1
|
Hamid RSB, Nagy F, Kaszler N, Domonkos I, Gombos M, Marton A, Vizler C, Molnár E, Pettkó-Szandtner A, Bögre L, Fehér A, Magyar Z. RETINOBLASTOMA-RELATED Has Both Canonical and Noncanonical Regulatory Functions During Thermo-Morphogenic Responses in Arabidopsis Seedlings. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39420660 DOI: 10.1111/pce.15202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Warm temperatures accelerate plant growth, but the underlying molecular mechanism is not fully understood. Here, we show that increasing the temperature from 22°C to 28°C rapidly activates proliferation in the apical shoot and root meristems of wild-type Arabidopsis seedlings. We found that one of the central regulators of cell proliferation, the cell cycle inhibitor RETINOBLASTOMA-RELATED (RBR), is suppressed by warm temperatures. RBR became hyper-phosphorylated at a conserved CYCLIN-DEPENDENT KINASE (CDK) site in young seedlings growing at 28°C, in parallel with the stimulation of the expressions of the regulatory CYCLIN D/A subunits of CDK(s). Interestingly, while under warm temperatures ectopic RBR slowed down the acceleration of cell proliferation, it triggered elongation growth of post-mitotic cells in the hypocotyl. In agreement, the central regulatory genes of thermomorphogenic response, including PIF4 and PIF7, as well as their downstream auxin biosynthetic YUCCA genes (YUC1-2 and YUC8-9) were all up-regulated in the ectopic RBR expressing line but down-regulated in a mutant line with reduced RBR level. We suggest that RBR has both canonical and non-canonical functions under warm temperatures to control proliferative and elongation growth, respectively.
Collapse
Affiliation(s)
- Rasik Shiekh Bin Hamid
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Fruzsina Nagy
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Nikolett Kaszler
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Ildikó Domonkos
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Magdolna Gombos
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Annamária Marton
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Csaba Vizler
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Eszter Molnár
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | | | - László Bögre
- Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | - Attila Fehér
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltán Magyar
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| |
Collapse
|
2
|
Zimmermann MJ, Jathar VD, Baskin TI. Thermomorphogenesis of the Arabidopsis thaliana Root: Flexible Cell Division, Constrained Elongation and the Role of Cryptochrome. PLANT & CELL PHYSIOLOGY 2024; 65:1434-1449. [PMID: 39030707 DOI: 10.1093/pcp/pcae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Understanding how plants respond to temperature is relevant for agriculture in a warming world. Responses to temperature in the shoot have been characterized more fully than those in the root. Previous work on thermomorphogenesis in roots established that for Arabidopsis thaliana (Columbia) seedlings grown continuously at a given temperature, the root meristem produces cells at the same rate at 15°C as at 25°C and the root's growth zone is the same length. To uncover the pathway(s) underlying this constancy, we screened 34 A. thaliana genotypes for parameters related to growth and division. No line failed to respond to temperature. Behavior was little affected by mutations in phytochrome or other genes that underly thermomorphogenesis in shoots. However, a mutant in cryptochrome 2 was disrupted substantially in both cell division and elongation, specifically at 15°C. Among the 34 lines, cell production rate varied extensively and was associated only weakly with root growth rate; in contrast, parameters relating to elongation were stable. Our data are consistent with models of root growth that invoke cell non-autonomous regulation for establishing boundaries between meristem, elongation zone and mature zone.
Collapse
Affiliation(s)
- Maura J Zimmermann
- Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Vikram D Jathar
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Tobias I Baskin
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Bottega S, Fontanini D, Ruffini Castiglione M, Spanò C. The impact of polystyrene nanoplastics on plants in the scenario of increasing temperatures: The case of Azolla filiculoides Lam. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108946. [PMID: 39032448 DOI: 10.1016/j.plaphy.2024.108946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
There are great concerns for the accumulation in the environment of small dimension plastics, such as micro- and nanoplastics. Due to their small size, which facilitates their uptake by organisms, nanoplastics are of particular concern. The toxic effects of nanoplastics on plants are already reported in the literature, however nothing is known, to date, about the possible effects of climate change, in particular of increasing temperatures, on their toxicity for plants. To address this issue, plants of the water fern Azolla filiculoides were grown at optimal (25 °C) or high (35 °C) temperature, with or without polystyrene nanoplastics, and the effects of these stressors were assessed using a multidisciplinary approach. Green fluorescent polystyrene nanoplastics were used to track their possible uptake by A. filiculoides. The development and physiology of our model plant was adversely affected by both nanoplastics and high temperatures. Overall, histological, morphological, and photosynthetic parameters worsened under co-treatment, in accordance with the increased uptake of nanoplastics under higher temperature, as observed by fluorescence images. Based on our findings, the concern regarding the potential for increased toxicity of pollutants, specifically nanoplastics, at high temperatures is well-founded and warrants attention as a potential negative consequence of climate change. Additionally, there is cause for concern regarding the increase in nanoplastic uptake at high temperatures, particularly if this phenomenon extends to food and feed crops, which could lead to greater entry into the food chain.
Collapse
Affiliation(s)
- Stefania Bottega
- Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy
| | - Debora Fontanini
- Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy
| | - Monica Ruffini Castiglione
- Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy.
| | - Carmelina Spanò
- Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy
| |
Collapse
|
4
|
Ebrahimi Naghani S, Šmeringai J, Pleskačová B, Dobisová T, Panzarová K, Pernisová M, Robert HS. Integrative phenotyping analyses reveal the relevance of the phyB-PIF4 pathway in Arabidopsis thaliana reproductive organs at high ambient temperature. BMC PLANT BIOLOGY 2024; 24:721. [PMID: 39075366 PMCID: PMC11285529 DOI: 10.1186/s12870-024-05394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The increasing ambient temperature significantly impacts plant growth, development, and reproduction. Uncovering the temperature-regulating mechanisms in plants is of high importance, for increasing our fundamental understanding of plant thermomorphogenesis, for its potential in applied science, and for aiding plant breeders in improving plant thermoresilience. Thermomorphogenesis, the developmental response to warm temperatures, has been primarily studied in seedlings and in the regulation of flowering time. PHYTOCHROME B and PHYTOCHROME-INTERACTING FACTORs (PIFs), particularly PIF4, are key components of this response. However, the thermoresponse of other adult vegetative tissues and reproductive structures has not been systematically evaluated, especially concerning the involvement of phyB and PIFs. RESULTS We screened the temperature responses of the wild type and several phyB-PIF4 pathway Arabidopsis mutant lines in combined and integrative phenotyping platforms for root growth in soil, shoot, inflorescence, and seed. Our findings demonstrate that phyB-PIF4 is generally involved in the relay of temperature signals throughout plant development, including the reproductive stage. Furthermore, we identified correlative responses to high ambient temperature between shoot and root tissues. This integrative and automated phenotyping was complemented by monitoring the changes in transcript levels in reproductive organs. Transcriptomic profiling of the pistils from plants grown under high ambient temperature identified key elements that may provide insight into the molecular mechanisms behind temperature-induced reduced fertilization rate. These include a downregulation of auxin metabolism, upregulation of genes involved auxin signalling, miRNA156 and miRNA160 pathways, and pollen tube attractants. CONCLUSIONS Our findings demonstrate that phyB-PIF4 involvement in the interpretation of temperature signals is pervasive throughout plant development, including processes directly linked to reproduction.
Collapse
Affiliation(s)
- Shekoufeh Ebrahimi Naghani
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
| | - Ján Šmeringai
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
- Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | | | | | - Klára Panzarová
- PSI - Photon Systems Instruments, Drasov, 66424, Czech Republic
| | - Markéta Pernisová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
- Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Hélène S Robert
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic.
| |
Collapse
|
5
|
Zhu C, Yu H, Lu T, Li Y, Jiang W, Li Q. Deep learning-based association analysis of root image data and cucumber yield. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:696-716. [PMID: 38193347 DOI: 10.1111/tpj.16627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
The root system is important for the absorption of water and nutrients by plants. Cultivating and selecting a root system architecture (RSA) with good adaptability and ultrahigh productivity have become the primary goals of agricultural improvement. Exploring the correlation between the RSA and crop yield is important for cultivating crop varieties with high-stress resistance and productivity. In this study, 277 cucumber varieties were collected for root system image analysis and yield using germination plates and greenhouse cultivation. Deep learning tools were used to train ResNet50 and U-Net models for image classification and segmentation of seedlings and to perform quality inspection and productivity prediction of cucumber seedling root system images. The results showed that U-Net can automatically extract cucumber root systems with high quality (F1_score ≥ 0.95), and the trained ResNet50 can predict cucumber yield grade through seedling root system image, with the highest F1_score reaching 0.86 using 10-day-old seedlings. The root angle had the strongest correlation with yield, and the shallow- and steep-angle frequencies had significant positive and negative correlations with yield, respectively. RSA and nutrient absorption jointly affected the production capacity of cucumber plants. The germination plate planting method and automated root system segmentation model used in this study are convenient for high-throughput phenotypic (HTP) research on root systems. Moreover, using seedling root system images to predict yield grade provides a new method for rapidly breeding high-yield RSA in crops such as cucumbers.
