1
|
Martius LR, Mencuccini M, Bittencourt PRL, Moraes Alves M, Binks O, Sanchez-Martinez P, da Costa ACL, Meir P. Towards accurate monitoring of water content in woody tissue across tropical forests and other biomes. TREE PHYSIOLOGY 2024; 44:tpae076. [PMID: 38952005 PMCID: PMC11299548 DOI: 10.1093/treephys/tpae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Forest ecosystems face increasing drought exposure due to climate change, necessitating accurate measurements of vegetation water content to assess drought stress and tree mortality risks. Although Frequency Domain Reflectometry offers a viable method for monitoring stem water content by measuring dielectric permittivity, challenges arise from uncertainties in sensor calibration linked to wood properties and species variability, impeding its wider usage. We sampled tropical forest trees and palms in eastern Amazônia to evaluate how sensor output differences are controlled by wood density, temperature and taxonomic identity. Three individuals per species were felled and cut into segments within a diverse dataset comprising five dicotyledonous tree and three monocotyledonous palm species on a wide range of wood densities. Water content was estimated gravimetrically for each segment using a temporally explicit wet-up/dry-down approach and the relationship with the dielectric permittivity was examined. Woody tissue density had no significant impact on the calibration, but species identity and temperature significantly affected sensor readings. The temperature artefact was quantitatively important at large temperature differences, which may have led to significant bias of daily and seasonal water content dynamics in previous studies. We established the first tropical tree and palm calibration equation which performed well for estimating water content. Notably, we demonstrated that the sensitivity remained consistent across species, enabling the creation of a simplified one-slope calibration for accurate, species-independent measurements of relative water content. Our one-slope calibration serves as a general, species-independent standard calibration for assessing relative water content in woody tissue, offering a valuable tool for quantifying drought responses and stress in trees and forest ecosystems.
Collapse
Affiliation(s)
- Lion R Martius
- School of GeoSciences, University of Edinburgh, King's Buildings, Alexander Crum Brown Rd, Edinburgh EH9 3FF, United Kingdom
| | - Maurizio Mencuccini
- CREAF, Campus UAB, Cerdanyola del Vallés 08193, Spain
- ICREA, Barcelona 08193, Spain
| | - Paulo R L Bittencourt
- Geography, College of Life and Environmental Sciences, University of Exeter, Amory Building, Exeter EX4 4RJ, United Kingdom
| | - Moisés Moraes Alves
- Instituto de Geociências, Universidade Federal do Pará, Belém, PA 66075-110, Brazil
| | - Oliver Binks
- CREAF, Campus UAB, Cerdanyola del Vallés 08193, Spain
| | - Pablo Sanchez-Martinez
- School of GeoSciences, University of Edinburgh, King's Buildings, Alexander Crum Brown Rd, Edinburgh EH9 3FF, United Kingdom
| | - Antonio C L da Costa
- Instituto de Geociências, Universidade Federal do Pará, Belém, PA 66075-110, Brazil
- Museu Paraense Emílio Goeldi, Belém, PA 66040-170, Brazil
| | - Patrick Meir
- School of GeoSciences, University of Edinburgh, King's Buildings, Alexander Crum Brown Rd, Edinburgh EH9 3FF, United Kingdom
| |
Collapse
|
2
|
Liu J, Hochberg U, Ding R, Xiong D, Dai Z, Zhao Q, Chen J, Ji S, Kang S. Elevated CO2 concentration increases maize growth under water deficit or soil salinity but with a higher risk of hydraulic failure. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:422-437. [PMID: 37715996 DOI: 10.1093/jxb/erad365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/15/2023] [Indexed: 09/18/2023]
Abstract
Climate change presents a challenge for plants to acclimate their water relations under changing environmental conditions, and may increase the risks of hydraulic failure under stress. In this study, maize plants were acclimated to two different CO2 concentrations ([CO2]; 400 ppm and 700 ppm) while under either water stress (WS) or soil salinity (SS) treatments, and their growth and hydraulic traits were examined in detail. Both WS and SS inhibited growth and had significant impacts on hydraulic traits. In particular, the water potential at 50% loss of stem hydraulic conductance (P50) decreased by 1 MPa in both treatments at 400 ppm. When subjected to elevated [CO2], the plants under both WS and SS showed improved growth by 7-23%. Elevated [CO2] also significantly increased xylem vulnerability (measured as loss of conductivity with decreasing xylem pressure), resulting in smaller hydraulic safety margins. According to the plant desiccation model, the critical desiccation degree (time×vapor pressure deficit) that the plants could tolerate under drought was reduced by 43-64% under elevated [CO2]. In addition, sensitivity analysis showed that P50 was the most important trait in determining the critical desiccation degree. Thus, our results demonstrated that whilst elevated [CO2] benefited plant growth under WS or SS, it also interfered with hydraulic acclimation, thereby potentially placing the plants at a higher risk of hydraulic failure and increased mortality.
