1
|
Yip EC, Mescher MC, De Moraes CM, Tooker JF. An insect pheromone primes tolerance of herbivory in goldenrod plants. Ecology 2025; 106:e4486. [PMID: 39608409 DOI: 10.1002/ecy.4486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/13/2024] [Accepted: 09/26/2024] [Indexed: 11/30/2024]
Abstract
Environmental cues that predict increased risk of herbivory can prime plant defenses; however, few studies have explored how such cues elicit broader plant responses, including potential effects on plant growth and other resource allocations that may affect tolerance to herbivore damage. We exposed goldenrod plants (Solidago altissima) to varying concentrations of the putative sex pheromone of a gall-inducing herbivore, which has previously been implicated in defense priming. In experiments with two plant genotypes and three herbivore populations, any level of exposure to the pheromone enhanced tolerance of galling, rescuing flower production to levels observed for ungalled plants. Exposure to low doses of the pheromone elicited greater resistance to galling than exposure to high doses, with unexposed plants exhibiting intermediate resistance, suggesting a nonlinear relationship between exposure and defense priming. These findings suggest plant responses to environmental cues associated with biotic stressors are broader and more complex than previously appreciated.
Collapse
Affiliation(s)
- Eric C Yip
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | | | - John F Tooker
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Graham JL, Staudt M, Buatois B, Caro SP. Developing Oak Buds Produce Volatile Emissions in Response to Herbivory by Freshly Hatched Caterpillars. J Chem Ecol 2024; 50:503-514. [PMID: 38949747 DOI: 10.1007/s10886-024-01520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/28/2024] [Accepted: 06/09/2024] [Indexed: 07/02/2024]
Abstract
Plant responses to damage by insectivorous herbivores are well-documented in mature leaves. The resulting herbivore-induced plant volatiles (HIPVs) protect the plant by attracting carnivorous arthropods and even some insectivorous vertebrates, to parasitize or consume the plant invaders. However, very little is known about plant production of HIPVs in developing buds, particularly when herbivorous insects are too small to be considered a prey item. It is additionally unclear whether plants respond differently to generalist and specialist chewing insects that overlap in distribution. Therefore, we compared HIPV production of Downy oak (Quercus pubescens Willd.) buds infested with freshly hatched caterpillars of Tortrix viridana (specialist) and Operophtera brumata (generalist), against uninfested buds. Of the compounds identified in both years of the experiment, we found that (Z)-hex-3-enyl acetate, (E)-β-ocimene, acetophenone, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate, α-copaene, α-humulene, (E)-caryophyllene, and (E,E)-α-farnesene appeared to be higher in infested buds compared to controls. We found no difference in HIPV production between the specialist and the generalist herbivores. Production of HIPVs was also associated with leaf damage, with higher HIPV production in more severely attacked buds. Thus, our study shows that oak trees already start responding to insect herbivory before leaves are developed, by producing compounds similar to those found in damaged mature leaves. Future work should focus on how Downy oak may benefit from initiating alarm cues at a time when carnivorous arthropods and insectivorous vertebrates are unable to use herbivorous insects as host or food.