Collapse
Affiliation(s)
- Cuifang Zhu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongjun Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weijie Jiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Qiang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
6
|
Henry AR, Miller ND, Spalding EP. QTL for the Kinematic Traits That Define the Arabidopsis Root Elongation Zone and Their Relationship to Gravitropism. PLANTS (BASEL, SWITZERLAND) 2024; 13:1189. [PMID: 38732404 PMCID: PMC11085590 DOI: 10.3390/plants13091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
Cell expansion in a discrete region called the elongation zone drives root elongation. Analyzing time lapse images can quantify the expansion in kinematic terms as if it were fluid flow. We used horizontal microscopes to collect images from which custom software extracted the length of the elongation zone, the peak relative elemental growth rate (REGR) within it, the axial position of the REGR peak, and the root elongation rate. Automation enabled these kinematic traits to be measured in 1575 Arabidopsis seedlings representing 162 recombinant inbred lines (RILs) derived from a cross of Cvi and Ler ecotypes. We mapped ten quantitative trait loci (QTL), affecting the four kinematic traits. Three QTL affected two or more traits in these vertically oriented seedlings. We compared this genetic architecture with that previously determined for gravitropism using the same RIL population. The major QTL peaks for the kinematic traits did not overlap with the gravitropism QTL. Furthermore, no single kinematic trait correlated with quantitative descriptors of the gravitropism response curve across this population. In addition to mapping QTL for growth zone traits, this study showed that the size and shape of the elongation zone may vary widely without affecting the differential growth induced by gravity.
Collapse
Affiliation(s)
| | | | - Edgar P. Spalding
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA; (A.R.H.); (N.D.M.)
| |
Collapse
|
7
|
Seth P, Sebastian J. Plants and global warming: challenges and strategies for a warming world. PLANT CELL REPORTS 2024; 43:27. [PMID: 38163826 DOI: 10.1007/s00299-023-03083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024]
Abstract
KEY MESSAGE In this review, we made an attempt to create a holistic picture of plant response to a rising temperature environment and its impact by covering all aspects from temperature perception to thermotolerance. This comprehensive account describing the molecular mechanisms orchestrating these responses and potential mitigation strategies will be helpful for understanding the impact of global warming on plant life. Organisms need to constantly recalibrate development and physiology in response to changes in their environment. Climate change-associated global warming is amplifying the intensity and periodicity of these changes. Being sessile, plants are particularly vulnerable to variations happening around them. These changes can cause structural, metabolomic, and physiological perturbations, leading to alterations in the growth program and in extreme cases, plant death. In general, plants have a remarkable ability to respond to these challenges, supported by an elaborate mechanism to sense and respond to external changes. Once perceived, plants integrate these signals into the growth program so that their development and physiology can be modulated befittingly. This multifaceted signaling network, which helps plants to establish acclimation and survival responses enabled their extensive geographical distribution. Temperature is one of the key environmental variables that affect all aspects of plant life. Over the years, our knowledge of how plants perceive temperature and how they respond to heat stress has improved significantly. However, a comprehensive mechanistic understanding of the process still largely elusive. This review explores how an increase in the global surface temperature detrimentally affects plant survival and productivity and discusses current understanding of plant responses to high temperature (HT) and underlying mechanisms. We also highlighted potential resilience attributes that can be utilized to mitigate the impact of global warming.
Collapse
Affiliation(s)
- Pratyay Seth
- Indian Institute of Science Education and Research, Berhampur (IISER Berhampur), Engineering School Road, Berhampur, 760010, Odisha, India
| | - Jose Sebastian
- Indian Institute of Science Education and Research, Berhampur (IISER Berhampur), Engineering School Road, Berhampur, 760010, Odisha, India.
| |
Collapse
|
8
|
Bianchimano L, De Luca MB, Borniego MB, Iglesias MJ, Casal JJ. Temperature regulation of auxin-related gene expression and its implications for plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7015-7033. [PMID: 37422862 DOI: 10.1093/jxb/erad265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Twenty-five years ago, a seminal paper demonstrated that warm temperatures increase auxin levels to promote hypocotyl growth in Arabidopsis thaliana. Here we highlight recent advances in auxin-mediated thermomorphogenesis and identify unanswered questions. In the warmth, PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF7 bind the YUCCA8 gene promoter and, in concert with histone modifications, enhance its expression to increase auxin synthesis in the cotyledons. Once transported to the hypocotyl, auxin promotes cell elongation. The meta-analysis of expression of auxin-related genes in seedlings exposed to temperatures ranging from cold to hot shows complex patterns of response. Changes in auxin only partially account for these responses. The expression of many SMALL AUXIN UP RNA (SAUR) genes reaches a maximum in the warmth, decreasing towards both temperature extremes in correlation with the rate of hypocotyl growth. Warm temperatures enhance primary root growth, the response requires auxin, and the hormone levels increase in the root tip but the impacts on cell division and cell expansion are not clear. A deeper understanding of auxin-mediated temperature control of plant architecture is necessary to face the challenge of global warming.
Collapse
Affiliation(s)
- Luciana Bianchimano
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - María Belén De Luca
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - María Belén Borniego
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - María José Iglesias
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires C1428EHA, Argentina
| | - Jorge J Casal
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| |
Collapse
|
9
|
Henry AR, Miller ND, Spalding EP. Patch Track Software for Measuring Kinematic Phenotypes of Arabidopsis Roots Demonstrated on Auxin Transport Mutants. Int J Mol Sci 2023; 24:16475. [PMID: 38003665 PMCID: PMC10671601 DOI: 10.3390/ijms242216475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Plant roots elongate when cells produced in the apical meristem enter a transient period of rapid expansion. To measure the dynamic process of root cell expansion in the elongation zone, we captured digital images of growing Arabidopsis roots with horizontal microscopes and analyzed them with a custom image analysis program (PatchTrack) designed to track the growth-driven displacement of many closely spaced image patches. Fitting a flexible logistics equation to patch velocities plotted versus position along the root axis produced the length of the elongation zone (mm), peak relative elemental growth rate (% h-1), the axial position of the peak (mm from the tip), and average root elongation rate (mm h-1). For a wild-type root, the average values of these kinematic traits were 0.52 mm, 23.7% h-1, 0.35 mm, and 0.1 mm h-1, respectively. We used the platform to determine the kinematic phenotypes of auxin transport mutants. The results support a model in which the PIN2 auxin transporter creates an area of expansion-suppressing, supraoptimal auxin concentration that ends 0.1 mm from the quiescent center (QC), and that ABCB4 and ABCB19 auxin transporters maintain expansion-limiting suboptimal auxin levels beginning approximately 0.5 mm from the QC. This study shows that PatchTrack can quantify dynamic root phenotypes in kinematic terms.
Collapse
Affiliation(s)
| | | | - Edgar P. Spalding
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA (N.D.M.)
| |
Collapse
|
10
|
Zhu J, Cao X, Deng X. Epigenetic and transcription factors synergistically promote the high temperature response in plants. Trends Biochem Sci 2023; 48:788-800. [PMID: 37393166 DOI: 10.1016/j.tibs.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/03/2023]
Abstract
Temperature is one of the main environmental cues affecting plant growth and development, and plants have evolved multiple mechanisms to sense and acclimate to high temperature. Emerging research has shown that transcription factors, epigenetic factors, and their coordination are essential for plant temperature responses and the resulting phenological adaptation. Here, we summarize recent advances in molecular and cellular mechanisms to understand how plants acclimate to high temperature and describe how plant meristems sense and integrate environmental signals. Furthermore, we lay out future directions for new technologies to reveal heterogeneous responses in different cell types thus improving plant environmental plasticity.
Collapse
Affiliation(s)
- Jiaping Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
11
|
Lehman TA, Rosas MA, Brew-Appiah RAT, Solanki S, York ZB, Dannay R, Wu Y, Roalson EH, Zheng P, Main D, Baskin TI, Sanguinet KA. BUZZ: an essential gene for postinitiation root hair growth and a mediator of root architecture in Brachypodium distachyon. THE NEW PHYTOLOGIST 2023. [PMID: 37421201 DOI: 10.1111/nph.19079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 07/10/2023]
Abstract
Here, we discover a player in root development. Recovered from a forward-genetic screen in Brachypodium distachyon, the buzz mutant initiates root hairs but they fail to elongate. In addition, buzz roots grow twice as fast as wild-type roots. Also, lateral roots show increased sensitivity to nitrate, whereas primary roots are less sensitive to nitrate. Using whole-genome resequencing, we identified the causal single nucleotide polymorphism as occurring in a conserved but previously uncharacterized cyclin-dependent kinase (CDK)-like gene. The buzz mutant phenotypes are rescued by the wild-type B. distachyon BUZZ coding sequence and by an apparent homolog in Arabidopsis thaliana. Moreover, T-DNA mutants in A. thaliana BUZZ have shorter root hairs. BUZZ mRNA localizes to epidermal cells and develops root hairs and, in the latter, partially colocalizes with the NRT1.1A nitrate transporter. Based on qPCR and RNA-Seq, buzz overexpresses ROOT HAIRLESS LIKE SIX-1 and -2 and misregulates genes related to hormone signaling, RNA processing, cytoskeletal, and cell wall organization, and to the assimilation of nitrate. Overall, these data demonstrate that BUZZ is required for tip growth after root hair initiation and root architectural responses to nitrate.