Collapse
Affiliation(s)
- Junzhou Liu
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization Volcani Center, Bet Dagan, 7505101, Israel
| | - Risheng Ding
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
| | - Dongliang Xiong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Qing Zhao
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
| | - Jinliang Chen
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
| | - Shasha Ji
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
| |
Collapse
|
3
|
Oberleitner F, Hartmann H, Hasibeder R, Huang J, Losso A, Mayr S, Oberhuber W, Wieser G, Bahn M. Amplifying effects of recurrent drought on the dynamics of tree growth and water use in a subalpine forest. PLANT, CELL & ENVIRONMENT 2022; 45:2617-2635. [PMID: 35610775 DOI: 10.1111/pce.14369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/16/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Despite recent advances in our understanding of drought impacts on tree functioning, we lack knowledge about the dynamic responses of mature trees to recurrent drought stress. At a subalpine forest site, we assessed the effects of three years of recurrent experimental summer drought on tree growth and water relations of Larix decidua Mill. and Picea abies (L. Karst.), two common European conifers representative for contrasting water-use strategies. We combined dendrometer and xylem sap flow measurements with analyses of xylem anatomy and non-structural carbohydrates and their carbon-isotope composition. Recurrent drought increased the effects of soil moisture limitation on growth and xylogenesis, and to a lesser extent on xylem sap flow. P. abies showed stronger growth responses to recurrent drought, reduced starch concentrations in branches and increased water-use efficiency when compared to L. decidua. Despite comparatively larger maximum tree water deficits than in P. abies, xylem formation of L. decidua was less affected by drought, suggesting a stronger capacity of rehydration or lower cambial turgor thresholds for growth. Our study shows that recurrent drought progressively increases impacts on mature trees of both species, which suggests that in a future climate increasing drought frequency could impose strong legacies on carbon and water dynamics of treeline species.
Collapse
Affiliation(s)
| | - Henrik Hartmann
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Roland Hasibeder
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Jianbei Huang
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Adriano Losso
- Department of Botany, University of Innsbruck, Innsbruck, Austria
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Walter Oberhuber
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Gerhard Wieser
- Department of Botany, University of Innsbruck, Innsbruck, Austria
- Department of Alpine Timberline Ecophysiology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Innsbruck, Austria
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Limousin JM, Roussel A, Rodríguez-Calcerrada J, Torres-Ruiz JM, Moreno M, Garcia de Jalon L, Ourcival JM, Simioni G, Cochard H, Martin-StPaul N. Drought acclimation of Quercus ilex leaves improves tolerance to moderate drought but not resistance to severe water stress. PLANT, CELL & ENVIRONMENT 2022; 45:1967-1984. [PMID: 35394675 DOI: 10.1111/pce.14326] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Increasing temperature and drought can result in leaf dehydration and defoliation even in drought-adapted tree species such as the Mediterranean evergreen Quercus ilex L. The stomatal regulation of leaf water potential plays a central role in avoiding this phenomenon and is constrained by a suite of leaf traits including hydraulic conductance and vulnerability, hydraulic capacitance, minimum conductance to water vapour, osmotic potential and cell wall elasticity. We investigated whether the plasticity in these traits may improve leaf tolerance to drought in two long-term rainfall exclusion experiments in Mediterranean forests. Osmotic adjustment was observed to lower the water potential at turgor loss in the rainfall-exclusion treatments, thus suggesting a stomatal closure at more negative water potentials and a more anisohydric behaviour in drier conditions. Conversely, leaf hydraulic conductance and vulnerability did not exhibit any plasticity between treatments so the hydraulic safety margins were narrower in the rainfall-exclusion treatments. The sequence of leaf responses to seasonal drought and dehydration was conserved among treatments and sites but trees were more likely to suffer losses of turgor and hydraulic functioning in the rainfall-exclusion treatments. We conclude that leaf plasticity might help the trees to tolerate moderate drought but not to resist severe water stress.