Collapse
Affiliation(s)
- Jessica L Graham
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- School of Natural Sciences, Black Hills State University, Spearfish, SD, 57799, USA
| | - Michael Staudt
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Bruno Buatois
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Samuel P Caro
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| |
Collapse
|
3
|
Pastierovič F, Kalyniukova A, Hradecký J, Dvořák O, Vítámvás J, Mogilicherla K, Tomášková I. Biochemical Responses in Populus tremula: Defending against Sucking and Leaf-Chewing Insect Herbivores. PLANTS (BASEL, SWITZERLAND) 2024; 13:1243. [PMID: 38732458 PMCID: PMC11085190 DOI: 10.3390/plants13091243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
The main biochemical traits were estimated in poplar leaves under biotic attack (aphids and spongy moth infestation). Changes in the abundance of bioactive compounds in genetically uniform individuals of European aspen (Populus tremula), such as proline, polyphenolic compounds, chlorophylls a and b, and volatile compounds, were determined between leaves damaged by sucking insects (aphid-Chaitophorus nassonowi) and chewing insects (spongy moth-Lymantria dispar) compared to uninfected leaves. Among the nine analyzed phenolic compounds, only catechin and procyanidin showed significant differences between the control leaves and leaves affected by spongy moths or aphids. GC-TOF-MS volatile metabolome analysis showed the clear separation of the control versus aphids-infested and moth-infested leaves. In total, the compounds that proved to have the highest explanatory power for aphid-infested leaves were 3-hexenal and 5-methyl-2-furanone, and for moth-infested leaves, trans-α-farnesene and 4-cyanocyclohexane. The aphid-infested leaves contained around half the amount of chlorophylls and twice the amount of proline compared to uninfected leaves, and these results evidenced that aphids influence plant physiology more than chewing insects.
Collapse
Affiliation(s)
- Filip Pastierovič
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Alina Kalyniukova
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Jaromír Hradecký
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Ondřej Dvořák
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Jan Vítámvás
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
- ICAR-Indian Institute of Rice Research (IIRR), Rajendra Nagar, Hyderabad 500030, Telangana, India
| | - Ivana Tomášková
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| |
Collapse
|
4
|
Zhang L, Liu Z, Song Y, Sui J, Hua X. Advances in the Involvement of Metals and Metalloids in Plant Defense Response to External Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:313. [PMID: 38276769 PMCID: PMC10820295 DOI: 10.3390/plants13020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Plants, as sessile organisms, uptake nutrients from the soil. Throughout their whole life cycle, they confront various external biotic and abiotic threats, encompassing harmful element toxicity, pathogen infection, and herbivore attack, posing risks to plant growth and production. Plants have evolved multifaceted mechanisms to cope with exogenous stress. The element defense hypothesis (EDH) theory elucidates that plants employ elements within their tissues to withstand various natural enemies. Notably, essential and non-essential trace metals and metalloids have been identified as active participants in plant defense mechanisms, especially in nanoparticle form. In this review, we compiled and synthetized recent advancements and robust evidence regarding the involvement of trace metals and metalloids in plant element defense against external stresses that include biotic stressors (such as drought, salinity, and heavy metal toxicity) and abiotic environmental stressors (such as pathogen invasion and herbivore attack). We discuss the mechanisms underlying the metals and metalloids involved in plant defense enhancement from physiological, biochemical, and molecular perspectives. By consolidating this information, this review enhances our understanding of how metals and metalloids contribute to plant element defense. Drawing on the current advances in plant elemental defense, we propose an application prospect of metals and metalloids in agricultural products to solve current issues, including soil pollution and production, for the sustainable development of agriculture. Although the studies focused on plant elemental defense have advanced, the precise mechanism under the plant defense response still needs further investigation.