Collapse
Affiliation(s)
- Thiel A Lehman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Miguel A Rosas
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, 99164, USA
| | - Rhoda A T Brew-Appiah
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Shyam Solanki
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Zara B York
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Rachel Dannay
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, 99164, USA
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Eric H Roalson
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Ping Zheng
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Tobias I Baskin
- Department of Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
12
|
González-García MP, Conesa CM, Lozano-Enguita A, Baca-González V, Simancas B, Navarro-Neila S, Sánchez-Bermúdez M, Salas-González I, Caro E, Castrillo G, Del Pozo JC. Temperature changes in the root ecosystem affect plant functionality. PLANT COMMUNICATIONS 2023; 4:100514. [PMID: 36585788 DOI: 10.1016/j.xplc.2022.100514] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 05/11/2023]
Abstract
Climate change is increasing the frequency of extreme heat events that aggravate its negative impact on plant development and agricultural yield. Most experiments designed to study plant adaption to heat stress apply homogeneous high temperatures to both shoot and root. However, this treatment does not mimic the conditions in natural fields, where roots grow in a dark environment with a descending temperature gradient. Excessively high temperatures severely decrease cell division in the root meristem, compromising root growth, while increasing the division of quiescent center cells, likely in an attempt to maintain the stem cell niche under such harsh conditions. Here, we engineered the TGRooZ, a device that generates a temperature gradient for in vitro or greenhouse growth assays. The root systems of plants exposed to high shoot temperatures but cultivated in the TGRooZ grow efficiently and maintain their functionality to sustain proper shoot growth and development. Furthermore, gene expression and rhizosphere or root microbiome composition are significantly less affected in TGRooZ-grown roots than in high-temperature-grown roots, correlating with higher root functionality. Our data indicate that use of the TGRooZ in heat-stress studies can improve our knowledge of plant response to high temperatures, demonstrating its applicability from laboratory studies to the field.
Collapse
Affiliation(s)
- Mary Paz González-García
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Carlos M Conesa
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Alberto Lozano-Enguita
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Victoria Baca-González
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Bárbara Simancas
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Sara Navarro-Neila
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - María Sánchez-Bermúdez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Isai Salas-González
- Undergraduate Program in Genomic Sciences, Center for Genomics Sciences, Universidad Nacional Autonóma de México, Av. Universidad s/n. Col. Chamilpa, Cuernavaca 62210, Morelos, México
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Gabriel Castrillo
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain.
| |
Collapse
|
13
|
Tiwari M, Kumar R, Subramanian S, Doherty CJ, Jagadish SVK. Auxin-cytokinin interplay shapes root functionality under low-temperature stress. TRENDS IN PLANT SCIENCE 2023; 28:447-459. [PMID: 36599768 DOI: 10.1016/j.tplants.2022.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Low-temperature stress alters root system architecture. In particular, changes in the levels and response to auxin and cytokinin determine the fate of root architecture and function under stress because of their vital roles in regulating root cell division, differentiation, and elongation. An intricate nexus of genes encoding components of auxin and cytokinin biosynthesis, signaling, and transport components operate to counteract stress and facilitate optimum development. We review the role of auxin transport and signaling and its regulation by cytokinin during root development and stem cell maintenance under low-temperature stress. We highlight intricate mechanisms operating in root stem cells to minimize DNA damage by altering phytohormone levels, and discuss a working model for cytokinin in low-temperatures stress response.
Collapse
Affiliation(s)
- Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, KA 66506, USA.
| | - Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KA 66506, USA
| | - Senthil Subramanian
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57006, USA
| | - Colleen J Doherty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - S V Krishna Jagadish
- Department of Agronomy, Kansas State University, Manhattan, KA 66506, USA; Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79410, USA.
| |
Collapse
|
14
|
Boter M, Pozas J, Jarillo JA, Piñeiro M, Pernas M. Brassica napus Roots Use Different Strategies to Respond to Warm Temperatures. Int J Mol Sci 2023; 24:ijms24021143. [PMID: 36674684 PMCID: PMC9863162 DOI: 10.3390/ijms24021143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Elevated growth temperatures are negatively affecting crop productivity by increasing yield losses. The modulation of root traits associated with improved response to rising temperatures is a promising approach to generate new varieties better suited to face the environmental constraints caused by climate change. In this study, we identified several Brassica napus root traits altered in response to warm ambient temperatures. Different combinations of changes in specific root traits result in an extended and deeper root system. This overall root growth expansion facilitates root response by maximizing root-soil surface interaction and increasing roots' ability to explore extended soil areas. We associated these traits with coordinated cellular events, including changes in cell division and elongation rates that drive root growth increases triggered by warm temperatures. Comparative transcriptomic analysis revealed the main genetic determinants of these root system architecture (RSA) changes and uncovered the necessity of a tight regulation of the heat-shock stress response to adjusting root growth to warm temperatures. Our work provides a phenotypic, cellular, and genetic framework of root response to warming temperatures that will help to harness root response mechanisms for crop yield improvement under the future climatic scenario.
Collapse
|
15
|
Mehra P, Pandey BK, Melebari D, Banda J, Leftley N, Couvreur V, Rowe J, Anfang M, De Gernier H, Morris E, Sturrock CJ, Mooney SJ, Swarup R, Faulkner C, Beeckman T, Bhalerao RP, Shani E, Jones AM, Dodd IC, Sharp RE, Sadanandom A, Draye X, Bennett MJ. Hydraulic flux-responsive hormone redistribution determines root branching. Science 2022; 378:762-768. [PMID: 36395221 DOI: 10.1126/science.add3771] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Plant roots exhibit plasticity in their branching patterns to forage efficiently for heterogeneously distributed resources, such as soil water. The xerobranching response represses lateral root formation when roots lose contact with water. Here, we show that xerobranching is regulated by radial movement of the phloem-derived hormone abscisic acid, which disrupts intercellular communication between inner and outer cell layers through plasmodesmata. Closure of these intercellular pores disrupts the inward movement of the hormone signal auxin, blocking lateral root branching. Once root tips regain contact with moisture, the abscisic acid response rapidly attenuates. Our study reveals how roots adapt their branching pattern to heterogeneous soil water conditions by linking changes in hydraulic flux with dynamic hormone redistribution.
Collapse
Affiliation(s)
- Poonam Mehra
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Bipin K Pandey
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Dalia Melebari
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Jason Banda
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Nicola Leftley
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Valentin Couvreur
- Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - James Rowe
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Moran Anfang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Hugues De Gernier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,Center for Plant Systems Biology, VIB-UGent, 9052 Ghent, Belgium
| | - Emily Morris
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Craig J Sturrock
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Sacha J Mooney
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Ranjan Swarup
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | | | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,Center for Plant Systems Biology, VIB-UGent, 9052 Ghent, Belgium
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | | | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Robert E Sharp
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, USA
| | - Ari Sadanandom
- Department of Biosciences, University of Durham, Durham, UK
| | - Xavier Draye
- Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Malcolm J Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
16
|
Abbas M, Abid MA, Meng Z, Abbas M, Wang P, Lu C, Askari M, Akram U, Ye Y, Wei Y, Wang Y, Guo S, Liang C, Zhang R. Integrating advancements in root phenotyping and genome-wide association studies to open the root genetics gateway. PHYSIOLOGIA PLANTARUM 2022; 174:e13787. [PMID: 36169590 DOI: 10.1111/ppl.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Plant adaptation to challenging environmental conditions around the world has made root growth and development an important research area for plant breeders and scientists. Targeted manipulation of root system architecture (RSA) to increase water and nutrient use efficiency can minimize the adverse effects of climate change on crop production. However, phenotyping of RSA is a major bottleneck since the roots are hidden in the soil. Recently the development of 2- and 3D root imaging techniques combined with the genome-wide association studies (GWASs) have opened up new research tools to identify the genetic basis of RSA. These approaches provide a comprehensive understanding of the RSA, by accelerating the identification and characterization of genes involved in root growth and development. This review summarizes the latest developments in phenotyping techniques and GWAS for RSA, which are used to map important genes regulating various aspects of RSA under varying environmental conditions. Furthermore, we discussed about the state-of-the-art image analysis tools integrated with various phenotyping platforms for investigating and quantifying root traits with the highest phenotypic plasticity in both artificial and natural environments which were used for large scale association mapping studies, leading to the identification of RSA phenotypes and their underlying genetics with the greatest potential for RSA improvement. In addition, challenges in root phenotyping and GWAS are also highlighted, along with future research directions employing machine learning and pan-genomics approaches.