Collapse
Affiliation(s)
| | - Amélie Roussel
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jesús Rodríguez-Calcerrada
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid Ciudad Universitaria, Madrid, Spain
| | | | - Myriam Moreno
- Unité Ecologie des Forêts Méditerranéennes (UR629), INRAE Avignon Cedex 9, Domaine Saint Paul, Site Agroparc, France
| | | | | | - Guillaume Simioni
- Unité Ecologie des Forêts Méditerranéennes (UR629), INRAE Avignon Cedex 9, Domaine Saint Paul, Site Agroparc, France
| | - Hervé Cochard
- PIAF, University Clermont-Auvergne, INRAE, Clermont-Ferrand, France
| | - Nicolas Martin-StPaul
- Unité Ecologie des Forêts Méditerranéennes (UR629), INRAE Avignon Cedex 9, Domaine Saint Paul, Site Agroparc, France
| |
Collapse
|
5
|
Towards Continuous Stem Water Content and Sap Flux Density Monitoring: IoT-Based Solution for Detecting Changes in Stem Water Dynamics. FORESTS 2022. [DOI: 10.3390/f13071040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Taking advantage of novel IoT technologies, a new multifunctional device, the “TreeTalker”, was developed to monitor real-time ecophysical and biological parameters of individual trees, as well as climatic variables related to their surrounding environment, principally, air temperature and air relative humidity. Here, IoT applied to plant ecophysiology and hydrology aims to unravel the vulnerability of trees to climatic stress via a single tree assessment at costs that enable massive deployment. We present the performance of the TreeTalker to elucidate the functional relation between the stem water content in trees and respective internal/external (stem hydraulic activity/abiotic) drivers. Continuous stem water content records are provided by an in-house-designed capacitance sensor, hosted in the reference probe of the TreeTalker sap flow measuring system, based on the transient thermal dissipation (TTD) method. In order to demonstrate the capability of the TreeTalker, a three-phase experimental process was performed including (1) sensor sensitivity analysis, (2) sensor calibration, and (3) long-term field data monitoring. A negative linear correlation was demonstrated under temperature sensitivity analysis, and for calibration, multiple linear regression was applied on harvested field samples, explaining the relationship between the sample volumetric water content and the sensor output signal. Furthermore, in a field scenario, TreeTalkers were mounted on adult Fagus sylvatica L. and Quercus petraea L. trees, from June 2020 to October 2021, in a beech-dominated forest near Marburg, Germany, where they continuously monitored sap flux density and stem volumetric water content (stem VWC). The results show that the range of stem VWC registered is highly influenced by the seasonal variability of climatic conditions. Depending on tree characteristics, edaphic and microclimatic conditions, variations in stem VWC and reactions to atmospheric events occurred. Low sapwood water storage occurs in response to drought, which illustrates the high dependency of trees on stem VWC under water stress. Consistent daily variations in stem VWC were also clearly detectable. Stem VWC constitutes a significant portion of daily transpiration (using TreeTalkers, up to 4% for the beech forest in our experimental site). The diurnal–nocturnal pattern of stem VWC and sap flow revealed an inverse relationship. Such a finding, still under investigation, may be explained by the importance of water recharge during the night, likely due to sapwood volume changes and lateral water distribution rather than by a vertical flow rate. Overall, TreeTalker demonstrated the potential of autonomous devices for monitoring sap density and relative stem VWC in the field of plant ecophysiology and hydrology.
Collapse
|
6
|
Li X, Xi B, Wu X, Choat B, Feng J, Jiang M, Tissue D. Unlocking Drought-Induced Tree Mortality: Physiological Mechanisms to Modeling. FRONTIERS IN PLANT SCIENCE 2022; 13:835921. [PMID: 35444681 PMCID: PMC9015645 DOI: 10.3389/fpls.2022.835921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Drought-related tree mortality has become a major concern worldwide due to its pronounced negative impacts on the functioning and sustainability of forest ecosystems. However, our ability to identify the species that are most vulnerable to drought, and to pinpoint the spatial and temporal patterns of mortality events, is still limited. Model is useful tools to capture the dynamics of vegetation at spatiotemporal scales, yet contemporary land surface models (LSMs) are often incapable of predicting the response of vegetation to environmental perturbations with sufficient accuracy, especially under stressful conditions such as drought. Significant progress has been made regarding the physiological mechanisms underpinning plant drought response in the past decade, and plant hydraulic dysfunction has emerged as a key determinant for tree death due to water shortage. The identification of pivotal physiological events and relevant plant traits may facilitate forecasting tree mortality through a mechanistic approach, with improved precision. In this review, we (1) summarize current understanding of physiological mechanisms leading to tree death, (2) describe the functionality of key hydraulic traits that are involved in the process of hydraulic dysfunction, and (3) outline their roles in improving the representation of hydraulic function in LSMs. We urge potential future research on detailed hydraulic processes under drought, pinpointing corresponding functional traits, as well as understanding traits variation across and within species, for a better representation of drought-induced tree mortality in models.