Collapse
Affiliation(s)
- Lingxiao Zhang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Zhengyan Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Yun Song
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | - Junkang Sui
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Xuewen Hua
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| |
Collapse
|
5
|
Shi MZ, Li JY, Chen YT, Fang L, Wei H, Fu JW. Plant Volatile Compounds of the Invasive Alligatorweed, Alternanthera philoxeroides (Mart.) Griseb, Infested by Agasicles hygrophila Selman and Vogt (Coleoptera: Chrysomelidae). Life (Basel) 2022; 12:life12081257. [PMID: 36013435 PMCID: PMC9410005 DOI: 10.3390/life12081257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Plants release a variety of volatiles and herbivore-induced plant volatiles (HIPVs) after being damaged by herbivorous insects, which play multiple roles in the interactions with other plants and insects. Agasicles hygrophila Selman and Vogt (Coleoptera: Chrysomelidae) is a monophagous natural enemy and an effective biocontrol agent for Alternanthera philoxeroides (Mart.) Griseb. Here, we reported differences among the volatiles of A. philoxeroides by solid phase microextraction (SPME) using a gas chromatography-mass spectrometer (GC-MS). We compared the volatile emission of: (1) clean plants (CK); (2) A. philoxeroides plants with mechanical damage treatment (MD); and (3) A. philoxeroides plants infested with A. hygrophila 1st, 2nd, and 3rd larvae and female and male adults. A total of 97 volatiles were recorded, of which 5 occurred consistently in all treatments, while 61 volatiles were only observed in A. philoxeroides infested by A. hygrophila, such as trans-nerolidol, (E)-β-farnesene, and (3E,7E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (E, E-TMTT), etc. Among the 97 volatile compounds, 37 compounds belong to alkenes, 29 compounds belong to alkanes, and there were 8 esters, 8 alcohols and 6 ketones. Orthogonal partial least squares-discrimination analysis (OPLS-DA) showed that the different treatments were separated from each other, especially insect feeding from CK and MD treatments, and 19 volatiles contributed most to the separation among the treatments, with variable importance for the projection (VIP) values > 1. Our findings indicated that the alligatorweed plants could be induced to release volatiles by different stages of A. hygrophila, and the volatile compounds released differ quantitatively and qualitatively. The results from this study laid an important foundation for using volatile organic compounds (VOCs) and HIPVs of alligatorweed to improve the control effect of A. hygrophila on A. philoxeroides.
Collapse
Affiliation(s)
- Meng-Zhu Shi
- Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China
- Institute of Plant Protection, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fujian Academy of Agriculture Sciences, Fuzhou 350013, China
- Correspondence: (M.-Z.S.); (J.-W.F.)
| | - Jian-Yu Li
- Institute of Plant Protection, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fujian Academy of Agriculture Sciences, Fuzhou 350013, China
| | - Yan-Ting Chen
- Institute of Plant Protection, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fujian Academy of Agriculture Sciences, Fuzhou 350013, China
| | - Ling Fang
- Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China
| | - Hang Wei
- Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China
| | - Jian-Wei Fu
- Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China
- Correspondence: (M.-Z.S.); (J.-W.F.)
| |
Collapse
|
6
|
Brosset A, Blande JD. Volatile-mediated plant-plant interactions: volatile organic compounds as modulators of receiver plant defence, growth, and reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:511-528. [PMID: 34791168 PMCID: PMC8757495 DOI: 10.1093/jxb/erab487] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/04/2021] [Indexed: 05/12/2023]
Abstract
It is firmly established that plants respond to biotic and abiotic stimuli by emitting volatile organic compounds (VOCs). These VOCs provide information on the physiological status of the emitter plant and are available for detection by the whole community. In the context of plant-plant interactions, research has focused mostly on the defence-related responses of receiver plants. However, responses may span hormone signalling and both primary and secondary metabolism, and ultimately affect plant fitness. Here we present a synthesis of plant-plant interactions, focusing on the effects of VOC exposure on receiver plants. An overview of the important chemical cues, the uptake and conversion of VOCs, and the adsorption of VOCs to plant surfaces is presented. This is followed by a review of the substantial VOC-induced changes to receiver plants affecting both primary and secondary metabolism and influencing plant growth and reproduction. Further research should consider whole-plant responses for the effective evaluation of the mechanisms and fitness consequences of exposure of the receiver plant to VOCs.
Collapse
Affiliation(s)
- Agnès Brosset
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P.O. Box 1627, Kuopio FIN-70211, Finland
| | | |
Collapse
|
7
|
Hu L. Integration of multiple volatile cues into plant defense responses. THE NEW PHYTOLOGIST 2022; 233:618-623. [PMID: 34506634 DOI: 10.1111/nph.17724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The ability to predict future risks is essential for many organisms, including plants. Plants can gather information about potential future herbivory by detecting volatiles that are emitted by herbivore-attacked neighbors. Several individual volatiles have been identified as active danger cues. Recent work has also shown that plants may integrate multiple volatiles into their defense responses. Here, I discuss how the integration of multiple volatiles can increase the capacity of plants to predict future herbivore attack. I propose that integration of multiple volatile cues does not occur at the perception stage, but may through downstream early defense signaling and then be further consolidated by hormonal crosstalk. Exploring plant volatile cue integration can facilitate our understanding and utilization of chemical information transfer.