Collapse
Affiliation(s)
- Mubashir Abbas
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Ali Abid
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Peilin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Askari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Umar Akram
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulu Ye
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunxiao Wei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Macabuhay A, Arsova B, Watt M, Nagel KA, Lenz H, Putz A, Adels S, Müller-Linow M, Kelm J, Johnson AAT, Walker R, Schaaf G, Roessner U. Plant Growth Promotion and Heat Stress Amelioration in Arabidopsis Inoculated with Paraburkholderia phytofirmans PsJN Rhizobacteria Quantified with the GrowScreen-Agar II Phenotyping Platform. PLANTS (BASEL, SWITZERLAND) 2022; 11:2927. [PMID: 36365381 PMCID: PMC9655538 DOI: 10.3390/plants11212927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
High temperatures inhibit plant growth. A proposed strategy for improving plant productivity under elevated temperatures is the use of plant growth-promoting rhizobacteria (PGPR). While the effects of PGPR on plant shoots have been extensively explored, roots-particularly their spatial and temporal dynamics-have been hard to study, due to their below-ground nature. Here, we characterized the time- and tissue-specific morphological changes in bacterized plants using a novel non-invasive high-resolution plant phenotyping and imaging platform-GrowScreen-Agar II. The platform uses custom-made agar plates, which allow air exchange to occur with the agar medium and enable the shoot to grow outside the compartment. The platform provides light protection to the roots, the exposure of it to the shoots, and the non-invasive phenotyping of both organs. Arabidopsis thaliana, co-cultivated with Paraburkholderia phytofirmans PsJN at elevated and ambient temperatures, showed increased lengths, growth rates, and numbers of roots. However, the magnitude and direction of the growth promotion varied depending on root type, timing, and temperature. The root length and distribution per depth and according to time was also influenced by bacterization and the temperature. The shoot biomass increased at the later stages under ambient temperature in the bacterized plants. The study offers insights into the timing of the tissue-specific, PsJN-induced morphological changes and should facilitate future molecular and biochemical studies on plant-microbe-environment interactions.
Collapse
Affiliation(s)
- Allene Macabuhay
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Borjana Arsova
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Michelle Watt
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kerstin A. Nagel
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Henning Lenz
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Alexander Putz
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Sascha Adels
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Mark Müller-Linow
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Jana Kelm
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | | | - Robert Walker
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
18
|
Borniego MB, Costigliolo-Rojas C, Casal JJ. Shoot thermosensors do not fulfil the same function in the root. THE NEW PHYTOLOGIST 2022; 236:9-14. [PMID: 35730992 DOI: 10.1111/nph.18332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/11/2022] [Indexed: 05/12/2023]
Affiliation(s)
- María Belén Borniego
- Facultad de Agronomía, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1417DSE, Buenos Aires, Argentina
| | - Cecilia Costigliolo-Rojas
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWE, Buenos Aires, Argentina
| | - Jorge J Casal
- Facultad de Agronomía, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1417DSE, Buenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWE, Buenos Aires, Argentina
| |
Collapse
|
19
|
Pasternak T, Kircher S, Pérez-Pérez JM, Palme K. A simple pipeline for cell cycle kinetic studies in the root apical meristem. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4683-4695. [PMID: 35312781 DOI: 10.1093/jxb/erac123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Root system architecture ultimately depends on precise signaling between different cells and tissues in the root apical meristem (RAM) and integration with environmental cues. This study describes a simple pipeline to simultaneously determine cellular parameters, nucleus geometry, and cell cycle kinetics in the RAM. The method uses marker-free techniques for nucleus and cell boundary detection, and 5-ethynyl-2'-deoxyuridine (EdU) staining for DNA replication quantification. Based on this approach, we characterized differences in cell volume, nucleus volume, and nucleus shape across different domains of the Arabidopsis RAM. We found that DNA replication patterns were cell layer and region dependent. G2 phase duration, which varied from 3.5 h in the pericycle to more than 4.5 h in the epidermis, was found to be associated with some features of nucleus geometry. Endocycle duration was determined as the time required to achieve 100% EdU-positive cells in the elongation zone and, as such, it was estimated to be in the region of 5 h for the epidermis and cortex. This experimental pipeline could be used to precisely map cell cycle duration in the RAM of mutants and in response to environmental stress in several plant species without the need for introgressing molecular cell cycle markers.
Collapse
Affiliation(s)
- Taras Pasternak
- Faculty for Biology, Institute of Biology II/Molecular Plant Physiology, Germany
- Centre for BioSystems Analysis, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Stefan Kircher
- Faculty for Biology, Institute of Biology II/Molecular Plant Physiology, Germany
| | | | - Klaus Palme
- Faculty for Biology, Institute of Biology II/Molecular Plant Physiology, Germany
- Centre for BioSystems Analysis, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, China
- ScreenSYS GmbH, Engesserstr. 4, 79108 Freiburg, Germany
| |
Collapse
|
20
|
Ashraf MA, Rahman A. Cellular Protein Trafficking: A New Player in Low-Temperature Response Pathway. PLANTS (BASEL, SWITZERLAND) 2022; 11:933. [PMID: 35406913 PMCID: PMC9003145 DOI: 10.3390/plants11070933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Unlike animals, plants are unable to escape unfavorable conditions, such as extremities of temperature. Among abiotic variables, the temperature is notableas it affects plants from the molecular to the organismal level. Because of global warming, understanding temperature effects on plants is salient today and should be focused not only on rising temperature but also greater variability in temperature that is now besetting the world's natural and agricultural ecosystems. Among the temperature stresses, low-temperature stress is one of the major stresses that limits crop productivity worldwide. Over the years, although substantial progress has been made in understanding low-temperature response mechanisms in plants, the research is more focused on aerial parts of the plants rather than on the root or whole plant, and more efforts have been made in identifying and testing the major regulators of this pathway preferably in the model organism rather than in crop plants. For the low-temperature stress response mechanism, ICE-CBF regulatory pathway turned out to be the solely established pathway, and historically most of the low-temperature research is focused on this single pathway instead of exploring other alternative regulators. In this review, we tried to take an in-depth look at our current understanding of low temperature-mediated plant growth response mechanism and present the recent advancement in cell biological studies that have opened a new horizon for finding promising and potential alternative regulators of the cold stress response pathway.
Collapse
Affiliation(s)
- M Arif Ashraf
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
| | - Abidur Rahman
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
- Department of Plant Biosciences, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
21
|
Zimmermann MJ, Bose J, Kramer EM, Atkin OK, Tyerman SD, Baskin TI. Oxygen uptake rates have contrasting responses to temperature in the root meristem and elongation zone. PHYSIOLOGIA PLANTARUM 2022; 174:e13682. [PMID: 35373370 DOI: 10.1111/ppl.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Growing at either 15 or 25°C, roots of Arabidopsis thaliana, Columbia accession, produce cells at the same rate and have growth zones of the same length. To determine whether this constancy is related to energetics, we measured oxygen uptake by means of a vibrating oxygen-selective electrode. Concomitantly, the spatial distribution of elongation was measured kinematically, delineating meristem and elongation zone. All seedlings were germinated, grown, and measured at a given temperature (15 or 25°C). Columbia was compared to lines where cell production rate roughly doubles between 15 and 25°C: Landsberg and two Columbia mutants, er-105 and ahk3-3. For all genotypes and temperatures, oxygen uptake rate at any position was highest at the root cap, where mitochondrial density was maximal, based on the fluorescence of a reporter. Uptake rate declined through the meristem to plateau within the elongation zone. For oxygen uptake rate integrated over a zone, the meristem had steady-state Q10 values ranging from 0.7 to 2.1; by contrast, the elongation zone had values ranging from 2.6 to 3.3, implying that this zone exerts a greater respiratory demand. These results highlight a substantial energy consumption by the root cap, perhaps helpful for maintaining hypoxia in stem cells, and suggest that rapid elongation is metabolically more costly than is cell division.
