527-1535. [PMID: 28651354 PMCID: PMC5718295 DOI: 10.1093/treephys/tpx077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/31/2017] [Indexed: 05/09/2023]
Abstract
We tested the hypothesis that increase in carbon (C) availability in Norway spruce saplings (Picea abies (L.) Karst.) intensifies cambial cell division and increases cell lumen diameter (CLD) and cell wall thickness (CWT) when water availability is adequate. To accomplish this, we experimentally subjected 6-year-old P. abies saplings (n = 80 trees) to two levels of soil humidity (watered versus drought conditions) and manipulated tree C status by physically blocking phloem transport at three girdling dates (GDs). Stem girdling occurred in mid-March (day of the year (doy) 77) and in mid-May (GD doy 138), i.e., ~4 weeks before the onset of bud break and during vigorous stem growth, respectively, and in early July (GD doy 190), i.e., 6 and 4 weeks after cessation of radial growth in drought-stressed trees and shoot growth in both soil humidity (SH) treatments, respectively. In response to phloem blockage a striking increase in the number of xylem cells at all GDs and reactivation of cambial activity in drought-stressed trees was detected above the girdling zone, while below girdling xylem formation stopped in both SH-treatments. Although girdling differently affected wood anatomical parameters (CLD, CWT and CLD:CWT ratio) during earlywood and latewood formation, GD had a minor effect on cambial cell division and xylem cell differentiation. Results also revealed that phloem girdling outweighed drought effects imposed on cambial activity. We explain our findings by accumulation of carbohydrates, osmotically active sugars and/or C based signaling compound(s) in response to girdling. Altogether, we conclude that wood formation in P. abies saplings is limited by C availability, which is most likely caused by high C demand belowground especially under drought.
Collapse
Affiliation(s)
- Andrea Winkler
- Institute of Botany, Leopold-Franzens-University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria
| | - Walter Oberhuber
- Institute of Botany, Leopold-Franzens-University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria
| |
Collapse
|
43
|
Pérez‐de‐Lis G, Olano JM, Rozas V, Rossi S, Vázquez‐Ruiz RA, García‐González I. Environmental conditions and vascular cambium regulate carbon allocation to xylem growth in deciduous oaks. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12789] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gonzalo Pérez‐de‐Lis
- Departamento de Botánica Universidade de Santiago de Compostela EPS 27002 Lugo Spain
- CFE– Centro de Ecologia Funcional Departamento de Ciências da Vida Faculdade de Ciências e Tecnologia Universidade de Coimbra 3000‐456 Coimbra Portugal
| | - José Miguel Olano
- Área de Botánica EUI Agrarias Universidad de Valladolid 42004 Soria Spain
| | - Vicente Rozas
- Área de Botánica EUI Agrarias Universidad de Valladolid 42004 Soria Spain
| | - Sergio Rossi
- Département des Sciences Fondamentales Université du Québec à Chicoutimi Chicoutimi QCG7H 2B1 Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems Provincial Key Laboratory of Applied Botany South China Botanical Garden Chinese Academy of Sciences Guangzhou510650 China
| | - Rosa Ana Vázquez‐Ruiz
- Departamento de Botánica Universidade de Santiago de Compostela EPS 27002 Lugo Spain
| | | |
Collapse
|
44
|
Guada G, Camarero JJ, Sánchez-Salguero R, Cerrillo RMN. Limited Growth Recovery after Drought-Induced Forest Dieback in Very Defoliated Trees of Two Pine Species. FRONTIERS IN PLANT SCIENCE 2016; 7:418. [PMID: 27066053 PMCID: PMC4817349 DOI: 10.3389/fpls.2016.00418] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/18/2016] [Indexed: 05/04/2023]
Abstract
Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine) located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width) and intra-annual (xylogenesis) scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized 3 years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die.
Collapse
Affiliation(s)
- Guillermo Guada
- Departamento de Botánica, Universidade de Santiago de CompostelaLugo, Spain
| | | | - Raúl Sánchez-Salguero
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de OlavideSevilla, Spain
| | | |
Collapse
|