Collapse
Affiliation(s)
- Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- Institute of Plant Sciences, University of Bern, Bern, 3013, Switzerland
| |
Collapse
|
8
|
Volf M, Volfová T, Seifert CL, Ludwig A, Engelmann RA, Jorge LR, Richter R, Schedl A, Weinhold A, Wirth C, van Dam NM. A mosaic of induced and non-induced branches promotes variation in leaf traits, predation and insect herbivore assemblages in canopy trees. Ecol Lett 2021; 25:729-739. [PMID: 34958165 DOI: 10.1111/ele.13943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/10/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
Forest canopies are complex and highly diverse environments. Their diversity is affected by pronounced gradients in abiotic and biotic conditions, including variation in leaf chemistry. We hypothesised that branch-localised defence induction and vertical stratification in mature oaks constitute sources of chemical variation that extend across trophic levels. To test this, we combined manipulation of plant defences, predation monitoring, food-choice trials with herbivores and sampling of herbivore assemblages. Both induction and vertical stratification affected branch chemistry, but the effect of induction was stronger. Induction increased predation in the canopy and reduced herbivory in bioassays. The effects of increased predation affected herbivore assemblages by decreasing their abundance, and indirectly, their richness. In turn, we show that there are multiple factors contributing to variation across canopies. Branch-localised induction, variation between tree individuals and predation may be the ones with particularly strong effects on diverse assemblages of insects in temperate forests.
Collapse
Affiliation(s)
- Martin Volf
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Tereza Volfová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Carlo L Seifert
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Faculty of Forest Sciences and Forest Ecology, Department of Forest Nature Conservation, Georg-August-University, Göttingen, Germany
| | - Antonia Ludwig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany
| | - Rolf A Engelmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany
| | - Leonardo Ré Jorge
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Ronny Richter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany.,Geoinformatics and Remote Sensing, Institute for Geography, University of Leipzig, Leipzig, Germany
| | - Andreas Schedl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany.,Max-Planck Institute for Biogeochemistry, Jena, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
9
|
Yu H, Holopainen JK, Kivimäenpää M, Virtanen A, Blande JD. Potential of Climate Change and Herbivory to Affect the Release and Atmospheric Reactions of BVOCs from Boreal and Subarctic Forests. Molecules 2021; 26:2283. [PMID: 33920862 PMCID: PMC8071236 DOI: 10.3390/molecules26082283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Compared to most other forest ecosystems, circumpolar boreal and subarctic forests have few tree species, and are prone to mass outbreaks of herbivorous insects. A short growing season with long days allows rapid plant growth, which will be stimulated by predicted warming of polar areas. Emissions of biogenic volatile organic compounds (BVOC) from soil and vegetation could be substantial on sunny and warm days and biotic stress may accelerate emission rates. In the atmosphere, BVOCs are involved in various gas-phase chemical reactions within and above forest canopies. Importantly, the oxidation of BVOCs leads to secondary organic aerosol (SOA) formation. SOA particles scatter and absorb solar radiation and grow to form cloud condensation nuclei (CCN) and participate in cloud formation. Through BVOC and moisture release and SOA formation and condensation processes, vegetation has the capacity to affect the abiotic environment at the ecosystem scale. Recent BVOC literature indicates that both temperature and herbivory have a major impact on BVOC emissions released by woody species. Boreal conifer forest is the largest terrestrial biome and could be one of the largest sources of biogenic mono- and sesquiterpene emissions due to the capacity of conifer trees to store terpene-rich resins in resin canals above and belowground. Elevated temperature promotes increased diffusion of BVOCs from resin stores. Moreover, insect damage can break resin canals in needles, bark, and xylem and cause distinctive bursts of BVOCs during outbreaks. In the subarctic, mountain birch forests have cyclic outbreaks of Geometrid moths. During outbreaks, trees are often completely defoliated leading to an absence of BVOC-emitting foliage. However, in the years following an outbreak there is extended shoot growth, a greater number of leaves, and greater density of glandular trichomes that store BVOCs. This can lead to a delayed chemical defense response resulting in the highest BVOC emission rates from subarctic forest in the 1-3 years after an insect outbreak. Climate change is expected to increase insect outbreaks at high latitudes due to warmer seasons and arrivals of invasive herbivore species. Increased BVOC emission will affect tropospheric ozone (O3) formation and O3 induced oxidation of BVOCs. Herbivore-induced BVOC emissions from deciduous and coniferous trees are also likely to increase the formation rate of SOA and further growth of the particles in the atmosphere. Field experiments measuring the BVOC emission rates, SOA formation rate and particle concentrations within and above the herbivore attacked forest stands are still urgently needed.