Collapse
Affiliation(s)
- Maura J Zimmermann
- Plant Biology Program, University of Massachusetts, Amherst, Massachusetts, USA
- Biology Department, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jayakumar Bose
- School of Agriculture, Food and Wine, Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Eric M Kramer
- Physics Department, Bard College at Simon's Rock, Great Barrington, Massachusetts, USA
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Stephen D Tyerman
- School of Agriculture, Food and Wine, Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Tobias I Baskin
- Biology Department, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
22
|
Longkumer T, Chen CY, Biancucci M, Bhaskara GB, Verslues PE. Spatial differences in stoichiometry of EGR phosphatase and Microtubule-associated Stress Protein 1 control root meristem activity during drought stress. THE PLANT CELL 2022; 34:742-758. [PMID: 34865106 PMCID: PMC8824564 DOI: 10.1093/plcell/koab290] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/18/2021] [Indexed: 05/16/2023]
Abstract
During moderate severity drought and low water potential (ψw) stress, poorly understood signaling mechanisms restrict both meristem cell division and subsequent cell expansion. We found that the Arabidopsis thaliana Clade E Growth-Regulating 2 (EGR2) protein phosphatase and Microtubule-Associated Stress Protein 1 (MASP1) differed in their stoichiometry of protein accumulation across the root meristem and had opposing effects on root meristem activity at low ψw. Ectopic MASP1 or EGR expression increased or decreased, respectively, root meristem size and root elongation during low ψw stress. This, along with the ability of phosphomimic MASP1 to overcome the EGR-mediated suppression of root meristem size and the observation that ectopic EGR expression had no effect on unstressed plants, indicated that during low ψw EGR activation and attenuation of MASP1 phosphorylation in their overlapping zone of expression determines root meristem size and activity. Ectopic EGR expression also decreased root cell size at low ψw. Conversely, both the egr1-1 egr2-1 and egr1-1 egr2-1 masp1-1 mutants had similarly increased root cell size but only egr1-1egr2-1 had increased cell division. These observations demonstrated that EGRs affect meristem activity via MASP1 but affect cell expansion via other mechanisms. Interestingly, EGR2 was highly expressed in the root cortex, a cell type important for growth regulation and environmental response.
Collapse
|
23
|
Verslues PE, Longkumer T. Size and activity of the root meristem: A key for drought resistance and a key model of drought-related signaling. PHYSIOLOGIA PLANTARUM 2022; 174:e13622. [PMID: 34988997 DOI: 10.1111/ppl.13622] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Plants make many adjustments to their growth and development in response to even small changes in water availability. Under such conditions, root elongation can be actively restricted by stress-related signaling mechanisms. Here we look at how the Arabidopsis thaliana root meristem can be affected by moderate water limitation (low water potential, ψw ). Recent characterization of the clade E Growth-Regulating (EGR) protein phosphatases and Microtubule Associated Stress Protein 1 (MASP1) provides an example of how active restriction of root meristem size allows the plant to downregulate root elongation during low ψw stress. EGR2 protein accumulation in cortex cells of the transition zone at the distal end of the root meristem illustrates how the balance of cell division versus cell expansion signals at this critical location can determine meristem size and root elongation during low ψw . These characteristics of EGRs also raise the question of whether they may also be involved in hydrotropism, and, more broadly, whether hydrotropism is a distinct response or a specific manifestation of more general mechanisms used to adjust root growth under moderate severity low ψw whether or not a gradient of water availability is present. These questions, as well as a better understanding of how specific cell layers (cortex and endodermis) seem to have an outsized role in growth regulation and better understanding the roles of plasma membrane-based signaling and polar-localized proteins in the regulation of root meristem size and cell division activity are key to elucidating the cellular mechanisms that determine root growth behavior during soil drying.
Collapse
Affiliation(s)
- Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
24
|
Karlova R, Boer D, Hayes S, Testerink C. Root plasticity under abiotic stress. PLANT PHYSIOLOGY 2021; 187:1057-1070. [PMID: 34734279 PMCID: PMC8566202 DOI: 10.1093/plphys/kiab392] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/25/2021] [Indexed: 05/08/2023]
Abstract
Abiotic stresses increasingly threaten existing ecological and agricultural systems across the globe. Plant roots perceive these stresses in the soil and adapt their architecture accordingly. This review provides insights into recent discoveries showing the importance of root system architecture (RSA) and plasticity for the survival and development of plants under heat, cold, drought, salt, and flooding stress. In addition, we review the molecular regulation and hormonal pathways involved in controlling RSA plasticity, main root growth, branching and lateral root growth, root hair development, and formation of adventitious roots. Several stresses affect root anatomy by causing aerenchyma formation, lignin and suberin deposition, and Casparian strip modulation. Roots can also actively grow toward favorable soil conditions and avoid environments detrimental to their development. Recent advances in understanding the cellular mechanisms behind these different root tropisms are discussed. Understanding root plasticity will be instrumental for the development of crops that are resilient in the face of abiotic stress.
Collapse
Affiliation(s)
- Rumyana Karlova
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Damian Boer
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Scott Hayes
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Author for communication:
| |
Collapse
|
25
|
Fridman Y, Strauss S, Horev G, Ackerman-Lavert M, Reiner-Benaim A, Lane B, Smith RS, Savaldi-Goldstein S. The root meristem is shaped by brassinosteroid control of cell geometry. NATURE PLANTS 2021; 7:1475-1484. [PMID: 34782771 PMCID: PMC8592843 DOI: 10.1038/s41477-021-01014-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/05/2021] [Indexed: 05/10/2023]
Abstract
Growth extent and direction determine cell and whole-organ architecture. How they are spatio-temporally modulated to control size and shape is not well known. Here we tackled this question by studying the effect of brassinosteroid (BR) signalling on the structure of the root meristem. Quantification of the three-dimensional geometry of thousands of individual meristematic cells across different tissue types showed that the modulation of BR signalling yields distinct changes in growth rate and anisotropy, which affects the time that cells spend in the meristem and has a strong impact on the final root form. By contrast, the hormone effect on cell volume was minor, establishing cell volume as invariant to the effect of BR. Thus, BR has the highest effect on cell shape and growth anisotropy, regulating the overall longitudinal and radial growth of the meristem, while maintaining a coherent distribution of cell sizes. Moving from single-cell quantification to the whole organ, we developed a computational model of radial growth. The simulation demonstrates how differential BR-regulated growth between the inner and outer tissues shapes the meristem and thus explains the non-intuitive outcomes of tissue-specific perturbation of BR signalling. The combined experimental data and simulation suggest that the inner and outer tissues have distinct but coordinated roles in growth regulation.
Collapse
Affiliation(s)
- Y Fridman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - S Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - G Horev
- Lorey I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - M Ackerman-Lavert
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - A Reiner-Benaim
- Clinical Epidemiology Unit, Rambam Health Care Campus, Haifa, Israel
| | - B Lane
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Computational and Systems Biology, John Innes Centre, Norwich, UK
| | - R S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Department of Computational and Systems Biology, John Innes Centre, Norwich, UK.
| | | |
Collapse
|
26
|
D E Lima CFF, Kleine-Vehn J, De Smet I, Feraru E. Getting to the Root of Belowground High Temperature Responses in Plants. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab202. [PMID: 33970267 DOI: 10.1093/jxb/erab202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 06/12/2023]
Abstract
The environment is continuously challenging plants. As a response, plants use various coping strategies, such as adaptation of their growth. Thermomorphogenesis is a specific growth adaptation that promotes organ growth in response to moderately high temperature. This would eventually enable plants to cool down by dissipating the heat. Although well understood for shoot organs, the thermomorphogenesis response in roots only recently obtained increasing research attention. Accordingly, in the last few years, the hormonal responses and underlying molecular players important for root thermomorphogenesis were revealed. Other responses triggered by high temperature in the root encompass modifications of overall root architecture and interactions with the soil environment, with consequences on the whole plant. Here, we review the scientific knowledge and highlight the current understanding on roots responding to moderately high and extreme temperature.
Collapse
Affiliation(s)
- Cassio Flavio Fonseca D E Lima
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Faculty of Biology, Department of Molecular Plant Physiology (MoPP), University of Freiburg, 79104 Freiburg, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Elena Feraru
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
27
|
Ötvös K, Marconi M, Vega A, O’Brien J, Johnson A, Abualia R, Antonielli L, Montesinos JC, Zhang Y, Tan S, Cuesta C, Artner C, Bouguyon E, Gojon A, Friml J, Gutiérrez RA, Wabnik K, Benková E. Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport. EMBO J 2021; 40:e106862. [PMID: 33399250 PMCID: PMC7849315 DOI: 10.15252/embj.2020106862] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 01/01/2023] Open
Abstract
Availability of the essential macronutrient nitrogen in soil plays a critical role in plant growth, development, and impacts agricultural productivity. Plants have evolved different strategies for sensing and responding to heterogeneous nitrogen distribution. Modulation of root system architecture, including primary root growth and branching, is among the most essential plant adaptions to ensure adequate nitrogen acquisition. However, the immediate molecular pathways coordinating the adjustment of root growth in response to distinct nitrogen sources, such as nitrate or ammonium, are poorly understood. Here, we show that growth as manifested by cell division and elongation is synchronized by coordinated auxin flux between two adjacent outer tissue layers of the root. This coordination is achieved by nitrate-dependent dephosphorylation of the PIN2 auxin efflux carrier at a previously uncharacterized phosphorylation site, leading to subsequent PIN2 lateralization and thereby regulating auxin flow between adjacent tissues. A dynamic computer model based on our experimental data successfully recapitulates experimental observations. Our study provides mechanistic insights broadening our understanding of root growth mechanisms in dynamic environments.