Collapse
Affiliation(s)
- Ximeng Li
- College of Life and Environmental Science, Minzu University of China, Beijing, China
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Benye Xi
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China
| | - Xiuchen Wu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Jinchao Feng
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Mingkai Jiang
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - David Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Global Centre for Land-based Innovation, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
7
|
Nie ZF, Liao ZQ, Yao GQ, Tian XQ, Bi MH, Teixeira da Silva JA, Gao TP, Fang XW. Divergent stem hydraulic strategies of Caragana korshinskii resprouts following a disturbance. TREE PHYSIOLOGY 2022; 42:325-336. [PMID: 34387352 DOI: 10.1093/treephys/tpab108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Resprouting plants are distributed in many vegetation communities worldwide. With increasing resprout age post-severe-disturbance, new stems grow rapidly at their early age, and decrease in their growth with gradually decreasing water status thereafter. However, there is little knowledge about how stem hydraulic strategies and anatomical traits vary post-disturbance. In this study, the stem water potential (Ψstem), maximum stem hydraulic conductivity (Kstem-max), water potential at 50% loss of hydraulic conductivity (Kstem P50) and anatomical traits of Caragana korshinkii resprouts were measured during a 1- to 13-year post-disturbance period. We found that the Kstem-max decreased with resprout age from 1-year-old resprouts (84.2 mol m-1 s-1 MPa-1) to 13-year-old resprouts (54.2 mol m-1 s-1 MPa-1) as a result of decreases in the aperture fraction (Fap) and the sum of aperture area on per unit intervessel wall area (Aap). The Kstem P50 of the resprouts decreased from 1-year-old resprouts (-1.8 MPa) to 13-year-old resprouts (-2.9 MPa) as a result of increases in vessel implosion resistance (t/b)2, wood density (WD), vessel grouping index (GI) and decreases in Fap and Aap. These shifts in hydraulic structure and function resulted in an age-based divergence in hydraulic strategies i.e., a change from an acquisitive strategy to a conservative strategy, with increasing resprout age post-disturbance.
Collapse
Affiliation(s)
- Zheng-Fei Nie
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhong-Qiang Liao
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guang-Qian Yao
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xue-Qian Tian
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Min-Hui Bi
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | | - Tian-Peng Gao
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Bryant C, Fuenzalida TI, Brothers N, Mencuccini M, Sack L, Binks O, Ball MC. Shifting access to pools of shoot water sustains gas exchange and increases stem hydraulic safety during seasonal atmospheric drought. PLANT, CELL & ENVIRONMENT 2021; 44:2898-2911. [PMID: 33974303 DOI: 10.1111/pce.14080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 05/25/2023]
Abstract
Understanding how plants acclimate to drought is crucial for predicting future vulnerability, yet seasonal acclimation of traits that improve drought tolerance in trees remains poorly resolved. We hypothesized that dry season acclimation of leaf and stem traits influencing shoot water storage and hydraulic capacitance would mitigate the drought-associated risks of reduced gas exchange and hydraulic failure in the mangrove Sonneratia alba. By late dry season, availability of stored water had shifted within leaves and between leaves and stems. While whole shoot capacitance remained stable, the symplastic fraction of leaf water increased 86%, leaf capacitance increased 104% and stem capacitance declined 80%. Despite declining plant water potentials, leaf and whole plant hydraulic conductance remained unchanged, and midday assimilation rates increased. Further, the available leaf water between the minimum water potential observed and that corresponding to 50% loss of stem conductance increased 111%. Shifting availability of pools of water, within and between organs, maintained leaf water available to buffer periods of increased photosynthesis and losses in stem hydraulic conductivity, mitigating risks of carbon depletion and hydraulic failure during atmospheric drought. Seasonal changes in access to tissue and organ water may have an important role in drought acclimation and avoidance.
Collapse
Affiliation(s)
- Callum Bryant
- Plant Science Division, Research School of Biology, Australian National University, Acton, Australia
| | - Tomas I Fuenzalida
- Plant Science Division, Research School of Biology, Australian National University, Acton, Australia
| | - Nigel Brothers
- Plant Science Division, Research School of Biology, Australian National University, Acton, Australia
| | - Maurizio Mencuccini
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Ecological and Forestry Applications Research Centre, Barcelona, Spain
| | - Lawren Sack
- Department of Ecology and Evolution, University of California Los Angeles, Los Angeles, California, USA
| | - Oliver Binks
- Plant Science Division, Research School of Biology, Australian National University, Acton, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Acton, Australia
| |
Collapse
|