Collapse
Affiliation(s)
- H. Yu
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (H.Y.); (J.K.H.); (M.K.)
| | - J. K. Holopainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (H.Y.); (J.K.H.); (M.K.)
| | - M. Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (H.Y.); (J.K.H.); (M.K.)
| | - A. Virtanen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland;
| | - J. D. Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (H.Y.); (J.K.H.); (M.K.)
| |
Collapse
|
10
|
Ninkovic V, Markovic D, Rensing M. Plant volatiles as cues and signals in plant communication. PLANT, CELL & ENVIRONMENT 2021; 44:1030-1043. [PMID: 33047347 PMCID: PMC8048923 DOI: 10.1111/pce.13910] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 05/05/2023]
Abstract
Volatile organic compounds are important mediators of mutualistic interactions between plants and their physical and biological surroundings. Volatiles rapidly indicate competition or potential threat before these can take place, and they regulate and coordinate adaptation responses in neighbouring plants, fine-tuning them to match the exact stress encountered. Ecological specificity and context-dependency of plant-plant communication mediated by volatiles represent important factors that determine plant performance in specific environments. In this review, we synthesise the recent progress made in understanding the role of plant volatiles as mediators of plant interactions at the individual and community levels, highlighting the complexity of the plant receiver response to diverse volatile cues and signals and addressing how specific responses shape plant growth and survival. Finally, we outline the knowledge gaps and provide directions for future research. The complex dialogue between the emitter and receiver based on either volatile cues or signals determines the outcome of information exchange, which shapes the communication pattern between individuals at the community level and determines their ecological implications at other trophic levels.
Collapse
Affiliation(s)
- Velemir Ninkovic
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Dimitrije Markovic
- Department of Crop Production EcologySwedish University of Agricultural SciencesUppsalaSweden
- Faculty of Agriculture, University of Banja LukaBanja LukaBosnia and Herzegovina
| | - Merlin Rensing
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
11
|
Volf M, Weinhold A, Seifert CL, Holicová T, Uthe H, Alander E, Richter R, Salminen JP, Wirth C, van Dam NM. Branch-Localized Induction Promotes Efficacy of Volatile Defences and Herbivore Predation in Trees. J Chem Ecol 2020; 47:99-111. [PMID: 33180276 DOI: 10.1007/s10886-020-01232-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 10/23/2022]
Abstract
Induction of plant defences can show various levels of localization, which can optimize their efficiency. Locally induced responses may be particularly important in large plants, such as trees, that show high variability in traits and herbivory rates across their canopies. We studied the branch-localized induction of polyphenols, volatiles (VOCs), and changes in leaf protein content in Carpinus betulus L., Quercus robur L., and Tilia cordata L. in a common garden experiment. To induce the trees, we treated ten individuals per species on one branch with methyl jasmonate. Five other individuals per species served as controls. We measured the traits in the treated branches, in control branches on treated trees, and in control trees. Additionally, we ran predation assays and caterpillar food-choice trials to assess the effects of our treatment on other trophic levels. Induced VOCs included mainly mono- and sesquiterpenes. Their production was strongly localized to the treated branches in all three tree species studied. Treated trees showed more predation events than control trees. The polyphenol levels and total protein content showed a limited response to the treatment. Yet, winter moth caterpillars preferred leaves from control branches over leaves from treated branches within C. betulus individuals and leaves from control Q. robur individuals over leaves from treated Q. robur individuals. Our results suggest that there is a significant level of localization in induction of VOCs and probably also in unknown traits with direct effects on herbivores. Such localization allows trees to upregulate defences wherever and whenever they are needed.