Collapse
Affiliation(s)
- Krisztina Ötvös
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
- Bioresources UnitCenter for Health & BioresourcesAIT Austrian Institute of Technology GmbHTullnAustria
| | - Marco Marconi
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM‐INIA) Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain
| | - Andrea Vega
- Pontifical Catholic University of ChileSantiagoChile
| | - Jose O’Brien
- Pontifical Catholic University of ChileSantiagoChile
| | - Alexander Johnson
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | - Rashed Abualia
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | - Livio Antonielli
- Bioresources UnitCenter for Health & BioresourcesAIT Austrian Institute of Technology GmbHTullnAustria
| | | | - Yuzhou Zhang
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | - Shutang Tan
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | - Candela Cuesta
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | - Christina Artner
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | | | - Alain Gojon
- BPMPCNRSINRAEInstitut AgroUniv MontpellierMontpellierFrance
| | - Jirí Friml
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | | | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM‐INIA) Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain
| | - Eva Benková
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| |
Collapse
|
28
|
Perianez-Rodriguez J, Rodriguez M, Marconi M, Bustillo-Avendaño E, Wachsman G, Sanchez-Corrionero A, De Gernier H, Cabrera J, Perez-Garcia P, Gude I, Saez A, Serrano-Ron L, Beeckman T, Benfey PN, Rodríguez-Patón A, Del Pozo JC, Wabnik K, Moreno-Risueno MA. An auxin-regulable oscillatory circuit drives the root clock in Arabidopsis. SCIENCE ADVANCES 2021; 7:eabd4722. [PMID: 33523850 PMCID: PMC7775764 DOI: 10.1126/sciadv.abd4722] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/06/2020] [Indexed: 05/19/2023]
Abstract
In Arabidopsis, the root clock regulates the spacing of lateral organs along the primary root through oscillating gene expression. The core molecular mechanism that drives the root clock periodicity and how it is modified by exogenous cues such as auxin and gravity remain unknown. We identified the key elements of the oscillator (AUXIN RESPONSE FACTOR 7, its auxin-sensitive inhibitor IAA18/POTENT, and auxin) that form a negative regulatory loop circuit in the oscillation zone. Through multilevel computer modeling fitted to experimental data, we explain how gene expression oscillations coordinate with cell division and growth to create the periodic pattern of organ spacing. Furthermore, gravistimulation experiments based on the model predictions show that external auxin stimuli can lead to entrainment of the root clock. Our work demonstrates the mechanism underlying a robust biological clock and how it can respond to external stimuli.
Collapse
Affiliation(s)
- Juan Perianez-Rodriguez
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Marcos Rodriguez
- Departamento de Inteligencia Artificial, ETSIINF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Marco Marconi
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Estefano Bustillo-Avendaño
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Guy Wachsman
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Alvaro Sanchez-Corrionero
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Hugues De Gernier
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Javier Cabrera
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Pablo Perez-Garcia
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Inmaculada Gude
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Angela Saez
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Laura Serrano-Ron
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Tom Beeckman
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Philip N Benfey
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Alfonso Rodríguez-Patón
- Departamento de Inteligencia Artificial, ETSIINF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Juan Carlos Del Pozo
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Miguel A Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain.
| |
Collapse
|
29
|
Ufuktepe DK, Palaniappan K, Elmali M, Baskin TI. RTIP: A FULLY AUTOMATED ROOT TIP TRACKER FOR MEASURING PLANT GROWTH WITH INTERMITTENT PERTURBATIONS. PROCEEDINGS. INTERNATIONAL CONFERENCE ON IMAGE PROCESSING 2020; 2020:2516-2520. [PMID: 33841049 PMCID: PMC8033648 DOI: 10.1109/icip40778.2020.9191008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
RTip is a tool to quantify plant root growth velocity using high resolution microscopy image sequences at sub-pixel accuracy. The fully automated RTip tracker is designed for high-throughput analysis of plant phenotyping experiments with episodic perturbations. RTip is able to auto-skip past these manual intervention perturbation activity, i.e. when the root tip is not under the microscope, image is distorted or blurred. RTip provides the most accurate root growth velocity results with the lowest variance (i.e. localization jitter) compared to six tracking algorithms including the top performing unsupervised Discriminative Correlation Filter Tracker and the Deeper and Wider Siamese Network. RTip is the only tracker that is able to automatically detect and recover from (occlusion-like) varying duration perturbation events.
Collapse
Affiliation(s)
- Deniz Kavzak Ufuktepe
- Electrical Engineering and Computer Science Dept., University of Missouri, Columbia, MO, USA
| | - Kannappan Palaniappan
- Electrical Engineering and Computer Science Dept., University of Missouri, Columbia, MO, USA
| | - Melissa Elmali
- Biology Department, University of Massachusetts, Amherst, MA, USA
| | - Tobias I Baskin
- Biology Department, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
30
|
Baskin TI, Preston S, Zelinsky E, Yang X, Elmali M, Bellos D, Wells DM, Bennett MJ. Positioning the Root Elongation Zone Is Saltatory and Receives Input from the Shoot. iScience 2020; 23:101309. [PMID: 32645582 PMCID: PMC7341455 DOI: 10.1016/j.isci.2020.101309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/28/2020] [Accepted: 06/18/2020] [Indexed: 02/04/2023] Open
Abstract
In the root, meristem and elongation zone lengths remain stable, despite growth and division of cells. To gain insight into zone stability, we imaged individual Arabidopsis thaliana roots through a horizontal microscope and used image analysis to obtain velocity profiles. For a root, velocity profiles obtained every 5 min over 3 h coincided closely, implying that zonation is regulated tightly. However, the position of the elongation zone saltated, by on average 17 μm every 5 min. Saltation was apparently driven by material elements growing faster and then slower, while moving through the growth zone. When the shoot was excised, after about 90 min, growth zone dynamics resembled those of intact roots, except that the position of the elongation zone moved, on average, rootward, by several hundred microns in 24 h. We hypothesize that mechanisms determining elongation zone position receive input from the shoot.
Collapse
Affiliation(s)
- Tobias I Baskin
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK; Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| | - Simon Preston
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ellen Zelinsky
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
| | - Xiaoli Yang
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
| | - Melissa Elmali
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
| | - Dimitrios Bellos
- School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK
| | - Darren M Wells
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| |
Collapse
|
31
|
Matsuura Y, Fukasawa N, Ogita K, Sasabe M, Kakimoto T, Tanaka H. Early Endosomal Trafficking Component BEN2/VPS45 Plays a Crucial Role in Internal Tissues in Regulating Root Growth and Meristem Size in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:1027. [PMID: 32754181 PMCID: PMC7366029 DOI: 10.3389/fpls.2020.01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Polar auxin transport is involved in multiple aspects of plant development, including root growth, lateral root branching, embryogenesis, and vasculature development. PIN-FORMED (PIN) auxin efflux proteins exhibit asymmetric distribution at the plasma membrane (PM) and collectively play pivotal roles in generating local auxin accumulation, which underlies various auxin-dependent developmental processes. In previous research, it has been revealed that endosomal trafficking components BEN1/BIG5 (ARF GEF) and BEN2/VPS45 (Sec1/Munc 18 protein) function in intracellular trafficking of PIN proteins in Arabidopsis. Mutations in both BEN1 and BEN2 resulted in defects in polar PIN localization, auxin response gradients, and in root architecture. In this study, we have attempted to gain insight into the developmental roles of these trafficking components. We showed that while genetic or pharmacological disturbances of auxin distribution reduced dividing cells in the root tips and resulted in reduced root growth, the same manipulations had only moderate impact on ben1; ben2 double mutants. In addition, we established transgenic lines in which BEN2/VPS45 is expressed under control of tissue-specific promoters and demonstrated that BEN2/VPS45 regulates the intracellular traffic of PIN proteins in cell-autonomous manner, at least in stele and epidermal cells. Furthermore, BEN2/VPS45 rescued the root architecture defects when expressed in internal tissues of ben1; ben2 double mutants. These results corroborate the roles of the endosomal trafficking component BEN2/VPS45 in regulation of auxin-dependent developmental processes, and suggest that BEN2/VPS45 is required for sustainable root growth, most likely through regulation of tip-ward auxin transport through the internal tissues of root.
Collapse
Affiliation(s)
- Yuki Matsuura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Narumi Fukasawa
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kosuke Ogita
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Michiko Sasabe
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Tatsuo Kakimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hirokazu Tanaka
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| |
Collapse
|
32
|
Voothuluru P, Mäkelä P, Zhu J, Yamaguchi M, Cho IJ, Oliver MJ, Simmonds J, Sharp RE. Apoplastic Hydrogen Peroxide in the Growth Zone of the Maize Primary Root. Increased Levels Differentially Modulate Root Elongation Under Well-Watered and Water-Stressed Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:392. [PMID: 32373139 PMCID: PMC7186474 DOI: 10.3389/fpls.2020.00392] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/18/2020] [Indexed: 05/28/2023]
Abstract
Reactive oxygen species (ROS) can act as signaling molecules involved in the acclimation of plants to various abiotic and biotic stresses. However, it is not clear how the generalized increases in ROS and downstream signaling events that occur in response to stressful conditions are coordinated to modify plant growth and development. Previous studies of maize (Zea mays L.) primary root growth under water deficit stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex, and that the rate of cell production is also decreased. It was observed that apoplastic ROS, particularly hydrogen peroxide (H2O2), increased specifically in the apical region of the growth zone under water stress, resulting at least partly from increased oxalate oxidase activity in this region. To assess the function of the increase in apoplastic H2O2 in root growth regulation, transgenic maize lines constitutively expressing a wheat oxalate oxidase were utilized in combination with kinematic growth analysis to examine effects of increased apoplastic H2O2 on the spatial pattern of cell elongation and on cell production in well-watered and water-stressed roots. Effects of H2O2 removal (via scavenger pretreatment) specifically from the apical region of the growth zone were also assessed. The results show that apoplastic H2O2 positively modulates cell production and root elongation under well-watered conditions, whereas the normal increase in apoplastic H2O2 in water-stressed roots is causally related to down-regulation of cell production and root growth inhibition. The effects on cell production were accompanied by changes in spatial profiles of cell elongation and in the length of the growth zone. However, effects on overall cell elongation, as reflected in final cell lengths, were minor. These results reveal a fundamental role of apoplastic H2O2 in regulating cell production and root elongation in both well-watered and water-stressed conditions.
Collapse
Affiliation(s)
- Priya Voothuluru
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Pirjo Mäkelä
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Jinming Zhu
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Mineo Yamaguchi
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - In-Jeong Cho
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, University of Missouri, Columbia, MO, United States
| | - Melvin J. Oliver
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, University of Missouri, Columbia, MO, United States
| | - John Simmonds
- Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Robert E. Sharp
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| |
Collapse
|
33
|
Ding Y, Shi Y, Yang S. Molecular Regulation of Plant Responses to Environmental Temperatures. MOLECULAR PLANT 2020; 13:544-564. [PMID: 32068158 DOI: 10.1016/j.molp.2020.02.004] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 05/19/2023]
Abstract
Temperature is a key factor governing the growth and development, distribution, and seasonal behavior of plants. The entire plant life cycle is affected by environmental temperatures. Plants grow rapidly and exhibit specific changes in morphology under mild average temperature conditions, a response termed thermomorphogenesis. When exposed to chilling or moist chilling low temperatures, flowering or seed germination is accelerated in some plant species; these processes are known as vernalization and cold stratification, respectively. Interestingly, once many temperate plants are exposed to chilling temperatures for some time, they can acquire the ability to resist freezing stress, a process termed cold acclimation. In the face of global climate change, heat stress has emerged as a frequent challenge, which adversely affects plant growth and development. In this review, we summarize and discuss recent progress in dissecting the molecular mechanisms regulating plant thermomorphogenesis, vernalization, and responses to extreme temperatures. We also discuss the remaining issues that are crucial for understanding the interactions between plants and temperature.
Collapse
Affiliation(s)
- Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
34
|
De-Jesús-García R, Rosas U, Dubrovsky JG. The barrier function of plant roots: biological bases for selective uptake and avoidance of soil compounds. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:383-397. [PMID: 32213271 DOI: 10.1071/fp19144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
The root is the main organ through which water and mineral nutrients enter the plant organism. In addition, root fulfils several other functions. Here, we propose that the root also performs the barrier function, which is essential not only for plant survival but for plant acclimation and adaptation to a constantly changing and heterogeneous soil environment. This function is related to selective uptake and avoidance of some soil compounds at the whole plant level. We review the toolkit of morpho-anatomical, structural, and other components that support this view. The components of the root structure involved in selectivity, permeability or barrier at a cellular, tissue, and organ level and their properties are discussed. In consideration of the arguments supporting barrier function of plant roots, evolutionary aspects of this function are also reviewed. Additionally, natural variation in selective root permeability is discussed which suggests that the barrier function is constantly evolving and is subject of natural selection.
Collapse
Affiliation(s)
- Ramces De-Jesús-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenuenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Ulises Rosas
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenuenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico; and Corresponding author.
| |
Collapse
|
35
|
Slovak R, Setzer C, Roiuk M, Bertels J, Göschl C, Jandrasits K, Beemster GTS, Busch W. Ribosome assembly factor Adenylate Kinase 6 maintains cell proliferation and cell size homeostasis during root growth. THE NEW PHYTOLOGIST 2020; 225:2064-2076. [PMID: 31665812 PMCID: PMC7028144 DOI: 10.1111/nph.16291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/19/2019] [Indexed: 05/06/2023]
Abstract
From the cellular perspective, organ growth is determined by production and growth of cells. Uncovering how these two processes are coordinated is essential for understanding organogenesis and regulation of organ growth. We utilized phenotypic and genetic variation of 252 natural accessions of Arabidopsis thaliana to conduct genome-wide association studies (GWAS) for identifying genes underlying root growth variation; using a T-DNA line candidate approach, we identified one gene involved in root growth control and characterized its function using microscopy, root growth kinematics, G2/M phase cell count, ploidy levels and ribosome polysome profiles. We identified a factor contributing to root growth control: Arabidopsis Adenylate Kinase 6 (AAK6). AAK6 is required for normal cell production and normal cell elongation, and its natural genetic variation is involved in determining root growth differences between Arabidopsis accessions. A lack of AAK6 reduces cell production in the aak6 root apex, but this is partially compensated for by longer mature root cells. Thereby, aak6 mutants exhibit compensatory cell enlargement, a phenomenon unexpected in roots. Moreover, aak6 plants accumulate 80S ribosomes while the polysome profile remains unchanged, consistent with a phenotype of perturbed ribosome biogenesis. In conclusion, AAK6 impacts ribosome abundance, cell production and thereby root growth.
Collapse
Affiliation(s)
- Radka Slovak
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr‐Gasse 31030ViennaAustria
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Claudia Setzer
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr‐Gasse 31030ViennaAustria
| | - Mykola Roiuk
- Max F. Perutz Laboratories (MFPL)Vienna Biocenter (VBC)Dr Bohr‐Gasse 91030ViennaAustria
| | - Jonas Bertels
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES)Department of BiologyUniversity of AntwerpGroenenborgerlaan 1712020AntwerpenBelgium
| | - Christian Göschl
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr‐Gasse 31030ViennaAustria
| | - Katharina Jandrasits
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr‐Gasse 31030ViennaAustria
| | - Gerrit T. S. Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES)Department of BiologyUniversity of AntwerpGroenenborgerlaan 1712020AntwerpenBelgium
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr‐Gasse 31030ViennaAustria
- Plant Molecular and Cellular Biology LaboratorySalk Institute For Biological Studies10010 N Torrey Pines RdLa JollaCA92037USA
| |
Collapse
|
36
|
Abstract
Kinematic methods for studying root growth are powerful but underutilized. To carry out kinematic analysis, the Baskin laboratory, in collaboration with computer scientists, developed software called Stripflow that quantifies the velocity of motion of points in the root, a quantification that is required for subsequent kinematic analysis. The first half of this chapter overviews concepts that underlie kinematic analysis of root growth; the second half provides a step-by-step guide for using Stripflow.
Collapse
|
37
|
Abstract
When exposed to warmer, nonstressful average temperatures, some plant organs grow and develop at a faster rate without affecting their final dimensions. Other plant organs show specific changes in morphology or development in a response termed thermomorphogenesis. Selected coding and noncoding RNA, chromatin features, alternative splicing variants, and signaling proteins change their abundance, localization, and/or intrinsic activity to mediate thermomorphogenesis. Temperature, light, and circadian clock cues are integrated to impinge on the level or signaling of hormones such as auxin, brassinosteroids, and gibberellins. The light receptor phytochrome B (phyB) is a temperature sensor, and the phyB-PHYTOCHROME-INTERACTING FACTOR 4 (PIF4)-auxin module is only one thread in a complex network that governs temperature sensitivity. Thermomorphogenesis offers an avenue to search for climate-smart plants to sustain crop and pasture productivity in the context of global climate change.