Collapse
Affiliation(s)
- Martin Volf
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany. .,Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.,Institute of Biodiversity, University of Jena, Dornburger Str. 159, 07743, Jena, Germany
| | - Carlo L Seifert
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Tereza Holicová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Henriette Uthe
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.,Institute of Biodiversity, University of Jena, Dornburger Str. 159, 07743, Jena, Germany
| | - Erika Alander
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20500, Turku, Finland
| | - Ronny Richter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.,Institute for Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany.,Geoinformatics and Remote Sensing, Institute for Geography, Leipzig University, Johannisallee 19a, 04103, Leipzig, Germany
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20500, Turku, Finland
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.,Institute for Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany.,Max-Planck Institute for Biogeochemistry, 07745, Jena, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.,Institute of Biodiversity, University of Jena, Dornburger Str. 159, 07743, Jena, Germany
| |
Collapse
|
12
|
Herbivory and Attenuated UV Radiation Affect Volatile Emissions of the Invasive Weed Calluna vulgaris. Molecules 2020; 25:molecules25143200. [PMID: 32668802 PMCID: PMC7397131 DOI: 10.3390/molecules25143200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022] Open
Abstract
Calluna vulgaris (heather) is an aggressive invasive weed on the Central Plateau, North Is., New Zealand (NZ), where it encounters different environmental factors compared to its native range in Europe, such as high ultraviolet radiation (UV) and a lack of specialist herbivores. The specialist herbivore Lochmaea suturalis (heather beetle) was introduced from the United Kingdom (UK) in 1996 as a biocontrol agent to manage this invasive weed. Like other plant invaders, a novel environment may be challenging for heather as it adjusts to its new conditions. This process of “adjustment” involves morphological and physiological changes often linked to phenotypic plasticity. The biochemical responses of exotic plants to environmental variables in their invaded range is poorly understood. The production and release of volatile organic compounds (VOCs) is essential to plant communication and highly susceptible to environmental change. This study therefore aimed to explore the VOC emissions of heather in response to different levels of UV exposure, and to feeding damage by L. suturalis. Using tunnel houses clad with UV-selective filters, we measured VOCs produced by heather under NZ ambient, 20% attenuated, and 95% attenuated solar UV treatments. We also compared VOC emissions in the field at adjacent sites where L. suturalis was present or absent. Volatiles produced by the same target heather plants were measured at four different times in the spring and summer of 2018–2019, reflecting variations in beetle’s abundance, feeding stage and plant phenology. Heather plants under 95% attenuated UV produced significantly higher amounts of (E)-β-farnesene, decanal, benzaldehyde, and benzeneacetaldehyde compared to 25% attenuated and ambient UV radiation. We also found significant differences in volatiles produced by heather plants in beetle-present versus beetle-absent sites on most sampling occasions. We also recorded a lower number of generalist herbivores on heather at sites where L. suturalis was present. Interactions between invasive plants, a novel environment, and the native communities they invade, are discussed.
Collapse
|
13
|
Li CZ, Sun H, Gao Q, Bian FY, Noman A, Xiao WH, Zhou GX, Lou YG. Host plants alter their volatiles to help a solitary egg parasitoid distinguish habitats with parasitized hosts from those without. PLANT, CELL & ENVIRONMENT 2020; 43:1740-1750. [PMID: 32170871 DOI: 10.1111/pce.13747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
When attacked by herbivores, plants emit volatiles to attract parasitoids and predators of herbivores. However, our understanding of the effect of plant volatiles on the subsequent behaviour of conspecific parasitoids when herbivores on plants are parasitized is limited. In this study, rice plants were infested with gravid females of the brown planthopper (BPH) Nilaparvata lugens for 24 hr followed by another 24 hr in which the BPH eggs on plants were permitted to be parasitized by their egg parasitoid, Anagrus nilaparvatae; volatiles from rice plants that underwent such treatment were less attractive to subsequent conspecific parasitoids compared to the volatiles from plants infested with gravid BPH females alone. Chemical analysis revealed that levels of JA and JA-Ile as well as of four volatile compounds-linalool, MeSA, α-zingiberene and an unknown compound-from plants infested with BPH and parasitized by wasps were significantly higher than levels of these compounds from BPH-infested plants. Laboratory and field bioassays revealed that one of the four increased chemicals-α-zingiberene-reduced the plant's attractiveness to the parasitoid. These results suggest that host plants can fine-tune their volatiles to help egg parasitoids distinguish host habitats with parasitized hosts from those without.
Collapse
Affiliation(s)
- Cheng-Zhe Li
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hao Sun
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qing Gao
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang-Yuan Bian
- Key Laboratory of State Forestry Administration on Bamboo Resources and Utilization, China National Bamboo Research Center, Hangzhou, China
| | - Ali Noman
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Wen-Han Xiao
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Guo-Xin Zhou
- Key Laboratory for Quality Improvement of Agriculture Products of Zhejiang Province, Department of Plant Protection, Zhejiang A&F University, Lin'an, China
| | - Yong-Gen Lou
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Volf M, Wirth C, van Dam NM. Localized defense induction in trees: a mosaic of leaf traits promoting variation in plant traits, predation, and communities of canopy arthropods? AMERICAN JOURNAL OF BOTANY 2020; 107:545-548. [PMID: 32189332 DOI: 10.1002/ajb2.1457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/23/2020] [Indexed: 05/24/2023]
Affiliation(s)
- Martin Volf
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biology, University of Leipzig, Leipzig, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, University of Jena, Jena, Germany
| |
Collapse
|
15
|
Meents AK, Mithöfer A. Plant-Plant Communication: Is There a Role for Volatile Damage-Associated Molecular Patterns? FRONTIERS IN PLANT SCIENCE 2020; 11:583275. [PMID: 33178248 PMCID: PMC7593327 DOI: 10.3389/fpls.2020.583275] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 05/16/2023]
Abstract
Damage-associated molecular patterns (DAMPs) are an ancient form of tissue-derived danger or alarm signals that initiate cellular signaling cascades, which often initiate defined defense responses. A DAMP can be any molecule that is usually not exposed to cells such as cell wall components, peptides, nucleic acid fragments, eATP and other compounds. DAMPs might be revealed upon tissue damage or during attack. Typically, DAMPs are derived from the injured organism. Almost all eukaryotes can generate and respond to DAMPs, including plants. Besides the molecules mentioned, certain volatile organic compounds (VOCs) can be considered as DAMPs. Due to their chemical nature, VOCs are supposed to act not only locally and systemically in the same plant but also between plants. Here, we focus on damage-induced volatiles (DIVs) that might be regarded as DAMPs; we will review their origin, chemical nature, physiochemical properties, biological relevance and putative function in plant-plant communications. Moreover, we discuss the possibility to use such airborne DAMPs as eco-friendly compounds to stimulate natural defenses in agriculture in order to avoid pesticides.
Collapse
|