Collapse
Affiliation(s)
- Jorge J Casal
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Facultad de Agronomía, Universidad de Buenos Aires, C1417DSE Buenos Aires, Argentina;
- Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | | |
Collapse
|
38
|
Ashraf MA, Rahman A. Cold stress response in Arabidopsis thaliana is mediated by GNOM ARF-GEF. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:500-516. [PMID: 30362633 DOI: 10.1111/tpj.14137] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 05/29/2023]
Abstract
Endosomal trafficking plays an important role in regulating plant growth and development both at optimal and stressed conditions. Cold stress response in Arabidopsis root is directly linked to inhibition of the endosomal trafficking of auxin efflux carriers. However, the cellular components that link cold stress and the endosomal trafficking remain elusive. By screening available endosomal trafficking mutants against root growth recovery response under cold stress, we identified GNOM, a SEC7 containing ARF-GEF, as a major modulator of cold response. Contrasting response of partial loss of function mutant gnomB4049/emb30-1 and the engineered Brefeldin A (BFA)-resistant GNOM line, both of which contain mutations within SEC7 domain, to cold stress at the whole-plant level highlights the importance of this domain in modulating the cold response pathway of plants. Cold stress selectively and transiently inhibits GNOM expression. The engineered point mutation at 696 amino acid position (Methionine to Leucine) that makes GNOM resistant to BFA in fact results in overexpression of GNOM both at transcriptional and translational levels, and also alters its subcellular localization. Overexpression and altered cellular localization of GNOM were found to be directly linked to conferring striking cold-resistant phenotype in Arabidopsis. Collectively, these results provide a mechanistic link between GNOM, BFA-sensitive GNOM-regulated trafficking and cold stress.
Collapse
Affiliation(s)
- Mohammad A Ashraf
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, 020-8550, Japan
| | - Abidur Rahman
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, 020-8550, Japan
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
- Agro-Innovation Center, Iwate University, Morioka, Japan
| |
Collapse
|
39
|
Mochida K, Koda S, Inoue K, Hirayama T, Tanaka S, Nishii R, Melgani F. Computer vision-based phenotyping for improvement of plant productivity: a machine learning perspective. Gigascience 2019; 8:5232233. [PMID: 30520975 PMCID: PMC6312910 DOI: 10.1093/gigascience/giy153] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/06/2018] [Accepted: 11/24/2018] [Indexed: 11/29/2022] Open
Abstract
Employing computer vision to extract useful information from images and videos is becoming a key technique for identifying phenotypic changes in plants. Here, we review the emerging aspects of computer vision for automated plant phenotyping. Recent advances in image analysis empowered by machine learning-based techniques, including convolutional neural network-based modeling, have expanded their application to assist high-throughput plant phenotyping. Combinatorial use of multiple sensors to acquire various spectra has allowed us to noninvasively obtain a series of datasets, including those related to the development and physiological responses of plants throughout their life. Automated phenotyping platforms accelerate the elucidation of gene functions associated with traits in model plants under controlled conditions. Remote sensing techniques with image collection platforms, such as unmanned vehicles and tractors, are also emerging for large-scale field phenotyping for crop breeding and precision agriculture. Computer vision-based phenotyping will play significant roles in both the nowcasting and forecasting of plant traits through modeling of genotype/phenotype relationships.
Collapse
Affiliation(s)
- Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244–0813, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Satoru Koda
- Graduate School of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Komaki Inoue
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Shojiro Tanaka
- Hiroshima University of Economics, 5-37-1, Gion, Asaminami, Hiroshima-shi Hiroshima 731-0138, Japan
| | - Ryuei Nishii
- Institute of Mathematics for Industry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Farid Melgani
- Department of Information Engineering and Computer Science, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
40
|
Zhukovskaya NV, Bystrova EI, Dubrovsky JG, Ivanov VB. Global analysis of an exponential model of cell proliferation for estimation of cell cycle duration in the root apical meristem of angiosperms. ANNALS OF BOTANY 2018; 122:811-822. [PMID: 29425277 PMCID: PMC6215031 DOI: 10.1093/aob/mcx216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/26/2017] [Indexed: 05/13/2023]
Abstract
Background and Aims Information on cell cycle duration (T) in the root apical meristem (RAM) provides insight into root growth, development and evolution. We have previously proposed a simple method for evaluating T based on the dynamics of root growth (V), the number of cells in the RAM (Nm) and the length of fully elongated cells (l), which we named the rate-of-cell-production (RCP) method. Here, a global analysis was performed to confirm the reliability of this method in a range of angiosperm species and to assess the advantages of this approach. Methods We measured V, Nm and l from live or fixed cleared primary roots of seedlings or adventitious roots of bulbs and used this information to estimate the average T values in 73 angiosperm species via the RCP method. The results were then compared with published data obtained using the classical but laborious and time-consuming 3H-thymidine method. Key Results In most species examined, the T values obtained by the RCP method were nearly identical to those obtained by the 3H-thymidine method. Conclusions The global analysis demonstrated that the relationship between the variables V, Nm and l in roots in the steady state of growth is correctly described by the equation T = (ln2 Nm l)V-1. Thus, the RCP method enables cell cycle duration in the RAM to be rapidly and accurately determined. This method can be performed using live or fixed roots for each individual cell type. The simplicity of the approach suggests that it will be widely used in phenomics, evolutionary ecology and other plant biology studies.
Collapse
Affiliation(s)
- Natalia V Zhukovskaya
- Department of Root Physiology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Elena I Bystrova
- Department of Root Physiology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Joseph G Dubrovsky
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Victor B Ivanov
- Department of Root Physiology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
41
|
Youssef C, Bizet F, Bastien R, Legland D, Bogeat-Triboulot MB, Hummel I. Quantitative dissection of variations in root growth rate: a matter of cell proliferation or of cell expansion? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5157-5168. [PMID: 30053124 PMCID: PMC6184812 DOI: 10.1093/jxb/ery272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/16/2018] [Indexed: 05/24/2023]
Abstract
Plant organ growth results from cell production and cell expansion. Deciphering the contribution of each of these processes to growth rate is an important issue in developmental biology. Here, we investigated the cellular processes governing root elongation rate, considering two sources of variation: genotype and disturbance by chemicals (NaCl, polyethylene glycol, H2O2, abscisic acid). Exploiting the adventitious rooting capacity of the Populus genus, and using time-lapse imaging under infrared-light, particle image velocimetry, histological analysis, and kinematics, we quantified the cellular processes involved in root growth variation, and analysed the covariation patterns between growth parameters. The rate of cell production by the root apical meristem and the number of dividing cells were estimated in vivo without destructive measurement. We found that the rate of cell division contributed more to the variation in cell production rate than the number of dividing cells. Regardless of the source of variation, the length of the elongation zone was the best proxy for growth rate, summarizing rates of cell production and cell elongation into a single parameter. Our results demonstrate that cell production rate is the main driver of growth rate, whereas elemental elongation rate is a key driver of short-term growth adjustments.
Collapse
Affiliation(s)
- Chvan Youssef
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Nancy, France
| | - François Bizet
- UMR PIAF, INRA, Université Clermont Auvergne, Aubière, France
| | - Renaud Bastien
- Department of Collective Behaviour, Max Planck Institute for Ornithology, University of Konstanz, Konstanz, Germany
| | - David Legland
- UMR Biopolymers, Interactions and Assemblies, INRA, Nantes, France
| | | | - Irène Hummel
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Nancy, France
| |
Collapse
|
42
|
Vyplelová P, Ovečka M, Šamaj J. Alfalfa Root Growth Rate Correlates with Progression of Microtubules during Mitosis and Cytokinesis as Revealed by Environmental Light-Sheet Microscopy. FRONTIERS IN PLANT SCIENCE 2017; 8:1870. [PMID: 29163595 PMCID: PMC5670501 DOI: 10.3389/fpls.2017.01870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/13/2017] [Indexed: 05/04/2023]
Abstract
Cell division and expansion are two fundamental biological processes supporting indeterminate root growth and development of plants. Quantitative evaluations of cell divisions related to root growth analyses have been performed in several model crop and non-crop plant species, but not in important legume plant Medicago sativa. Light-sheet fluorescence microscopy (LSFM) is an advanced imaging technique widely used in animal developmental biology, providing efficient fast optical sectioning under physiological conditions with considerably reduced phototoxicity and photobleaching. Long-term 4D imaging of living plants offers advantages for developmental cell biology not available in other microscopy approaches. Recently, LSFM was implemented in plant developmental biology studies, however, it is largely restricted to the model plant Arabidopsis thaliana. Cellular and subcellular events in crop species and robust plant samples have not been studied by this method yet. Therefore we performed LSFM long-term live imaging of growing root tips of transgenic alfalfa plants expressing the fluorescent molecular marker for the microtubule-binding domain (GFP-MBD), in order to study dynamic patterns of microtubule arrays during mitotic cell division. Quantitative evaluations of cell division progress in the two root tissues (epidermis and cortex) clearly indicate that root growth rate is correlated with duration of cell division in alfalfa roots. Our results favor non-invasive environmental LSFM as one of the most suitable methods for qualitative and quantitative cellular and developmental imaging of living transgenic legume crops.
Collapse
|